151
|
Bucher M, Hause B, Krajinski F, Küster H. Through the doors of perception to function in arbuscular mycorrhizal symbioses. THE NEW PHYTOLOGIST 2014; 204:833-40. [PMID: 25414918 DOI: 10.1111/nph.12862] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The formation of an arbuscular mycorrhizal (AM) symbiosis is initiated by the bidirectional exchange of diffusible molecules. While strigolactone hormones, secreted from plant roots,stimulate hyphal branching and fungal metabolism, fungal short-chain chitin oligomers as well assulfated and nonsulfated lipochitooligosaccharides (s/nsMyc-LCOs) elicit pre-symbiosis responses in the host. Fungal LCO signals are structurally related to rhizobial Nod-factor LCOs. Genome-wide expression studies demonstrated that defined sets of genes were induced by Nod-, sMyc- and nsMyc-LCOs, indicating LCO-specific perception in the pre-symbiosis phase. During hyphopodium formation and the subsequent root colonization, cross-talk between plant roots and AM fungi also involves phytohormones. Notably, gibberellins control arbuscule formation via DELLA proteins, which themselves serve as positive regulators of arbuscule formation. The establishment of arbuscules is accompanied by a substantial transcriptional and post-transcriptional reprogramming of host roots, ultimately defining the unique protein composition of arbuscule-containing cells. Based on cellular expression profiles, key check points of AM development as well as candidate genes encoding transcriptional regulators and regulatory microRNAs were identified. Detailed functional analyses of promoters specified short motifs sufficient for cell-autonomous gene regulation in cells harboring arbuscules, and suggested simultaneous, multi-level regulation of the mycorrhizal phosphate uptake pathway by integrating AM symbiosis and phosphate starvation response signaling.
Collapse
Affiliation(s)
- Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
152
|
Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GED, Downie JA, Murray JD. The root hair "infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection. THE PLANT CELL 2014; 26:4680-701. [PMID: 25527707 PMCID: PMC4311213 DOI: 10.1105/tpc.114.133496] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 10/23/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection. This revealed changes in the responses to plant hormones, most notably auxin, strigolactone, gibberellic acid, and brassinosteroids. Several auxin responsive genes, including the ortholog of Arabidopsis thaliana Auxin Response Factor 16, were induced at infection sites and in nodule primordia, and mutation of ARF16a reduced rhizobial infection. Associated with the induction of auxin signaling genes, there was increased expression of cell cycle genes including an A-type cyclin and a subunit of the anaphase promoting complex. There was also induction of several chalcone O-methyltransferases involved in the synthesis of an inducer of Sinorhizobium meliloti nod genes, as well as a gene associated with Nod factor degradation, suggesting both positive and negative feedback loops that control Nod factor levels during rhizobial infection. We conclude that the onset of infection is associated with reactivation of the cell cycle as well as increased expression of genes required for hormone and flavonoid biosynthesis and that the regulation of auxin signaling is necessary for initiation of rhizobial infection threads.
Collapse
Affiliation(s)
- Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Chengwu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Sonali Roy
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Christian Rogers
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giulia Morieri
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Kirankumar S Mysore
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jiangqi Wen
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - J Allan Downie
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
153
|
Limpens E, Bisseling T. CYCLOPS: a new vision on rhizobium-induced nodule organogenesis. Cell Host Microbe 2014; 15:127-9. [PMID: 24528858 DOI: 10.1016/j.chom.2014.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The accommodation of nitrogen-fixing rhizobium bacteria inside plant cells requires reprogramming of root cortex cells by rhizobial signals. In this issue of Cell Host & Microbe, Singh et al. (2014) reveal that CYCLOPS, representing a novel class of transcription factors, links rhizobium-induced calcium signaling to reprogramming of root cortex cells.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands; College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
154
|
Gutjahr C. Phytohormone signaling in arbuscular mycorhiza development. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:26-34. [PMID: 24853646 DOI: 10.1016/j.pbi.2014.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
To establish arbuscular mycorhiza (AM) symbiosis glomeromycotan fungi colonize the interior of roots. This process is associated with developmental changes of root cells as well as fungal hyphae. The formation of fungal colonization-structures and the extent of root colonization are largely under plant control, depending on environmental conditions and the resulting physiological state of the host. Phytohormone signaling pathways are currently emerging as important regulators of AM development. Root exuded strigolactones activate AM fungi before colonization and a host strigolactone receptor component is required for AM development. Auxin quantitatively influences AM colonization and might perform an additional cell-autonomous function in the promotion of arbuscule development. Gibberellin signaling inhibits AM and conversely DELLA proteins are required for AM formation. Given the importance of phytohormone signaling in plant developmental responses to the environment it can be predicted that elucidating how phytohormones regulate AM development will provide a lead into understanding how plants orchestrate AM symbiosis with their physiological needs under changing environmental conditions.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Str. 2-4, 82152 Martinsried, Germany.
| |
Collapse
|
155
|
Soyano T, Hayashi M. Transcriptional networks leading to symbiotic nodule organogenesis. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:146-54. [PMID: 25113465 DOI: 10.1016/j.pbi.2014.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 05/08/2023]
Abstract
The symbiosis with nitrogen-fixing bacteria leading to root nodules is a relatively recent evolutionary innovation and limited to a distinct order of land plants. It has long been a mystery how plants have invented this complex trait. However, recent advances in molecular genetics of model legumes has elucidated genes involved in the development of root nodules, providing insights into this process. Here we discuss how the de novo assembly of transcriptional networks may account for the predisposition to nodulate. Transcriptional networks and modes of gene regulation from the arbuscular mycorrhizal symbiosis, nitrate responses and aspects of lateral root development have likely all contributed to the emergence and development of root nodules.
Collapse
Affiliation(s)
- Takashi Soyano
- Plant Symbiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-3602, Japan
| | - Makoto Hayashi
- Plant Symbiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-3602, Japan.
| |
Collapse
|
156
|
Evangelisti E, Rey T, Schornack S. Cross-interference of plant development and plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:118-26. [PMID: 24922556 DOI: 10.1016/j.pbi.2014.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 05/03/2023]
Abstract
Plant roots are host to a multitude of filamentous microorganisms. Among these, arbuscular mycorrhizal fungi provide benefits to plants, while pathogens trigger diseases resulting in significant crop yield losses. It is therefore imperative to study processes which allow plants to discriminate detrimental and beneficial interactions in order to protect crops from diseases while retaining the ability for sustainable bio-fertilisation strategies. Accumulating evidence suggests that some symbiosis processes also affect plant-pathogen interactions. A large part of this overlap likely constitutes plant developmental processes. Moreover, microbes utilise effector proteins to interfere with plant development. Here we list relevant recent findings on how plant-microbe interactions intersect with plant development and highlight future research leads.
Collapse
Affiliation(s)
| | - Thomas Rey
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | |
Collapse
|
157
|
Hofferek V, Mendrinna A, Gaude N, Krajinski F, Devers EA. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC PLANT BIOLOGY 2014; 14:199. [PMID: 25928247 PMCID: PMC4115173 DOI: 10.1186/s12870-014-0199-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. RESULTS We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. CONCLUSION The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from the overexpression analysis, points to an important function of miR171h to integrate the nutrient homeostasis in order to safeguard the expression domain of NSP2 during both, arbuscular mycorrhizal and root nodule symbiosis.
Collapse
Affiliation(s)
- Vinzenz Hofferek
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Amelie Mendrinna
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Nicole Gaude
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Franziska Krajinski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Emanuel A Devers
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
- Present address: Department of Biology, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland.
| |
Collapse
|
158
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
159
|
Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014; 10:e1004487. [PMID: 25032823 PMCID: PMC4102449 DOI: 10.1371/journal.pgen.1004487] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Collapse
|
160
|
Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014. [PMID: 25032823 DOI: 10.1371/journal.pgen.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kranthi Varala
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Patrick P Edger
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - J Chris Pires
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
161
|
Battaglia M, Rípodas C, Clúa J, Baudin M, Aguilar OM, Niebel A, Zanetti ME, Blanco FA. A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. PLANT PHYSIOLOGY 2014; 164:1430-42. [PMID: 24424321 PMCID: PMC3938631 DOI: 10.1104/pp.113.230896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A C subunit of the heterotrimeric nuclear factor Y (NF-YC1) was shown to play a key role in nodule organogenesis and bacterial infection during the nitrogen fixing symbiosis established between common bean (Phaseolus vulgaris) and Rhizobium etli. To identify other proteins involved in this process, we used the yeast (Saccharomyces cerevisiae) two-hybrid system to screen for NF-YC1-interacting proteins. One of the positive clones encodes a member of the Phytochrome A Signal Transduction1 subfamily of GRAS (for Gibberellic Acid-Insensitive (GAI), Repressor of GAI, and Scarecrow) transcription factors. The protein, named Scarecrow-like13 Involved in Nodulation (SIN1), localizes both to the nucleus and the cytoplasm, but in transgenic Nicotiana benthamiana cells, bimolecular fluorescence complementation suggested that the interaction with NF-YC1 takes place predominantly in the nucleus. SIN1 is expressed in aerial and root tissues, with higher levels in roots and nodules. Posttranscriptional gene silencing of SIN1 using RNA interference (RNAi) showed that the product of this gene is involved in lateral root elongation. However, root cell organization, density of lateral roots, and the length of root hairs were not affected by SIN1 RNAi. In addition, the expression of the RNAi of SIN1 led to a marked reduction in the number and size of nodules formed upon inoculation with R. etli and affected the progression of infection threads toward the nodule primordia. Expression of NF-YA1 and the G2/M transition cell cycle genes Cyclin B and Cell Division Cycle2 was reduced in SIN1 RNAi roots. These data suggest that SIN1 plays a role in lateral root elongation and the establishment of root symbiosis in common bean.
Collapse
|
162
|
Schmitz AM, Harrison MJ. Signaling events during initiation of arbuscular mycorrhizal symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:250-61. [PMID: 24386977 DOI: 10.1111/jipb.12155] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/26/2013] [Indexed: 05/18/2023]
Abstract
Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression.
Collapse
Affiliation(s)
- Alexa M Schmitz
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853, USA; Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
163
|
Li Z, Czarnecki O, Chourey K, Yang J, Tuskan GA, Hurst GB, Pan C, Chen JG. Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis. J Proteome Res 2014; 13:1359-72. [DOI: 10.1021/pr400925t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhou Li
- Graduate
School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, F337 Walters Life Science, Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Kang H, Chu X, Wang C, Xiao A, Zhu H, Yuan S, Yang Z, Ke D, Xiao S, Hong Z, Zhang Z. A MYB coiled-coil transcription factor interacts with NSP2 and is involved in nodulation in Lotus japonicus. THE NEW PHYTOLOGIST 2014; 201:837-849. [PMID: 24400899 DOI: 10.1111/nph.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/24/2013] [Indexed: 05/08/2023]
Abstract
Transcription factor complex formation is a central step in regulating gene expression. In this report, a novel MYB coiled-coil transcription factor referred to as IPN2, for Interacting Protein of NSP2, is described. The interaction between IPN2 and NSP2 was examined by protein pull-down assays and bimolecular fluorescence complementation (BiFC). Subcellular localization of proteins, gene expression and gene function were assessed in transgenic hairy roots expressing tagged recombinant proteins, promoter-reporter and RNA interference (RNAi) constructs, respectively. The GRAS domain of NSP2 and the coiled-coil domain of IPN2 were found to be responsible for the interaction between the two proteins. IPN2 had strong transcription activation activity, bound directly to the NIN gene promoter, and was localized to the nuclei of Lotus japonicus root cells. The expression of IPN2 was elevated during nodule development, coinciding with increased NSP2 gene expression during nodule organogenesis. RNAi-mediated knockdown expression of IPN2 did not affect arbuscular mycorrhizal development, but had deleterious effects on rhizobial infection and nodule formation in L. japonicus. These results demonstrate an important role of IPN2 in nodule organogenesis and place a new MYB transcription factor in the Nod signaling pathway.
Collapse
Affiliation(s)
- Heng Kang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojie Chu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhen Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danxia Ke
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant, Soil, and Entomological Sciences, Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, 83844, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
165
|
|
166
|
Rípodas C, Clúa J, Battaglia M, Baudin M, Niebel A, Zanetti ME, Blanco F. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango. PLANT SIGNALING & BEHAVIOR 2014; 9:e28847. [PMID: 24736593 PMCID: PMC4091477 DOI: 10.4161/psb.28847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/20/2023]
Abstract
Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the infection process. Several transcription factors that play critical roles in these processes have been reported in the past decade, including proteins of the GRAS and NF-Y families. Recently, we reported the characterization of a new GRAS domain containing-protein that interacts with a member of the C subunit of the NF-Y family, which plays an important role in nodule development and the progression of bacterial infection during the symbiotic interaction. The connection between transcription factors of these families highlights the significance of multimeric complexes in the fabulous capacity of plants to integrate and respond to multiple environmental stimuli.
Collapse
Affiliation(s)
- Carolina Rípodas
- Instituto de Biotecnología y Biología Molecular; Facultad de Ciencias Exactas; Universidad Nacional de La Plata; CCT-La Plata; CONICET; La Plata, Argentina
| | - Joaquín Clúa
- Instituto de Biotecnología y Biología Molecular; Facultad de Ciencias Exactas; Universidad Nacional de La Plata; CCT-La Plata; CONICET; La Plata, Argentina
| | - Marina Battaglia
- Instituto de Biotecnología y Biología Molecular; Facultad de Ciencias Exactas; Universidad Nacional de La Plata; CCT-La Plata; CONICET; La Plata, Argentina
| | - Maël Baudin
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326; CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326 Castanet-Tolosan, France
| | - Andreas Niebel
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326; CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326 Castanet-Tolosan, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular; Facultad de Ciencias Exactas; Universidad Nacional de La Plata; CCT-La Plata; CONICET; La Plata, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular; Facultad de Ciencias Exactas; Universidad Nacional de La Plata; CCT-La Plata; CONICET; La Plata, Argentina
| |
Collapse
|
167
|
Nagae M, Takeda N, Kawaguchi M. Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus. PLANT SIGNALING & BEHAVIOR 2014; 9:e28544. [PMID: 24705023 PMCID: PMC4091476 DOI: 10.4161/psb.28544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) share several common symbiotic components, and many of the common symbiosis mutants block the entry of symbionts into the roots. We recently reported that CERBERUS (an E3 ubiquitin ligase) and NSP1 (a GRAS family transcription factor), required for RNS, also modulate AMS development in Lotus japonicus. The novel common symbiosis mutants, cerberus and nsp1, have low colonization of arbuscular mycorrhiza (AM) fungi, caused by a defect in internal hyphal elongation and by a decreased fungal entry into the roots, respectively. Here, we showed that CERBERUS was induced at the sites of symbiotic fungal or bacterial infection. NSP1 has been implicated in a strigolactone biosynthesis gene DWARF27 expression. Nevertheless, in nsp1, DWARF27 was induced by inoculation with AM fungi, implying the existence of a NSP1-independent regulatory mechanism of strigolactone biosynthesis during AMS establishment. These results support functional analysis of CERBERUS and NSP1, and also contribute to elucidation of common mechanisms in AMS and RNS.
Collapse
|
168
|
Fusconi A. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? ANNALS OF BOTANY 2014; 113:19-33. [PMID: 24227446 PMCID: PMC3864729 DOI: 10.1093/aob/mct258] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/12/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arbuscular mycorrhizae (AMs) form a widespread root-fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. SCOPE This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. CONCLUSIONS Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions.
Collapse
Affiliation(s)
- Anna Fusconi
- Department of Life Sciences and Systems Biology, Università di Torino, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
169
|
Russo G, Spinella S, Sciacca E, Bonfante P, Genre A. Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses. BMC PLANT BIOLOGY 2013; 13:224. [PMID: 24369773 PMCID: PMC3880239 DOI: 10.1186/1471-2229-13-224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Repeated oscillations in intracellular calcium (Ca2+) concentration, known as Ca2+ spiking signals, have been described in plants for a limited number of cellular responses to biotic or abiotic stimuli and most notably the common symbiotic signaling pathway (CSSP) which mediates the recognition by their plant hosts of two endosymbiotic microbes, arbuscular mycorrhizal (AM) fungi and nitrogen fixing rhizobia. The detailed analysis of the complexity and variability of the Ca2+ spiking patterns which have been revealed in recent studies requires both extensive datasets and sophisticated statistical tools. RESULTS As a contribution, we have developed automated Ca2+ spiking analysis (CaSA) software that performs i) automated peak detection, ii) statistical analyses based on the detected peaks, iii) autocorrelation analysis of peak-to-peak intervals to highlight major traits in the spiking pattern.We have evaluated CaSA in two experimental studies. In the first, CaSA highlighted unpredicted differences in the spiking patterns induced in Medicago truncatula root epidermal cells by exudates of the AM fungus Gigaspora margarita as a function of the phosphate concentration in the growth medium of both host and fungus. In the second study we compared the spiking patterns triggered by either AM fungal or rhizobial symbiotic signals. CaSA revealed the existence of different patterns in signal periodicity, which are thought to contribute to the so-called Ca2+ signature. CONCLUSIONS We therefore propose CaSA as a useful tool for characterizing oscillatory biological phenomena such as Ca2+ spiking.
Collapse
Affiliation(s)
- Giulia Russo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Salvatore Spinella
- Dipartimento di Informatica, Università di Torino, C.So Svizzera, 185, 10149 Torino, Italy
| | - Eva Sciacca
- Dipartimento di Informatica, Università di Torino, C.So Svizzera, 185, 10149 Torino, Italy
| | - Paola Bonfante
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Andrea Genre
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
170
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
171
|
A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 2013; 24:130-3. [PMID: 24343576 DOI: 10.1038/cr.2013.167] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
172
|
Abstract
The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Institute of Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany; ,
| | | |
Collapse
|
173
|
Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. FRONTIERS IN PLANT SCIENCE 2013; 4:426. [PMID: 24194742 PMCID: PMC3810610 DOI: 10.3389/fpls.2013.00426] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner.
Collapse
Affiliation(s)
- Coline Balzergue
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratory of Plant–Microbe Interactions, Institut National de la Recherche Agronomique (UMR441), Centre National de la Recherche Scientifique (UMR2594)Castanet-Tolosan, France
| | - David G. Barker
- Laboratory of Plant–Microbe Interactions, Institut National de la Recherche Agronomique (UMR441), Centre National de la Recherche Scientifique (UMR2594)Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| | - Soizic F. Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| |
Collapse
|
174
|
Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. PLANT & CELL PHYSIOLOGY 2013; 54:1711-23. [PMID: 23926062 DOI: 10.1093/pcp/pct114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) and root nodule symbiosis (RNS) are mutualistic plant-microbe interactions that confer nutritional benefits to both partners. Leguminous plants possess a common genetic system for intracellular symbiosis with AM fungi and with rhizobia. Here we show that CERBERUS and NSP1, which respectively encode an E3 ubiquitin ligase and a GRAS transcriptional regulator and which have previously only been implicated in RNS, are involved in AM fungal infection in Lotus japonicus. Hyphal elongation along the longitudinal axis of the root was reduced in the cerberus mutant, giving rise to a lower colonization level. Knockout of NSP1 decreased the frequency of plants colonized by AM fungi or rhizobia. CERBERUS and NSP1 showed different patterns of expression in response to infection with symbiotic microbes. A low constitutive level of CERBERUS expression was observed in the root and an increased level of NSP1 expression was detected in arbuscule-containing cells. Induction of AM marker gene was triggered in both cerberus and nsp1 mutants by infection with symbiotic microbes; however, the mutants showed a weaker induction of marker gene expression than the wild type, mirroring their lower level of colonization. The common symbiosis genes are believed to act in an early signaling pathway for recognition of symbionts and for triggering early symbiotic responses. Our quantitative analysis of symbiotic phenotypes revealed developmental defects of the novel common symbiosis mutants in both symbioses, which demonstrates that common symbiosis mechanisms also contribute to a range of functions at later or different stages of symbiont infection.
Collapse
Affiliation(s)
- Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | | | | | | | | |
Collapse
|
175
|
Rasmussen A, Depuydt S, Goormachtig S, Geelen D. Strigolactones fine-tune the root system. PLANTA 2013; 238:615-26. [PMID: 23801297 DOI: 10.1007/s00425-013-1911-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/05/2013] [Indexed: 05/07/2023]
Abstract
Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.
Collapse
Affiliation(s)
- Amanda Rasmussen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
176
|
Gobbato E, Wang E, Higgins G, Bano SA, Henry C, Schultze M, Oldroyd GED. RAM1 and RAM2 function and expression during arbuscular mycorrhizal symbiosis and Aphanomyces euteiches colonization. PLANT SIGNALING & BEHAVIOR 2013; 8:26049. [PMID: 24270627 PMCID: PMC4091073 DOI: 10.4161/psb.26049] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The establishment of the symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi requires a very tight molecular dialogue. Most of the known plant genes necessary for this process are also required for nodulation in legume plants and only very recently genes specifically required for AM symbiosis have been described. Among them we identified RAM (Reduced Arbuscular Mycorrhization)1 and RAM2, a GRAS transcription factor and a GPAT respectively, which are critical for the induction of hyphopodia formation in AM fungi. RAM2 function is also required for appressoria formation by the pathogen Phytophtora palmivora. Here we investigated the activity of RAM1 and RAM2 promoters during mycorrhization and the role of RAM1 and RAM2 during infection by the root pathogen Aphanomyces euteiches. pRAM1 is activated without cell type specificity before hyphopodia formation, while pRAM2 is specifically active in arbusculated cells providing evidence for a potential function of cutin momomers in the regulation of arbuscule formation. Furthermore, consistent with what we observed with Phytophtora, RAM2 but not RAM 1 is required during Aphanomyces euteiches infection.
Collapse
Affiliation(s)
- Enrico Gobbato
- Department of Cell and Developmental Biology; John Innes Centre; Norwich, UK
| | - Ertao Wang
- Department of Cell and Developmental Biology; John Innes Centre; Norwich, UK
| | | | | | - Christine Henry
- The Food and Environment Research Agency; Sand Hutton, York, UK
| | | | - Giles ED Oldroyd
- Department of Cell and Developmental Biology; John Innes Centre; Norwich, UK
- Correspondence to: Giles ED Oldroyd,
| |
Collapse
|
177
|
Oldroyd GED, Dixon R. Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 2013; 26:19-24. [PMID: 24679253 DOI: 10.1016/j.copbio.2013.08.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 11/28/2022]
Abstract
The availability of nitrogen is one of the major limiting factors to crop growth. In the developed world, farmers use unsustainable levels of inorganic fertilisers to promote crop production. In contrast, in the developing world inorganic fertilisers are often not available and small-holder farmers suffer the resultant poor yields. Finding alternatives to inorganic fertilisers is critical for sustainable and secure food production. Bacteria and Archaea have evolved the capability to fix atmospheric nitrogen to ammonia, a form readily usable in biological processes. This capability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the nitrogen fixing bacteria or the nitrogenase enzyme responsible for nitrogen fixation. While both approaches are challenging, recent advances have laid the groundwork to initiate these biotechnological solutions to the nitrogen problem.
Collapse
Affiliation(s)
| | - Ray Dixon
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
178
|
Murray JD, Cousins DR, Jackson KJ, Liu C. Signaling at the root surface: the role of cutin monomers in mycorrhization. MOLECULAR PLANT 2013; 6:1381-3. [PMID: 23935010 PMCID: PMC3777838 DOI: 10.1093/mp/sst090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 05/03/2023]
Affiliation(s)
- Jeremy D. Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Donna R. Cousins
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Kirsty J. Jackson
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Chengwu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
179
|
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E. Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence. THE NEW PHYTOLOGIST 2013; 199:26-40. [PMID: 23638913 DOI: 10.1111/nph.12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/14/2013] [Indexed: 05/24/2023]
Abstract
The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.
Collapse
Affiliation(s)
- Ghislaine Recorbet
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Cosette Abdallah
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Jenny Renaut
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Daniel Wipf
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
180
|
Delaux PM, Bécard G, Combier JP. NSP1 is a component of the Myc signaling pathway. THE NEW PHYTOLOGIST 2013; 199:59-65. [PMID: 23663036 DOI: 10.1111/nph.12340] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/23/2013] [Indexed: 05/03/2023]
Abstract
Nodulation and arbuscular mycorrhization require the activation of plant host symbiotic programs by Nod factors, and Myc-LCOs and COs, respectively. The pathways involved in the perception and downstream signaling of these signals include common and distinct components. Among the distinct components, NSP1, a GRAS transcription factor, has been considered for years to be specifically involved in nodulation. Here, we analyzed the degree of conservation of the NSP1 sequence in arbuscular mycorrhizal (AM) host and non-AM host plants and carefully examined the ability of Medicago truncatula nsp1 mutants to respond to Myc-LCOs and to be colonized by an arbuscular mycorrhizal fungus. In AM-host plants, the selection pressure on NSP1 is stronger than in non-AM host ones. The response to Myc-LCOs and the frequency of mycorrhizal colonization are significantly reduced in the nsp1 mutants. Our results reveal that NSP1, previously described for its involvement in the Nod factor signaling pathway, is also involved in the Myc-LCO signaling pathway. They bring additional evidence on the evolutionary relatedness between nodulation and mycorrhization.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin Madison, 219 Moore Hall, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, 31326, Castanet-Tolosan CEDEX, France
- CNRS, UMR5546, 31326, Castanet-Tolosan CEDEX, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, 31326, Castanet-Tolosan CEDEX, France
- CNRS, UMR5546, 31326, Castanet-Tolosan CEDEX, France
| |
Collapse
|
181
|
Koltai H. Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. ANNALS OF BOTANY 2013; 112:409-15. [PMID: 23059852 PMCID: PMC3698373 DOI: 10.1093/aob/mcs216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/20/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Strigolactones (SLs) - a group of plant hormones and their derivatives - have been found to play a role in the regulation of root development, in addition to their role in suppression of lateral shoot branching: they alter root architecture and affect root-hair elongation, and SL signalling is necessary for the root response to low phosphate (Pi) conditions. These effects of SLs have been shown to be associated with differential activation of the auxin and ethylene signalling pathways. SCOPE The present review highlights recent findings on the activity of SLs as regulators of root development, in particular in response to low Pi stress, and discusses the different hormonal networks putatively acting with SLs in the root's Pi response. CONCLUSIONS SLs are suggested to be key regulators of the adaptive responses to low Pi in the root by modulating the balance between auxin and ethylene signalling. Consequently, they impact different developmental programmes responsible for the changes in root system architecture under differential Pi supply.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
182
|
The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 2013; 4:1566. [PMID: 23463009 PMCID: PMC3615354 DOI: 10.1038/ncomms2542] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/24/2013] [Indexed: 01/11/2023] Open
Abstract
Rice tillering is a multigenic trait that influences grain yield, but its regulation molecular module is poorly understood. Here we report that OsMADS57 interacts with OsTB1 (TEOSINTE BRANCHED1) and targets D14 (Dwarf14) to control the outgrowth of axillary buds in rice. An activation-tagged mutant osmads57-1 and OsMADS57-overexpression lines showed increased tillers, whereas OsMADS57 antisense lines had fewer tillers. OsMIR444a-overexpressing lines exhibited suppressed OsMADS57 expression and tillering. Furthermore, osmads57-1 was insensitive to strigolactone treatment to inhibit axillary bud outgrowth, and OsMADS57’s function in tillering was dependent on D14. D14 expression was downregulated in osmads57-1, but upregulated in antisense and OsMIR444a-overexpressing lines. OsMADS57 bound to the CArG motif [C(A/T)TTAAAAAG] in the promoter and directly suppressed D14 expression. Interaction of OsMADS57 with OsTB1 reduced OsMADS57 inhibition of D14 transcription. Therefore, OsMIR444a-regulated OsMADS57, together with OsTB1, target D14 to control tillering. This regulation mechanism could have important application in rice molecular breeding programs focused on high grain yield. Tillering is a multigenic complex trait that influences grain yield in cereal; however, the molecular network for its regulation remains unclear. Guo et al. show that OsMADS57, a transcription factor controlled by miR444a, interacts with OsTEOSINTE BRANCHED1 and targets DWARF14 to control tillering in rice.
Collapse
|
183
|
Delaux PM, Séjalon-Delmas N, Bécard G, Ané JM. Evolution of the plant-microbe symbiotic 'toolkit'. TRENDS IN PLANT SCIENCE 2013; 18:298-304. [PMID: 23462549 DOI: 10.1016/j.tplants.2013.01.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 05/02/2023]
Abstract
Beneficial associations between plants and arbuscular mycorrhizal fungi play a major role in terrestrial environments and in the sustainability of agroecosystems. Proteins, microRNAs, and small molecules have been identified in model angiosperms as required for the establishment of arbuscular mycorrhizal associations and define a symbiotic 'toolkit' used for other interactions such as the rhizobia-legume symbiosis. Based on recent studies, we propose an evolutionary framework for this toolkit. Some components appeared recently in angiosperms, whereas others are highly conserved even in land plants unable to form arbuscular mycorrhizal associations. The exciting finding that some components pre-date the appearance of arbuscular mycorrhizal fungi suggests the existence of unknown roles for this toolkit and even the possibility of symbiotic associations in charophyte green algae.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
184
|
Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. THE NEW PHYTOLOGIST 2013; 198:1108-1120. [PMID: 23496288 DOI: 10.1111/nph.12217] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/06/2013] [Indexed: 05/08/2023]
Abstract
· Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.
Collapse
Affiliation(s)
- Stefania A Pasare
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Laurence J M Ducreux
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne L Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Raymond Campbell
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sanjeev K Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Efstathios Roumeliotis
- Laboratory of Plant Breeding, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Wouter Kohlen
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Sander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research Centre, PO Box 386, 6700, AJ Wageningen, the Netherlands
| | - Peter M Bramley
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Alison G Roberts
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 OEX, UK
| | - Mark A Taylor
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
185
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
186
|
Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 DOI: 10.1371/jour-nal.pone.0064377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 05/23/2023] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
187
|
Koren D, Resnick N, Gati EM, Belausov E, Weininger S, Kapulnik Y, Koltai H. Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. THE NEW PHYTOLOGIST 2013; 198:866-874. [PMID: 23425316 DOI: 10.1111/nph.12189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/17/2013] [Indexed: 05/24/2023]
Abstract
Strigolactones (SLs) are plant hormones and regulators of root development, including lateral root (LR) formation, root hair (RH) elongation and meristem cell number, in a MORE AXILLARY GROWTH 2 (MAX2)-dependent way. However, whether SL signaling is acting cell-autonomously or in a non-cell-autonomous way in roots is unclear. We analyzed root phenotype, hormonal responses and gene expression in multiple lines of Arabidopsis thaliana max2-1 mutants expressing MAX2 under various tissue-specific promoters and shy2 mutants. The results demonstrate for the first time that expression of MAX2 under the SCARECROW (SCR) promoter, expressed mainly in the root endodermis, is sufficient to confer SL sensitivity in the root for RH, LR and meristem cell number. Moreover, loss of function mutation of SHORT HYPOCOTYL 2 (SHY2), a key component in auxin and cytokinin regulation of meristem size, has been found to be insensitive to SLs in relation to LR formation and meristem cell number. Endodermal SL signaling, mediated by MAX2, is sufficient to confer SL sensitivity in root, and SHY2 may participate in SL signaling to regulate meristem size and LR formation. These SL signaling pathways thus may act through modulation of auxin flux in the root tip, and may indicate a root-specific, yet non-cell-autonomous regulatory mode of action.
Collapse
Affiliation(s)
- Dikla Koren
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| | - Nathalie Resnick
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| | - Einav Mayzlish Gati
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| | - Smadar Weininger
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), the Volcani Center, PO Box 6, Bet Dagan, 50250, Israel
| |
Collapse
|
188
|
Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252-63. [PMID: 23493145 DOI: 10.1038/nrmicro2990] [Citation(s) in RCA: 834] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
|
189
|
Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen JG. A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci 2013; 14:7681-701. [PMID: 23612324 PMCID: PMC3645710 DOI: 10.3390/ijms14047681] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 01/09/2023] Open
Abstract
Phosphorus, acquired in the form of phosphate (Pi), is one of the primary macronutrients for plants but is least available in the soil. Pi deficiency is a major factor limiting plant growth, development and reproduction. Plants have developed a complex signaling network to respond to Pi deficiency. The recent discovery of strigolactones, a new class of plant hormones, has led to an emerging signaling module illustrating the integrated control of Pi acquisition, plant-microbe symbiotic interactions and plant architecture. This review article focuses on the recent findings of plant responses and roles of strigolactones to Pi deficiency.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; E-Mails: (O.C.); (J.Y.); (D.J.W.); (G.A.T.)
| | - Jun Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; E-Mails: (O.C.); (J.Y.); (D.J.W.); (G.A.T.)
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; E-Mails: (O.C.); (J.Y.); (D.J.W.); (G.A.T.)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; E-Mails: (O.C.); (J.Y.); (D.J.W.); (G.A.T.)
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; E-Mails: (O.C.); (J.Y.); (D.J.W.); (G.A.T.)
| |
Collapse
|
190
|
Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1967-81. [PMID: 23567864 PMCID: PMC3638823 DOI: 10.1093/jxb/ert056] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are newly identified hormones that regulate multiple aspects of plant development, infection by parasitic weeds, and mutualistic symbiosis in the roots. In this study, the role of SLs was studied for the first time in the model plant Lotus japonicus using transgenic lines silenced for carotenoid cleavage dioxygenase 7 (LjCCD7), the orthologue of Arabidopsis More Axillary Growth 3. Transgenic LjCCD7-silenced plants displayed reduced height due to shorter internodes, and more branched shoots and roots than the controls, and an increase in total plant biomass, while their root:shoot ratio remained unchanged. Moreover, these lines had longer primary roots, delayed senescence, and reduced flower/pod numbers from the third round of flower and pod setting onwards. Only a mild reduction in determinate nodule numbers and hardly any impact on the colonization by arbuscular mycorrhizal fungi were observed. The results show that the impairment of CCD7 activity in L. japonicus leads to a phenotype linked to SL functions, but with specific features possibly due to the peculiar developmental pattern of this plant species. It is believed that the data also link determinate nodulation, plant reproduction, and senescence to CCD7 function for the first time.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10025 Turin, Italy
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Alessandra Ferrandino
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Andrea Schubert
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10025 Turin, Italy
| | - Claudio Lovisolo
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Francesca Cardinale
- Department of Agriculture, Forestry and Food Sciences, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
| |
Collapse
|
191
|
Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013. [PMID: 23493145 DOI: 10.1038/nrmicro.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
192
|
Soyano T, Kouchi H, Hirota A, Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 2013; 9:e1003352. [PMID: 23555278 PMCID: PMC3605141 DOI: 10.1371/journal.pgen.1003352] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of factors needed for root nodule organogenesis are largely unknown. NODULE INCEPTION (NIN) is a nodulation-specific gene that encodes a putative transcription factor and acts downstream of the common SYM genes. Here, we identified two Nuclear Factor-Y (NF-Y) subunit genes, LjNF-YA1 and LjNF-YB1, as transcriptional targets of NIN in Lotus japonicus. These genes are expressed in root nodule primordia and their translational products interact in plant cells, indicating that they form an NF-Y complex in root nodule primordia. The knockdown of LjNF-YA1 inhibited root nodule organogenesis, as did the loss of function of NIN. Furthermore, we found that NIN overexpression induced root nodule primordium-like structures that originated from cortical cells in the absence of bacterial symbionts. Thus, NIN is a crucial factor responsible for initiating nodulation-specific symbiotic processes. In addition, ectopic expression of either NIN or the NF-Y subunit genes caused abnormal cell division during lateral root development. This indicated that the Lotus NF-Y subunits can function to stimulate cell division. Thus, transcriptional regulation by NIN, including the activation of the NF-Y subunit genes, induces cortical cell division, which is an initial step in root nodule organogenesis. Unlike the legume-specific NIN protein, NF-Y is a major CCAAT box binding protein complex that is widespread among eukaryotes. We propose that the evolution of root nodules in legume plants was associated with changes in the function of NIN. NIN has acquired functions that allow it to divert pathways involved in the regulation of cell division to root nodule organogenesis. Legumes produce nodules in roots as the endosymbiotic organs for nitrogen-fixing bacteria, collectively called rhizobia. The symbiotic relationship enables legumes to survive on soil with poor nitrogen sources. The rhizobial infection triggers cell division in the cortex to generate root nodule primordia. The root nodule symbiosis has been thought to be recruited factors for the early signaling pathway from the ancestral mycorrhizal symbiosis, which usually does not accompany the root nodule formation. However, how the root nodule symbiosis-specific pathway inputs nodulation signals to molecular networks, by which cortical cell division is initiated, has not yet been elucidated. We found that NIN, a nodulation specific factor, induced cortical cell division without the rhizobial infection. NIN acted as a transcriptional activator and targeted two genes that encode different subunits of a NF-Y CCAAT box binding protein complex, LjNF-YA1 and LjNF-YB1. Inhibition of the LjNF-YA1 function prevented root nodule formation. Ectopic expression of the NF-Y subunit genes enhanced cell division in lateral root primordia that is not related to root nodule organogenesis. The NF-Y genes are thought to regulate cell division downstream of NIN. NF-Y is a general factor widespread in eukaryotes. We propose that NIN is a mediator between nodulation-specific signals and general regulatory mechanisms associated with cell proliferation.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Atsuko Hirota
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Makoto Hayashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
193
|
Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. Symbiosis and the social network of higher plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:118-27. [PMID: 23246268 DOI: 10.1016/j.pbi.2012.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/22/2023]
Abstract
In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.
Collapse
|
194
|
Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. The biology of strigolactones. TRENDS IN PLANT SCIENCE 2013. [PMID: 23182342 DOI: 10.1016/j.tplants.2012.10.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved.
Collapse
Affiliation(s)
- Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
195
|
Kohlen W, Charnikhova T, Bours R, López-Ráez JA, Bouwmeester H. Tomato strigolactones: a more detailed look. PLANT SIGNALING & BEHAVIOR 2013; 8:e22785. [PMID: 23221743 PMCID: PMC3745585 DOI: 10.4161/psb.22785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 05/22/2023]
Abstract
Strigolactones are plant signaling molecules that induce germination of parasitic plant seeds, initiate host plant - arbuscular mycorrhizal fungus symbiosis and act as plant hormones controlling shoot branching and root architecture. To date four unique strigolactones (e.g., orobanchol, didehydroorobanchol isomers 1 and 2 and the aromatic strigolactone solanacol) have been reported in the root exudates and extracts of tomato (Solanum lycopersicum). Here we report on the presence of several additional strigolactones in tomato root exudates and extracts, orobanchyl acetate, two 7-hydroxyorobanchol isomers, 7-oxoorobanchol and two additional didehydroorobanchol isomers and discuss their possible biological relevance.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory of Plant Physiology; Wageningen University; Wageningen, The Netherlands
- Department of Plant Breeding and Genetics; Max Planck Institute for Plant Breeding Research; Cologne, Germany
- Correspondence to: Wouter Kohlen,
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology; Wageningen University; Wageningen, The Netherlands
| | - Ralph Bours
- Laboratory of Plant Physiology; Wageningen University; Wageningen, The Netherlands
| | - Juan A. López-Ráez
- Laboratory of Plant Physiology; Wageningen University; Wageningen, The Netherlands
- Department of Soil Microbiology and Symbiotic Systems; Estación Experimental del Zaidín (CSIC); Granada, Spain
| | - Harro Bouwmeester
- Laboratory of Plant Physiology; Wageningen University; Wageningen, The Netherlands
- Centre for Biosystems Genomics; Wageningen, The Netherlands
| |
Collapse
|
196
|
Strigolactones and the Coordinated Development of Shoot and Root. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
197
|
|
198
|
A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Curr Biol 2012; 22:2236-41. [DOI: 10.1016/j.cub.2012.09.044] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 08/07/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022]
|
199
|
Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2012; 196:1208-1216. [PMID: 23025475 DOI: 10.1111/j.1469-8137.2012.04339.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/10/2012] [Indexed: 05/23/2023]
Abstract
Arbuscular mycorrhiza (AM) represents an ancient endosymbiosis between plant roots and Glomeromycota fungi. Strigolactones (SLs), plant-derived terpenoid lactones, activate hyphal branching of AM fungi before physical contact. Lack of SL biosynthesis results in lower colonization of AM fungi. The F-box protein, DWARF3 (D3), and the hydrolase family protein DWARF14 (D14) are crucial for SL responses in rice. Here we conducted AM fungal colonization assays with the SL-insensitive d3 and d14 mutants. The d3 mutant exhibited strong defects in AM fungal colonization, whereas the d14 mutant showed higher AM fungal colonization. As D14 has a homologous protein, D14-LIKE, we generated D14-LIKE knockdown lines by RNA interference in the wildtype and d14 background. D14 and D14-LIKE double knockdown lines exhibited similar colonization rates as those of the d14-1 mutant. D3 is crucial for establishing AM symbiosis in rice, whereas D14 and D14-LIKE are not. Our results suggest distinct roles for these SL-related components in AM symbiosis.
Collapse
Affiliation(s)
- Satoko Yoshida
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiromu Kameoka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misaki Tempo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Mikihisa Umehara
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Shinjiro Yamaguchi
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hideo Hayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Junko Kyozuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Shirasu
- Plant Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
200
|
Geurts R, Vleeshouwers V. Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted. Curr Biol 2012; 22:R997-9. [DOI: 10.1016/j.cub.2012.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|