151
|
Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease. Neuroimage 2010; 51:512-20. [PMID: 20211271 DOI: 10.1016/j.neuroimage.2010.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 11/23/2022] Open
|
152
|
Osuna S, Swart M, Solà M. On the Mechanism of Action of Fullerene Derivatives in Superoxide Dismutation. Chemistry 2010; 16:3207-14. [DOI: 10.1002/chem.200902728] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
153
|
Oral pre-treatment with epigallocatechin gallate in 6-OHDA lesioned rats produces subtle symptomatic relief but not neuroprotection. Brain Res Bull 2009; 80:397-402. [DOI: 10.1016/j.brainresbull.2009.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/04/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022]
|
154
|
Weinreb O, Amit T, Mandel S, Youdim MBH. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. GENES AND NUTRITION 2009; 4:283-96. [PMID: 19756809 DOI: 10.1007/s12263-009-0143-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 08/03/2009] [Indexed: 01/08/2023]
Abstract
Tea, the major source of dietary flavonoids, particularly the epicatechins, signifies the second most frequently consumed beverage worldwide, which varies its status from a simple ancient cultural drink to a nutrient component, endowed possible beneficial neuro-pharmacological actions. Accumulating evidence suggests that oxidative stress, resulting in reactive oxygen species generation, plays a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers and metal chelating agents, such as natural tea polyphenols, for therapy. Vast epidemiology data indicate a correlation between occurrence of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, and green tea consumption. In particular, recent literature strengthens the perception that diverse molecular signaling pathways, participating in the neuroprotective activity of the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), renders this natural compound as potential agent to reduce the risk of various neurodegenerative diseases. In the current review, we discuss the studies concerning the mechanisms of action implicated in EGCG-induced neuroprotection and discuss the vision to translate these findings into a lifestyle arena.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | |
Collapse
|
155
|
Abstract
Recent studies have provided evidence that uric acid may play a role in the development and progression of Parkinson's disease (PD). Uric acid is a natural antioxidant that may reduce oxidative stress, a mechanism thought to play a role in the pathogenesis of PD. Higher levels of serum urate (SU) may have a neuroprotective effect. High SU levels reduced the risk of developing PD and correlated with slower PD progression. Among PD patients SU levels were lower as compared with controls. The manipulation of SU levels holds promise in the treatment of PD. It is possible that a high purine diet in patients with PD may slow progression of the disease. Milk and meat consumption as well as exercise modify the risk of developing PD possibly through their influence on SU levels. In this article, we review the association between PD and SU levels and its implication on the management of PD.
Collapse
Affiliation(s)
- Ilana Schlesinger
- Department of Neurology, Head, Movement Disorders Clinic, Rambam Health Care Campus, Haifa, Israel.
| | | |
Collapse
|
156
|
Sass MB, Lorenz AN, Green RL, Coleman RA. A pragmatic approach to biochemical systems theory applied to an α-synuclein-based model of Parkinson's disease. J Neurosci Methods 2009; 178:366-77. [DOI: 10.1016/j.jneumeth.2008.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/24/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
157
|
Manova ES, Habib CA, Boikov AS, Ayaz M, Khan A, Kirsch WM, Kido DK, Haacke EM. Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 2009; 30:569-74. [PMID: 19112064 PMCID: PMC3891516 DOI: 10.3174/ajnr.a1401] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/03/2008] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The mesencephalon is involved in a number of human neurodegenerative disorders and has been typically imaged with T1-, T2- and T2*-weighted methods. Our aim was to collect high-contrast susceptibility-weighted imaging (SWI) data to differentiate among and within the basic mesencephalic structures: namely, the red nucleus, substantia nigra, and crus cerebri. MATERIALS AND METHODS High-resolution SWI, 3D T1-weighted, and T2-weighted data were collected to study contrast in the mesencephalon at 1.5T and 4T. Contrast between structures was calculated for SWI high-pass (HP)-filtered-phase, T1 gradient-echo, and spin-echo T2-weighted data. RESULTS SWI HP-filtered-phase data revealed similar contrast for the red nucleus and substantia nigra when compared with T2-weighted imaging. However, SWI was able to show structures within the red nucleus, substantia nigra, and medial geniculate body that were invisible on T2-weighted imaging. T1-weighted imaging, on the other hand, did not reveal measurable contrast for any of the structures of interest. SWI HP-filtered-phase data at 4T agreed well with india ink-stained cadaver brain studies, which appear to correlate with capillary density. CONCLUSIONS With SWI, it is possible to create better anatomic images of the mesencephalon, with improved contrast compared with conventional T1- or T2-weighted sequences.
Collapse
Affiliation(s)
- E S Manova
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem Biophys 2009; 53:75-100. [DOI: 10.1007/s12013-009-9043-x] [Citation(s) in RCA: 633] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
159
|
Peng J, Stevenson FF, Oo ML, Andersen JK. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic Biol Med 2009; 46:312-20. [PMID: 19027846 PMCID: PMC2654268 DOI: 10.1016/j.freeradbiomed.2008.10.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/21/2022]
Abstract
Environmental paraquat and neonatal iron exposure have both separately been suggested as potential risk factors for sporadic forms of Parkinson's disease (PD). In this study, we demonstrate that combined environmental exposure to these two agents results in modulations in microglial activation state. Apocynin, an NADPH oxidase inhibitor, was found to attenuate the release of superoxide from microglia stimulated by combined paraquat and iron and blocked paraquat-induced dopaminergic neuronal death. Furthermore, pretreatment with the synthetic superoxide dismutase/catalase mimetic, EUK-189, significantly decreased microglial activation mediated by combined paraquat and iron treatment. These findings support the notion that environmental PD risk factors may act synergetically to produce neurodegeneration associated with the disorder and that iron and paraquat may act via common oxidative stress-mediated mechanism involving microglial activation.
Collapse
Affiliation(s)
- Jun Peng
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | |
Collapse
|
160
|
Popescu BFG, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RPE, Lüning K, Devon RM, George GN, Hanson AD, Harder SM, Chapman LD, Pickering IJ, Nichol H. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence. Phys Med Biol 2009; 54:651-63. [PMID: 19131671 DOI: 10.1088/0031-9155/54/3/012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.
Collapse
Affiliation(s)
- Bogdan F Gh Popescu
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan SK Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Bica L, Crouch PJ, Cappai R, White AR. Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer’s disease. ACTA ACUST UNITED AC 2009; 5:134-42. [DOI: 10.1039/b816577g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
162
|
Nicolis S, Zucchelli M, Monzani E, Casella L. Myoglobin Modification by Enzyme-Generated Dopamine Reactive Species. Chemistry 2008; 14:8661-73. [DOI: 10.1002/chem.200801014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
163
|
Charkoudian LK, Dentchev T, Lukinova N, Wolkow N, Dunaief JL, Franz KJ. Iron prochelator BSIH protects retinal pigment epithelial cells against cell death induced by hydrogen peroxide. J Inorg Biochem 2008; 102:2130-5. [PMID: 18835041 DOI: 10.1016/j.jinorgbio.2008.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/04/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson's, Alzheimer's, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide) prochelators that are converted by hydrogen peroxide into SIH (salicylaldehyde isonicotinoyl hydrazone) chelating agents that inhibit iron-catalyzed hydroxyl radical generation. Here, we show that BSIH protects a cultured cell model for retinal pigment epithelium against cell death induced by hydrogen peroxide. BSIH is more stable than SIH in cell culture medium and is more protective during long-term experiments. Repetitive exposure of cells to BSIH is nontoxic, whereas SIH and desferrioxamine induce cell death after repeated exposure. Combined, our results indicate that cell protection by BSIH involves iron sequestration that occurs only when the cells are stressed by hydrogen peroxide. These findings suggest that prochelators discriminate toxic iron from healthy iron and are promising candidates for neuro- and retinal protection.
Collapse
|
164
|
Snyder AM, Connor JR. Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta Gen Subj 2008; 1790:606-14. [PMID: 18778755 DOI: 10.1016/j.bbagen.2008.08.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/29/2008] [Accepted: 08/12/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iron status is higher in the substantia nigra than in other brain regions but can fluctuate as function of diet and genetics and disease. Of particular note is the compartmentalization of the iron-enrichment in this region; the pars reticulata contains higher levels of stainable iron as compared to the pars compacta. The latter area is where the dopaminergic neurons reside. How this compartmentalization impacts the interpretation of data that iron contributes to cell death as in Parkinson's disease or iron deficiency contributes to altered dopaminergic activity is unknown. Nonetheless, that iron can influence neuronal cell death and dopamine function is clear. METHODS The mechanisms by which iron may be managed in the substantia nigra, particularly in the neuromelanin cells where minimal levels of ferritin the iron storage protein have been detected are addressed. The current approaches to detect iron in the substantia nigra are also reviewed. In addition, the potential mechanisms by which iron enrichment may occur in the substantia nigra are explored. GENERAL SIGNIFICANCE This review attempts to provide a critical evaluation of the many avenues of exploration into the role of iron in one of the most iron-enriched and clinically investigated areas of the brain, the substantia nigra.
Collapse
Affiliation(s)
- Amanda M Snyder
- Department of Neurosurgery, Penn State University, M. S. Hershey Medical Center, Hershey, PA 17033, USA
| | | |
Collapse
|
165
|
Berg D, Riederer P, Gerlach M. Contribution of disturbed iron metabolism to the pathogenesis of Parkinson’s disease. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.4.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extensive research has revealed a complex pathophysiology in Parkinson’s disease, with different factors contributing to the progressive neurodegeneration. Within this complex pathophysiology, a central role of iron and iron-induced oxidative stress has been discussed for many years, as elevated tissue iron levels, especially within the substantia nigra, have been detected by different techniques in a number of postmortem studies. These findings could be verified intra vitam by advancing MRI techniques, and more recently transcranial ultrasound. Different causes, such as disruption of the BBB, local changes in the normal iron-regulatory system, release of iron from intracellular storages or intraneuronal transportation from iron-rich areas, as well as genetic variations leading to changes in brain iron metabolism, are being discussed to be responsible for the increased tissue iron levels. Although it is still not clear whether increased iron levels constitute a primary or secondary phenomenon in the etiology of Parkinson’s disease, its interaction with many pathophysiologcial cascades and contribution to all forms of Parkinson’s disease, idiopathic as well as monogenetic, stresses the importance of further elucidating the mechanism of brain iron homeostasis and its possible alterations to finally develop pharmacological interventions that may disrupt the chain of pathological events leading to neurodegeneration.
Collapse
Affiliation(s)
- Daniela Berg
- Center of Neurology, Department of Neurodegeneration & Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Peter Riederer
- University of Würzburg, Department of Psychiatry & Psychotherapy and, National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Laboratory for Clinical Neurochemistry, Würzburg, Germany
| | - Manfred Gerlach
- University of Würzburg, Department of Child & Adolescent Psychiatry & Psychotherapy, Laboratory for Clinical Neurobiology, Würzburg, Germany
| |
Collapse
|
166
|
Danielson SR, Andersen JK. Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med 2008; 44:1787-94. [PMID: 18395015 PMCID: PMC2422863 DOI: 10.1016/j.freeradbiomed.2008.03.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative syndrome likely involving contributions from various factors in individuals including genetic susceptibility, exposure to environmental toxins, and the aging process itself. Increased oxidative stress appears to be a common causative aspect involved in the preferential loss of dopaminergic neurons in a region of the brain prominently affected by the disorder, the substantia nigra (SN). Loss of dopaminergic SN neurons is responsible for the classic clinical motor symptoms associated with PD. Several oxidative and nitrative posttranslational modifications (PTMs) have been identified on proteins pertinent to PD that may affect this or other aspects of disease progression. In this review, we discuss several examples of such PTMs to illustrate their potential consequences in terms of initiation or progression of PD neuropathophysiology.
Collapse
Affiliation(s)
| | - Julie K. Andersen
- Buck Institute For Age Research, 8001 Redwood Blvd., Novato, CA, USA
| |
Collapse
|
167
|
Chen H, Liu B, Lukas TJ, Suyeoka G, Wu G, Neufeld AH. Changes in iron-regulatory proteins in the aged rodent neural retina. Neurobiol Aging 2008; 30:1865-76. [PMID: 18308429 DOI: 10.1016/j.neurobiolaging.2008.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 01/08/2008] [Accepted: 01/12/2008] [Indexed: 11/16/2022]
Abstract
Iron accumulation is associated with age-related neurodegenerations and may contribute to age-related increased susceptibility of neurons to damage. We compared young and old rodent retinas to assess iron homeostasis during normal aging and the effects of increased iron on the susceptibility of retinal neurons to degeneration. Retinal iron was significantly increased with age. Quantitative RT-PCR showed that transferrin and ferritin genes were upregulated in the aged retina. At the protein level, we found decreased transferrin, and increased transferrin receptor, ferritin, ferroportin, and ceruloplasmin in the aged retina. These results support an increased steady state of iron with age in the retina. We tested susceptibility of retinal neurons with increased intracellular iron to damage in vitro. Exposure of RGC-5 cells to increased iron potentiated the neurotoxicity induced by paraquat, glutamate, and TNFalpha. Our results demonstrate that iron homeostasis in the retina is altered with age and suggest that iron accumulation, due to altered levels of iron-regulatory proteins in the aged retina, could be a susceptibility factor in age-related retinal diseases.
Collapse
Affiliation(s)
- Huiyi Chen
- The Forsythe Laboratory for Investigation of Aging Retina, Department of Ophthalmology, Northwestern University School of Medicine, Tarry 13-753, 303 East Chicago Avenue, Chicago, IL 60611, United States.
| | | | | | | | | | | |
Collapse
|
168
|
Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria? GENES, BRAIN, AND BEHAVIOR 2008; 7:129-51. [PMID: 17680806 PMCID: PMC2268956 DOI: 10.1111/j.1601-183x.2007.00342.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (alpha-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.
Collapse
Affiliation(s)
- V Bogaerts
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - J Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - C van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| |
Collapse
|
169
|
Oshiro S, Kawamura KI, Zhang C, Sone T, Morioka MS, Kobayashi S, Nakajima K. Microglia and astroglia prevent oxidative stress-induced neuronal cell death: implications for aceruloplasminemia. Biochim Biophys Acta Mol Basis Dis 2007; 1782:109-17. [PMID: 18187051 DOI: 10.1016/j.bbadis.2007.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
We partially characterized the transferrin-independent iron uptake (Tf-IU) of neuronal and glial cells in the previous report. In the present study, we further examined a mechanism of which glial cells protect neuronal cells against iron stress using neuron-microglia (N-MG) and neuron-astrocyte (N-AS) co-cultures. When each solely purified cell was treated with iron citrate, cell death occurred in N and MG. However, AS proliferated under the same condition. Both N-MG and N-AS co-cultures were effective in resistance to excessive iron. The total and specific Tf-IU activities of N-MG co-cultures similar to those of N did not increase in a density-dependent manner. Contrarily, the total activity of AS was extremely high and the specific activity was extremely low as a result of proliferation. Regarding of effect of co-cultures on H(2)O(2)-induced cell death, N-MG co-cultures were less effective, but N-AS co-cultures were more effective in protecting N from the oxidative stress. These results suggest that N-MG co-cultures suppress the Tf-IU and N-AS co-cultures stimulate AS proliferation to protect neuronal cells. Brain cells from aceruloplasminemia with mutations in the ceruloplasmin gene take up iron by Tf-IU. Therefore, the different mechanisms of neuronal cell protection by MG and AS may explain the pathophysiological observations in the brains of patient with aceruloplasminemia.
Collapse
Affiliation(s)
- Satoru Oshiro
- Division of Molecular and Cellular Biochemistry, Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, 560 Iwadono, Higashi-matsuyama, Saitama 355-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
170
|
Takahashi M, Ko LW, Kulathingal J, Jiang P, Sevlever D, Yen SHC. Oxidative stress-induced phosphorylation, degradation and aggregation of alpha-synuclein are linked to upregulated CK2 and cathepsin D. Eur J Neurosci 2007; 26:863-74. [PMID: 17714183 DOI: 10.1111/j.1460-9568.2007.05736.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracellular accumulation of alpha-synuclein (alpha-Syn) as filamentous aggregates is a pathological feature shared by Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, referred to as synucleinopathies. To understand the mechanisms underlying alpha-Syn aggregation, we established a tetracycline-off inducible transfectant (3D5) of neuronal lineage overexpressing human wild-type alpha-Syn. Alpha-Syn aggregation was initiated by exposure of 3D5 cells to FeCl2. The exposure led to formation of alpha-Syn inclusions and oligomers of 34, 54, 68 kDa and higher molecular weights. The oligomers displayed immunoreactivity with antibodies to the amino-, but not to the carboxyl (C)-, terminus of alpha-Syn, indicating that C-terminally truncated alpha-Syn is a major component of oligomers. FeCl2 exposure also promoted accumulation of S129 phosphorylated monomeric alpha-Syn (P alpha-Syn) and casein kinase 2 (CK2); however, G-protein-coupled receptor kinase 2 was reduced. Treatment of FeCl2-exposed cells with CK2 inhibitors (DRB or TBB) led to decreased formation of alpha-Syn inclusions, oligomers and P alpha-Syn. FeCl2 exposure also enhanced the activity/level of cathepsin D. Treatment of the FeCl2-exposed cells with pepstatin A or NH4Cl led to reduced formation of oligomers/inclusions as well as of approximately 10 and 12 kDa truncated alpha-Syn. Our results indicate that alpha-Syn phosphorylation caused by FeCl2 is due to CK2 upregulation, and that lysosomal proteases may have a role in producing truncated alpha-Syn for oligomer assembly.
Collapse
Affiliation(s)
- Makio Takahashi
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
171
|
Weisskopf MG, O'Reilly E, Chen H, Schwarzschild MA, Ascherio A. Plasma urate and risk of Parkinson's disease. Am J Epidemiol 2007; 166:561-7. [PMID: 17584757 PMCID: PMC2391073 DOI: 10.1093/aje/kwm127] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress contributes to dopaminergic neuron degeneration in Parkinson's disease. Urate, a potent antioxidant, could be neuroprotective. To determine whether higher plasma concentrations of urate predict a reduced risk of Parkinson's disease, the authors conducted a nested case-control study among participants in the Health Professionals Follow-up Study, a cohort comprising over 18,000 men who provided blood samples in 1993-1995. Eighty-four incident cases of Parkinson's disease were diagnosed through 2000, and each was randomly matched to two controls by year of birth, race, and time of blood collection. Rate ratios of Parkinson's disease according to quartile of uricemia were estimated by use of conditional logistic regression. The mean urate concentration was 5.7 mg/dl among cases and 6.1 mg/dl among controls (p = 0.01). After adjustment for age, smoking, and caffeine, the rate ratio of Parkinson's disease for the highest quartile of uricemia compared with the lowest was 0.43 (95% confidence interval: 0.18, 1.02; p(trend) = 0.017). This association was stronger in analyses excluding cases diagnosed within 4 years (median) from blood collection (rate ratio = 0.17, 95% confidence interval: 0.04, 0.69; p(trend) = 0.010). These results suggest that high plasma urate concentrations may decrease the risk of Parkinson's disease, and they raise the possibility that interventions to increase plasma urate may reduce the risk and delay the progression of Parkinson's disease.
Collapse
Affiliation(s)
- M G Weisskopf
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
172
|
Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK. Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson's disease accelerate age-related neurodegeneration. J Neurosci 2007; 27:6914-22. [PMID: 17596439 PMCID: PMC6672233 DOI: 10.1523/jneurosci.1569-07.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extensive epidemiological data in humans and studies in animal models of Parkinson's disease (PD) suggest that sporadic forms of the disorder are not strictly genetic in nature but most likely because of combined environmental exposures over the period of the life-span coupled with increased genetic susceptibilities. Environmental paraquat and neonatal iron exposure have both been separately suggested as potential risk factors for sporadic forms of the disease. In this study, we demonstrate that combined environmental exposure to these two agents results in accelerated age-related degeneration of nigrostriatal dopaminergic neurons. Furthermore, pretreatment with the synthetic superoxide dismutase/catalase mimetic, EUK-189, significantly attenuated neuronal death mediated by combined paraquat and iron treatment. These findings support the notion that environmental PD risk factors may act synergistically to produce neurodegeneration associated with the disorder and that iron and paraquat may act via common oxidative stress-mediated mechanisms.
Collapse
Affiliation(s)
- Jun Peng
- Buck Institute for Age Research, Novato, California 94945
| | - Li Peng
- Telstra Burns and Reconstruction Unit, Royal Perth Hospital, Perth, Washington 6847, Australia, and
| | | | | | | |
Collapse
|
173
|
Aschner M, Guilarte TR, Schneider JS, Zheng W. Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 2007; 221:131-47. [PMID: 17466353 PMCID: PMC1950780 DOI: 10.1016/j.taap.2007.03.001] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/16/2007] [Accepted: 03/02/2007] [Indexed: 11/19/2022]
Abstract
The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Pediatrics, and The Kennedy Center for Research on Human Development, Vanderbilt University, School of Medicine, Nashville, TN 37232-2495, USA.
| | | | | | | |
Collapse
|
174
|
Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson's disease. Prog Neurobiol 2007; 81:29-44. [PMID: 17258379 DOI: 10.1016/j.pneurobio.2006.11.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/14/2006] [Accepted: 11/22/2006] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) affects one in every 100 persons above the age of 65 years, making it the second most common neurodegenerative disease after Alzheimer's disease. PD is a disease of the central nervous system that leads to severe difficulties with body motions. The currently available therapies aim to improve the functional capacity of the patient for as long as possible; however they do not modify the progression of the neurodegenerative process. The need for newer and more effective agents is consequently receiving a great deal of attention and consequently being subjected to extensive research. This review concisely compiles the limitations of currently available therapies and the most recent research regarding neuroprotective agents, antioxidants, stem cell research, vaccines and various surgical techniques available and being developed for the management of PD.
Collapse
Affiliation(s)
- Neha Singh
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | | | | |
Collapse
|
175
|
Friedman A, Galazka-Friedman J, Bauminger ER. Iron as a trigger of neurodegeneration in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:493-505. [PMID: 18808930 DOI: 10.1016/s0072-9752(07)83023-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
176
|
Charkoudian LK, Pham DM, Kwon AM, Vangeloff AD, Franz KJ. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress. Dalton Trans 2007:5031-42. [DOI: 10.1039/b705199a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
177
|
Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. CLINICAL NEUROSCIENCE RESEARCH 2006; 6:261-281. [PMID: 18060039 PMCID: PMC1831679 DOI: 10.1016/j.cnr.2006.09.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroinflammatory processes play a significant role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies all support the presence of an neuroinflammatory cascade in disease. This is highlighted by the neurotoxic potential of microglia . In steady state, microglia serve to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of innate and adaptive immune responses. In neurodegenerative diseases, activated microglia affect neuronal injury and death through production of glutamate, pro-inflammatory factors, reactive oxygen species, quinolinic acid amongst others and by mobilization of adaptive immune responses and cell chemotaxis leading to transendothelial migration of immunocytes across the blood-brain barrier and perpetuation of neural damage. As disease progresses, inflammatory secretions engage neighboring glial cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation perpetuating tissue injury. Such pathogenic processes contribute to neurodegeneration in PD. Research from others and our own laboratories seek to harness such inflammatory processes with the singular goal of developing therapeutic interventions that positively affect the tempo and progression of human disease.
Collapse
Affiliation(s)
- R. Lee Mosley
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Eric J. Benner
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Irena Kadiu
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Mark Thomas
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Michael D. Boska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- Radiology, University of Nebraska Medical Center, Omaha, NE
| | - Khader Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas School at Houston, Houston, TX
| | - Chad Laurie
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
178
|
Chwiej J, Adamek D, Szczerbowska-Boruchowska M, Krygowska-Wajs A, Wojcik S, Falkenberg G, Manka A, Lankosz M. Investigations of differences in iron oxidation state inside single neurons from substantia nigra of Parkinson’s disease and control patients using the micro-XANES technique. J Biol Inorg Chem 2006; 12:204-11. [PMID: 17120075 DOI: 10.1007/s00775-006-0179-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 09/26/2006] [Indexed: 10/23/2022]
Abstract
X-ray absorption near edge structure spectroscopy was applied in order to investigate differences in iron chemical state between the nerve cells of substantia nigra (SN) representing Parkinson's disease (PD) and those of control cases. Autopsy samples were cut using a cryotome, and were not fixed and not embedded in paraffin. The comparison of the absorption spectra near the iron K-edge measured in melanized neurons from SN of PD and control samples did not show significant differences in iron oxidation state. Measurements of inorganic reference materials containing iron in the second and third oxidation states indicate that most of the iron in all the nerve cell bodies examined was oxidized and occurred as trivalent ferric iron (Fe(3+)).
Collapse
Affiliation(s)
- Joanna Chwiej
- Department of Nuclear Methods, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059, Cracow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Liu LL, Franz KJ. Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. J Biol Inorg Chem 2006; 12:234-47. [PMID: 17082919 DOI: 10.1007/s00775-006-0181-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Alpha-synuclein (alpha-syn) is the major protein component of the insoluble fibrils that make up Lewy bodies, the hallmark lesions of Parkinson's disease. Its C-terminal region contains motifs of charged amino acids that potentially bind metal ions, as well as several identified phosphorylation sites. We have investigated the metal-binding properties of synthetic model peptides and phosphopeptides that correspond to residues 119-132 of the C-terminal, polyacidic stretch of human alpha-syn, with the sequence Ac-Asp-Pro-Asp-Asn-Glu-Ala-Tyr-Glu-Met-Pro-Ser-Glu-Glu-Gly (alpha-syn119-132). The peptide pY125 replaces tyrosine with phosphotyrosine, whereas pS129 replaces serine with phosphoserine. By using Tb(3+) as a luminescent probe of metal binding, we find a marked selectivity of pY125 for Tb(3+) compared with pS129 and alpha-syn119-132, a result confirmed by isothermal titration calorimetry. Truncated or alanine-substituted peptides show that the phosphoester group on tyrosine provides a metal-binding anchor that is supplemented by carboxylic acid groups at positions 119, 121, and 126 to establish a multidentate ligand, while two glutamic acid residues at positions 130 and 131 contribute to binding additional Tb(3+) ions. The interaction of other metal ions was investigated by electrospray ionization mass spectrometry, which confirmed that pY125 is selective for trivalent metal ions over divalent metal ions, and revealed that Fe(3+) and Al(3+) induce peptide dimerization through metal ion cross-links. Circular dichroism showed that Fe(3+) can induce a partially folded structure for pY125, whereas no change was observed for pS129 or the unphosphorylated analog. The results of this study show that the type and location of a phosphorylated amino acid influence a peptide's metal-binding specificity and affinity as well as its overall conformation.
Collapse
Affiliation(s)
- Lucy L Liu
- Department of Chemistry, Duke University, P.O. Box 90346, Durham, NC 27708, USA
| | | |
Collapse
|
180
|
Liu B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS JOURNAL 2006; 8:E606-21. [PMID: 17025278 PMCID: PMC2668934 DOI: 10.1208/aapsj080369] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder resulting from a progressive degeneration of the nigrostriatal dopaminergic pathway and depletion of neurotransmitter dopamine in the striatum. Molecular cloning studies have identified nearly a dozen genes or loci that are associated with small clusters of mostly early onset and genetic forms of PD. The etiology of the vast majority of PD cases remains unknown, and the precise molecular and biochemical processes governing the selective and progressive degeneration of the nigrostriatal dopaminergic pathway are poorly understood. Current drug therapies for PD are symptomatic and appear to bear little effect on the progressive neurodegenerative process. Studies of postmortem PD brains and various cellular and animal models of PD in the last 2 decades strongly suggest that the generation of pro-inflammatory and neurotoxic factors by the resident brain immune cells, microglia, plays a prominent role in mediating the progressive neurodegenerative process. This review discusses literature supporting the possibility of modulating the activity of microglia as a neuroprotective strategy for the treatment of PD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Pharmacodynamics, College of Pharmacy, the McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
181
|
Park MJ, Lee SK, Lim MA, Chung HS, Cho SI, Jang CG, Lee SM. Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Res 2006; 1109:176-82. [PMID: 16844102 DOI: 10.1016/j.brainres.2006.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/29/2022]
Abstract
Methamphetamine (MA)-induced dopaminergic neurotoxicity is believed to be associated with the increased formation of free radicals. This study examined the effect of alpha-tocopherol (alpha-TC), a scavenger of reactive oxygen species, and deferoxamine (DFO), an iron chelator, on the MA-induced neurotoxicity. Male rats were treated with MA (10 mg/kg, every 2 h for four injections). The rat received either alpha-TC (20 mg/kg) intraperitoneally for 3 days and 30 min prior to MA administration or DFO (50 mg/kg) subcutaneously 30 min before MA administration. The concentrations of dopamine (DA), serotonin and their metabolites decreased significantly after MA administration, which was inhibited by the alpha-TC and DFO pretreatment. alpha-TC and DFO attenuated the MA-induced hyperthermia as well as the alterations in the locomotor activity. The level of lipid peroxidation was higher and the reduced glutathione concentration was lower in the MA-treated rats. These changes were significantly attenuated by alpha-TC and DFO. This suggests that alpha-TC and DFO ameliorate the MA-induced neuronal damage by decreasing the level of oxidative stress.
Collapse
Affiliation(s)
- Mee-Jung Park
- Dept. of Forensic science, National Institute of Scientific Investigation, Yangchon-ku, Seoul, 158-707, Korea
| | | | | | | | | | | | | |
Collapse
|
182
|
Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA, Andersen JK. Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 2006; 28:907-13. [PMID: 16765489 DOI: 10.1016/j.neurobiolaging.2006.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 11/21/2022]
Abstract
Iron elevation is well-documented in the Parkinsonian midbrain but its cause and contribution to subsequent neurodegeneration remain unknown. Mice administered iron at doses equivalent to those found in iron-fortified human infant formula during a developmental period equivalent to the first human year of life display progressive midbrain neurodegeneration and enhanced vulnerability to toxic injury. This may have major implications for the impact of neonatal iron intake as a potential risk factor for later development of Parkinson's disease (PD).
Collapse
|
183
|
Mejías R, Villadiego J, Pintado CO, Vime PJ, Gao L, Toledo-Aral JJ, Echevarría M, López-Barneo J. Neuroprotection by transgenic expression of glucose-6-phosphate dehydrogenase in dopaminergic nigrostriatal neurons of mice. J Neurosci 2006; 26:4500-8. [PMID: 16641229 PMCID: PMC6674068 DOI: 10.1523/jneurosci.0122-06.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative damage to dopaminergic nigrostriatal (DNS) neurons plays a central role in the pathogenesis of Parkinson's disease (PD). Glucose-6-phosphate dehydrogenase (G6PD) is a key cytoprotective enzyme that provides NADPH, the major source of the reducing equivalents of a cell. Mutations of this enzyme are the most common enzymopathies worldwide. We have studied in vivo the role of G6PD overexpressed specifically in the DNS pathway and show that the increase of G6PD activity in the soma and axon terminals of DNS neurons, separately from other neurons or glial cells, protects them from parkinsonism. Analysis of DNS neurons by histological, neurochemical, and functional methods showed that even a moderate increase of G6PD activity rendered transgenic mice more resistant than control littermates to the toxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The neuroprotective action of G6PD was also observed in aged animals despite that they had a greater susceptibility to MPTP. Therefore, overexpression of G6PD in dopaminergic neurons or pharmacological activation of the native enzyme should be considered as potential therapeutic strategies to PD.
Collapse
|
184
|
Charkoudian LK, Franz KJ. Fe(III)-Coordination Properties of Neuromelanin Components: 5,6-Dihydroxyindole and 5,6-Dihydroxyindole-2-carboxylic Acid. Inorg Chem 2006; 45:3657-64. [PMID: 16634598 DOI: 10.1021/ic060014r] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Fe(III)-coordination chemistry of neuromelanin building-block compounds, 5,6-dihydroxyindole (DHI), 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and 5,6-dihydroxy-N-methyl-indole (Me-DHI), and the neurotransmitter dopamine were explored in aqueous solution by anaerobic pH-dependent spectrophotometric titrations. The Fe(III)-binding constants and pH-dependent speciation parallel those of catechol in that mono, bis, and tris FeLx species are present at concentrations dependent on the pH. The bis FeL2 dihydroxyindole species are favorable for L = DHI and DHICA under neutral to mildly acidic conditions. DHI and DHICA are stronger Fe(III) chelates than catechol, dopamine, and Me-DHI at pH values from 3 to 10. Oxidation studies reveal that iron accelerates the air oxidation of DHI and DHICA.
Collapse
Affiliation(s)
- Louise K Charkoudian
- Department of Chemistry, Duke University, P.O. Box 90346, Durham, North Carolina 27708, USA
| | | |
Collapse
|
185
|
Fedorenko AL, Lozovaya NA, Volkova TM, Kryshtal OA. Modulation by redox reagents of ATP-activated currents in neurons of the rat nodose ganglion. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
186
|
Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MBH. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 2006; 50:229-34. [PMID: 16470637 DOI: 10.1002/mnfr.200500156] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodegeneration in Parkinson's, Alzheimer's, or other neurodegenerative diseases appears to be multifactorial, where a complex set of toxic reactions, including oxidative stress (OS), inflammation, reduced expression of trophic factors, and accumulation of protein aggregates, lead to the demise of neurons. One of the prominent pathological features is the abnormal accumulation of iron on top of the dying neurons and in the surrounding microglia. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. The observations that iron induces aggregation of inert alpha-synuclein and beta-amyloid peptides to toxic aggregates have reinforced the critical role of iron in OS-induced pathogenesis of neurodegeneration, supporting the notion that a combination of iron chelation and antioxidant therapy may be one significant approach for neuroprotection. Tea flavonoids (catechins) have been reported to possess divalent metal chelating, antioxidant, and anti-inflammatory activities, to penetrate the brain barrier and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. This review aims to shed light on the multipharmacological neuroprotective activities of green tea catechins with special emphasis on their brain-permeable, nontoxic, transitional metal (iron and copper)-chelatable/radical scavenger properties.
Collapse
|
187
|
Abstract
Parkinson's disease is a common neurodegenerative disorder with a mainly sporadic aetiology, although a number of monogenic familiar forms are known. Most of the motor symptoms are due to selective depletion of dopaminergic, neuromelanin-containing neurones of the substantia nigra pars compacta. Neuromelanin is the dark insoluble macromolecule that confers the black (substantia nigra) or grey (locus coeruleus) colour to monoaminergic basal ganglia. In particular, nigral neurones are pigmented because of the accumulation of by-products of oxidative metabolism of the neurotransmitter dopamine. The occurrence of dopamine (and all the enzymatic machinery required for dopamine synthesis, re-uptake and disposal) and neuromelanin, and a large amount of iron ions that interact with them, makes dopaminergic nigral neurones peculiarly susceptible to oxidative stress conditions that, in turn, may become amplified by the iron-neuromelanin system itself. In this mini-review we describe biophysical evidence for iron-neuromelanin modifications that support this hypothesis. Furthermore, we discuss the formation of the covalent linkage between alpha-synuclein and neuromelanin from the early stages of the disease.
Collapse
Affiliation(s)
- Mauro Fasano
- Department of Structural and Functional Biology, and Centre of Neuroscience, University of Insubria, Busto Arsizio, Italy.
| | | | | |
Collapse
|
188
|
Sofic E, Sapcanin A, Tahirovic I, Gavrankapetanovic I, Jellinger K, Reynolds GP, Tatschner T, Riederer P. Antioxidant capacity in postmortem brain tissues of Parkinson's and Alzheimer's diseases. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:39-43. [PMID: 17447414 DOI: 10.1007/978-3-211-33328-0_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Oxidative stress has been associated with damage and progressive cell death that occurs in neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). The aim of this study was to investigate the antioxidant capacity in postmortem motor cortex (MC), nucleus caudatus (NC), gyrus temporalis (GT) and substantia nigra (SN) from controls (C) and patients with PD and AD. The initial samples consisted of 68 subjects of PD, AD and C. Brains were matched for age, sex and postmortem time. Brain tissue was homogenized in a phosphate buffer pH 7.3 and separated with two-step centrifugation at 15,000rpm for 30 min and 15,000 rpm for 10 min at 4 degrees C. Antioxidant capacity in the supernatants was measured using the oxygen radical absorbance assay (ORAC). The results showed that in the SN of parkinsonian's brain the balance between production of free radicals and the neutralization by a complex antioxidant system is disturbed. No changes in the antioxidant capacity of postmortem MC and NC of parkinsonian's brain in comparison with C were found. In the SN of parkinsonian's brain, antioxidant capacity seems to be lower in comparison with C (p < 0.05). Antioxidant capacity against peroxyl radical showed that MC of AD patients was lower than in the MC of C (p < 0.005). In NC of AD patients the antioxidant capacity against hydroxyl radical was increased in comparison with C (p < 0.04). No changes in the antioxidant capacity were found in brain tissues of AD in comparison with C, when CuSO4 was used as a free radical generator.
Collapse
Affiliation(s)
- E Sofic
- Department of Chemistry, Faculty of Science, University of Sarajevo, Bosnia & Herzegovina.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Hirsch EC. Altered regulation of iron transport and storage in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:201-4. [PMID: 17447430 DOI: 10.1007/978-3-211-33328-0_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is characterized by the death of dopaminergic neurons in the substantia nigra. This neuronal degeneration is associated with a strong microglial activation and iron accumulation in the affected brain structures. The increased iron content may result from an increased iron penetration into the brain parenchyma due to a higher expression of lactoferrin and lactoferrin receptors at the level of the blood vessels and dopaminergic neurons in the substantia nigra in PD. Iron may also accumulate in microglial cells after phagocytosis of dopaminergic neurons. These effects may be reinforced by a lack of up-regulation of the iron storage protein ferritin, as suggested by an absence of change in iron regulatory protein 1 (IRP-1) control of ferritin mRNA translation in PD. Thus, a dysregulation of the labile iron pool may participate in the degenerative process affecting dopaminergic neurons in PD.
Collapse
Affiliation(s)
- E C Hirsch
- INSERM, UMR679, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, Université Pierre & Marie Curie - Paris 6, Paris, France.
| |
Collapse
|
190
|
Gerlach M, Double KL, Youdim MBH, Riederer P. Potential sources of increased iron in the substantia nigra of parkinsonian patients. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:133-42. [PMID: 17017520 DOI: 10.1007/978-3-211-45295-0_21] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Histopathological, biochemical and in vivo brain imaging techniques, such as magnetic resonance imaging and transcranial sonography, revealed a consistent increase of substantia nigra (SN) iron in Parkinson's disease (PD). Increased iron deposits in the SN may have genetic and non-genetic causes. There are several rare movement disorders associated with neurodegeneration, and genetic abnormalities in iron regulation resulting in iron deposition in the brain. Non-genetic causes of increased SN iron may be the result of a disturbed or open blood-brain-barrier, local changes in the normal iron-regulatory systems, intraneuronal transportation of iron from iron-rich area into the SN and release of iron from intracellular iron storage molecules. Major iron stores are ferritin and haemosiderin in glial cells as well as neuromelanin in neurons. Age- and disease dependent overload of iron storage proteins may result in iron release upon reduction. Consequently, the low molecular weight chelatable iron complexes may trigger redox reactions leading to damage of biomolecules. Additionally, upon neurodegeneration there is strong microglial activation which can be another source of high iron concentrations in the brain.
Collapse
Affiliation(s)
- M Gerlach
- Laboratory for Clinical Neurochemistry, Department of Child and Adolescence Psychiatry and Psychotherapy, University of Würzburg, Germany.
| | | | | | | |
Collapse
|
191
|
Maharaj H, Sukhdev Maharaj D, Scheepers M, Mokokong R, Daya S. l-DOPA administration enhances 6-hydroxydopamine generation. Brain Res 2005; 1063:180-6. [PMID: 16257392 DOI: 10.1016/j.brainres.2005.09.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
The therapeutic success of L-3,4-dihydroxyphenylalanine (L-DOPA) treatment in Parkinson's disease (PD) patients remains controversial as many patients become tolerant requiring higher dosage regimens. However, the increase in dosage regimens results in the patients experiencing intolerable side effects. This study sought to investigate whether dopamine (DA) can chemically react with iron to form the potent neurotoxin 6-hydroxydopamine (6-OHDA). Furthermore, rats were treated with L-DOPA for a period of 7 and 28 days to determine whether L-DOPA treatment results in 6-OHDA formation in rat striatum. In addition, this study also investigates the complex interactions of L-DOPA with iron by performing in vitro and in vivo lipid peroxidation studies and the detection of endogenous 6-OHDA in iron-infused rats. In each study, melatonin was used to determine whether it could quench any free radical effects that may occur. The results of the present study show that DA chemically reacts with iron to form 6-OHDA. Moreover, L-DOPA treatment results in endogenous 6-OHDA formation in rat brain as well as enhances iron-induced lipid peroxidation both in vitro and in vivo in the rat striatum. The L-DOPA-induced increase in lipid peroxidation, in iron-infused rats, corresponds with an increase in levels of 6-OHDA in the rat striatum. The use of melatonin significantly decreases the L-DOPA-stimulated 6-OHDA formation in the rat striatum. The present study provides novel information on L-DOPA-induced neurotoxicity and suggests the concomitant use of an antioxidant with L-DOPA in order to enhance the life span of L-DOPA therapy.
Collapse
Affiliation(s)
- Himant Maharaj
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6139, South Africa
| | | | | | | | | |
Collapse
|
192
|
Xu M, Yip GWC, Gan LT, Ng YK. Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection. Brain Res 2005; 1055:137-42. [PMID: 16095570 DOI: 10.1016/j.brainres.2005.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 11/22/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of neurodegeneration after the acute central nervous system injury. We reported previously that increased nitric oxide (NO) production following spinal cord hemisection tends to lead to neurodegeneration in neurons of the nucleus dorsalis (ND) that normally lacks expression of neuronal NO synthase (nNOS) in opposition to those in the red nucleus (RN) that constitutively expresses nNOS. We wondered whether oxidative stress could be a mechanism underlying this NO involved neurodegeneration. In the present study, we examined oxidative damage evaluated by the presence of 4-hydroxynonenal (HNE) and iron accumulation and expression of putative antioxidant enzymes heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in neurons of the ND and RN after spinal cord hemisection. We found that HNE expression was induced in neurons of the ipsilateral ND from 1 to 14 days following spinal cord hemisection. Concomitantly, iron staining was seen from 7 to 14 days after lesion. HO-1, however, was only transiently induced in ipsilateral ND neurons between 3 and 7 days after lesion. In contrast to the ND neurons, HNE was undetectable and iron level was unaltered in the RN neurons after spinal cord hemisection. HO-1, SOD-Cu/Zn and SOD-Mn were constitutively expressed in RN neurons, and lesion to the spinal cord did not change their expression. These results suggest that oxidative stress is involved in the degeneration of the lesioned ND neurons; whereas constitutive antioxidant enzymes may protect the RN neurons from oxidative damage.
Collapse
Affiliation(s)
- Mei Xu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
193
|
Ren Y, Liu W, Jiang H, Jiang Q, Feng J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 2005; 280:34105-12. [PMID: 16091364 DOI: 10.1074/jbc.m503483200] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) is characterized by the specific degeneration of dopaminergic (DA) neurons in substantia nigra and has been linked to a variety of environmental and genetic factors. Rotenone, an environmental PD toxin, exhibited much greater toxicity to DA neurons in midbrain neuronal cultures than to non-DA neurons. The effect was significantly decreased by the microtubule-stabilizing drug taxol and mimicked by microtubule-depolymerizing agents such as colchicine or nocodazole. Microtubule depolymerization disrupted vesicular transport along microtubules and caused the accumulation of dopamine vesicles in the soma. This led to increased oxidative stress due to oxidation of cytosolic dopamine leaked from vesicles. Inhibition of dopamine metabolism significantly reduced rotenone toxicity. Thus, our results suggest that microtubule depolymerization induced by PD toxins such as rotenone plays a key role in the selective death of dopaminergic neurons.
Collapse
Affiliation(s)
- Yong Ren
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
194
|
Izumi Y, Sawada H, Sakka N, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike A. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res 2005; 79:849-60. [PMID: 15712215 DOI: 10.1002/jnr.20382] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). 6-Hydroxydopamine (6-OHDA), a dopaminergic neurotoxin, is detected in human brains and the urine of PD patients. Using SH-SY5Y, a human neuroblastoma cell line, we demonstrated that 6-OHDA toxicity was determined by the amount of p-quinone produced in 6-OHDA auto-oxidation rather than by reactive oxygen species (ROS). Glutathione (GSH), which conjugated with p-quinone, provided significant protection whereas catalase, which detoxified hydrogen peroxide and superoxide anions, failed to block cell death caused by 6-OHDA. Although iron accumulated in the SN of patients with PD can cause dopaminergic neuronal degeneration by enhancing oxidative stress, we found that extracellular ferrous iron promoted the formation of melanin and reduced the amount of p-quinone. The addition of ferrous iron to the culture medium inhibited caspase-3 activation and apoptotic nuclear morphologic changes and blocked 6-OHDA-induced cytotoxicity in SH-SY5Y cells and primary cultured mesencephalic dopaminergic neurons. These data suggested that generation of p-quinone played a pivotal role in 6-OHDA-induced toxicity and extracellular iron in contrast to intracellular iron was protective rather than harmful because it accelerated the conversion of p-quinone into melanin.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23:1-25. [PMID: 15733784 DOI: 10.1016/j.mri.2004.10.001] [Citation(s) in RCA: 736] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 10/07/2004] [Indexed: 02/06/2023]
Abstract
For the last century, there has been great physiological interest in brain iron and its role in brain function and disease. It is well known that iron accumulates in the brain for people with Huntington's disease, Parkinson's disease, Alzheimer's disease, multiple sclerosis, chronic hemorrhage, cerebral infarction, anemia, thalassemia, hemochromatosis, Hallervorden-Spatz, Down syndrome, AIDS and in the eye for people with macular degeneration. Measuring the amount of nonheme iron in the body may well lead to not only a better understanding of the disease progression but an ability to predict outcome. As there are many forms of iron in the brain, separating them and quantifying each type have been a major challenge. In this review, we present our understanding of attempts to measure brain iron and the potential of doing so with magnetic resonance imaging. Specifically, we examine the response of the magnetic resonance visible iron in tissue that produces signal changes in both magnitude and phase images. These images seem to correlate with brain iron content, perhaps ferritin specifically, but still have not been successfully exploited to accurately and precisely quantify brain iron. For future quantitative studies of iron content we propose four methods: correlating R2' and phase to iron content; applying a special filter to the phase to obtain a susceptibility map; using complex analysis to extract the product of susceptibility and volume content of the susceptibility source; and using early and late echo information to separately predict susceptibility and volume content.
Collapse
Affiliation(s)
- E Mark Haacke
- The MRI Institute for Biomedical Research, 440 East Ferry Street, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Ahlskog JE. Challenging conventional wisdom: the etiologic role of dopamine oxidative stress in Parkinson's disease. Mov Disord 2005; 20:271-82. [PMID: 15580550 DOI: 10.1002/mds.20362] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress is well documented in Parkinson's disease (PD) and has been attributed to dopamine oxidative metabolism. However, evidence of oxidative stress is found in a variety of neurodegenerative disorders, suggesting that more general factors are responsible or that cytodestructive processes secondarily generate oxyradical products. Increasing evidence points away from dopamine metabolism as an important contributor to PD neurodegeneration. Predictions from the dopamine oxidative stress hypothesis of PD reveal multiple inconsistencies. Although the clinical and therapeutic importance of the nigrostriatal dopaminergic system is undeniable, PD neuropathology is much more widespread.
Collapse
Affiliation(s)
- J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
197
|
Kosta P, Argyropoulou MI, Markoula S, Konitsiotis S. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson's disease. J Neurol 2005; 253:26-32. [PMID: 15981079 DOI: 10.1007/s00415-005-0914-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/07/2005] [Accepted: 02/09/2005] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate by MRI the area size and the degree of iron accumulation in basal ganglia nuclei that are implicated in the pathogenesis of Parkinson's disease (PD). METHODS 40 patients with idiopathic PD and 40 controls were examined on a 1. 5 Tesla MR imager, using a multiecho SE sequence 2000/20, 40, 60, 80, 100, 120, 140, 160 (TR/TE). The T2 relaxation time (T2) and the area of substantia nigra zona compacta (SNc), substantia nigra zona reticulata (SNr), putamen (Pu), globus pallidus external (GPe), globus pallidus internal (GPi), caudate nucleus (CN), locus coeruleus (LC) and subthalamic nucleus (STN) were assessed. RESULTS The T2 of SNc (76. 8 +/- 6. 0) was lower and of Pu (79.5 +/- 6.0) and GPe (69.5 +/- 7.0) was higher in patients than in controls (78.6 +/- 3.8, 77.4 +/- 3.9 and 67.3 +/- 5.7, respectively), p < 0.05. The area of CN (125.9 +/- 20.2) and Pu (201.5 +/- 48.7) was higher in patients than in controls (110.7 +/- 21.5 and 180.1 +/- 41.1, respectively), p < 0.05. A more pronounced decrease in the T2 of SNc (73.6 +/- 8.9) was observed when the more affected side of patients was evaluated separately. In patients with disease duration > 5 years the T2 of STN (71.5 +/- 6.3) was lower and the area of Pu was higher (215.3 +/- 54.9) compared with those with disease duration < or = 5 years (75.8 +/- 10.9 and 190.9 +/- 41.0 respectively), p < 0.05. CONCLUSIONS These findings suggest that dysfunction of the basal ganglia circuitry in PD may affect iron content not only in SNc but in STN, Pu and GPe as well. Compensatory sprouting of the remaining dopaminergic fibers could account for the increased area of the CN and Pu.
Collapse
Affiliation(s)
- Paraskevi Kosta
- Medical School, University of Ioannina, 45110, Ioannina, Greece
| | | | | | | |
Collapse
|
198
|
Bahat-Stroomza M, Gilgun-Sherki Y, Offen D, Panet H, Saada A, Krool-Galron N, Barzilai A, Atlas D, Melamed E. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson's disease. Eur J Neurosci 2005; 21:637-46. [PMID: 15733082 DOI: 10.1111/j.1460-9568.2005.03889.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is believed that oxidative stress (OS) plays an important role in the loss of dopaminergic nigrostriatal neurons in Parkinson's disease (PD) and that treatment with antioxidants might be neuroprotective. However, most currently available antioxidants cannot readily penetrate the blood brain barrier after systemic administration. We now report that AD4, the novel low molecular weight thiol antioxidant and the N-acytel cysteine (NAC) related compound, is capable of penetrating the brain and protects neurons in general and especially dopaminergic cells against various OS-generating neurotoxins in tissue cultures. Moreover, we found that treatment with AD4 markedly decreased the damage of dopaminergic neurons in three experimental models of PD. AD4 suppressed amphetamine-induced rotational behaviour in rats with unilateral 6-OHDA-induced nigral lesion. It attenuated the reduction in striatal dopamine levels in mice treated with 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP). It also reduced the dopaminergic neuronal loss following chronic intrajugular administration of rotenone in rats. Our findings suggest that AD4 is a novel potential new neuroprotective drug that might be effective at slowing down nigral neuronal degeneration and illness progression in patients with PD.
Collapse
Affiliation(s)
- Merav Bahat-Stroomza
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva 49100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Peng J, Stevenson FF, Doctrow SR, Andersen JK. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 2005; 280:29194-8. [PMID: 15946937 DOI: 10.1074/jbc.m500984200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of mice to the herbicide paraquat has been demonstrated to result in the selective loss of dopaminergic neurons of the substantia nigra, pars compacta (SNpc) akin to what is observed in Parkinson disease (PD). In this study, we investigate the efficacy of two synthetic superoxide dismutase/catalase mimetics (EUK-134 and EUK-189) in protecting against paraquat-induced dopaminergic cell death in both the rat dopaminergic cell line 1RB3AN27 (N27) and primary mesencephalic cultures in vitro and in adult mice in vivo. Our data demonstrate that pretreatment with either EUK-134 or EUK-189 significantly attenuates paraquat-induced neurotoxicity in vitro in a concentration-dependent manner. Furthermore, systemic administration of EUK-189 decreases paraquat-mediated SNpc dopaminergic neuronal cell death in vivo. These findings support a role for oxidative stress in paraquat-induced neurotoxicity and suggest novel therapeutic approaches for neurodegenerative disorders associated with oxidative stress such as PD.
Collapse
Affiliation(s)
- Jun Peng
- Buck Institute for Age Research, Novato, California 94945 and Eukarion, Inc., Bedford, MA 01730, USA
| | | | | | | |
Collapse
|
200
|
Everse J, Coates PW. Role of peroxidases in Parkinson disease: a hypothesis. Free Radic Biol Med 2005; 38:1296-310. [PMID: 15855048 DOI: 10.1016/j.freeradbiomed.2005.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/10/2005] [Accepted: 01/20/2005] [Indexed: 11/19/2022]
Abstract
Extensive research has been done to elucidate the underlying molecular events causing neurodegenerative diseases such as Parkinson disease, yet the cause and the individual steps in the progression of such diseases are still unknown. Here we advance the hypothesis that, rather than or in addition to inorganic radical molecules, heme-containing peroxidase enzymes may play a major role in the etiology of Parkinson disease. This hypothesis is based on the following considerations: (1) several heme-containing enzymes with peroxidase activity are present in the substantia nigra pars compacta; (2) these peroxidases have the ability to catalyze the oxidation of proteins and lipids; (3) certain heme peroxidases are known to destroy cells in vivo; (4) heme peroxidases have the stability and specificity that could account for the fact that specific molecules and cells are subject to damage in Parkinson disease, rather than a random destruction; (5) heme peroxidase activity could account for certain reactions in connection with parkinsonism that thus far have not been adequately explained; and (6) the participation of a heme peroxidase could explain some recent observations that are inconsistent with the oxyradical theory. The peroxidase-catalyzed oxidative pathway proposed here does not preclude the participation of apoptosis as an additional mechanism for cell destruction.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|