151
|
Liu X, Karrenberg S. Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Mol Ecol 2018; 27:3889-3904. [PMID: 29577481 DOI: 10.1111/mec.14562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
The evolution of reproductive barriers and their underlying genetic architecture is of central importance for the formation of new species. Reproductive barriers can be controlled either by few large-effect loci suggesting strong selection on key traits, or by many small-effect loci, consistent with gradual divergence or with selection on polygenic or multiple traits. Genetic coupling between reproductive barrier loci further promotes divergence, particularly divergence with ongoing gene flow. In this study, we investigated the genetic architectures of ten morphological, phenological and life history traits associated with reproductive barriers between the hybridizing sister species Silene dioica and S. latifolia; both are dioecious with XY-sex determination. We used quantitative trait locus (QTL) mapping in two reciprocal F2 crosses. One to six QTLs per trait, including nine major QTLs (PVE > 20%), were detected on 11 of the 12 linkage groups. We found strong evidence for coupling of QTLs for uncorrelated traits and for an important role of sex chromosomes in the genetic architectures of reproductive barrier traits. Unexpectedly, QTLs detected in the two F2 crosses differed largely, despite limited phenotypic differences between them and sufficient statistical power. The widely dispersed genetic architectures of traits associated with reproductive barriers suggest gradual divergence or multifarious selection. Coupling of the underlying QTLs likely promoted divergence with gene flow in this system. The low congruence of QTLs between the two crosses further points to variable and possibly redundant genetic architectures of traits associated with reproductive barriers, with important implications for the evolutionary dynamics of divergence and speciation.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
152
|
Fishman L, Sweigart AL. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:707-731. [PMID: 29505737 DOI: 10.1146/annurev-arplant-042817-040113] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybrids between flowering plant species often exhibit reduced fitness, including sterility and inviability. Such hybrid incompatibilities create barriers to genetic exchange that can promote reproductive isolation between diverging populations and, ultimately, speciation. Additionally, hybrid breakdown opens a window into hidden molecular and evolutionary processes occurring within species. Here, we review recent work on the mechanisms and origins of hybrid incompatibility in flowering plants, including both diverse genic interactions and chromosomal incompatibilities. Conflict and coevolution among and within plant genomes contributes to the evolution of some well-characterized genic incompatibilities, but duplication and drift also play important roles. Inversions, while contributing to speciation by suppressing recombination, rarely cause underdominant sterility. Translocations cause severe F1 sterility by disrupting meiosis in heterozygotes, making their fixation in outcrossing sister species a paradox. Evolutionary genomic analyses of both genic and chromosomal incompatibilities, in the context of population genetic theory, can explicitly test alternative scenarios for their origins.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA;
| |
Collapse
|
153
|
Christie K, Strauss SY. Along the speciation continuum: Quantifying intrinsic and extrinsic isolating barriers across five million years of evolutionary divergence in California jewelflowers. Evolution 2018; 72:1063-1079. [DOI: 10.1111/evo.13477] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kyle Christie
- Department of Evolution and Ecology and Center for Population Biology University of California One Shields Avenue Davis California 95616
| | - Sharon Y. Strauss
- Department of Evolution and Ecology and Center for Population Biology University of California One Shields Avenue Davis California 95616
| |
Collapse
|
154
|
Hybridization and differential introgression associated with environmental shifts in a mistletoe species complex. Sci Rep 2018; 8:5591. [PMID: 29615778 PMCID: PMC5882953 DOI: 10.1038/s41598-018-23707-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Host specialization after host shifting is traditionally viewed as the pathway to speciation in parasitic plants. However, geographical and environmental changes can also influence parasite speciation, through hybridization processes. Here we investigated the impact of past climatic fluctuations, environment, and host shifts on the genetic structure and patterns of hybridization and gene flow between Psittacanthus calyculatus and P. schiedeanus, a Mesoamerican species complex. Using microsatellites (408 individuals), we document moderate genetic diversity but high genetic differentiation between widespread parental clusters, calyculatus in dry pine-oak forests and schiedeanus in cloud forests. Bayesian analyses identified a third cluster, with admixture between parental clusters in areas of xeric and tropical dry forests and high levels of migration rates following secondary contact. Coincidently host associations in these areas differ from those in areas of parental species, suggesting that past hybridization played a role in environmental and host shifts. Overall, the observed genetic and geographic patterns suggest that these Psittacanthus populations could have entered a distinct evolutionary pathway. The results provide evidence for highlights on the importance of the Pleistocene climate changes, habitat differences, and potential host shifts in the evolutionary history of Neotropical mistletoes.
Collapse
|
155
|
|
156
|
Neri J, Wendt T, Palma-Silva C. Natural hybridization and genetic and morphological variation between two epiphytic bromeliads. AOB PLANTS 2018; 10:plx061. [PMID: 29308124 PMCID: PMC5751037 DOI: 10.1093/aobpla/plx061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/22/2017] [Indexed: 05/18/2023]
Abstract
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. Here, we examine the genetic and morphological differences between two closely related bromeliad species: Vriesea simplex and Vriesea scalaris. Furthermore, we examined the occurrence of natural hybridization and discuss the action of reproductive isolation barriers. Nuclear genomic admixture suggests hybridization in sympatric populations, although interspecific gene flow is low among species in all sympatric zones (Nem < 0.5). Thus, morphological and genetic divergence (10.99 %) between species can be maintained despite ongoing natural hybridization. Cross-evaluation of our genetic and morphological data suggests that species integrity is maintained by the simultaneous action of multiple barriers, such as divergent reproductive systems among species, differences in floral traits and low hybrid seed viability.
Collapse
Affiliation(s)
- Jordana Neri
- Programa de Pós Graduação em Botânica, Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, Rio de Janeiro, RJ, Brazil
| | - Tânia Wendt
- Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Clarisse Palma-Silva
- Programa de Pós Graduação em Ecologia, Departamento de Ecologia – Universidade Estadual Paulista Julio Mesquita Filho, Rio Claro, SP, Brazil
| |
Collapse
|
157
|
Roth M, Florez-Rueda AM, Griesser S, Paris M, Städler T. Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. ANNALS OF BOTANY 2018; 121:107-118. [PMID: 29280998 PMCID: PMC5786209 DOI: 10.1093/aob/mcx133] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Defective hybrid seed development in angiosperms might mediate the rapid establishment of intrinsic post-zygotic isolation between closely related species. Extensive crosses within and among three lineages of wild tomatoes (Solanum section Lycopersicon) were performed to address the incidence, developmental timing and histological manifestations of hybrid seed failure. These lineages encompass different, yet fairly recent, divergence times and both allopatric and partially sympatric pairs. METHODS Mature seeds were scored visually 2 months after hand pollinations, and viable-looking seeds were assessed for germination success. Using histological sections from early-developing seeds from a sub-set of crosses, the growth of three major seed compartments (endosperm, embryo and seed coat) was measured at critical developmental stages up to 21 d after pollination, with a focus on the timing and histological manifestations of endosperm misdevelopment in abortive hybrid seeds. KEY RESULTS For two of three interspecific combinations including the most closely related pair that was also studied histologically, almost all mature seeds appeared 'flat' and proved inviable; histological analyses revealed impaired endosperm proliferation at early globular embryo stages, concomitant with embryo arrest and seed abortion in both cross directions. The third interspecific combination yielded a mixture of flat, inviable and plump, viable seeds; many of the latter germinated and exhibited near-normal juvenile phenotypes or, in some instances, hybrid necrosis and impaired growth. CONCLUSIONS The overall results suggest that near-complete hybrid seed failure can evolve fairly rapidly and without apparent divergence in reproductive phenology/biology. While the evidence accrued here is largely circumstantial, early-acting disruptions of normal endosperm development are most probably the common cause of seed failure regardless of the type of endosperm (nuclear or cellular).
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Stephan Griesser
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
- For correspondence. Email
| |
Collapse
|
158
|
Esposito F, Vereecken NJ, Gammella M, Rinaldi R, Laurent P, Tyteca D. Characterization of sympatric Platanthera bifolia and Platanthera chlorantha (Orchidaceae) populations with intermediate plants. PeerJ 2018; 6:e4256. [PMID: 29379684 PMCID: PMC5787349 DOI: 10.7717/peerj.4256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
Platanthera bifolia and P. chlorantha are terrestrial and rewarding orchids with a wide Eurasian distribution. Although genetically closely related, they exhibit significant morphological, phenological and ecological differences that maintain reproductive isolation between the species. However, where both species co-occur, individuals with intermediate phenotypic traits, often considered as hybrids, are frequently observed. Here, we combined neutral genetic markers (AFLPs), morphometrics and floral scent analysis (GC-MS) to investigate two mixed Platanthera populations where morphologically intermediate plants were found. Self-pollination experiments revealed a low level of autogamy and artificial crossings combined with assessments of fruit set and seed viability, showed compatibility between the two species. The results of the genetic analyses showed that morphologically intermediate plants had similar genetic patterns as the P. bifolia group. These results are corroborated also by floral scent analyses, which confirmed a strong similarity in floral scent composition between intermediate morphotypes and P. bifolia. Therefore, this study provided a much more detailed picture of the genetic structure of a sympatric zone between two closely allied species and supports the hypothesis that intermediate morphotypes in sympatry could reflect an adaptive evolution in response to local pollinator-mediated selection.
Collapse
Affiliation(s)
- Fabiana Esposito
- Earth and Life Institute—Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nicolas J. Vereecken
- Agroecology Lab, Brussels Bioengineering School, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Rosita Rinaldi
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Pascal Laurent
- Unit of General Chemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel Tyteca
- Earth and Life Institute—Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
159
|
Tinghitella RM, Lackey ACR, Martin M, Dijkstra PD, Drury JP, Heathcote R, Keagy J, Scordato ESC, Tyers AM. On the role of male competition in speciation: a review and research agenda. Behav Ecol 2017. [DOI: 10.1093/beheco/arx151] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Alycia C R Lackey
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, KY, USA
| | - Michael Martin
- Department of Biology, Oxford College of Emory University, Oxford, GA, USA
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Jonathan P Drury
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Heathcote
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alexandra M Tyers
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor, Gwynedd,, Wales, UK
| |
Collapse
|
160
|
Sakaguchi S, Horie K, Ishikawa N, Nagano AJ, Yasugi M, Kudoh H, Ito M. Simultaneous evaluation of the effects of geographic, environmental and temporal isolation in ecotypic populations of Solidago virgaurea. THE NEW PHYTOLOGIST 2017; 216:1268-1280. [PMID: 28833204 DOI: 10.1111/nph.14744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/07/2017] [Indexed: 05/14/2023]
Abstract
Early stages of ecological speciation can create populations with an ecology and reproduction timing distinct from those of related populations. Landscape genetic models incorporating environmental heterogeneity and population-specific reproductive traits enable the processes of population genetic differentiation to be inferred. We investigated genome-wide genetic variation in ecotypic populations of Solidago virgaurea sensu lato, a herbaceous plant inhabiting a wide range of habitats (woodlands, serpentine barrens and alpine grasslands) and displaying remarkable variation in flowering time. Simultaneous evaluation of environmental factors revealed an overwhelming effect of soil type differences on neutral genetic differentiation, compared with elevational differences. This result probably reflects the abrupt environmental changes generated by geological boundaries, whereas mountain slopes exhibit clinal changes, facilitating gene exchange between neighbouring populations. Temporal isolation was positively associated with genetic differentiation, with some early-flowering serpentine populations having allele frequencies distinct from adjacent nonserpentine populations. Overall, this study highlights the importance of ecological processes and of evolution of flowering time to promote genetic differentiation of S. virgaurea populations in a complex landscape.
Collapse
Affiliation(s)
- Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kenji Horie
- Asahikawa City Northern Wild Plants Garden, Asahikawa, 071-1200, Japan
| | - Naoko Ishikawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
- JST CREST, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Masaki Yasugi
- National Institute for Basic Biology, Higashiyama 5-1, Myodaiji, Okazaki, 444-8787, Aichi, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
161
|
Scheriau CL, Nuerk NM, Sharbel TF, Koch MA. Cryptic gene pools in the Hypericum perforatum-H. maculatum complex: diploid persistence versus trapped polyploid melting. ANNALS OF BOTANY 2017; 120:955-966. [PMID: 29182722 PMCID: PMC5710527 DOI: 10.1093/aob/mcx110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/09/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS In Central Europe Hypericum perforatum and Hypericum maculatum show significant hybridization and introgression as a consequence of Pleistocene range fluctuations, and their gene pools are merging on higher ploidy levels. This paper discusses whether polyploid hybrid gene pools are trapped in the ecological climatic niche space of their diploid ancestors, and tests the idea of geographical parthenogenesis. METHODS DNA sequence information of nuclear ribosomal DNA and plastid loci, ploidy level estimates and ecological niche modelling are used to characterize the various diploid and polyploid gene pools and unravel spatio-temporal patterns of gene flow among them. KEY RESULTS On the diploid level, the three gene pools are clearly distinct between and within species of H. perforatum (two gene pools) and H. maculatum, and their divergence dates back to the first half of the Pleistocene. All polyploids in Central Europe show high levels of past and contemporary gene flow between all three gene pools. The correlation of genetic and geographical distances breaks down if the latter is larger than 250 km, indicating recent and ongoing gene flow. The two species are ecologically differentiated, but in particular hybrids among all three gene pools do not show significant niche differences compared to their parental gene pools, except for some combinations with H. maculatum. CONCLUSIONS Inter- and intraspecific gene flow between inter- and intra-species gene pools is limited on the diploid level, and the geographical distribution of the diploids largely reflects Pleistocene evolutionary history. Secondary contact promoted hybridization and introgression on the polyploid level, enabling offspring to escape the diploid gene pools. However, the hybrid polyploids do not show significant niche differences compared to their diploid progenitors. It is concluded that the observed absence of niche divergence has precluded further differentiation and geographical partitioning of new polyploid lineages being effectively separated from the parental lines. The predominantly apomictic reproducing polyploids are trapped in the polyploid gene pool and the ecological climatic niche space of their diploid ancestors.
Collapse
Affiliation(s)
- Charlotte L Scheriau
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Nicolai M Nuerk
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, Seed Developmental Biology Program, University of Saskatchewan, Canada
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
162
|
Deschepper P, Brys R, Fortuna MA, Jacquemyn H. Analysis of spatial genetic variation reveals genetic divergence among populations of Primula veris associated to contrasting habitats. Sci Rep 2017; 7:8847. [PMID: 28821787 PMCID: PMC5562905 DOI: 10.1038/s41598-017-09154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022] Open
Abstract
Genetic divergence by environment is a process whereby selection causes the formation of gene flow barriers between populations adapting to contrasting environments and is often considered to be the onset of speciation. Nevertheless, the extent to which genetic differentiation by environment on small spatial scales can be detected by means of neutral markers is still subject to debate. Previous research on the perennial herb Primula veris has shown that plants from grassland and forest habitats showed pronounced differences in phenology and flower morphology, suggesting limited gene flow between habitats. To test this hypothesis, we sampled 33 populations of P. veris consisting of forest and grassland patches and used clustering techniques and network analyses to identify sets of populations that are more connected to each other than to other sets of populations and estimated the timing of divergence. Our results showed that spatial genetic variation had a significantly modular structure and consisted of four well-defined modules that almost perfectly coincided with habitat features. Genetic divergence was estimated to have occurred about 114 generations ago, coinciding with historic major changes in the landscape. Overall, these results illustrate how populations adapting to different environments become structured genetically within landscapes on small spatial scales.
Collapse
Affiliation(s)
- Pablo Deschepper
- Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium.
| | - Rein Brys
- Research Institute for Forest and Nature, Gaverstraat 4, B-9500, Geraardsbergen, Belgium
| | - Miguel A Fortuna
- Department of Evolutionary Biology and Environmental Studies. University of Zurich, Zurich, Switzerland
| | - Hans Jacquemyn
- Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium
| |
Collapse
|
163
|
Xie Y, Zhu X, Ma Y, Zhao J, Li L, Li Q. Natural hybridization and reproductive isolation between two Primula species. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:526-530. [PMID: 28429397 DOI: 10.1111/jipb.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Natural hybridization frequently occurs in plants and can facilitate gene flow between species, possibly resulting in species refusion. However, various reproductive barriers block the formation of hybrids and maintain species integrity. Here, we conducted a field survey to examine natural hybridization and reproductive isolation (RI) between sympatric populations of Primula secundiflora and P. poissonii using ten nuclear simple sequence repeat (SSR) loci. Although introgressive hybridization occurred, species boundaries between P. secundiflora and P. poissonii were maintained through nearly complete reproductive isolation. These interfertile species provide an excellent model for studying the RI mechanisms and evolutionary forces that maintain species boundaries.
Collapse
Affiliation(s)
- Yanping Xie
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Graduate University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xingfu Zhu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Yongpeng Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianli Zhao
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Li
- Graduate University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjun Li
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
164
|
Jacquemyn H, Kort HD, Broeck AV, Brys R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine
(Orchidaceae). OIKOS 2017. [DOI: 10.1111/oik.04329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hans Jacquemyn
- Dept of Biology; Plant Conservation and Population Biology; BE-3001 Leuven Belgium
| | - Hanne De Kort
- Dept of Biology; Plant Conservation and Population Biology; BE-3001 Leuven Belgium
- Station d'Ecologie Théorique et Expérimentale du CNRS, Centre National de la Recherche Scientifique; Moulis France
| | | | - Rein Brys
- Research Inst. for Forest and Nature; Geraardsbergen Belgium
| |
Collapse
|
165
|
Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. FORESTS 2017. [DOI: 10.3390/f8070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
166
|
Kostyun JL, Moyle LC. Multiple strong postmating and intrinsic postzygotic reproductive barriers isolate florally diverse species of Jaltomata (Solanaceae). Evolution 2017; 71:1556-1571. [PMID: 28432763 PMCID: PMC5502772 DOI: 10.1111/evo.13253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
Divergence in phenotypic traits often contributes to premating isolation between lineages, but could also promote isolation at postmating stages. Phenotypic differences could directly result in mechanical isolation or hybrids with maladapted traits; alternatively, when alleles controlling these trait differences pleiotropically affect other components of development, differentiation could indirectly produce genetic incompatibilities in hybrids. Here, we determined the strength of nine postmating and intrinsic postzygotic reproductive barriers among 10 species of Jaltomata (Solanaceae), including species with highly divergent floral traits. To evaluate the relative importance of floral trait diversification for the strength of these postmating barriers, we assessed their relationship to floral divergence, genetic distance, geographical context, and ecological differences, using conventional tests and a new linear-mixed modeling approach. Despite close evolutionary relationships, all species pairs showed moderate to strong isolation. Nonetheless, floral trait divergence was not a consistent predictor of the strength of isolation; instead this was best explained by genetic distance, although we found evidence for mechanical isolation in one species, and a positive relationship between floral trait divergence and fruit set isolation across species pairs. Overall, our data indicate that intrinsic postzygotic isolation is more strongly associated with genome-wide genetic differentiation, rather than floral divergence.
Collapse
Affiliation(s)
- Jamie L. Kostyun
- Department of Biology, Indiana University, Bloomington, Indiana
47405, USA
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana
47405, USA
| |
Collapse
|
167
|
Kulmuni J, Westram AM. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: Considering them in empirical studies on divergence with gene flow. Mol Ecol 2017; 26:3093-3103. [PMID: 28423210 DOI: 10.1111/mec.14147] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions.
Collapse
Affiliation(s)
- J Kulmuni
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - A M Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
168
|
de Lafontaine G, Bousquet J. Asymmetry matters: A genomic assessment of directional biases in gene flow between hybridizing spruces. Ecol Evol 2017; 7:3883-3893. [PMID: 28616185 PMCID: PMC5468134 DOI: 10.1002/ece3.2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 01/08/2023] Open
Abstract
Assessing directional bias in interspecific gene flow might be important in determining the evolutionary trajectory of closely related species pairs. Using a set of 300 single nucleotide polymorphisms (SNPs) having variable propensity to cross species boundary, we evaluated the genomic extent and direction of interspecific gene flow in a progenitor‐derivative spruce species pair (black spruce and red spruce). A higher rate of gene flow was found from black spruce toward red spruce purebreds than vice versa. This asymmetry could reflect the historical gene flow between the two taxa at the time of species inception and during postglacial colonization. A clear asymmetry in introgression was depicted by a greater gene flow between red spruce and hybrids than between black spruce and hybrids. While backcrossing toward red spruce was invariably high across the genome, the actual species boundary is between hybrids and black spruce where gene flow is impeded at those genomic regions impermeable to introgression. Associations between hybrid index and climatic variables (total annual precipitation and mean annual temperature) were tested, as these might indicate a role for exogenous selection in maintaining the species boundary. While an apparent association was found between the hybrid index and precipitation, it collapsed when considered in light of the directional bias in interspecific gene flow. Hence, considering asymmetrical patterns of introgression allowed us to falsify an apparent role for exogenous selection. Although this was not formerly tested here, we suggest that this pattern could result from asymmetrical endogenous selection, a contention that deserves further investigations.
Collapse
Affiliation(s)
- Guillaume de Lafontaine
- Canada Research Chair in Forest Genomics Centre for Forest Research and Institute of Systems and Integrative Biology Université Laval Québec QC Canada.,Department of Plant Biology University of Illinois Urbana IL USA
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics Centre for Forest Research and Institute of Systems and Integrative Biology Université Laval Québec QC Canada
| |
Collapse
|
169
|
Martin H, Touzet P, Dufay M, Godé C, Schmitt E, Lahiani E, Delph LF, Van Rossum F. Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution 2017; 71:1519-1531. [PMID: 28384386 DOI: 10.1111/evo.13245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co-occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Hélène Martin
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Pascal Touzet
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Mathilde Dufay
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Cécile Godé
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Eric Schmitt
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Emna Lahiani
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Lynda F Delph
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Fabienne Van Rossum
- Meise Botanic Garden (formerly National Botanic Garden of Belgium), Nieuwelaan 38, BE-1860, Meise, Belgium.,Écologie végétale et Biogéochimie, Université Libre de Bruxelles, CP244, Boulevard du Triomphe, BE-1050, Brussels, Belgium.,Fédération Wallonie-Bruxelles, rue A. Lavallée 1, BE-1080, Brussels, Belgium
| |
Collapse
|
170
|
Favre A, Widmer A, Karrenberg S. Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment. THE NEW PHYTOLOGIST 2017; 213:1487-1499. [PMID: 27775172 DOI: 10.1111/nph.14202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate the role of differential adaptation for the evolution of reproductive barriers, we conducted a multi-site transplant experiment with the dioecious sister species Silene dioica and S. latifolia and their hybrids. Crosses within species as well as reciprocal first-generation (F1 ) and second-generation (F2 ) interspecific hybrids were transplanted into six sites, three within each species' habitat. Survival and flowering were recorded over 4 yr. At all transplant sites, the local species outperformed the foreign species, reciprocal F1 hybrids performed intermediately and F2 hybrids underperformed in comparison to F1 hybrids (hybrid breakdown). Females generally had slightly higher cumulative fitness than males in both within- and between-species crosses and we thus found little evidence for Haldane's rule acting on field performance. The strength of selection against F1 and F2 hybrids as well as hybrid breakdown increased with increasing strength of habitat adaptation (i.e. the relative fitness difference between the local and the foreign species) across sites. Our results suggest that differential habitat adaptation led to ecologically dependent post-zygotic reproductive barriers and drives divergence and speciation in this Silene system.
Collapse
Affiliation(s)
- Adrien Favre
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Alex Widmer
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Sophie Karrenberg
- Plant Ecological Genetics, ETH Zurich, Institute of Integrative Biology, Universitätstrasse 16, 8092, Zurich, Switzerland
- Department of Ecology and Genetics, Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, 752 36, Uppsala, Sweden
| |
Collapse
|
171
|
Lackey ACR, Boughman JW. Evolution of reproductive isolation in stickleback fish. Evolution 2016; 71:357-372. [PMID: 27901265 DOI: 10.1111/evo.13114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
To understand how new species form and what causes their collapse, we examined how reproductive isolation evolves during the speciation process, considering species pairs with little to extensive divergence, including a recently collapsed pair. We estimated many reproductive barriers in each of five sets of stickleback fish species pairs using our own data and decades of previous work. We found that the types of barriers important early in the speciation process differ from those important late. Two premating barriers-habitat and sexual isolation-evolve early in divergence and remain two of the strongest barriers throughout speciation. Premating isolation evolves before postmating isolation, and extrinsic isolation is far stronger than intrinsic. Completing speciation, however, may require postmating intrinsic incompatibilities. Reverse speciation in one species pair was characterized by significant loss of sexual isolation. We present estimates of barrier strengths before and after collapse of a species pair; such detail regarding the loss of isolation has never before been documented. Additionally, despite significant asymmetries in individual barriers, which can limit speciation, total isolation was essentially symmetric between species. Our study provides important insight into the order of barrier evolution and the relative importance of isolating barriers during speciation and tests fundamental predictions of ecological speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan.,Department of Biological Sciences, Watershed Studies Institute, Murray State University, 2112 Biology Building, Murray, State University, Murray, Kentucky, 42071
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| |
Collapse
|
172
|
Baek YS, Royer SM, Broz AK, Covey PA, López-Casado G, Nuñez R, Kear PJ, Bonierbale M, Orillo M, van der Knaap E, Stack SM, McClure B, Chetelat RT, Bedinger PA. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). AMERICAN JOURNAL OF BOTANY 2016; 103:1964-1978. [PMID: 27864262 DOI: 10.3732/ajb.1600356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Suzanne M Royer
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Gloria López-Casado
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Reynaldo Nuñez
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
| | - Philip J Kear
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Merideth Bonierbale
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Matilde Orillo
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| |
Collapse
|
173
|
Barnard‐Kubow KB, So N, Galloway LF. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution 2016; 70:2752-2766. [DOI: 10.1111/evo.13075] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/08/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nina So
- Department of Biology University of Virginia Charlottesville Virginia 22904
- Current Address: Doctoral Program in Neurobiology and Behavior Columbia University New York NY 10027
| | - Laura F. Galloway
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
174
|
Bertel C, Hülber K, Frajman B, Schönswetter P. No evidence of intrinsic reproductive isolation between two reciprocally non-monophyletic, ecologically differentiated mountain plants at an early stage of speciation. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9867-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
175
|
Yardeni G, Tessler N, Imbert E, Sapir Y. Reproductive isolation between populations of Iris atropurpurea is associated with ecological differentiation. ANNALS OF BOTANY 2016; 118:971-982. [PMID: 27436798 PMCID: PMC5055820 DOI: 10.1093/aob/mcw139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 05/28/2023]
Abstract
Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species' full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea.
Collapse
Affiliation(s)
- Gil Yardeni
- The Botanical Garden, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Naama Tessler
- Department of Biology, University of Haifa, Oranim, Tivon, Israel
| | - Eric Imbert
- Institut des Sciences de l’Evolution CNRS, IRD, University Montpellier 2, Montpellier, France
| | | |
Collapse
|
176
|
Díaz Infante S, Lara C, Arizmendi MDC, Eguiarte LE, Ornelas JF. Reproductive ecology and isolation of Psittacanthus calyculatus and P. auriculatus mistletoes (Loranthaceae). PeerJ 2016; 4:e2491. [PMID: 27703848 PMCID: PMC5045876 DOI: 10.7717/peerj.2491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Relationships between floral biology and pollinator behavior are important to understanding species diversity of hemiparasitic Psittacanthus mistletoes (c. 120 species). We aimed to investigate trait divergence linked to pollinator attraction and reproductive isolation (RI) in two hummingbird-pollinated and bird-dispersed Psittacanthus species with range overlap. METHODS We investigated the phylogenetic relationships, floral biology, pollinator assemblages, seed dispersers and host usage, and the breeding system and female reproductive success of two sympatric populations of P. calyculatus and P. auriculatus, and one allopatric population of P. calyculatus. Flowers in sympatry were also reciprocally pollinated to assess a post-mating component of RI. RESULTS Hummingbird assemblages differed between calyculatus populations, while allopatric plants of calyculatus opened more but smaller flowers with longer lifespans and produced less nectar than those in sympatry. Bayesian-based phylogenetic analysis indicated monophyly for calyculatus populations (i.e. both populations belong to the same species). In sympatry, calyculatus plants opened more and larger flowers with longer lifespans and produced same nectar volume than those of auriculatus; populations shared pollinators but seed dispersers and host usage differed between species. Nectar standing crops differed between sympatric populations, with lower visitation in calyculatus. Hand pollination experiments indicated a predominant outcrossing breeding system, with fruit set after interspecific pollination two times higher from calyculatus to auriculatus than in the opposite direction. CONCLUSIONS Given the low genetic differentiation between calyculatus populations, observed trait divergence could have resulted from changes regarding the local communities of pollinators and, therefore, expected divergence for peripheral, allopatric populations. Using RI estimates, there were fewer heterospecific matings than expected by chance in P. calyculatus (RI4A = 0.629) as compared to P. auriculatus (RI4A = 0.20). When considering other factors of ecological isolation that affect co-occurrence, the RI4C values indicate that isolation by hummingbird pollinators was less effective (0.20) than isolation by host tree species and seed dispersers (0.80 and 0.60, respectively), suggesting that host usage is the most important ecological isolation factor between the two species. Accordingly, the absolute and relative cumulative strength values indicated that the host tree species' barrier is currently contributing the most to maintaining these species in sympatry.
Collapse
Affiliation(s)
- Sergio Díaz Infante
- Laboratorio de Ecología, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - María del Coro Arizmendi
- Laboratorio de Ecología, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| |
Collapse
|
177
|
Larcombe MJ, Costa E Silva J, Tilyard P, Gore P, Potts BM. On the persistence of reproductive barriers in Eucalyptus: the bridging of mechanical barriers to zygote formation by F1 hybrids is counteracted by intrinsic post-zygotic incompatibilities. ANNALS OF BOTANY 2016; 118:431-44. [PMID: 27401540 PMCID: PMC4998977 DOI: 10.1093/aob/mcw115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Many previous studies conclude that pre-zygotic barriers such as mechanical isolation account for most reproductive isolation between pairs of taxa. However, the inheritance and persistence of barriers such as these after the first generation of hybridization is rarely quantified, even though it is a vital consideration in understanding gene flow potential. There is an asymmetrical pre-zygotic mechanical barrier to hybridization between Eucalyptus nitens and Eucalyptus globulus, which completely prevents small-flowered E. nitens pollen from mating with large E. globulus flowers, while the reverse cross is possible. We aimed to determine the relative importance of pre- and post-zygotic barriers in preventing gene flow following secondary contact between E. nitens and E. globulus, including the inheritance of barriers in advanced-generation hybrids. METHODS Experimental crossing was used to produce outcrossed E. nitens, E. globulus and their F1, F2, BCg and BCn hybrids. The strength and inheritance of a suite of pre- and post-zygotic barriers were assessed, including 20-year survival, growth and reproductive capacity. KEY RESULTS The mechanical barrier to hybridization was lost or greatly reduced in the F1 hybrid. In contrast, intrinsic post-zygotic barriers were strong and persistent. Line-cross analysis indicated that the outbreeding depression in the hybrids was best explained by epistatic loss. CONCLUSIONS The removal of strong mechanical barriers between E. nitens and E. globulus allows F1 hybrids to act as a bridge for bi-directional gene flow between these species. However, strong and persistent post-zygotic barriers exist, meaning that wherever F1 hybridization does occur, intrinsic post-zygotic barriers will be responsible for most reproductive isolation in this system. This potential transient nature of mechanical barriers to zygote formation due to additive inheritance in hybrids appears under-appreciated, and highlights the often important role that intrinsic post-mating barriers play in maintaining species boundaries at zones of secondary contact.
Collapse
Affiliation(s)
- Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin 9011, New Zealand
| | - João Costa E Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Paul Tilyard
- School of Biological Sciences, and ARC Centre for Forest Value, 10 University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Peter Gore
- seedEnergy Pty Ltd, 2 Derwent Avenue, Margate, Tasmania 7054, Australia
| | - Brad M Potts
- School of Biological Sciences, and ARC Centre for Forest Value, 10 University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
178
|
Vallejo-Marín M, Hiscock SJ. Hybridization and hybrid speciation under global change. THE NEW PHYTOLOGIST 2016; 211:1170-87. [PMID: 27214560 DOI: 10.1111/nph.14004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/07/2016] [Indexed: 05/24/2023]
Abstract
Contents 1170 I. 1170 II. 1172 III. 1175 IV. 1180 V. 1183 1184 References 1184 SUMMARY: An unintended consequence of global change is an increase in opportunities for hybridization among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographical isolation and phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridization 'experiments', allowing us to peer into the birth and death of evolutionary lineages.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Simon J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
| |
Collapse
|
179
|
Keller B, de Vos JM, Schmidt‐Lebuhn AN, Thomson JD, Conti E. Both morph- and species-dependent asymmetries affect reproductive barriers between heterostylous species. Ecol Evol 2016; 6:6223-44. [PMID: 27648239 PMCID: PMC5016645 DOI: 10.1002/ece3.2293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre- versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre- and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co-occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species-dependent asymmetries, morph-dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short-styled flowers to stigmas of long-styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long-styled flowers to stigmas of short-styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long-styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore, patterns of gene flow across species boundaries are likely affected by floral morph composition of adjacent populations. To summarize, our study highlights the general importance of premating isolation and newly illustrates that both morph- and species-dependent asymmetries shape boundaries between heterostylous species.
Collapse
Affiliation(s)
- Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Jurriaan M. de Vos
- Department of Ecology and Evolutionary BiologyBrown University80 Waterman StreetBox G‐WProvidenceRhode Island02912USA
- Present address: Comparative Plant and Fungal Biology DepartmentRoyal Botanic GardensKewRichmondSurreyTW9 3AE UK
| | | | - James D. Thomson
- Ecology and Evolutionary Biology DepartmentUniversity of Toronto25 Harbord St.TorontoOntarioM5S 3G5Canada
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| |
Collapse
|
180
|
Christe C, Stölting KN, Paris M, Fraїsse C, Bierne N, Lexer C. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol 2016; 26:59-76. [PMID: 27447453 DOI: 10.1111/mec.13765] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Speciation often involves repeated episodes of genetic contact between divergent populations before reproductive isolation (RI) is complete. Whole-genome sequencing (WGS) holds great promise for unravelling the genomic bases of speciation. We have studied two ecologically divergent, hybridizing species of the 'model tree' genus Populus (poplars, aspens, cottonwoods), Populus alba and P. tremula, using >8.6 million single nucleotide polymorphisms (SNPs) from WGS of population pools. We used the genomic data to (i) scan these species' genomes for regions of elevated and reduced divergence, (ii) assess key aspects of their joint demographic history based on genomewide site frequency spectra (SFS) and (iii) infer the potential roles of adaptive and deleterious coding mutations in shaping the genomic landscape of divergence. We identified numerous small, unevenly distributed genome regions without fixed polymorphisms despite high overall genomic differentiation. The joint SFS was best explained by ancient and repeated gene flow and allowed pinpointing candidate interspecific migrant tracts. The direction of selection (DoS) differed between genes in putative migrant tracts and the remainder of the genome, thus indicating the potential roles of adaptive divergence and segregating deleterious mutations on the evolution and breakdown of RI. Genes affected by positive selection during divergence were enriched for several functionally interesting groups, including well-known candidate 'speciation genes' involved in plant innate immunity. Our results suggest that adaptive divergence affects RI in these hybridizing species mainly through intrinsic and demographic processes. Integrating genomic with molecular data holds great promise for revealing the effects of particular genetic pathways on speciation.
Collapse
Affiliation(s)
- Camille Christe
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Kai N Stölting
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Christelle Fraїsse
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| |
Collapse
|
181
|
A hybridisation barrier between two evolutionary lineages of Barbarea vulgaris (Brassicaceae) that differ in biotic resistances. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9858-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
182
|
Richards TJ, Walter GM, McGuigan K, Ortiz‐Barrientos D. Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower. Evolution 2016; 70:1993-2003. [DOI: 10.1111/evo.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas J. Richards
- School of Biological Sciences University of Queensland St. Lucia QLD Australia
| | - Greg M. Walter
- School of Biological Sciences University of Queensland St. Lucia QLD Australia
| | - Katrina McGuigan
- School of Biological Sciences University of Queensland St. Lucia QLD Australia
| | | |
Collapse
|
183
|
Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz‐Barrientos D. Diversification across a heterogeneous landscape. Evolution 2016; 70:1979-92. [DOI: 10.1111/evo.13009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Greg M. Walter
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Melanie J. Wilkinson
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Maddie E. James
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Thomas J. Richards
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - J. David Aguirre
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
- Institute of Natural and Mathematical Sciences Massey University Auckland 0745 New Zealand
| | | |
Collapse
|
184
|
Pinheiro F, Zanfra de Melo E Gouveia TM, Cozzolino S, Cafasso D, Cardoso-Gustavson P, Suzuki RM, Palma-Silva C. Strong but permeable barriers to gene exchange between sister species of Epidendrum. AMERICAN JOURNAL OF BOTANY 2016; 103:1472-1482. [PMID: 27519428 DOI: 10.3732/ajb.1600064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY The investigation of reproductive barriers between sister species can provide insights into how new lineages arise, and how species integrity is maintained in the face of interspecific gene flow. Different pre- and postzygotic barriers can limit interspecific gene exchange in sympatric populations, and different sources of evidence are often required to investigate the role of multiple reproductive isolation (RI) mechanisms. METHODS We tested the hypothesis of hybridization and potential introgression between Epidendrum secundum and Epidendrum xanthinum, two Neotropical food-deceptive orchid species, using nuclear and plastid microsatellites, experimental crosses, pollen tube growth observations, and genome size estimates. KEY RESULTS A large number of hybrids between E. secundum and E. xanthinum were detected, suggesting weak premating barriers. The low fertility of hybrid plants and the absence of haplotype sharing between parental species indicated strong postmating barriers, reducing interspecific gene exchange and the development of advanced generation hybrids. Despite the strength of reproductive barriers, fertile seeds were produced in some backcrossing experiments, and the existence of interspecific gene exchange could not be excluded. CONCLUSIONS Strong but permeable barriers were found between E. secundum and E. xanthinum. Indeed, haplotype sharing was not detected between parental species, suggesting that introgression is limited by a combination of genic incompatibilities, including negative cytonuclear interactions. Most taxonomic uncertainties in this group were potentially influenced by incomplete RI barriers between species, which mainly occurred sympatrically.
Collapse
Affiliation(s)
- Fábio Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas 13083-862, Campinas, SP, Brazil Instituto de Botânica, Núcleo de Pesquisa do Orquidário do Estado04301-902, São Paulo, SP, Brazil
| | | | - Salvatore Cozzolino
- Dipartimento di Biologia, Complesso Universitario di Monte S. Ângelo, Università degli Studidi Napoli Federico II 80100 Napoli, Italy Institute for Sustenible Plant Protection, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy
| | - Donata Cafasso
- Dipartimento di Biologia, Complesso Universitario di Monte S. Ângelo, Università degli Studidi Napoli Federico II 80100 Napoli, Italy
| | | | - Rogério Mamoru Suzuki
- Instituto de Botânica, Núcleo de Pesquisa do Orquidário do Estado04301-902, São Paulo, SP, Brazil
| | - Clarisse Palma-Silva
- Departamento de Ecologia, Universidade Estadual Paulista 13506-900, Rio Claro, SP, Brazil
| |
Collapse
|
185
|
Gossmann TI, Saleh D, Schmid MW, Spence MA, Schmid KJ. Transcriptomes of Plant Gametophytes Have a Higher Proportion of Rapidly Evolving and Young Genes than Sporophytes. Mol Biol Evol 2016; 33:1669-78. [PMID: 26956888 PMCID: PMC4915351 DOI: 10.1093/molbev/msw044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterize evolutionary patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare them to developmental stages of the sporophyte, we analyzed evolutionary conservation and genetic diversity of protein-coding genes using microarray-based transcriptome data from three plant species, Arabidopsis thaliana, rice (Oryza sativa), and soybean (Glycine max). In all three species a significant shift in gene expression occurs during gametogenesis in which genes of younger evolutionary age and higher genetic diversity contribute significantly more to the transcriptome than in other stages. We refer to this phenomenon as "evolutionary bulge" during plant reproductive development because it differentiates the gametophyte from the sporophyte. We show that multiple, not mutually exclusive, causes may explain the bulge pattern, most prominently reduced tissue complexity of the gametophyte, a varying extent of selection on reproductive traits during gametogenesis as well as differences between male and female tissues. This highlights the importance of plant reproduction for understanding evolutionary forces determining the relationship of genomic and phenotypic variation in plants.
Collapse
Affiliation(s)
- Toni I Gossmann
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Dounia Saleh
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Marc W Schmid
- Institute for Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Michael A Spence
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
186
|
Stanton K, Valentin CM, Wijnen ME, Stutstman S, Palacios JJ, Cooley AM. Absence of postmating barriers between a selfing vs. outcrossing Chilean Mimulus species pair. AMERICAN JOURNAL OF BOTANY 2016; 103:1030-1040. [PMID: 27283023 DOI: 10.3732/ajb.1600079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/10/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Reproductive isolation between sympatric species pairs may be maintained by both pre- and postmating barriers. Here we evaluate potential barriers to mating between the outcrossing Mimulus luteus and its more highly selfing sympatric congener, M. cupreus, two members of the South American luteus complex of Mimulus. METHODS Seed set was compared following autonomous self-pollination, manual pollination, conspecific outcrossing, and sympatric and allopatric hybridization, for laboratory-maintained inbred lines and wild-collected accessions. Survival and reproductive fitness of hybrids relative to parental species were examined across environments that differed with respect to temperature and soil nutrients, two factors that vary across the ranges of M. luteus and M. cupreus. KEY RESULTS Mimulus luteus was minimally capable of autonomous self-fertilization, consistent with reliance on an animal pollinator, whereas M. cupreus was a successful selfer across all tested accessions. Postmating barriers to hybridization are negligible, in both low- and high-stress environments, across multiple sympatric and allopatric populations. CONCLUSION As in the North American M. guttatus-M. nasutus species pair, postmating barriers contribute little to isolation between M. luteus and M. cupreus. This result reinforces the importance of premating barriers, specifically species differences in reliance on, and accessibility to, animal pollinators. A unique aspect of the M. luteus-M. cupreus pair is the recent gain of red floral anthocyanin pigmentation in M. cupreus. On the basis of species differences in vegetative anthocyanin production, a facultative stress-protective response, we propose a potential stress-protective role for the constitutive floral anthocyanins of M. cupreus.
Collapse
Affiliation(s)
- Kimmy Stanton
- Whitman College Biology Department, Walla Walla, Washington 99362 USA
| | - Celine M Valentin
- Whitman College Biology Department, Walla Walla, Washington 99362 USA
| | - Marijke E Wijnen
- Whitman College Biology Department, Walla Walla, Washington 99362 USA
| | - Sage Stutstman
- Whitman College Biology Department, Walla Walla, Washington 99362 USA
| | | | - Arielle M Cooley
- Whitman College Biology Department, Walla Walla, Washington 99362 USA
| |
Collapse
|
187
|
Richards TJ, Ortiz-Barrientos D. Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of Senecio lautus. Evolution 2016; 70:1239-48. [PMID: 27159252 DOI: 10.1111/evo.12936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/07/2016] [Accepted: 04/12/2016] [Indexed: 01/16/2023]
Abstract
Speciation proceeds when gene exchange is prevented between populations. Determining the different barriers preventing gene flow can therefore give insights into the factors driving and maintaining species boundaries. These reproductive barriers may result from intrinsic genetic incompatibilities between populations, from extrinsic environmental differences between populations, or a combination of both mechanisms. We investigated the potential barriers to gene exchange between three adjacent ecotypes of an Australian wildflower to determine the strength of individual barriers and the degree of overall isolation between populations. We found almost complete isolation between the three populations mainly due to premating extrinsic barriers. Intrinsic genetic barriers were weak and variable among populations. There were asymmetries in some intrinsic barriers due to the origin of cytoplasm in hybrids. Overall, these results suggest that reproductive isolation between these three populations is almost complete despite the absence of geographic barriers, and that the main drivers of this isolation are ecologically based, consistent with the mechanisms underlying ecological speciation.
Collapse
Affiliation(s)
- Thomas J Richards
- School of Biological Sciences St. Lucia, University of Queensland, QLD, Australia.
| | | |
Collapse
|
188
|
Kenney AM, Sweigart AL. Reproductive isolation and introgression between sympatric
Mimulus
species. Mol Ecol 2016; 25:2499-517. [DOI: 10.1111/mec.13630] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda M. Kenney
- Department of Genetics University of Georgia Athens GA 30602 USA
- Department of Biological Sciences St. Edward's University Austin TX 78704 USA
| | | |
Collapse
|
189
|
Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein. Genetics 2016; 203:1439-51. [PMID: 27182946 DOI: 10.1534/genetics.115.183848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.
Collapse
|
190
|
Kartzinel RY, Spalink D, Waller DM, Givnish TJ. Divergence and isolation of cryptic sympatric taxa within the annual legume Amphicarpaea bracteata. Ecol Evol 2016; 6:3367-79. [PMID: 27103991 PMCID: PMC4833626 DOI: 10.1002/ece3.2134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022] Open
Abstract
The amphicarpic annual legume Amphicarpaea bracteata is unusual in producing aerial and subterranean cleistogamous flowers that always self‐fertilize and, less commonly, aerial chasmogamous flowers that outcross. Although both morphologic and genetic variants are known in this highly selfing species, debate continues over whether this variation is continuous, reflecting the segregation of standing genetic variation, or discontinuous, reflecting distinct taxa that rarely intercross. We characterized SNP variation in 128 individuals in southern Wisconsin to assess within‐ and among‐population variation at 3928 SNPs. We also assessed genotype and leaf morphology in an additional 76 individuals to connect phenotypic variation with genetic variation. Genetic variation maps onto three strongly divergent and highly inbred genetic groups showing little relation to site location. Each group has a distinct phenotype, but the divergence of these groups differs from the varietal divisions previously identified based on morphological characters. Like previous authors, we argue that the taxonomy of this species should be revised. Despite extensive sympatry, estimates of among‐group migration rates are low, and hybrid individuals were at low frequency (<2%) in our dataset. Restricted gene flow likely results from high selfing rates and partial reproductive incompatibility as evidenced by the U‐shaped distribution of pairwise FST values reflecting “islands” of genomic divergence. These islands may be associated with hybrid incompatibility loci that arose in allopatry. The coexistence of lineages within sites may reflect density‐dependent attack by species‐specific strains of pathogenic fungi and/or root‐nodulating bacteria specializing on distinct genotypes.
Collapse
Affiliation(s)
- Rebecca Y Kartzinel
- Department of Botany University of Wisconsin-Madison 430 Lincoln Drive Madison Wisconsin 53706
| | - Daniel Spalink
- Department of Botany University of Wisconsin-Madison 430 Lincoln Drive Madison Wisconsin 53706
| | - Donald M Waller
- Department of Botany University of Wisconsin-Madison 430 Lincoln Drive Madison Wisconsin 53706
| | - Thomas J Givnish
- Department of Botany University of Wisconsin-Madison 430 Lincoln Drive Madison Wisconsin 53706
| |
Collapse
|
191
|
Christe C, Stölting KN, Bresadola L, Fussi B, Heinze B, Wegmann D, Lexer C. Selection against recombinant hybrids maintains reproductive isolation in hybridizingPopulusspecies despite F1fertility and recurrent gene flow. Mol Ecol 2016; 25:2482-98. [DOI: 10.1111/mec.13587] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Camille Christe
- Department of Biology; University of Fribourg; Chemin du Musée 10 CH-1700 Fribourg Switzerland
| | - Kai N. Stölting
- Department of Biology; University of Fribourg; Chemin du Musée 10 CH-1700 Fribourg Switzerland
| | - Luisa Bresadola
- Department of Biology; University of Fribourg; Chemin du Musée 10 CH-1700 Fribourg Switzerland
| | - Barbara Fussi
- Applied Forest Genetics; Bavarian Office for Forest Seeding and Planting; Forstamtsplatz 1 83317 Teisendorf Germany
| | - Berthold Heinze
- Department of Genetics; Austrian Federal Research and Training Centre for Forests; Natural Hazards and Landscape; Seckendorff-Gudent-Weg 8 A-1130 Vienna Austria
| | - Daniel Wegmann
- Department of Biology; University of Fribourg; Chemin du Musée 10 CH-1700 Fribourg Switzerland
| | - Christian Lexer
- Department of Biology; University of Fribourg; Chemin du Musée 10 CH-1700 Fribourg Switzerland
- Department of Botany and Biodiversity Research; University of Vienna; Rennweg 14 A-1030 Vienna Austria
| |
Collapse
|
192
|
Ala-Honkola O, Ritchie MG, Veltsos P. Postmating-prezygotic isolation between two allopatric populations of Drosophila montana: fertilisation success differs under sperm competition. Ecol Evol 2016; 6:1679-91. [PMID: 27087932 PMCID: PMC4801965 DOI: 10.1002/ece3.1995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022] Open
Abstract
Postmating but prezygotic (PMPZ) interactions are increasingly recognized as a potentially important early‐stage barrier in the evolution of reproductive isolation. A recent study described a potential example between populations of the same species: single matings between Drosophila montana populations resulted in differential fertilisation success because of the inability of sperm from one population (Vancouver) to penetrate the eggs of the other population (Colorado). As the natural mating system of D. montana is polyandrous (females remate rapidly), we set up double matings of all possible crosses between the same populations to test whether competitive effects between ejaculates influence this PMPZ isolation. We measured premating isolation in no‐choice tests, female fecundity, fertility and egg‐to‐adult viability after single and double matings as well as second‐male paternity success (P2). Surprisingly, we found no PMPZ reproductive isolation between the two populations under a competitive setting, indicating no difficulty of sperm from Vancouver males to fertilize Colorado eggs after double matings. While there were subtle differences in how P2 changed over time, suggesting that Vancouver males’ sperm are somewhat less competitive in a first‐male role within Colorado females, these effects did not translate into differences in overall P2. Fertilisation success can thus differ dramatically between competitive and noncompetitive conditions, perhaps because the males that mate second produce higher quality ejaculates in response to sperm competition. We suggest that unlike in more divergent species comparisons, where sperm competition typically increases reproductive isolation, ejaculate tailoring can reduce the potential for PMPZ isolation when recently diverged populations interbreed.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biological and Environmental Science University of Jyvaskyla PO Box 35 FI- 40014 Jyvaskyla Finland
| | - Michael G Ritchie
- Centre for Biological Diversity School of Biology University of St Andrews St Andrews KY16 9TS UK
| | - Paris Veltsos
- Department of Ecology and Evolution University of Lausanne Biophore Building Lausanne 1015 Switzerland
| |
Collapse
|
193
|
Strong reproductive isolation despite occasional hybridization between a widely distributed and a narrow endemic Rhododendron species. Sci Rep 2016; 6:19146. [PMID: 26751844 PMCID: PMC4707479 DOI: 10.1038/srep19146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
Reproductive isolation (RI) plays an important role for speciation, but assessing reproductive barriers at all life-cycle stages remains challenging. In plants, most studies addressing the topic have been focusing on herbs with short generation times. The present study attempted to quantify several reproductive barriers between a hybridizing species pair of long-lived woody rhododendrons. Consistent with findings of previous studies, pre-zygotic reproductive barriers contributed more to total RI than post-zygotic reproductive barriers. Especially in the more widespread species geographic isolation was an important barrier, and pollinator constancy contributed exceptionally to RI in both species. Additionally to strong pre-zygotic reproductive barriers, post-zygotic reproductive barriers were considerable, and had asymmetric tendencies favoring one of the species as maternal parent. Overall, despite occasional hybridization, the present study provides evidence for strong RI between R. cyanocarpum and R. delavayi.
Collapse
|
194
|
Lafon-Placette C, Vallejo-Marín M, Parisod C, Abbott RJ, Köhler C. Current plant speciation research: unravelling the processes and mechanisms behind the evolution of reproductive isolation barriers. THE NEW PHYTOLOGIST 2016; 209:29-33. [PMID: 26625345 DOI: 10.1111/nph.13756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Clément Lafon-Placette
- Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala BioCenter, Uppsala, SE-75007, Sweden
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Christian Parisod
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Claudia Köhler
- Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala BioCenter, Uppsala, SE-75007, Sweden
| |
Collapse
|
195
|
Zhang JJ, Montgomery BR, Huang SQ. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species. AOB PLANTS 2016; 8:plw032. [PMID: 27178066 PMCID: PMC4940505 DOI: 10.1093/aobpla/plw032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/27/2016] [Indexed: 05/14/2023]
Abstract
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids.
Collapse
Affiliation(s)
- Jin-Ju Zhang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Benjamin R Montgomery
- Division of Natural Sciences & Engineering, University of South Carolina Upstate, Spartanburg, SC 29303, USA
| | - Shuang-Quan Huang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
196
|
Wang L, Zhang C, Tian B, Sun X, Guo W, Zhang T, Yang Y, Duan Y. Reproductive isolation is mediated by pollen incompatibility in sympatric populations of two Arnebia species. Ecol Evol 2015; 5:5838-46. [PMID: 26811758 PMCID: PMC4717334 DOI: 10.1002/ece3.1849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
To explore uncertain aspects of the processes that maintain species boundaries, we evaluated contributions of pre- and postpollination reproductive isolation mechanisms in sympatric populations of Arnebia guttata and A. szechenyi. For this, we investigated their phylogenetic relationships, traits, microenvironments, pollinator visits, action of natural selection on floral traits, and the outcome of hand pollination between the two species. Phylogenetic analysis indicates that A. szechenyi is a derived species that could be closely related to A. guttata, and both could be diploid species. Arnebia guttata flowers have larger parts than A. szechenyi flowers, but smaller nectar guides. Soil supporting A. szechenyi had higher water contents than soil supporting neighboring populations of A. guttata (in accordance with their geographical distributions). The pollinators shared by the two species preferred A. szechenyi flowers, but interspecific visitations were frequent. We found evidence of conflicting selection pressures on floral tube length, flower diameter and nectar guide size mediated via male fitness, and on flower diameter and floral tube diameter via female fitness. Hand-pollination experiments indicate complete pollen incompatibility between the two species. Our results suggest that postpollination prezygotic mechanisms are largely responsible for reproductive isolation of sympatric populations of the two Arnebia species.
Collapse
Affiliation(s)
- Lin‐Lin Wang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Plant Germplasm and Genomics Centerthe Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Institute of Tibetan Plateau Research at KunmingKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Chan Zhang
- College of Life SciencesHenan Normal UniversityXinxiang453007HenanChina
| | - Bin Tian
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Key Laboratory of Biodiversity Conservation in Southwest China of State Forestry AdministrationSouthwest Forestry UniversityKunming650224YunnanChina
| | - Xu‐Dong Sun
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Plant Germplasm and Genomics Centerthe Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Institute of Tibetan Plateau Research at KunmingKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Wen Guo
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Ting‐Feng Zhang
- College of Agriculture and BiotechnologyHexi UniversityZhangye734000GansuChina
| | - Yong‐Ping Yang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Plant Germplasm and Genomics Centerthe Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Institute of Tibetan Plateau Research at KunmingKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Yuan‐Wen Duan
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Plant Germplasm and Genomics Centerthe Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Institute of Tibetan Plateau Research at KunmingKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|