151
|
Jahnke S, Roussel J, Hombach T, Kochs J, Fischbach A, Huber G, Scharr H. phenoSeeder - A Robot System for Automated Handling and Phenotyping of Individual Seeds. PLANT PHYSIOLOGY 2016; 172:1358-1370. [PMID: 27663410 PMCID: PMC5100762 DOI: 10.1104/pp.16.01122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/21/2016] [Indexed: 05/06/2023]
Abstract
The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality.
Collapse
Affiliation(s)
- Siegfried Jahnke
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Johanna Roussel
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Thomas Hombach
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Johannes Kochs
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Andreas Fischbach
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Gregor Huber
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| | - Hanno Scharr
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, 52425 Jülich, Germany
| |
Collapse
|
152
|
Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 2016; 39:524-538. [PMID: 27706370 PMCID: PMC5127155 DOI: 10.1590/1678-4685-gmb-2016-0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Since the first diacylglycerol acyltransferase (DGAT) gene was
characterized in plants, a number of studies have focused on understanding the role
of DGAT activity in plant triacylglycerol (TAG) biosynthesis.
DGAT enzyme is essential in controlling TAGs synthesis and is
encoded by different genes. DGAT1 and DGAT2 are the
two major types of DGATs and have been well characterized in many
plants. On the other hand, the DGAT3 and WS/DGAT
have received less attention. In this study, we present the first general view of the
presence of putative DGAT3 and
WS/DGAT in several plant species and report on
the diversity and evolution of these genes and its relationships with the two main
DGAT genes (DGAT1 and DGAT2).
According to our analyses DGAT1, DGAT2, DGAT3 and
WS/DGAT are very divergent genes and may have
distinct origin in plants. They also present divergent expression patterns in
different organs and tissues. The maintenance of several types of genes encoding DGAT
enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis.
Evolutionary history studies of DGATs coupled with their expression patterns help us
to decipher their functional role in plants, helping to drive future biotechnological
studies.
Collapse
Affiliation(s)
- Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Loss-Morais
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática (LABINFO), Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
153
|
Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 2016; 39:524-538. [PMID: 27706370 DOI: 10.1590/1678-4685-gmb-2016-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 05/24/2023] Open
Abstract
Since the first diacylglycerol acyltransferase (DGAT) gene was characterized in plants, a number of studies have focused on understanding the role of DGAT activity in plant triacylglycerol (TAG) biosynthesis. DGAT enzyme is essential in controlling TAGs synthesis and is encoded by different genes. DGAT1 and DGAT2 are the two major types of DGATs and have been well characterized in many plants. On the other hand, the DGAT3 and WS/DGAT have received less attention. In this study, we present the first general view of the presence of putative DGAT3 and WS/DGAT in several plant species and report on the diversity and evolution of these genes and its relationships with the two main DGAT genes (DGAT1 and DGAT2). According to our analyses DGAT1, DGAT2, DGAT3 and WS/DGAT are very divergent genes and may have distinct origin in plants. They also present divergent expression patterns in different organs and tissues. The maintenance of several types of genes encoding DGAT enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis. Evolutionary history studies of DGATs coupled with their expression patterns help us to decipher their functional role in plants, helping to drive future biotechnological studies.
Collapse
Affiliation(s)
- Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Loss-Morais
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática (LABINFO), Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
154
|
Bhattacharya S, Das N, Maiti MK. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:204-213. [PMID: 27314514 DOI: 10.1016/j.plaphy.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The production of vegetable oil in many countries of the world, including India has not been able to keep pace with the increasing requirement, leading to a very large gap in the demand-supply chain. Thus, there is an urgent need to increase the yield potential of the oilseed crops so as to enhance the storage lipid productivity. The present study describes a novel metabolic engineering ploy involving the constitutive down-regulation of endogenous ADP-glucose pyrophosphorylase (BjAGPase) enzyme and the seed-specific expression of WRINKLED1 transcription factor (AtWRI1) from Arabidopsis thaliana in Indian mustard (Brassica juncea) with an aim to divert the photosynthetically fixed carbon pool from starch to lipid synthesis in the seeds for the enhanced production of storage lipids in the seeds of transgenic mustard plants. The starch content, in both the vegetative leaf and developing seed tissues of the transgenic B. juncea lines exhibited a reduction by about 45-53% compared to the untransformed control, whereas the soluble sugar content was increased by 2.4 and 1.3-fold in the leaf and developing seed tissues, respectively. Consequently, the transgenic lines showed a significant enhancement in total seed lipid content ranging between 7.5 and 16.9%. The results indicate that the adopted metabolic engineering strategy was successful in significantly increasing the seed oil content. Therefore, findings of our research suggest that the metabolic engineering strategy adopted in this study for shifting the anabolic carbon flux from starch synthesis to lipid biosynthesis can be employed for increasing the storage lipid content of seeds in other plant species.
Collapse
Affiliation(s)
- Surajit Bhattacharya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Natasha Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
155
|
Zhang M, Cao X, Jia Q, Ohlrogge J. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:95-107. [PMID: 27288837 DOI: 10.1111/tpj.13233] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 05/08/2023]
Abstract
Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3 g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50-fold over controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased three- to four-fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased the expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation.
Collapse
Affiliation(s)
- Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| | - Xia Cao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
156
|
Hatanaka T, Serson W, Li R, Armstrong P, Yu K, Pfeiffer T, Li XL, Hildebrand D. A Vernonia Diacylglycerol Acyltransferase Can Increase Renewable Oil Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7188-94. [PMID: 27578203 DOI: 10.1021/acs.jafc.6b02498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. This study shows that by manipulating a highly active acyl-CoA:diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in oilseeds can be increased without reducing the protein component. Compared to other plant DGATs, a DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in yeast, insect cells, and soybean. Soybean lines expressing VgDGAT1A show a 4% increase in oil content without reductions in seed protein contents or yield per unit land area. Incorporation of this trait into 50% of soybeans worldwide could result in an increase of 850 million kg oil/year without new land use or inputs and be worth ∼U.S.$1 billion/year at 2012 production and market prices.
Collapse
Affiliation(s)
- Tomoko Hatanaka
- Department of Bioresource Science, Kobe University , Kobe, Japan
| | - William Serson
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky, United States
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University , Taigu, China
| | - Paul Armstrong
- USDA-ARS, EWERU-CGHAR , Manhattan, Kansas, United States
| | - Keshun Yu
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky, United States
| | - Todd Pfeiffer
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky, United States
| | - Xi-Le Li
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky, United States
| | - David Hildebrand
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky, United States
| |
Collapse
|
157
|
Sanyal A, Decocq G. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils. BMC Evol Biol 2016; 16:187. [PMID: 27613109 PMCID: PMC5017040 DOI: 10.1186/s12862-016-0752-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/23/2016] [Indexed: 11/22/2022] Open
Abstract
Background Studies of the biogeographic distribution of seed oil content in plants are fundamental to understanding the mechanisms of adaptive evolution in plants as seed oil is the primary energy source needed for germination and establishment of plants. However, seed oil content as an adaptive trait in plants is poorly understood. Here, we examine the adaptive nature of seed oil content in 168 angiosperm families occurring in different biomes across the world. We also explore the role of multiple seed traits like seed oil content and composition in plant adaptation in a phylogenetic and nonphylogenetic context. Result It was observed that the seed oil content in tropical plants (28.4 %) was significantly higher than the temperate plants (24.6 %). A significant relationship between oil content and latitude was observed in three families Papaveraceae, Sapindaceae and Sapotaceae indicating that selective forces correlated with latitude influence seed oil content. Evaluation of the response of seed oil content and composition to latitude and the correlation between seed oil content and composition showed that multiple seed traits, seed oil content and composition contribute towards plant adaptation. Investigation of the presence or absence of phylogenetic signals across 168 angiosperm families in 62 clades revealed that members of seven clades evolved to have high or low seed oil content independently as they did not share a common evolutionary path. Conclusion The study provides us an insight into the biogeographical distribution and the adaptive role of seed oil content in plants. The study indicates that multiple seed traits like seed oil content and the fatty acid composition of the seed oils determine the fitness of the plants and validate the adaptive hypothesis that seed oil quantity and quality are crucial to plant adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0752-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anushree Sanyal
- Unité "Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS), Université de Picardie Jules Verne, 1 rue des Louvels, Amiens Cedex, FR-80037, France. .,Institute for Organismal Biology, Systematic Biology, Uppsala University, Uppsala, 75236, Sweden.
| | - Guillaume Decocq
- Unité "Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS), Université de Picardie Jules Verne, 1 rue des Louvels, Amiens Cedex, FR-80037, France
| |
Collapse
|
158
|
Tiwari GJ, Liu Q, Shreshtha P, Li Z, Rahman S. RNAi-mediated down-regulation of the expression of OsFAD2-1: effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC PLANT BIOLOGY 2016; 16:189. [PMID: 27581494 PMCID: PMC5007732 DOI: 10.1186/s12870-016-0881-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids. However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration in the novel HO genotype remains unexplored. RESULTS Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO. CONCLUSION Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.
Collapse
Affiliation(s)
- Gopal Ji Tiwari
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, 46150 Bandar Sunway, Selangor, Malaysia
| | - Qing Liu
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Pushkar Shreshtha
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia.
- Monash University Malaysia Genomics Facility, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
159
|
Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 2016; 229:65-71. [DOI: 10.1016/j.jbiotec.2016.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022]
|
160
|
Chen B, Wang J, Zhang G, Liu J, Manan S, Hu H, Zhao J. Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Sci Rep 2016; 6:28541. [PMID: 27345221 PMCID: PMC4921965 DOI: 10.1038/srep28541] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Diacylglycerol acyltransferases (DGATs) play a key role in plant triacylglycerol (TAG) biosynthesis. Two type 1 and 2 DGATs from soybean were characterized for their functions in TAG biosynthesis and physiological roles. GmDGAT1A is highly expressed in seeds while GmDGAT2D is mainly expressed in flower tissues. They showed different expression patterns in response to biotic and abiotic stresses. GmDGAT2D was up-regulated by cold and heat stress and ABA signaling, and repressed by insect biting and jasmonate, whereas GmDGAT1A show fewer responses. Both GmDGAT1A and GmDGAT2D were localized to the endoplasmic reticulum and complemented the TAG deficiency of a yeast mutant H1246. GmDGAT2D-transgenic hairy roots synthesized more 18:2- or 18:1-TAG, whereas GmDGAT1A prefers to use 18:3-acyl CoA for TAG synthesis. Overexpression of both GmDGATs in Arabidopsis seeds enhanced the TAG production; GmDGAT2D promoted 18:2-TAG in wild-type but enhanced 18:1-TAG production in rod1 mutant seeds, with a decreased 18:3-TAG. However, GmDGAT1A enhanced 18:3-TAG and reduced 20:1-TAG contents. The different substrate preferences of two DGATs may confer diverse fatty acid profiles in soybean oils. While GmDGAT1A may play a role in usual seed TAG production and GmDGAT2D is also involved in usual TAG biosynthesis in other tissues in responses to environmental and hormonal cues.
Collapse
Affiliation(s)
- BeiBei Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junejie Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqi Liu
- College of Agronomy, Jilin Agricultural University, Changchun, 130047, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
161
|
Kumar A, Sharma A, Upadhyaya KC. Vegetable Oil: Nutritional and Industrial Perspective. Curr Genomics 2016; 17:230-40. [PMID: 27252590 PMCID: PMC4869010 DOI: 10.2174/1389202917666160202220107] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non –renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or ‘Fish oil’. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool.
Collapse
Affiliation(s)
- Aruna Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aarti Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kailash C Upadhyaya
- Amity Institute of Molecular Biology and Genomics, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
162
|
Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L, Feng L, Meyer K. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans. PLANT PHYSIOLOGY 2016; 171:878-93. [PMID: 27208257 PMCID: PMC4902613 DOI: 10.1104/pp.16.00315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/16/2016] [Indexed: 05/05/2023]
Abstract
Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.
Collapse
Affiliation(s)
| | - Bo Shen
- DuPont Pioneer, Johnston, Iowa 50131-1004
| | | | | | | | | | | | | | | | | | - Lizhi Feng
- DuPont Pioneer, Johnston, Iowa 50131-1004
| | - Knut Meyer
- DuPont Pioneer, Johnston, Iowa 50131-1004
| |
Collapse
|
163
|
Liu XY, Ouyang LL, Zhou ZG. Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress. Sci Rep 2016; 6:26610. [PMID: 27216435 PMCID: PMC4877601 DOI: 10.1038/srep26610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
In addition to the Kennedy pathway for de novo biosynthesis, triacylglycerol (TAG), the most important stock for microalgae-based biodiesel production, can be synthesized by phospholipid: diacylglycerol acyltransferase (PDAT) that transfers an acyl group from phospholipids (PLs) to diacylglycerol (DAG). This study presents a novel gene that encodes PDAT from the green microalga Myrmecia incisa Reisigl H4301 (designated MiPDAT ). MiPDAT is localized on the plasma membrane (PM) via the agroinfiltration of tobacco leaves with a green fluorescent protein-fused construct. MiPDAT synthesizes TAG based on functional complementary experiments in the mutant yeast strain H1246 and the membrane lipid phosphatidylcholine (PC) is preferentially used as substrates as revealed by in vitro enzyme activity assay. The gradually increased transcription levels of MiPDAT in M. incisa during the cultivation under nitrogen starvation conditions is proposed to be responsible for the decrease and increase of the PC and TAG levels, respectively, as detected by liquid chromatography-mass spectrometry after 4 d of nitrogen starvation. In addition, the mechanism by which MiPDAT in this microalga uses PC to yield TAG is discussed. Accordingly, it is concluded that this PM-located PDAT contributes to the conversion of membrane lipids into TAG in M. incisa during the nitrogen starvation stress.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Ling Ouyang
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
164
|
Zhang L, Wang SB, Li QG, Song J, Hao YQ, Zhou L, Zheng HQ, Dunwell JM, Zhang YM. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants. PLoS One 2016; 11:e0154882. [PMID: 27159078 PMCID: PMC4861283 DOI: 10.1371/journal.pone.0154882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Shi-Bo Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Statistical Genomics Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Qi-Gang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People’s Republic of China
| | - Jian Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yu-Qi Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Ling Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Institute of Biotechnology, Jiangsu Academy of Agricultural Science, Nanjing 210014, People’s Republic of China
| | - Huan-Quan Zheng
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AS, United Kingdom
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Statistical Genomics Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- * E-mail: ;
| |
Collapse
|
165
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
166
|
Li Q, Hu L, Guo J, Yang T, Chen L. Molecular characterization of two type I acyl-CoA: diacylglycerol acyltransferase genes in maize. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1157036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Qingzhi Li
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| | - Lizong Hu
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| | - Jinjie Guo
- Key Laboratory constructed by Ministry of Education and Hebei province, Hebei sub-center for National Maize Improvement Center, Hebei Agricultural University, Baoding, P.R. China
| | - Tongwen Yang
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| | - Long Chen
- Department of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P.R. China
| |
Collapse
|
167
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
168
|
Beacham TA, Ali ST. Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
169
|
Liu F, Zhao Q, Mano N, Ahmed Z, Nitschke F, Cai Y, Chapman KD, Steup M, Tetlow IJ, Emes MJ. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:976-85. [PMID: 26285603 PMCID: PMC11389044 DOI: 10.1111/pbi.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.
Collapse
Affiliation(s)
- Fushan Liu
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Qianru Zhao
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Noel Mano
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Zaheer Ahmed
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yinqqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, USA
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, USA
| | - Martin Steup
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
170
|
Singer SD, Zou J, Weselake RJ. Abiotic factors influence plant storage lipid accumulation and composition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:1-9. [PMID: 26795146 DOI: 10.1016/j.plantsci.2015.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 05/19/2023]
Abstract
The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future.
Collapse
Affiliation(s)
- Stacy D Singer
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Randall J Weselake
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
171
|
Arroyo-Caro JM, Mañas-Fernández A, Alonso DL, García-Maroto F. Type I Diacylglycerol Acyltransferase (MtDGAT1) from Macadamia tetraphylla: Cloning, Characterization, and Impact of Its Heterologous Expression on Triacylglycerol Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:277-285. [PMID: 26666454 DOI: 10.1021/acs.jafc.5b04805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acyltransferase enzymes have been reported as useful biotechnological tools in order to increase oil yield and modify fatty acid composition. Macadamia species are able to accumulate unusually high levels of palmitoleic acid that besides oleic acid amounts to over 80% of monounsaturated fatty acids in the seed oil. In this work, a gene encoding a type 1 acyl-CoA:diacylglycerol acyltransferase (DGAT1) was cloned from M. tetraphylla. DGAT activity of the protein encoded by MtDGAT1 was confirmed by heterologous expression in a yeast mutant. Fatty acid composition of triacylglycerols synthesized by MtDGAT1 was compared to that of DGAT1 enzymes from Arabidopsis and Echium, with the results suggesting a substrate preference for monounsaturated over polyunsaturated fatty acids. Characteristics of MtDGAT1 may contribute to biochemical mechanisms determining the particular fatty acid composition of Macadamia oil and also indicate the possibility of using this enzyme in biotechnological approaches where a reduction of polyunsaturated fatty acids in the oil is desired.
Collapse
Affiliation(s)
- José María Arroyo-Caro
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Aurora Mañas-Fernández
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Diego López Alonso
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| | - Federico García-Maroto
- Grupo de "Biotecnología de Productos Naturales" (BIO-279), Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Campus Internacional de Excelencia Agroalimentario (CeiA3), Universidad de Almería , 04120 Almería, Spain
| |
Collapse
|
172
|
Abdullah HM, Akbari P, Paulose B, Schnell D, Qi W, Park Y, Pareek A, Dhankher OP. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:136. [PMID: 27382413 PMCID: PMC4932711 DOI: 10.1186/s13068-016-0555-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/23/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Camelina sativa is an emerging dedicated oilseed crop designed for biofuel and biodiesel applications as well as a source for edible and general-purpose oils. Such valuable oilseed crop is subjected to plant breeding programs and is suggested for large-scale production of better seed and oil quality. To accomplish this objective and to further enhance its oil content, a better understanding of lipid metabolism at the molecular level in this plant is critical. Here, we applied tissue transcriptomics and lipid composition analysis to identify and profile the genes and gene networks associated with triacylglycerol (TAG) biosynthesis, and to investigate how those genes are interacting to determine the quantity and quality of Camelina oil during seed development. RESULTS Our Camelina transcriptome data analysis revealed an approximate of 57,854 and 57,973 genes actively expressing in developing seeds (RPKM ≥ 0.1) at 10-15 (Cs-14) and 16-21 (Cs-21) days after flowering (DAF), respectively. Of these, 7932 genes showed temporal and differential gene expression during the seed development (log2 fold change ≥1.5 or ≤-1.5; P ≤ 0.05). The differentially expressed genes (DEGs) were annotated and were found to be involved in distinct functional categories and metabolic pathways. Furthermore, performing quantitative real-time PCR for selected candidate genes associated with TAG biosynthesis validated RNA-seq data. Our results showed strong positive correlations between the expression abundance measured using both qPCR and RNA-Seq technologies. Furthermore, the analysis of fatty-acid content and composition revealed major changes throughout seed development, with the amount of oil accumulate rapidly at early mid seed development stages (from 16-28 DAF onwards), while no important changes were observed in the fatty-acid profile between seeds at 28 DAF and mature seeds. CONCLUSIONS This study is highly useful for understanding the regulation of TAG biosynthesis and identifying the rate-limiting steps in TAG pathways at seed development stages, providing a precise selection of candidate genes for developing Camelina varieties with improved seed and oil yields.
Collapse
Affiliation(s)
- Hesham M. Abdullah
- />Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003 USA
- />Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651 Egypt
| | - Parisa Akbari
- />Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Bibin Paulose
- />Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Danny Schnell
- />Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Weipeng Qi
- />Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Yeonhwa Park
- />Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 100067 India
| | - Om Parkash Dhankher
- />Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003 USA
| |
Collapse
|
173
|
Li RJ, Gao X, Li LM, Liu XL, Wang ZY, Lü SY. De novo Assembly and Characterization of the Fruit Transcriptome of Idesia polycarpa Reveals Candidate Genes for Lipid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:801. [PMID: 27375655 PMCID: PMC4896211 DOI: 10.3389/fpls.2016.00801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Idesia polycarpa, is a valuable oilseed-producing tree of the Flacourtiaceae family that has the potential to fulfill edible oil production and is also a possible biofuel feedstock. The fruit is unique in that it contains both saturated and unsaturated lipids present in pericarp and seed, respectively. However, triglyceride synthesis and storage in tissues outside of the seeds has been poorly studied in previous researches. To gain insight into the unique properties of I. polycarpa fruit lipid synthesis, biochemical, and transcriptomic approaches were used to compare the lipid accumulation between pericarp and seed of the fruit. Lipid accumulation rates, final lipid content and composition were significantly different between two tissues. Furthermore, we described the annotated transcriptome assembly and differential gene expression analysis generated from the pericarp and seed tissues. The data allowed the identification of distinct candidate genes and reconstruction of lipid pathways, which may explain the differences of oil synthesis between the two tissues. The results may be useful for engineering alternative pathways for lipid production in non-seed or vegetative tissues.
Collapse
Affiliation(s)
- Rong-Jun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
| | - Xiang Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lin-Mao Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiu-Lin Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhou-Ya Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shi-you Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Shi-you Lü
| |
Collapse
|
174
|
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, Koyama H, Sahoo L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:226. [PMID: 27790288 PMCID: PMC5073959 DOI: 10.1186/s13068-016-0642-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jatropha curcas is an important biofuel crop due to the presence of high amount of oil in its seeds suitable for biodiesel production. Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. Diacylglycerol O-acyltransferase (DGAT1) enzyme is responsible for the last and only committed step in seed TAG biosynthesis. Direct upregulation of TAG biosynthesis in seeds and vegetative tissues through overexpression of the DGAT1 could enhance the energy density of the biomass, making significant impact on biofuel production. RESULTS The enzyme diacylglycerol O-acyltransferase is the rate-limiting enzyme responsible for the TAG biosynthesis in seeds. We generated transgenic Jatropha ectopically expressing an Arabidopsis DGAT1 gene through Agrobacterium-mediated transformation. The resulting AtDGAT1 transgenic plants showed a dramatic increase in lipid content by 1.5- to 2 fold in leaves and 20-30 % in seeds, and an overall increase in TAG and DAG, and lower free fatty acid (FFA) levels compared to the wild-type plants. The increase in oil content in transgenic plants is accompanied with increase in average plant height, seeds per tree, average 100-seed weight, and seed length and breadth. The enhanced TAG accumulation in transgenic plants had no penalty on the growth rates, growth patterns, leaf number, and leaf size of plants. CONCLUSIONS In this study, we produced transgenic Jatropha ectopically expressing AtDGAT1. We successfully increased the oil content by 20-30 % in seeds and 1.5- to 2.0-fold in leaves of Jatropha through genetic engineering. Transgenic plants had reduced FFA content compared with control plants. Our strategy of increasing energy density by enhancing oil accumulation in both seeds and leaves in Jatropha would make it economically more sustainable for biofuel production.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Prabin Kumar Sharma
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Yasufumi Kobayashi
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Vaibhav V. Goud
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Nozomu Sakurai
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Lingaraj Sahoo
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|
175
|
Kirchner L, Wirshing A, Kurt L, Reinard T, Glick J, Cram EJ, Jacobsen HJ, Lee-Parsons CW. Identification, characterization, and expression of diacylgylcerol acyltransferase type-1 from Chlorella vulgaris. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
176
|
High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci Rep 2015; 5:17512. [PMID: 26631981 PMCID: PMC4668357 DOI: 10.1038/srep17512] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022] Open
Abstract
This study reports the use of Genotyping-by-Sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of recombinant inbred lines (RILs) of an intra-specific mapping population of chickpea contrasting for seed traits. A total of 119,672 raw SNPs were discovered, which after stringent filtering revealed 3,977 high quality SNPs of which 39.5% were present in genic regions. Comparative analysis using physically mapped marker loci revealed a higher degree of synteny with Medicago in comparison to soybean. The SNP genotyping data was utilized to construct one of the most saturated intra-specific genetic linkage maps of chickpea having 3,363 mapped positions including 3,228 SNPs on 8 linkage groups spanning 1006.98 cM at an average inter marker distance of 0.33 cM. The map was utilized to identify 20 quantitative trait loci (QTLs) associated with seed traits accounting for phenotypic variations ranging from 9.97% to 29.71%. Analysis of the genomic sequence corresponding to five robust QTLs led to the identification of 684 putative candidate genes whose expression profiling revealed that 101 genes exhibited seed specific expression. The integrated approach utilizing the identified QTLs along with the available genome and transcriptome could serve as a platform for candidate gene identification for molecular breeding of chickpea.
Collapse
|
177
|
Kim HU, Lee KR, Jung SJ, Shin HA, Go YS, Suh MC, Kim JB. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1346-59. [PMID: 25790072 PMCID: PMC5448714 DOI: 10.1111/pbi.12354] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/28/2014] [Accepted: 01/30/2015] [Indexed: 05/08/2023]
Abstract
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
- Corresponding author: Hyun Uk Kim, Tel: 82-031-299-1703, Fax: 82-031-299-1672,
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Su-Jin Jung
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Hyun A Shin
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Mi-Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jong Bum Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea
| |
Collapse
|
178
|
Aymé L, Jolivet P, Nicaud JM, Chardot T. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica. PLoS One 2015; 10:e0143113. [PMID: 26581109 PMCID: PMC4651311 DOI: 10.1371/journal.pone.0143113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.
Collapse
Affiliation(s)
- Laure Aymé
- INRA, UMR1318, Institut Jean-Pierre Bourgin Saclay Plant Sciences, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pascale Jolivet
- INRA, UMR1318, Institut Jean-Pierre Bourgin Saclay Plant Sciences, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | | | - Thierry Chardot
- INRA, UMR1318, Institut Jean-Pierre Bourgin Saclay Plant Sciences, Versailles, France
- AgroParisTech, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- * E-mail:
| |
Collapse
|
179
|
Aznar-Moreno J, Denolf P, Van Audenhove K, De Bodt S, Engelen S, Fahy D, Wallis JG, Browse J. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66. [PMID: 26195728 PMCID: PMC4588894 DOI: 10.1093/jxb/erv363] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop.
Collapse
Affiliation(s)
- Jose Aznar-Moreno
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Peter Denolf
- Bayer CropScience N.V., Technologiepark 38, B-9052 Ghent, Belgium
| | | | - Stefanie De Bodt
- Bayer CropScience N.V., Technologiepark 38, B-9052 Ghent, Belgium
| | - Steven Engelen
- Bayer CropScience N.V., Technologiepark 38, B-9052 Ghent, Belgium
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
180
|
Beacham TA, Macia VM, Rooks P, White DA, Ali ST. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. ACTA ACUST UNITED AC 2015; 7:87-94. [PMID: 26753128 PMCID: PMC4691955 DOI: 10.1016/j.btre.2015.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/15/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
Abstract
EMS and UV mutagenesis of Nannochloropsis salina combined with FACS for mutant enrichment. Productivity of EMS mutants increased by 76% and showed range of FA profile changes. Dual EMS and UV mutants accumulated 3 fold more lipid than the wild type. Elevation in lipid content comes with a cost to growth rate impacting productivity. Mutants suitable for divergent industries generated (biofuel, high value PUFA production).
Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.
Collapse
Affiliation(s)
- T A Beacham
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK
| | - V Mora Macia
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK; Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - P Rooks
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK
| | - D A White
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK; Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - S T Ali
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK
| |
Collapse
|
181
|
Chen S, Lei Y, Xu X, Huang J, Jiang H, Wang J, Cheng Z, Zhang J, Song Y, Liao B, Li Y. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds. PLoS One 2015; 10:e0136170. [PMID: 26302041 PMCID: PMC4547709 DOI: 10.1371/journal.pone.0136170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts.
Collapse
Affiliation(s)
- Silong Chen
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Yong Lei
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Xian Xu
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Jiaquan Huang
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Jin Wang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Zengshu Cheng
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Jianan Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Yahui Song
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Boshou Liao
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
- * E-mail: (BSL); (YRL)
| | - Yurong Li
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
- * E-mail: (BSL); (YRL)
| |
Collapse
|
182
|
Slabaugh MB, Cooper LD, Kishore VK, Knapp SJ, Kling JG. Genes affecting novel seed constituents in Limnanthes alba Benth: transcriptome analysis of developing embryos and a new genetic map of meadowfoam. PeerJ 2015; 3:e915. [PMID: 26038713 PMCID: PMC4451031 DOI: 10.7717/peerj.915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/06/2015] [Indexed: 01/19/2023] Open
Abstract
The seed oil of meadowfoam, a new crop in the Limnanthaceae family, is highly enriched in very long chain fatty acids that are desaturated at the Δ5 position. The unusual oil is desirable for cosmetics and innovative industrial applications and the seed meal remaining after oil extraction contains glucolimnanthin, a methoxylated benzylglucosinolate whose degradation products are herbicidal and anti-microbial. Here we describe EST analysis of the developing seed transcriptome that identified major genes involved in biosynthesis and assembly of the seed oil and in glucosinolate metabolic pathways. mRNAs encoding acyl-CoA Δ5 desaturase were notably abundant. The library was searched for simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). Fifty-four new SSR markers and eight candidate gene markers were developed and combined with previously developed SSRs to construct a new genetic map for Limnanthes alba. Mapped genes in the lipid biosynthetic pathway encode 3-ketoacyl-CoA synthase (KCS), Δ5 desaturase (Δ5DS), lysophosphatidylacyl-acyl transferase (LPAT), and acyl-CoA diacylglycerol acyl transferase (DGAT). Mapped genes in glucosinolate biosynthetic and degradation pathways encode CYP79A, myrosinase (TGG), and epithiospecifier modifier protein (ESM). The resources developed in this study will further the domestication and improvement of meadowfoam as an oilseed crop.
Collapse
Affiliation(s)
- Mary B Slabaugh
- Department of Crop and Soil Science, Oregon State University , Corvallis, OR , United States of America
| | - Laurel D Cooper
- Department of Crop and Soil Science, Oregon State University , Corvallis, OR , United States of America ; Department of Botany and Plant Pathology, Oregon State University , Corvallis OR , United States of America
| | | | - Steven J Knapp
- Department of Plant Sciences, University of California-Davis , Davis, CA , United States of America
| | - Jennifer G Kling
- Department of Crop and Soil Science, Oregon State University , Corvallis, OR , United States of America
| |
Collapse
|
183
|
Chen J, Tan RK, Guo XJ, Fu ZL, Wang Z, Zhang ZY, Tan XL. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. PLoS One 2015; 10:e0126250. [PMID: 25965272 PMCID: PMC4429122 DOI: 10.1371/journal.pone.0126250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47,216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36,368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factor families were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Ren-Ke Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Juan Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng-Li Fu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Zhi-Yan Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
184
|
Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S. QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:965-84. [PMID: 25748113 DOI: 10.1007/s00122-015-2483-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/11/2015] [Indexed: 05/23/2023]
Abstract
The combined SSR-SNP map and 20 QTL for agronomic and quality traits will assist in marker assisted breeding as well as map-based cloning of key genes in linseed. Flax is an important nutraceutical crop mostly because it is a rich source of omega-3 fatty acids and antioxidant compounds. Canada is the largest producer and exporter of oilseed flax (or linseed), creating a growing need to improve crop productivity and quality. In this study, a genetic map was constructed based on selected 329 single nucleotide polymorphic markers and 362 simple sequence repeat markers using a recombinant inbred line population of 243 individuals from a cross between the Canadian varieties CDC Bethune and Macbeth. The genetic map consisted of 15 linkage groups comprising 691 markers with an average marker density of one marker every 1.9 cM. A total of 20 quantitative trait loci (QTL) were identified corresponding to 14 traits. Three QTL each for oleic acid and stearic acid, two QTL each for linoleic acid and iodine value and one each for palmitic acid, linolenic acid, oil content, seed protein, cell wall, straw weight, thousand seed weight, seeds per boll, yield and days to maturity were identified. The QTL for cell wall, straw weight, seeds per boll, yield and days to maturity all co-located on linkage group 4. Analysis of the candidate gene regions underlying the QTL identified proteins involved in cell wall and fibre synthesis, fatty acid biosynthesis as well as their metabolism and yield component traits. This study provides the foundation for assisting in map-based cloning of the QTL and marker assisted selection of a wide range of quality and agronomic traits in linseed and potentially fibre flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
185
|
Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S. QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015. [PMID: 25748113 DOI: 10.1007/s00122-015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The combined SSR-SNP map and 20 QTL for agronomic and quality traits will assist in marker assisted breeding as well as map-based cloning of key genes in linseed. Flax is an important nutraceutical crop mostly because it is a rich source of omega-3 fatty acids and antioxidant compounds. Canada is the largest producer and exporter of oilseed flax (or linseed), creating a growing need to improve crop productivity and quality. In this study, a genetic map was constructed based on selected 329 single nucleotide polymorphic markers and 362 simple sequence repeat markers using a recombinant inbred line population of 243 individuals from a cross between the Canadian varieties CDC Bethune and Macbeth. The genetic map consisted of 15 linkage groups comprising 691 markers with an average marker density of one marker every 1.9 cM. A total of 20 quantitative trait loci (QTL) were identified corresponding to 14 traits. Three QTL each for oleic acid and stearic acid, two QTL each for linoleic acid and iodine value and one each for palmitic acid, linolenic acid, oil content, seed protein, cell wall, straw weight, thousand seed weight, seeds per boll, yield and days to maturity were identified. The QTL for cell wall, straw weight, seeds per boll, yield and days to maturity all co-located on linkage group 4. Analysis of the candidate gene regions underlying the QTL identified proteins involved in cell wall and fibre synthesis, fatty acid biosynthesis as well as their metabolism and yield component traits. This study provides the foundation for assisting in map-based cloning of the QTL and marker assisted selection of a wide range of quality and agronomic traits in linseed and potentially fibre flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
186
|
Tan H, Xie Q, Xiang X, Li J, Zheng S, Xu X, Guo H, Ye W. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. PLoS One 2015; 10:e0124794. [PMID: 25919591 PMCID: PMC4412398 DOI: 10.1371/journal.pone.0124794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/06/2015] [Indexed: 11/25/2022] Open
Abstract
Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil accumulation at the metabolite level.
Collapse
Affiliation(s)
- Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoe Xiang
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianqiao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suning Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Supervision and Testing Center for Vegetable Quality, Ministry of Agriculture, Beijing, 100081, China
| | - Xinying Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haolun Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
187
|
Hegde K, Chandra N, Sarma SJ, Brar SK, Veeranki VD. Genetic Engineering Strategies for Enhanced Biodiesel Production. Mol Biotechnol 2015; 57:606-24. [DOI: 10.1007/s12033-015-9869-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
188
|
R. V. S, Kumari P, Rupwate SD, Rajasekharan R, Srinivasan M. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.): a transcriptomic approach. PLoS One 2015; 10:e0123580. [PMID: 25875809 PMCID: PMC4395390 DOI: 10.1371/journal.pone.0123580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb), with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO) terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG) classification, the major category was “Metabolism” (31.97%), of which the most prominent class was ‘carbohydrate metabolism and transport’ (5.81% of total KOG classifications) followed by ‘secondary metabolite biosynthesis transport and catabolism’ (5.34%) and ‘lipid metabolism’ (4.57%). A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs) were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research and understanding of chia. The identified novel UniGenes will facilitate gene discovery and creation of genomic resource for this crop.
Collapse
Affiliation(s)
- Sreedhar R. V.
- CSIR-Lipidomic Centre (CSIR-LIPIC), CSIR-Central Food Technological Research Institute (CSIR-CFTRI) Resource Centre, Allalasandra, GKVK Post, Bangalore—560 065, Karnataka, India
| | - Priya Kumari
- CSIR-Lipidomic Centre (CSIR-LIPIC), CSIR-Central Food Technological Research Institute (CSIR-CFTRI) Resource Centre, Allalasandra, GKVK Post, Bangalore—560 065, Karnataka, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi—110 025, India
| | - Sunny D. Rupwate
- CSIR-Lipidomic Centre (CSIR-LIPIC), CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore—570 020, Karnataka, India
| | - Ram Rajasekharan
- CSIR-Lipidomic Centre (CSIR-LIPIC), CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore—570 020, Karnataka, India
| | - Malathi Srinivasan
- CSIR-Lipidomic Centre (CSIR-LIPIC), CSIR-Central Food Technological Research Institute (CSIR-CFTRI) Resource Centre, Allalasandra, GKVK Post, Bangalore—560 065, Karnataka, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi—110 025, India
- * E-mail:
| |
Collapse
|
189
|
McKeon TA, He X. Castor diacylglycerol acyltransferase type 1 (DGAT1) displays greater activity with diricinolein than Arabidopsis DGAT1. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
190
|
Lee KR, Chen GQ, Kim HU. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. PLANT CELL REPORTS 2015; 34:603-615. [PMID: 25577331 DOI: 10.1007/s00299-015-1736-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Hydroxy fatty acids produced in plant seed oil are important industrial material. This review focuses on the use of metabolic engineering approaches for the production of hydroxy fatty acids in transgenic plants. Vegetable oil is not only edible but can also be used for industrial purposes. The industrial demand for vegetable oil will increase with the continued depletion of fossil fuels and ensuing environmental issues such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high levels of unusual fatty acids in their seeds, and these fatty acids (FAs) have properties that make them suitable for industrial applications. Hydroxy fatty acids (HFAs) are some of the most important of these industrial FAs. Castor oil is the conventional source of HFA. However, due to the presence of toxin ricin in its seeds, castor is not cultivated on a large scale. Lesquerella is another HFA accumulator and is currently being developed as a new crop for a safe source of HFAs. The mechanisms of HFA synthesis and accumulation have been extensively studied using castor genes and the model plant Arabidopsis. HFAs accumulated to 17% in the seed oil of Arabidopsis expressing a FA hydroxylase gene from castor (RcFAH12), but its seed oil content and plant growth decreased. When RcFAH12 gene was coexpressed with additional castor gene(s) in Arabidopsis, ~30% HFAs were accumulated and the seed oil content and plant growth was almost restored to the wild-type level. Further advancement of our understanding of pathways, genes and regulatory mechanisms underlying synthesis and accumulation of HFAs is essential to developing and implementing effective genetic approaches for enhancing HFA production in oilseeds.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | | | | |
Collapse
|
191
|
Kim HU, Chen GQ. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis. BMC Genomics 2015; 16:230. [PMID: 25881190 PMCID: PMC4381405 DOI: 10.1186/s12864-015-1413-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/27/2015] [Indexed: 12/04/2022] Open
Abstract
Background Castor oil is the only commercial source of hydroxy fatty acid that has industrial value. The production of castor oil is hampered by the presence of the toxin ricin in its seed. Lesquerella seed also accumulates hydroxy fatty acid and is free of ricin, and thus it is being developed as a new crop for hydroxy fatty acid production. A high-throughput, large-scale sequencing of transcripts from developing lesquerella seeds was carried out by 454 pyrosequencing to generate a database for quality improvement of seed oil and other agronomic traits. Deep mining and characterization of acyl-lipid genes were conducted to uncover candidate genes for further studies of mechanisms underlying hydroxy fatty acid and seed oil synthesis. Results A total of 651 megabases of raw sequences from an mRNA sample of developing seeds was acquired. Bioinformatic analysis of these sequences revealed 59,914 transcripts representing 26,995 unique genes that include nearly all known seed expressed genes. Based on sequence similarity with known plant proteins, about 74% (19,861) genes matched with annotated coding genes. Among them, 95% (18,868) showed highest sequence homology with Arabidopsis genes, which will allow translation of genomics and genetics findings from Arabidopsis to lesquerella. Using Arabidopsis acyl-lipid genes as queries, we searched the transcriptome assembly and identified 615 lesquerella genes involved in all known pathways of acyl-lipid metabolism. Further deep mining the transcriptome assembly led to identification of almost all lesquerella genes involved in fatty acid and triacylglycerol synthesis. Moreover, we characterized the spatial and temporal expression profiles of 15 key genes using the quantitative PCR assay. Conclusions We have built a lesquerella seed transcriptome that provides a valuable reference in addition to the castor database for discovering genes involved in the synthesis of triacylglycerols enriched with hydroxy fatty acids. The information obtained from data mining and gene expression profiling will provide a resource not only for the study of hydroxy fatty acid metabolism, but also for the biotechnological production of hydroxy fatty acids in existing oilseed crops. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Republic of Korea.
| | - Grace Qianhong Chen
- U.S. Department of Agriculture, Western Regional Research Center, Agricultural Research Service, 800 Buchanan Street, Albany, CA, 94710, USA.
| |
Collapse
|
192
|
Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana. Mol Genet Genomics 2015; 290:1605-13. [DOI: 10.1007/s00438-015-1011-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/12/2015] [Indexed: 11/26/2022]
|
193
|
Liu F, Xia Y, Wu L, Fu D, Hayward A, Luo J, Yan X, Xiong X, Fu P, Wu G, Lu C. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene 2015; 557:163-71. [PMID: 25523093 DOI: 10.1016/j.gene.2014.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/20/2022]
Abstract
Oilseed rape (Brassica napus) is one of the most important oilseed crops globally. To meet increasing demand for oil-based products, the ability to enhance desirable oil content in the seed is required. This study assessed the capability of five genes in the triacylglyceride (TAG) synthesis pathway to enhance oil content. The genes BnGPDH, BnGPAT, BnDGAT, ScGPDH and ScLPAAT were overexpressed separately in a tobacco (Nicotiana benthamiana) model system, and simultaneously by pyramiding in B. napus, under the control of a seed specific Napin promoter. ScLPAAT transgenic plants showed a significant increase of 6.84% to 8.55% in oil content in tobacco seeds, while a ~4% increase was noted for BnGPDH and BnGPAT transgenic seeds. Seed-specific overexpression of all four genes in B. napus resulted in as high a 12.57% to 14.46% increased in seed oil content when compared to WT, equaling close to the sum of the single-gene overexpression increases in tobacco. Taken together, our study demonstrates that BnGPDH, BnGPAT and ScLPAAT may effectively increase seed oil content, and that simultaneous overexpression of these in transgenic B. napus may further enhance the desirable oil content relative to single-gene overexpressors.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Yuping Xia
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Lei Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia.
| | - Junling Luo
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Xiaojuan Xiong
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Ping Fu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China.
| |
Collapse
|
194
|
Caldo KMP, Greer MS, Chen G, Lemieux MJ, Weselake RJ. Purification and properties of recombinant Brassica napus diacylglycerol acyltransferase 1. FEBS Lett 2015; 589:773-8. [PMID: 25687632 DOI: 10.1016/j.febslet.2015.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/17/2022]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in the acyl-CoA-dependent triacylglycerol biosynthesis. Although the first DGAT1 gene was identified many years ago and the encoded enzyme catalyzes a key step in lipid biosynthesis, no detailed structure-function information is available on the enzyme due to difficulties associated with its purification. This study describes the purification of recombinant Brassica napus DGAT1 (BnaC.DGAT1.a) in active form through solubilization in n-dodecyl-β-D-maltopyranoside, cobalt affinity chromatography, and size-exclusion chromatography. Different BnaC.DGAT1.a oligomers in detergent micelles were resolved during the size-exclusion process. BnaC.DGAT1.a was purified 126-fold over the solubilized fraction and exhibited a specific activity of 26 nmol TAG/min/mg protein. The purified enzyme exhibited substrate preference for α-linolenoyl-CoA>oleoyl-CoA=palmitoyl-CoA>linoleoyl-CoA>stearoyl-CoA.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael S Greer
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Guanqun Chen
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - M Joanne Lemieux
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Randall J Weselake
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
195
|
El Tahchy A, Petrie JR, Shrestha P, Vanhercke T, Singh SP. Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds. FRONTIERS IN PLANT SCIENCE 2015; 6:1180. [PMID: 26834753 PMCID: PMC4714628 DOI: 10.3389/fpls.2015.01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/09/2015] [Indexed: 05/10/2023]
Abstract
Worldwide demand for vegetable oil is projected to double within the next 30 years due to increasing food, fuel, and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT) is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyzes monoacylglycerol (MAG) to form diacylglycerol (DAG), and then triacylglycerol (TAG). In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate by a series of three subsequent acylation reactions, or originated from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabeled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.
Collapse
Affiliation(s)
- Anna El Tahchy
- CSIRO Agriculture, Canberra, ACTAustralia
- CSIRO Food and Nutrition, Canberra, ACTAustralia
- *Correspondence: Anna El Tahchy,
| | - James R. Petrie
- CSIRO Agriculture, Canberra, ACTAustralia
- CSIRO Food and Nutrition, Canberra, ACTAustralia
| | - Pushkar Shrestha
- CSIRO Agriculture, Canberra, ACTAustralia
- CSIRO Food and Nutrition, Canberra, ACTAustralia
| | - Thomas Vanhercke
- CSIRO Agriculture, Canberra, ACTAustralia
- CSIRO Food and Nutrition, Canberra, ACTAustralia
| | - Surinder P. Singh
- CSIRO Agriculture, Canberra, ACTAustralia
- CSIRO Food and Nutrition, Canberra, ACTAustralia
| |
Collapse
|
196
|
Coradini ALV, Anschau A, Vidotti ADS, Reis ÉM, da Cunha Abreu Xavier M, Coelho RS, Franco TT. Microorganism for Bioconversion of Sugar Hydrolysates into Lipids. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
197
|
Li Q, Shao J, Tang S, Shen Q, Wang T, Chen W, Hong Y. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2015; 6:1015. [PMID: 26635841 PMCID: PMC4652056 DOI: 10.3389/fpls.2015.01015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 05/05/2023]
Abstract
Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.
Collapse
|
198
|
Dey P, Mall N, Chattopadhyay A, Chakraborty M, Maiti MK. Enhancement of lipid productivity in oleaginous Colletotrichum fungus through genetic transformation using the yeast CtDGAT2b gene under model-optimized growth condition. PLoS One 2014; 9:e111253. [PMID: 25375973 PMCID: PMC4222912 DOI: 10.1371/journal.pone.0111253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/27/2014] [Indexed: 01/17/2023] Open
Abstract
Oleaginous fungi are of special interest among microorganisms for the production of lipid feedstocks as they can be cultured on a variety of substrates, particularly waste lingocellulosic materials, and few fungal strains are reported to accumulate inherently higher neutral lipid than bacteria or microalgae. Previously, we have characterized an endophytic filamentous fungus Colletotrichum sp. DM06 that can produce total lipid ranging from 34% to 49% of its dry cell weight (DCW) upon growing with various carbon sources and nutrient-stress conditions. In the present study, we report on the genetic transformation of this fungal strain with the CtDGAT2b gene, which encodes for a catalytically efficient isozyme of type-2 diacylglycerol acyltransferase (DGAT) from oleaginous yeast Candida troplicalis SY005. Besides the increase in size of lipid bodies, total lipid titer by the transformed Colletotrichum (lipid content ∼73% DCW) was found to be ∼1.7-fold more than the wild type (lipid content ∼38% DCW) due to functional activity of the CtDGAT2b transgene when grown under standard condition of growth without imposition of any nutrient-stress. Analysis of lipid fractionation revealed that the neutral lipid titer in transformants increased up to 1.8-, 1.6- and 1.5-fold compared to the wild type when grown under standard, nitrogen stress and phosphorus stress conditions, respectively. Lipid titer of transformed cells was further increased to 1.7-fold following model-based optimization of culture conditions. Taken together, ∼2.9-fold higher lipid titer was achieved in Colletotrichum fungus due to overexpression of a rate-limiting crucial enzyme of lipid biosynthesis coupled with prediction-based bioprocess optimization.
Collapse
Affiliation(s)
- Prabuddha Dey
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nikunj Mall
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Monami Chakraborty
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K. Maiti
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur, India
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
- * E-mail:
| |
Collapse
|
199
|
Chi X, Hu R, Zhang X, Chen M, Chen N, Pan L, Wang T, Wang M, Yang Z, Wang Q, Yu S. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One 2014; 9:e105834. [PMID: 25181516 PMCID: PMC4152018 DOI: 10.1371/journal.pone.0105834] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022] Open
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more abundant in roots, seeds, and cotyledons, whereas the transcript abundances of AhDGAT1-1 and AhDGAT3-3 were higher in flowers than in the other tissues examined. During seed development, transcript levels of AhDGAT1-1 remained relatively low during the initial developmental stage but increased gradually during later stages, peaking at 50 days after pegging (DAP). Levels of AhDGAT1-2 transcripts were higher at 10 and 60 DAPs and much lower during other stages, whereas AhDGAT3-3 showed higher expression levels at 20 and 50 DAPs. In addition, AhDGAT transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. The activity of the three AhDGAT genes was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. The recombinant yeasts restored lipid body formation and TAG biosynthesis, and preferentially incorporated unsaturated C18 fatty acids into lipids. The present study provides significant information useful in modifying the oil deposition of peanut through molecular breeding.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, P R China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, P R China
| | - Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS), Qingdao, P R China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P R China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, P R China
| | - Quanfu Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P R China
- * E-mail: (QFW); (SLY)
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, P R China
- * E-mail: (QFW); (SLY)
| |
Collapse
|
200
|
Mendiondo GM, Medhurst A, van Roermund CW, Zhang X, Devonshire J, Scholefield D, Fernández J, Axcell B, Ramsay L, Waterham HR, Waugh R, Theodoulou FL, Holdsworth MJ. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4833-47. [PMID: 24913629 PMCID: PMC4144768 DOI: 10.1093/jxb/eru243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.
Collapse
Affiliation(s)
- Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anne Medhurst
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Carlo W van Roermund
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Xuebin Zhang
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean Devonshire
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - José Fernández
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Barry Axcell
- SABMiller plc., SABMiller House, Church Street, West Woking, Surrey GU21 6HS, UK
| | - Luke Ramsay
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hans R Waterham
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Robbie Waugh
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|