151
|
Mao Z, Jiang H, Li Z, Zhong C, Zhang W, Liu Z. An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. Chem Sci 2017; 8:4533-4538. [PMID: 28660066 PMCID: PMC5472031 DOI: 10.1039/c7sc00416h] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
In situ fluorescence imaging of nitric oxide (NO) is a powerful tool for studying the critical roles of NO in biological events. However, the selective imaging of NO is still a challenge because most currently available fluorescent probes rely on the o-phenylenediamine (OPD) recognition site, which reacts with both NO and some abundant reactive carbonyl species (RCS) (such as dehydroascorbic acid and methylglyoxal) and some reactive oxygen/nitrogen species (ROS/RNS). To address this problem, a new fluorescent probe, NCNO, based on the N-nitrosation of aromatic secondary amine was designed to bypass the RCS, ROS, and RNS interference. As was expected, the probe NCNO could recognize NO with pronounced selectivity and sensitivity among ROS, RNS, and RCS. The probe was validated by detecting NO in live cells and deep tissues owing to its two-photon excitation and red-light emission. It was, hence, applied to monitor NO in ischemia reperfusion injury (IRI) in mice kidneys by two-photon microscopy for the first time, and the results vividly revealed the profile of NO generation in situ during the renal IRI process.
Collapse
Affiliation(s)
- Zhiqiang Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China .
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China .
| | - Zhen Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China .
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China .
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China .
| |
Collapse
|
152
|
Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, Belladonna ML, Vacca C, Fallarino F, Macchiarulo A, Ugel S, Bronte V, Gevi F, Zolla L, Verhaar A, Peppelenbosch M, Mazza EMC, Bicciato S, Laouar Y, Santambrogio L, Puccetti P, Volpi C, Grohmann U. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity 2017; 46:233-244. [PMID: 28214225 PMCID: PMC5337620 DOI: 10.1016/j.immuni.2017.01.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/18/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings. Dendritic cells (DCs) can co-express Arg1 and IDO1 immunosuppressive enzymes Arg1 activity is required for IDO1 induction by TGF-β in DCs Spermidine, a downstream Arg1 product, but not arginine starvation, induces IDO1 in DCs Arg1+ myeloid derived suppressor cells (MDSCs) can render DCs immunosuppressive via IDO1
Collapse
Affiliation(s)
- Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy
| | - Stefano Ugel
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Auke Verhaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre Rotterdam, 3015 CE Rotterdam, the Netherlands
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yasmina Laouar
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109-5620, US
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, US
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
153
|
The kynurenine pathway and parasitic infections that affect CNS function. Neuropharmacology 2017; 112:389-398. [DOI: 10.1016/j.neuropharm.2016.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
|
154
|
Lanterna C, Musumeci A, Raccosta L, Corna G, Moresco M, Maggioni D, Fontana R, Doglioni C, Bordignon C, Traversari C, Russo V. The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunol Immunother 2016; 65:1303-1315. [PMID: 27520505 PMCID: PMC11029546 DOI: 10.1007/s00262-016-1884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/06/2016] [Indexed: 01/15/2023]
Abstract
Tumor-derived metabolites dampen tumor-infiltrating immune cells and antitumor immune responses. Among the various metabolites produced by tumors, we recently showed that cholesterol oxidized products, namely oxysterols, favor tumor growth through the inhibition of DC migration toward lymphoid organs and by promoting the recruitment of pro-tumor neutrophils within the tumor microenvironment. Here, we tested different drugs capable of blocking cholesterol/oxysterol formation. In particular, we tested efficacy and safety of different administration schedules, and of immunotherapy-based combination of a class of compounds, namely zaragozic acids, which inhibit cholesterol pathway downstream of mevalonate formation, thus leaving intact the formation of the isoprenoids, which are required for the maturation of proteins involved in the immune cell function. We show that zaragozic acids inhibit the in vivo growth of the RMA lymphoma and the Lewis lung carcinoma (LLC) without inducing side effects. Tumor growth inhibition requires an intact immune system, as immunodeficient tumor-bearing mice do not respond to zaragozic acid treatment. Of note, the effect of zaragozic acids is accompanied by a marked reduction in the LXR target genes Abcg1, Mertk, Scd1 and Srebp-1c in the tumor microenvironment. On the other hand, zoledronate, which blocks also isoprenoid formation, did not control the LLC tumor growth. Finally, we show that zaragozic acids potentiate the antitumor effects of active and adoptive immunotherapy, significantly prolonging the overall survival of tumor-bearing mice treated with the combo zaragozic acids and TAA-loaded DCs. This study identifies zaragozic acids as new antitumor compounds exploitable for the treatment of cancer patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Cholesterol/metabolism
- Combined Modality Therapy
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunotherapy, Adoptive/methods
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Oxysterols/metabolism
- Tricarboxylic Acids/therapeutic use
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Claudia Lanterna
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- MolMed S.p.A., Milan, Italy
| | - Andrea Musumeci
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- Institute for Immunology, Munich, Germany
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Gianfranca Corna
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Marta Moresco
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Raffaella Fontana
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Claudio Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- MolMed S.p.A., Milan, Italy
| | | | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
155
|
Geiger R, Rieckmann J, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016; 167. [PMID: 27745970 PMCID: PMC5075284 DOI: 10.1016/j.cell.2016.09.031 10.1016/j.cell.2016.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.
Collapse
Affiliation(s)
- Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland,Corresponding author
| | - Jan C. Rieckmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Tobias Wolf
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Camilla Basso
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Maria Kogadeeva
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland,Corresponding author
| |
Collapse
|
156
|
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016; 167:829-842.e13. [PMID: 27745970 PMCID: PMC5075284 DOI: 10.1016/j.cell.2016.09.031] [Citation(s) in RCA: 1048] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses. Dataset on dynamic metabolome/proteome profiles of activated human naive T cells Intracellular L-arginine levels regulate several metabolic pathways in T cells T cells with increased L-arginine display enhanced survival and anti-tumor activity LiP-MS identified proteins that are structurally modified by high L-arginine levels
Collapse
|
157
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
158
|
Ananieva EA, Powell JD, Hutson SM. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Adv Nutr 2016; 7:798S-805S. [PMID: 27422517 PMCID: PMC4942864 DOI: 10.3945/an.115.011221] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA;
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
159
|
Verbist KC, Guy CS, Milasta S, Liedmann S, Kamiński MM, Wang R, Green DR. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 2016; 532:389-93. [PMID: 27064903 PMCID: PMC4851250 DOI: 10.1038/nature17442] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Asymmetric cell division (ACD)—the partitioning of cellular components in response to polarizing cues during mitosis—plays roles in differentiation and development1. ACD is important for the self-renewal of neuroblasts in C. elegans and fertilized zygotes in Drosophila, and participates in the development of mammalian nervous and digestive systems1. T lymphocytes, upon activation by antigen-presenting cells (APC), can undergo ACD, wherein the daughter cell proximal to the APC is more likely to differentiate into an effector-like T cell and the distal daughter more likely to differentiate into a memory-like T cell2. Upon activation and prior to cell division, expression of the transcription factor c-Myc drives metabolic reprogramming, necessary for the subsequent proliferative burst3. We found that during the first division of an activated T cell, c-Myc can sort asymmetrically. Asymmetric amino acid transporter distribution, amino acid content, and TORC1 function correlate with c-Myc expression, and both amino acids and TORC1 activity sustain the differences in c-Myc expression in one daughter over the other. Asymmetric c-Myc levels in daughter T cells affect proliferation, metabolism, and differentiation, and these effects are altered by experimental manipulation of TORC1 activity or Myc expression. Therefore, metabolic signaling pathways cooperate with transcription programs to maintain differential cell fates following asymmetric T cell division.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Cliff S Guy
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Sandra Milasta
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
160
|
TCR-engineered T cells to treat tumors: Seeing but not touching? Semin Immunol 2016; 28:10-21. [PMID: 26997556 DOI: 10.1016/j.smim.2016.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells gene-engineered with T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to accurately select TCRs that demonstrate antigen-selective responses that are restricted to tumor cells and, at the same time, include strategies that restore or enhance the entry, migration and local accumulation of T cells in tumor tissues. Here, we present the current standing of TCR-engineered T cell therapy, discuss and propose procedures to select TCRs as well as strategies to sensitize the tumor to T cell trafficking, and provide a rationale for combination therapies with TCR-engineered T cells.
Collapse
|
161
|
Murray PJ. Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 2016; 17:132-9. [PMID: 26784254 PMCID: PMC4893777 DOI: 10.1038/ni.3323] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
162
|
Calderon D, Prot M, You S, Marquet C, Bellamy V, Bruneval P, Valette F, de Almeida P, Wu JC, Pucéat M, Menasché P, Chatenoud L. Control of Immune Response to Allogeneic Embryonic Stem Cells by CD3 Antibody-Mediated Operational Tolerance Induction. Am J Transplant 2016; 16:454-67. [PMID: 26492394 DOI: 10.1111/ajt.13477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Implantation of embryonic stem cells (ESCs) and their differentiated derivatives into allogeneic hosts triggers an immune response that represents a hurdle to clinical application. We established in autoimmunity and in transplantation that CD3 antibody therapy induces a state of immune tolerance. Promising results have been obtained with CD3 antibodies in the clinic. In this study, we tested whether this strategy can prolong the survival of undifferentiated ESCs and their differentiated derivatives in histoincompatible hosts. Recipients of either mouse ESC-derived embryoid bodies (EBs) or cardiac progenitors received a single short tolerogenic regimen of CD3 antibody. In immunocompetent mice, allogeneic EBs and cardiac progenitors were rejected within 20-25 days. Recipients treated with CD3 antibody showed long-term survival of implanted cardiac progenitors or EBs. In due course, EBs became teratomas, the growth of which was self-limited. Regulatory CD4(+)FoxP3(+) T cells and signaling through the PD1/PDL1 pathway played key roles in the CD3 antibody therapeutic effect. Gene profiling emphasized the importance of TGF-β and the inhibitory T cell coreceptor Tim3 to the observed effect. These results demonstrate that CD3 antibody administered alone promotes prolonged survival of allogeneic ESC derivatives and thus could prove useful for enhancing cell engraftment in the absence of chronic immunosuppression.
Collapse
Affiliation(s)
- D Calderon
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - M Prot
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - S You
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - C Marquet
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
| | - V Bellamy
- INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France
| | - P Bruneval
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Pathology, Paris, France
| | - F Valette
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - P de Almeida
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford, CA
| | - J C Wu
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford, CA
| | - M Pucéat
- INSERM UMR-S910 Team Physiopathology of Cardiac Development, Aix-Marseille University, Medical School La Timone, Marseille, France
| | - P Menasché
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U970, Centre de Recherche Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France
| | - L Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France.,CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
163
|
Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids 2016; 48:1263-74. [DOI: 10.1007/s00726-016-2175-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/08/2016] [Indexed: 01/05/2023]
|
164
|
Abstract
Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.
Collapse
|
165
|
Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity 2016; 43:435-49. [PMID: 26377897 DOI: 10.1016/j.immuni.2015.09.001] [Citation(s) in RCA: 452] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
Abstract
Immune cells play a key role in host defense against infection and cancer. Upon encountering danger signals, these cells undergo activation leading to a modulation in their immune functions. However, recent studies reveal that immune cells upon activation also show distinct metabolic changes that impact their immune functions. Such metabolic reprogramming and its functional effects are well known for cancer cells. Given that immune cells have emerged as crucial players in cancer progression, it is important to understand whether immune cells also undergo metabolic reprogramming in tumors and how this might affect their contribution in cancer progression. This emerging aspect of tumor-associated immune cells is reviewed here, discussing metabolic reprogramming of different immune cell types, the key pathways involved, and its impact on tumor progression.
Collapse
Affiliation(s)
- Subhra K Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), #04-06 Immunos, 8A Biomedical Grove, Singapore 138648, Singapore.
| |
Collapse
|
166
|
The Janus-faced nature of IDO1 in infectious diseases: challenges and therapeutic opportunities. Future Med Chem 2015; 8:39-54. [PMID: 26692277 DOI: 10.4155/fmc.15.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inhibition of IDO1 is a strategy pursued to develop novel therapeutic treatments for cancer. Recent years have witnessed growing evidence that the enzyme plays a pivotal role in viral, bacterial and fungal infections. These studies have underscored the Janus-faced nature of IDO1 in the regulation of host-pathogen interactions and commensalism. Starting with an outlook on the advances in the structural features of IDO1, herein we report recent findings that pinpoint the involvement of IDO1 in infectious diseases. Then, we present an overview of IDO1 inhibitors that have been enrolled in clinical trials as well as other distinct modulators of the enzyme that may enable further investigations of IDO1 and its role in infectious disease.
Collapse
|
167
|
Hodgkinson JW, Grayfer L, Belosevic M. Biology of Bony Fish Macrophages. BIOLOGY 2015; 4:881-906. [PMID: 26633534 PMCID: PMC4690021 DOI: 10.3390/biology4040881] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
168
|
Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 2015; 6:281-289. [PMID: 26629311 PMCID: PMC4657121 DOI: 10.4331/wjbc.v6.i4.281] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment, however, tumor cells form metabolic relationships with immune cells, and they often compete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.
Collapse
|
169
|
Ghiasi M, Binaii M, Ghasemi M, Fazli H, Zorriehzahra MJ. Haemato-biochemical disorders associated with nodavirus like-agent in adult leaping mullet Liza saliens (Risso, 1810) in the Caspian Sea. Virusdisease 2015; 27:12-8. [PMID: 26925439 DOI: 10.1007/s13337-015-0289-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
Betanoda virus is an emerging problem in several marine fish species in various geographic areas all over the world. In recent years, mullets stock of the Caspian Sea decreased dramatically and a betanoda virus like-agent was introduced as the cause of mullet's mortality. The main objective of the present study is to compare hemato-biochemical parameters in healthy and infected sharpnose mullets (Liza saliens) to betanoda virus like-agent. The adult sharpnose mullets (34 clinically affected fish + 34 apparently healthy fish) were captured from the southeast the Caspian Sea from 2012 to 2013. All of the captured fish were 4 or 5 years old. The main clinical sings of infected fish were lethargy, severe abdominal distention, abnormal swimming and hyperinflation of swim bladder. The results showed that the weight and total length of infected fish were significantly lower than the healthy fish. The results of histopatological evaluation and indirect florescent antibody test were confirmed the presence of a betanoda virus-like agent in infected fish. The diseased fish were severely anemic (hypochromic macrocytic anemia) and had a serious haemopoietic disorders. The anemia associated with a sever leukopenia, a significant rise of neutrophils and immature neutrophils and a significant decries of lymphocytes percentage. Total protein, albumin and total immunoglobulin levels were significantly reduced in the serum of infected fish, while the activities of aspartate aminotransferase and alanine aminotransferase significantly increased when compared to the healthy fish. These results suggested that the feeding of the infected fish to betanoda virus like-agent were disturbed and it could be cause haemato-biochemical disorder and mortality of the fish in Iranian water of the Caspian Sea.
Collapse
Affiliation(s)
- Maryam Ghiasi
- Caspian Sea Ecology Research Center, P.O. Box 961, Farah-Abad, Sari, Iran
| | - Mohammad Binaii
- Caspian Sea Ecology Research Center, P.O. Box 961, Farah-Abad, Sari, Iran
| | | | - Hasan Fazli
- Caspian Sea Ecology Research Center, P.O. Box 961, Farah-Abad, Sari, Iran
| | | |
Collapse
|
170
|
Werner A, Amann E, Schnitzius V, Habermeier A, Luckner-Minden C, Leuchtner N, Rupp J, Closs EI, Munder M. Induced arginine transport via cationic amino acid transporter-1 is necessary for human T-cell proliferation. Eur J Immunol 2015; 46:92-103. [PMID: 26449889 DOI: 10.1002/eji.201546047] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 09/03/2015] [Accepted: 10/05/2015] [Indexed: 11/10/2022]
Abstract
Availability of the semiessential amino acid arginine is fundamental for the efficient function of human T lymphocytes. Tumor-associated arginine deprivation, mainly induced by myeloid-derived suppressor cells, is a central mechanism of tumor immune escape from T-cell-mediated antitumor immune responses. We thus assumed that transmembranous transport of arginine must be crucial for T-cell function and studied which transporters are responsible for arginine influx into primary human T lymphocytes. Here, we show that activation via CD3 and CD28 induces arginine transport into primary human T cells. Both naïve and memory CD4(+) T cells as well as CD8(+) T cells specifically upregulated the human cationic amino acid transporter-1 (hCAT-1), with an enhanced and persistent expression under arginine starvation. When hCAT-1 induction was suppressed via siRNA transfection, arginine uptake, and cellular proliferation were impaired. In summary, our results demonstrate that hCAT-1 is a key component of efficient T-cell activation and a novel potential target structure to modulate adaptive immune responses in tumor immunity or inflammation.
Collapse
Affiliation(s)
- Anke Werner
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eva Amann
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vanessa Schnitzius
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Luckner-Minden
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Leuchtner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
171
|
Volpi C, Mondanelli G, Pallotta MT, Vacca C, Iacono A, Gargaro M, Albini E, Bianchi R, Belladonna ML, Celanire S, Mordant C, Heroux M, Royer-Urios I, Schneider M, Vitte PA, Cacquevel M, Galibert L, Poli SM, Solari A, Bicciato S, Calvitti M, Antognelli C, Puccetti P, Orabona C, Fallarino F, Grohmann U. Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology 2015; 102:59-71. [PMID: 26522434 PMCID: PMC4720030 DOI: 10.1016/j.neuropharm.2015.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/05/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild—yet chronic—neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1—but not pertussis toxin, which affects Gi protein-dependent responses—abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis. ADX88178, a selective mGluR4 PAM, exerts long-term therapeutic effects in RR-EAE. ADX88178 activates a noncanonical mGluR4 signaling in DCs. ADX88178 induces a tolerogenic functional phenotype in DCs via immunoregulatory IDO1. Highly selective mGluR4 PAMs may represent novel drugs in chronic neuroinflammation.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Sylvain Celanire
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Céline Mordant
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Madeleine Heroux
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Isabelle Royer-Urios
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Manfred Schneider
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Pierre-Alain Vitte
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Mathias Cacquevel
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Laurent Galibert
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Sonia-Maria Poli
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Aldo Solari
- Department of Economics, Management, and Statistics, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| |
Collapse
|
172
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
173
|
Kurko J, Vähä-Mäkilä M, Tringham M, Tanner L, Paavanen-Huhtala S, Saarinen M, Näntö-Salonen K, Simell O, Niinikoski H, Mykkänen J. Dysfunction in macrophage toll-like receptor signaling caused by an inborn error of cationic amino acid transport. Mol Immunol 2015. [PMID: 26210182 DOI: 10.1016/j.molimm.2015.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Amino acids, especially arginine, are vital for the well-being and activity of immune cells, and disruption of amino acid balance may weaken immunity and predispose to infectious and autoimmune diseases. We present here a model of an inborn aminoaciduria, lysinuric protein intolerance (LPI), in which a single mutation in y(+)LAT1 cationic amino acid transporter gene SLC7A7 leads to a multisystem disease characterized by immunological complications, life-threatening pulmonary alveolar proteinosis and nephropathy. Macrophages are suggested to play a central role in LPI in the development of these severe secondary symptoms. We thus studied the effect of the Finnish y(+)LAT1 mutation on monocyte-derived macrophages where toll-like receptors (TLRs) act as the key molecules in innate immune response against external pathogens. The function of LPI patient and control macrophage TLR signaling was examined by stimulating the TLR2/1, TLR4 and TLR9 pathways with their associated pathogen-associated molecular patterns. Downregulation in expression of TLR9, IRF7, IRF3 and IFNB1 and in secretion of IFN-α was detected, suggesting an impaired response to TLR9 stimulation. In addition, secretion of TNF-α, IL-12 and IL-1RA by TLR2/1 stimulation and IL-12 and IL-1RA by TLR4 stimulation was increased in the LPI patients. LPI macrophages secreted significantly less nitric oxide than control macrophages, whereas plasma concentrations of inflammatory chemokines CXCL8, CXCL9 and CXCL10 were elevated in the LPI patients. In conclusion, our results strengthen the relevance of macrophages in the pathogenesis of LPI and, furthermore, suggest that cationic amino acid transport plays an important role in the regulation of innate immune responses.
Collapse
Affiliation(s)
- Johanna Kurko
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Mari Vähä-Mäkilä
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Maaria Tringham
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Laura Tanner
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Department of Clinical Genetics, Turku University Hospital, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Sari Paavanen-Huhtala
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Maiju Saarinen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland; Department of Public Health, University of Turku, Lemminkäisenkatu 1, 20014 Turku, Finland.
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Harri Niinikoski
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - Juha Mykkänen
- Department of Pediatrics, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| |
Collapse
|
174
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
175
|
Abstract
PURPOSE OF REVIEW To highlight some of the recent developments in the novel field of immunometabolism and the therapeutic potential of the many regulatory components of this immunometabolic network for transplantation. RECENT FINDINGS In response to cytokines, changes in nutrients, and other alterations in the local milieu, immune cells are capable of changing their internal metabolic pathways to meet their energy demands. Recent studies demonstrate that activated T effectors (Th1 and Th17) are supported by aerobic glycolysis, whereas regulatory T cells and CD8 memory T cells favor fatty acid oxidation and lipid biosynthesis through mitochondrial oxidative phosphorylation. These bioenergetic processes are dependent upon the activation of metabolic sensors such as mammalian target of rapamycin and AMP-activated protein kinase, respectively, indicating that the cross-talk between immunity and metabolism can shape the fate and function of immune cells. Finally, exciting new studies suggest that differences in the bioenergetic mechanisms within the various immune subsets may selectively be exploited for regulating the immune responses. SUMMARY In this review, we will discuss the metabolic signatures adopted by various immune cells during tolerance versus immunity and the promising avenues that can be modulated by targeting metabolic pathways with either nutrition or pharmacological intervention for establishing long-term transplantation tolerance.
Collapse
|
176
|
Ingersoll SA, Laval J, Forrest OA, Preininger M, Brown MR, Arafat D, Gibson G, Tangpricha V, Tirouvanziam R. Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1. THE JOURNAL OF IMMUNOLOGY 2015; 194:5520-8. [PMID: 25926674 DOI: 10.4049/jimmunol.1500312] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
Bacteria colonize cystic fibrosis (CF) airways, and although T cells with appropriate Ag specificity are present in draining lymph nodes, they are conspicuously absent from the lumen. To account for this absence, we hypothesized that polymorphonuclear neutrophils (PMNs), recruited massively into the CF airway lumen and actively exocytosing primary granules, also suppress T cell function therein. Programmed death-ligand 1 (PD-L1), which exerts T cell suppression at a late step, was expressed bimodally on CF airway PMNs, delineating PD-L1(hi) and PD-L1(lo) subsets, whereas healthy control (HC) airway PMNs were uniformly PD-L1(hi). Blood PMNs incubated in CF airway fluid lost PD-L1 over time; in coculture, Ab blockade of PD-L1 failed to inhibit the suppression of T cell proliferation by CF airway PMNs. In contrast with PD-L1, arginase 1 (Arg1), which exerts T cell suppression at an early step, was uniformly high on CF and HC airway PMNs. However, arginase activity was high in CF airway fluid and minimal in HC airway fluid, consistent with the fact that Arg1 activation requires primary granule exocytosis, which occurs in CF, but not HC, airway PMNs. In addition, Arg1 expression on CF airway PMNs correlated negatively with lung function and positively with arginase activity in CF airway fluid. Finally, combined treatment with arginase inhibitor and arginine rescued the suppression of T cell proliferation by CF airway fluid. Thus, Arg1 and PD-L1 are dynamically modulated upon PMN migration into human airways, and, Arg1, but not PD-L1, contributes to early PMN-driven T cell suppression in CF, likely hampering resolution of infection and inflammation.
Collapse
Affiliation(s)
- Sarah A Ingersoll
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Julie Laval
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Osric A Forrest
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Marcela Preininger
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Milton R Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Dalia Arafat
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA 30313; and
| | - Greg Gibson
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA 30313; and
| | - Vin Tangpricha
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322;
| |
Collapse
|
177
|
Cousin C, Aubatin A, Le Gouvello S, Apetoh L, Castellano F, Molinier-Frenkel V. The immunosuppressive enzyme IL4I1 promotes FoxP3(+) regulatory T lymphocyte differentiation. Eur J Immunol 2015; 45:1772-82. [PMID: 25778793 DOI: 10.1002/eji.201445000] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/30/2015] [Accepted: 03/12/2015] [Indexed: 01/29/2023]
Abstract
IL4I1 (interleukin-4-induced gene 1) is a phenylalanine oxidase produced mainly by APCs of myeloid origin, and converts phenylalanine (Phe) to phenylpyruvate, hydrogen peroxide, and ammonia. We have previously shown that IL4I1 is highly expressed by tumor-associated macrophages from various human cancers and facilitates immune evasion from the cytotoxic response in a murine tumor model. Indeed, IL4I1 inhibits T-cell proliferation via hydrogen peroxide toxicity on effector/memory T cells. Here, we explored the effect of IL4I1 on naïve CD4(+) T-cell differentiation. We show that IL4I1 stimulates the generation of Foxp3(+) regulatory T (Treg) cells in vitro from human and mouse T cells. This effect was observed with IL4I1 from different sources, including the naturally produced enzyme. Conversely, IL4I1 limits Th1 and Th2 polarization while modifying the Th17 phenotype, in particular, by inducing its own production. Analysis of Treg-cell induction under conditions of Phe deprivation and hydrogen peroxide addition suggests that Phe consumption by the enzyme participates in Treg-cell enrichment. In line with this hypothesis, IL4I1 inhibits mTORC1 signaling shortly after T-cell activation. Thus, the IL4I1 enzyme may act on T cells both by direct inhibition of effector cell proliferation and by indirect immunoregulation mediated by Treg-cell induction.
Collapse
Affiliation(s)
- Céline Cousin
- INSERM, U955, Equipe 09 and Equipe 04, Créteil, France.,Université Paris Est, Faculté de médecine, Créteil, France
| | - Aude Aubatin
- INSERM, U955, Equipe 09 and Equipe 04, Créteil, France.,Université Paris Est, Faculté de médecine, Créteil, France
| | - Sabine Le Gouvello
- INSERM, U955, Equipe 09 and Equipe 04, Créteil, France.,Université Paris Est, Faculté de médecine, Créteil, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Biologique, Créteil, France
| | - Lionel Apetoh
- INSERM, U866, Dijon, France.,Centre Georges François Leclerc, Dijon, France.,Université de Bourgogne, Dijon, France
| | - Flavia Castellano
- INSERM, U955, Equipe 09 and Equipe 04, Créteil, France.,Université Paris Est, Faculté de médecine, Créteil, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Biologique, Créteil, France
| | - Valérie Molinier-Frenkel
- INSERM, U955, Equipe 09 and Equipe 04, Créteil, France.,Université Paris Est, Faculté de médecine, Créteil, France.,AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Biologique, Créteil, France
| |
Collapse
|
178
|
Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S. Complexity and challenges in defining myeloid-derived suppressor cells. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2015; 88:77-91. [PMID: 25504825 PMCID: PMC4405078 DOI: 10.1002/cyto.b.21206] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Study of myeloid cells endowed with suppressive activity is an active field of research which has particular importance in cancer, in view of the negative regulatory capacity of these cells to the host's immune response. The expansion of these cells, called myeloid-derived suppressor cells (MDSCs), has been documented in many models of tumor-bearing mice and in patients with tumors of various origin, and their presence is associated with disease progression and reduced survival. For this reason, monitoring this type of cell expansion is of clinical importance, and flow cytometry is the technique of choice for their identification. Over the years, it has been demonstrated that MDSCs comprise a group of immature myeloid cells belonging both to monocytic and granulocytic lineages, with several stages of differentiation; their occurrence depends on tumor-derived soluble factors, which guide their expansion and determine their block of differentiation. Because of their heterogeneous composition, accurate phenotyping of these cells requires a multicolor approach, so that the expansion of all MDSC subsets can be appreciated. This review article focuses on identifying MDSCs and discusses problems associated with phenotyping circulating and tumor-associated MDSCs in humans and in mouse models.
Collapse
Affiliation(s)
- Vera Damuzzo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of PadovaPadova, Italy
| | - Laura Pinton
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of PadovaPadova, Italy
| | | | - Samantha Solito
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of PadovaPadova, Italy
| | | | - Vincenzo Bronte
- Section of Immunology, Department of Pathology, Verona University HospitalVerona, Italy
| | - Susanna Mandruzzato
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of PadovaPadova, Italy
- Veneto Institute of Oncology IOV—IRCCSPadova, Italy
| |
Collapse
|
179
|
Fallarino F, Pallotta MT, Matino D, Gargaro M, Orabona C, Vacca C, Mondanelli G, Allegrucci M, Boon L, Romani R, Talesa VN, Puccetti P, Grohmann U. LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology 2014; 220:315-21. [PMID: 25278421 DOI: 10.1016/j.imbio.2014.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/20/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells with a bipolar nature. Depending on environmental factors, DCs will promote either inflammatory or anti-inflammatory effects. Lipopolysaccharide (LPS), a ligand of Toll-like receptor (TLR)4 and a most potent proinflammatory stimulus, is responsible for complex signaling events in different cell types, including DCs. LPS effects range from protective inflammation-capable of counteracting growth and dissemination of gram-negative bacteria - to hyperacute detrimental responses, as it occurs in endotoxic shock. Consistent with the plasticity of TLR4 signaling, a low dosage of LPS will induce a regulatory response capable of protecting mice against a subsequent, otherwise lethal challenge ('endotoxin tolerance'). By examining CD11c(+) DCs ('conventional' DCs, or cDCs), we investigated whether DC flexibility in promoting either inflammation or tolerance can be differentially affected by single vs. repeated exposure to LPS in vitro. cDCs stimulated twice with LPS expressed high levels of indoleamine 2,3-dioxygenase 1 (IDO1) - one of the most effective mediator of anti-inflammatory activity by DCs - and of TGF-β, an immunoregulatory cytokine capable of upregulating IDO1 expression and function. In contrast, a single exposure to LPS failed to upregulate IDO1, and it was instead associated with high-level production of IL-6, a cytokine that promotes inflammation and proteolysis of IDO1. When adoptively transferred in vivo, only cDCs on double endotoxin exposure greatly improved the outcome of an otherwise lethal LPS challenge. The protective effect required that the transferred cDCs be fully competent for IDO1 and the host for TGF-β production. Thus cDCs, conditioned by LPS in vitro to mimic an endotoxin-tolerant state, can protect recipients from endotoxic shock, pointing to adoptive transfer of tolerance as a new option for controlling potentially harmful responses to TLR4 signaling.
Collapse
Affiliation(s)
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Davide Matino
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Massimo Allegrucci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Rita Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy; Bioceros, Utrecht, The Netherlands
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Perugia, Italy; Bioceros, Utrecht, The Netherlands
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
180
|
Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc Natl Acad Sci U S A 2014; 111:E4024-32. [PMID: 25201986 DOI: 10.1073/pnas.1408839111] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l-arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia.
Collapse
|
181
|
Kapp K, Prüfer S, Michel CS, Habermeier A, Luckner-Minden C, Giese T, Bomalaski J, Langhans CD, Kropf P, Müller I, Closs EI, Radsak MP, Munder M. Granulocyte functions are independent of arginine availability. J Leukoc Biol 2014; 96:1047-53. [PMID: 25104794 DOI: 10.1189/jlb.3ab0214-082r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arginine depletion via myeloid cell arginase is critically involved in suppression of the adaptive immune system during cancer or chronic inflammation. On the other hand, arginine depletion is being developed as a novel anti-tumor metabolic strategy to deprive arginine-auxotrophic cancer cells of this amino acid. In human immune cells, arginase is mainly expressed constitutively in PMNs. We therefore purified human primary PMNs from healthy donors and analyzed PMN function as the main innate effector cell and arginase producer in the context of arginine deficiency. We demonstrate that human PMN viability, activation-induced IL-8 synthesis, chemotaxis, phagocytosis, generation of ROS, and fungicidal activity are not impaired by the absence of arginine in vitro. Also, profound pharmacological arginine depletion in vivo via ADI-PEG20 did not inhibit PMN functions in a mouse model of pulmonary invasive aspergillosis; PMN invasion into the lung, activation, and successful PMN-dependent clearance of Aspergillus fumigatus and survival of mice were not impaired. These novel findings add to a better understanding of immunity during inflammation-associated arginine depletion and are also important for the development of therapeutic arginine depletion as anti-metabolic tumor therapy.
Collapse
Affiliation(s)
- Katharina Kapp
- Institute of Immunology, University of Heidelberg, Germany; Department of Neonatology and
| | | | | | | | | | - Thomas Giese
- Institute of Immunology, University of Heidelberg, Germany
| | - John Bomalaski
- Polaris Pharmaceuticals, San Diego, California, USA; and
| | - Claus-Dieter Langhans
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College, London, United Kingdom
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College, London, United Kingdom
| | | | - Markus P Radsak
- Third Department of Medicine (Hematology, Oncology, and Pneumology), Research Center for Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), Department of Neonatology and
| |
Collapse
|
182
|
Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 2014; 1319:47-65. [DOI: 10.1111/nyas.12469] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Samantha Solito
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
| | | | - Laura Pinton
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
| | - Vera Damuzzo
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
| | - Susanna Mandruzzato
- Department of Surgery; Oncology and Gastroenterology; Oncology and Immunology Section; University of Padova; Padova Italy
- Istituto Oncologico Veneto; IOV-IRCCS; Padova Italy
| | - Vincenzo Bronte
- Pathology and Diagnostics; Verona University Hospital; Verona Italy
| |
Collapse
|
183
|
Abstract
Radiation therapy is currently one of the most widely utilized treatment strategies in the clinical management of cancer. Classically, radiation therapy was developed as an anticancer treatment on the basis of its capacity to induce DNA double strand breaks in exposed cancer cells, ultimately resulting in tumor cell death. Recently, our understanding of radiation effects has expanded widely in terms of the consequences of radiation-induced tumor cell death and the pertinent cells, signaling pathways, and molecular sensors that modify the tumor response to radiation. It is now well accepted that inflammation plays a complex dual role in promoting or inhibiting tumor growth. The capacity of inflammatory responses to alter the tumor response to radiation therapy, and vice versa, is now the subject of intense scientific and clinical investigation. Herein, we review the concepts regarding the immunostimulatory properties of radiation therapy with particular focus on the effects of radiation therapy on the tumor microenvironment.
Collapse
|
184
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
185
|
De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, Marigo I, Molon B, Bronte V. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 2014; 5:69. [PMID: 24605112 PMCID: PMC3932549 DOI: 10.3389/fimmu.2014.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022] Open
Abstract
Under many inflammatory contexts, such as tumor progression, systemic and peripheral immune response is tailored by reactive nitrogen species (RNS)-dependent post-translational modifications, suggesting a biological function for these chemical alterations. RNS modify both soluble factors and receptors essential to induce and maintain a tumor-specific immune response, creating a “chemical barrier” that impairs effector T cell infiltration and functionality in tumor microenvironment and supports the escape phase of cancer. RNS generation during tumor growth mainly depends on nitric oxide production by both tumor cells and tumor-infiltrating myeloid cells that constitutively activate essential metabolic pathways of l-arginine catabolism. This review provides an overview of the potential immunological and biological role of RNS-induced modifications and addresses new approaches targeting RNS either in search of novel biomarkers or to improve anti-cancer treatment.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Sara Sandri
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Giovanna Ferrarini
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Irene Pagliarello
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Silvia Sartoris
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Stefano Ugel
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Ilaria Marigo
- Istituto Oncologico Veneto, Istituto Di Ricovero e Cura a Carattere Scientifico , Padua , Italy
| | - Barbara Molon
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| |
Collapse
|
186
|
Poschke I, Mao Y, Kiessling R, de Boniface J. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J Transl Med 2013; 11:290. [PMID: 24237611 PMCID: PMC3835137 DOI: 10.1186/1479-5876-11-290] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/13/2013] [Indexed: 12/02/2022] Open
Abstract
Background Malignancies induce changes in the levels of serum amino acids (AA), which may offer diagnostic potential. Furthermore, changes in AA levels are associated with immune cell function. In this study, serum AA levels were studied in breast cancer patients versus patients with benign breast lesions. Methods In a prospective study, serum levels of 15 AA were measured by high performance liquid chromatography before and after surgery in 41 breast cancer patients (BrCA) and nine patients with benign breast lesions (healthy donors, HD). Results were analyzed in relation to clinical tumor data and tested against immunological flow cytometry data. Principal component analysis was performed and the accuracy of AA levels as a potential diagnostic tool was tested. Results Pre- but not postoperative serum AA levels were increased in BrCA in eight out of 15 AA compared with HD. Serum AA levels were highest in the most aggressive (basal-like) as compared with the least aggressive tumor subtype (luminal A). A principal component (PC1) of all measured AA correlated with a mainly pro-inflammatory immune profile, while a second one (PC2, selectively considering AA preoperatively differing between HD and BrCA) could predict health state with an area under the curve of 0.870. Conclusions Breast cancer shows a tumor-dependent impact on serum AA levels, which varies with intrinsic tumor subtypes and is associated with a pro-inflammatory state. Serum AA levels need further evaluation as a potential diagnostic tool.
Collapse
Affiliation(s)
| | | | | | - Jana de Boniface
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
187
|
Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front Immunol 2013; 4:363. [PMID: 24265631 PMCID: PMC3821161 DOI: 10.3389/fimmu.2013.00363] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 01/18/2023] Open
Abstract
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: “choice of target antigen”; “fitness of T cells”; and “sensitization of tumor milieu.” We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Experimental Tumor Immunology, Erasmus MC Cancer Institute , Rotterdam , Netherlands ; Department of Medical Oncology, Erasmus MC Cancer Institute , Rotterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
188
|
Samstag Y, John I, Wabnitz GH. Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 2013; 256:30-47. [PMID: 24117811 PMCID: PMC3884758 DOI: 10.1111/imr.12115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cofilin is an actin-binding protein that depolymerizes and/or severs actin filaments. This dual function of cofilin makes it one of the major regulators of actin dynamics important for T-cell activation and migration. The activity of cofilin is spatio-temporally regulated. Its main control mechanisms comprise a molecular toolbox of phospho-, phospholipid, and redox regulation. Phosphorylated cofilin is inactive and represents the dominant cofilin fraction in the cytoplasm of resting human T cells. A fraction of dephosphorylated cofilin is kept inactive at the plasma membrane by binding to phosphatidylinositol 4,5-bisphosphate. Costimulation via the T-cell receptor/CD3 complex (signal 1) together with accessory receptors (signal 2) or triggering through the chemokine SDF1α (stromal cell-derived factor 1α) induce Ras-dependent dephosphorylation of cofilin, which is important for immune synapse formation, T-cell activation, and T-cell migration. Recently, it became evident that cofilin is also highly sensitive for microenvironmental changes, particularly for alterations in the redox milieu. Cofilin is inactivated by oxidation, provoking T-cell hyporesponsiveness or necrotic-like programmed cell death. In contrast, in a reducing environment, even phosphatidylinositol 4,5-bisphosphate-bound cofilin becomes active, leading to actin dynamics in the vicinity of the plasma membrane. In addition to the well-established three signals for T-cell activation, this microenvironmental control of cofilin delivers a modulating signal for T-cell-dependent immune reactions. This fourth modulating signal highly impacts both initial T-cell activation and the effector phase of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Isabel John
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Guido H Wabnitz
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| |
Collapse
|
189
|
Marti LC, Pavon L, Severino P, Sibov T, Guilhen D, Moreira-Filho CA. Vascular endothelial growth factor-A enhances indoleamine 2,3-dioxygenase expression by dendritic cells and subsequently impacts lymphocyte proliferation. Mem Inst Oswaldo Cruz 2013; 109:70-9. [PMID: 24141959 PMCID: PMC4005532 DOI: 10.1590/0074-0276130252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/21/2013] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are antigen (Ag)-presenting cells that activate and stimulate
effective immune responses by T cells, but can also act as negative regulators of
these responses and thus play important roles in immune regulation. Pro-angiogenic
vascular endothelial growth factor (VEGF) has been shown to cause defective DC
differentiation and maturation. Previous studies have demonstrated that the addition
of VEGF to DC cultures renders these cells weak stimulators of Ag-specific T cells
due to the inhibitory effects mediated by VEGF receptor 1 (VEGFR1) and/or VEGFR2
signalling. As the enzyme indoleamine 2,3-dioxygenase (IDO) is recognised as an
important negative regulator of immune responses, this study aimed to investigate
whether VEGF affects the expression of IDO by DCs and whether VEGF-matured DCs
acquire a suppressor phenotype. Our results are the first to demonstrate that VEGF
increases the expression and activity of IDO in DCs, which has a suppressive effect
on Ag-specific and mitogen-stimulated lymphocyte proliferation. These mechanisms have
broad implications for the study of immunological responses and tolerance under
conditions as diverse as cancer, graft rejection and autoimmunity.
Collapse
Affiliation(s)
| | - Lorena Pavon
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa Albert Einstein
| | - Patricia Severino
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa Albert Einstein
| | - Tatiana Sibov
- Centro de Pesquisa Experimental, Instituto do Cérebro, Hospital Israelita Albert Einstein, São PauloSP, Brasil
| | - Daiane Guilhen
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa Albert Einstein
| | | |
Collapse
|
190
|
Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses. PLoS One 2013; 8:e71044. [PMID: 23940687 PMCID: PMC3733714 DOI: 10.1371/journal.pone.0071044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/27/2013] [Indexed: 01/21/2023] Open
Abstract
Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immunoprotective effects of indoleamine 2,3-dioxygenase (IDO) on T-cell mediated allorejection has been extensively studied. Our studies revealed that IDO expression by fibroblasts, induced apoptosis in T-cells while not affecting non-immune cell survival/function. Since macrophages play a pivotal role in xenograft rejection, herein we investigated the effect of IDO-induced tryptophan deficiency/kynurenine accumulation on macrophage function/survival. Moreover, we evaluated the local immunosuppressive effect of IDO on islet-xenograft protection. Our results indicated that IDO expression by bystander fibroblasts significantly reduced the viability of primary macrophages via apoptosis induction. Treatment of peritoneal macrophages by IDO-expressing fibroblast conditioned medium significantly reduced their proinflammatory activity through inhibition of iNOS expression. To determine whether IDO-induced tryptophan starvation or kynurenine accumulation is responsible for macrophage apoptosis and inhibition of their proinflammatory activity, Raw264.7 cell viability and proinflammatory responses were evaluated in tryptophan deficient medium or in the presence of kynurenine. Tryptophan deficiency, but not kynurenine accumulation, reduced Raw264.7 cell viability and suppressed their proinflammatory activity. Next a three-dimensional islet-xenograft was engineered by embedding rat islets within either control or IDO–expressing fibroblast-populated collagen matrix. Islets morphology and immune cell infiltration were then studied in the xenografts transplanted into the C57BL/6 mouse renal sub-capsular space. Local IDO significantly decreased the number of infiltrating macrophages (11±1.47 vs. 70.5±7.57 cells/HPF), T-cells (8.75±1.03 vs. 75.75±5.72 cells/HPF) and iNOS expression in IDO-expressing xenografts versus controls. Islet morphology remained intact in IDO-expressing grafts and islets were strongly stained for insulin/glucagon compared to control. These findings support the immunosuppressive role of IDO on macrophage-mediated xeno-rejection.
Collapse
|
191
|
Munder M, Engelhardt M, Knies D, Medenhoff S, Wabnitz G, Luckner-Minden C, Feldmeyer N, Voss RH, Kropf P, Müller I, Conradi R, Samstag Y, Theobald M, Ho AD, Goldschmidt H, Hundemer M. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion. PLoS One 2013; 8:e63521. [PMID: 23717444 PMCID: PMC3662698 DOI: 10.1371/journal.pone.0063521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/02/2013] [Indexed: 12/23/2022] Open
Abstract
Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i) CD8+ T cells with specificity against the MART-1aa26–35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii) clonal CMV pp65aa495–503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495–503 specific T cell receptor were analyzed. Our data demonstrate that human CD8+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.
Collapse
Affiliation(s)
- Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Melanie Engelhardt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Diana Knies
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Sergej Medenhoff
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Guido Wabnitz
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Luckner-Minden
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Nadja Feldmeyer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Ralf-Holger Voss
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Pascale Kropf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, Imperial College London, London, United Kingdom
| | - Roland Conradi
- Transfusion Center, University Medical Center Mainz, Mainz, Germany
| | - Yvonne Samstag
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Theobald
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Anthony D. Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
192
|
O'Connor MA, Green WR. The role of indoleamine 2,3-dioxygenase in LP-BPM5 murine retroviral disease progression. Virol J 2013; 10:154. [PMID: 23680027 PMCID: PMC3751850 DOI: 10.1186/1743-422x-10-154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an immunomodulatory intracellular enzyme involved in tryptophan degradation. IDO is induced during cancer and microbial infections by cytokines, ligation of co-stimulatory molecules and/or activation of pattern recognition receptors, ultimately leading to modulation of the immune response. LP-BM5 murine retroviral infection induces murine AIDS (MAIDS), which is characterized by profound and broad immunosuppression of T- and B-cell responses. Our lab has previously described multiple mechanisms regulating the development of immunodeficiency of LP-BM5-induced disease, including Programmed Death 1 (PD-1), IL-10, and T-regulatory (Treg) cells. Immunosuppressive roles of IDO have been demonstrated in other retroviral models, suggesting a possible role for IDO during LP-BM5-induced retroviral disease progression and/or development of viral load. Methods Mice deficient in IDO (B6.IDO−/−) and wildtype C57BL/6 (B6) mice were infected with LP-BM5 murine retrovirus. MAIDS and LP-BM5 viral load were assessed at termination. Results As expected, IDO was un-inducible in B6.IDO−/− during LP-BM5 infection. B6.IDO−/− mice infected with LP-BM5 retrovirus succumbed to MAIDS as indicated by splenomegaly, serum hyper IgG2a and IgM, decreased responsiveness to B- and T-cell mitogens, conversion of a proportion of CD4+ T cells from Thy1.2+ to Thy1.2-, and increased percentages of CD11b+Gr-1+ cells. LP-BM5 infected B6.IDO−/− mice also demonstrated the development of roughly equivalent disease kinetics as compared to infected B6 mice. Splenic viral loads of B6 and B6.IDO−/− mice were also equivalent after infection as measured by LP-BM5-specific Def Gag and Eco Gag viral mRNA, determined by qRT-PCR. Conclusions Collectively, these results demonstrate IDO neither plays an essential role, nor is required, in LP-BM5-induced disease progression or LP-BM5 viral load.
Collapse
Affiliation(s)
- Megan A O'Connor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
193
|
Serum arginase, a biomarker of treatment efficacy in human African trypanosomiasis. J Clin Microbiol 2013; 51:2379-81. [PMID: 23554207 DOI: 10.1128/jcm.03371-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Arginase serum levels were increased in human African trypanosomiasis patients and returned to control values after treatment. Arginase hydrolyzes l-arginine to l-ornithine, which is essential for parasite growth. Moreover, l-arginine depletion impairs immune functions. Arginase may be considered as a biomarker for treatment efficacy.
Collapse
|
194
|
Gerdes N, Winkels H, Weber C. Atherosclerosis: cell biology and lipoproteins-focus on anti-inflammatory mechanisms as therapeutic options. Curr Opin Lipidol 2013; 24:187-8. [PMID: 23481233 DOI: 10.1097/mol.0b013e32835ec608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
195
|
Chang J, Thangamani S, Kim MH, Ulrich B, Morris SM, Kim CH. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation. Eur J Immunol 2013; 43:967-78. [PMID: 23322377 DOI: 10.1002/eji.201242772] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/09/2012] [Accepted: 01/11/2013] [Indexed: 11/06/2022]
Abstract
Arginase I (Arg1), an enzyme expressed by many cell types including myeloid cells, can regulate immune responses. Expression of Arg1 in myeloid cells is regulated by a number of cytokines and tissue factors that influence cell development and activation. Retinoic acid, produced from vitamin A, regulates the homing and differentiation of lymphocytes and plays important roles in the regulation of immunity and immune tolerance. We report here that optimal expression of Arg1 in DCs requires retinoic acid. Induction of Arg1 by retinoic acid is directly mediated by retinoic acid-responsive elements in the 5' noncoding region of the Arg1 gene. Arg1, produced by DCs in response to retinoic acid, promotes the generation of FoxP3(+) regulatory T (Treg) cells. Importantly, blocking the retinoic acid receptor makes DCs hypo-responsive to known inducers of Arg1 such as IL-4 and GM-CSF in Arg1 expression. We found that intestinal CD103(+) DCs that are known to produce retinoic acid highly express Arg1. Our results establish retinoic acid as a key signal in expression of Arg1 in DCs.
Collapse
Affiliation(s)
- Jinsam Chang
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, College of Veterinary Medicine Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
196
|
Yang K, Chi H. mTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol 2013; 24:421-8. [PMID: 23375549 DOI: 10.1016/j.smim.2012.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/11/2012] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR), an evolutionally conserved serine and threonine kinase, plays a critical role in the promotion of cell growth and proliferation via integration of cellular and environmental cues. In adaptive immunity, the mTOR pathway orchestrates multiple physiological processes including the development and homeostasis of T cells under steady state, and their subsequent activation and differentiation upon antigen recognition. Associated with such fate decisions is the dynamic reprogramming of T cell metabolic pathways, as naïve, activated and memory cells are defined by distinct bioenergetic and biosynthetic activities. Emerging evidence indicates that mTOR signaling intersects with T cell metabolism at two major levels to constitute a critical control mechanism of T cell fate decisions. First, as a central environmental sensor, mTOR links immune signaling and the availability of nutrients, especially amino acids. Second, mTOR activates specific metabolic pathways in T cells such as aerobic glycolysis (also known as the "Warburg effect") in a process dependent upon the induction of transcription factors MYC and HIF1α. Understanding how mTOR interplays with T cell metabolism to dictate T cell fates and functions will provide fundamental insights into the mechanism of immune responses and the development of novel therapeutics against immune-mediated diseases. In this review, we summarize the current advances on mTOR signaling and T cell metabolism in the control of development, homeostasis, activation and differentiation of T cells.
Collapse
Affiliation(s)
- Kai Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
197
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol Res 2013. [DOI: 10.1016/j.phrs.2012.11.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
198
|
Puiffe ML, Lachaise I, Molinier-Frenkel V, Castellano F. Antibacterial properties of the mammalian L-amino acid oxidase IL4I1. PLoS One 2013; 8:e54589. [PMID: 23355881 PMCID: PMC3552961 DOI: 10.1371/journal.pone.0054589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/14/2012] [Indexed: 12/20/2022] Open
Abstract
L-amino acid oxidases (LAAO) are flavoproteins that catalyze the oxidative deamination of L-amino acids to a keto-acid along with the production of H2O2 and ammonia. Interleukin 4 induced gene 1 (IL4I1) is a secreted LAAO expressed by macrophages and dendritic cells stimulated by microbial derived products or interferons, which is endowed with immunoregulatory properties. It is the first LAAO described in mammalian innate immune cells. In this work, we show that this enzyme blocks the in vitro and in vivo growth of Gram negative and Gram positive bacteria. This antibiotic effect is primarily mediated by H2O2 production but is amplified by basification of the medium due to the accumulation of ammonia. The depletion of phenylalanine (the primary amino acid catabolized by IL4I1) may also participate in the in vivo inhibition of staphylococci growth. Thus, IL4I1 plays a distinct role compared to other antibacterial enzymes produced by mononuclear phagocytes.
Collapse
Affiliation(s)
- Marie-Line Puiffe
- INSERM, U955, IMRB, Equipe 09, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
| | - Isabelle Lachaise
- Plateforme Chromatographie Analytique et semi Préparative, ICMPE, Thiais, France
| | - Valérie Molinier-Frenkel
- INSERM, U955, IMRB, Equipe 09, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Service d’Immunologie Biologique, Créteil, France
- * E-mail: (FC); (VMF)
| | - Flavia Castellano
- INSERM, U955, IMRB, Equipe 09, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Service d’Immunologie Biologique, Créteil, France
- * E-mail: (FC); (VMF)
| |
Collapse
|
199
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Re-print of "Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host". Pharmacol Res 2013; 69:114-26. [PMID: 23318949 DOI: 10.1016/j.phrs.2013.01.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alimentary and endogenous proteins are mixed in the small intestinal lumen with the microbiota. Although experimental evidences suggest that the intestinal microbiota is able to incorporate and degrade some of the available amino acids, it appears that the microbiota is also able to synthesize amino acids raising the view that amino acid exchange between the microbiota and host can proceed in both directions. Although the net result of such exchanges remains to be determined, it is likely that a significant part of the amino acids recovered from the alimentary proteins are used by the microbiota. In the large intestine, where the density of bacteria is much higher than in the small intestine and the transit time much longer, the residual undigested luminal proteins and peptides can be degraded in amino acids by the microbiota. These amino acids cannot be absorbed to a significant extent by the colonic epithelium, but are precursors for the synthesis of numerous metabolic end products in reactions made by the microbiota. Among these products, some like short-chain fatty acids and organic acids are energy substrates for the colonic mucosa and several peripheral tissues while others like sulfide and ammonia can affect the energy metabolism of colonic epithelial cells. More work is needed to clarify the overall effects of the intestinal microbiota on nitrogenous compound metabolism and consequences on gut and more generally host health.
Collapse
Affiliation(s)
- Anne-Marie Davila
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
200
|
Camacho-Camacho C, Rojas-Oviedo I, Garza-Ortiz A, Cárdenas J, Toscano RA, Gaviño R. Synthesis, structural characterization andin vitrocytotoxic activity of novel polymeric triorganotin(IV) complexes of urocanic acid. Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carlos Camacho-Camacho
- Departamento de Sistemas Biológicos; Universidad Autónoma Metropolitana - Unidad Xochimilco; 04960; Coyoacán; México; DF
| | - Irma Rojas-Oviedo
- Departamento de Sistemas Biológicos; Universidad Autónoma Metropolitana - Unidad Xochimilco; 04960; Coyoacán; México; DF
| | - Ariadna Garza-Ortiz
- Departamento de Sistemas Biológicos; Universidad Autónoma Metropolitana - Unidad Xochimilco; 04960; Coyoacán; México; DF
| | - Jorge Cárdenas
- Instituto de Química; Universidad Nacional Autónoma de México; Coyoacán; México; DF
| | | | - Rubén Gaviño
- Instituto de Química; Universidad Nacional Autónoma de México; Coyoacán; México; DF
| |
Collapse
|