151
|
Yassin W, de Moura FB, Withey SL, Cao L, Kangas BD, Bergman J, Kohut SJ. Resting state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging. eNeuro 2024; 11:ENEURO.0173-23.2024. [PMID: 38627065 DOI: 10.1523/eneuro.0173-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/30/2024] Open
Abstract
Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys (n=12 adolescents [6 male/6 female] ∼2.5 years and n=15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (ICA) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared to adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.Significance Statement Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.
Collapse
Affiliation(s)
- Walin Yassin
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Fernando B de Moura
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Sarah L Withey
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Lei Cao
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
| | - Brian D Kangas
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| |
Collapse
|
152
|
Li M, Pu M, Ma Q, Heleven E, Baeken C, Baetens K, Deroost N, Van Overwalle F. One step too far: social cerebellum in norm-violating navigation. Soc Cogn Affect Neurosci 2024; 19:nsae027. [PMID: 38536051 PMCID: PMC11037276 DOI: 10.1093/scan/nsae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Social norms are pivotal in guiding social interactions. The current study investigated the potential contribution of the posterior cerebellum, a critical region involved in perceiving and comprehending the sequential dynamics of social actions, in detecting actions that either conform to or deviate from social norms. Participants engaged in a goal-directed task in which they observed others navigating towards a goal. The trajectories demonstrated either norm-violating (trespassing forbidden zones) or norm-following behaviors (avoiding forbidden zones). Results revealed that observing social norm-violating behaviors engaged the bilateral posterior cerebellar Crus 2 and the right temporoparietal junction (TPJ) from the mentalizing network, and the parahippocampal gyrus (PHG) to a greater extent than observing norm-following behaviors. These mentalizing regions were also activated when comparing social sequences against non-social and non-sequential control conditions. Reproducing norm-violating social trajectories observed earlier, activated the left cerebellar Crus 2 and the right PHG compared to reproducing norm-following trajectories. These findings illuminate the neural mechanisms in the cerebellum associated with detecting norm transgressions during social navigation, emphasizing the role of the posterior cerebellum in detecting and signaling deviations from anticipated sequences.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Min Pu
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal 14558, Germany
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing 100083, China
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, Netherlands
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
153
|
Schurz M, Berenz JP, Maerz J, Perla R, Buchheim A, Labek K. Brain Activation for Social Cognition and Emotion Processing Tasks in Borderline Personality Disorder: A Meta-Analysis of Neuroimaging Studies. Brain Sci 2024; 14:395. [PMID: 38672044 PMCID: PMC11048542 DOI: 10.3390/brainsci14040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The present meta-analysis summarizes brain activation for social cognition and emotion-processing tasks in borderline personality disorder (BPD). We carried out two meta-analyses to elaborate on commonalities and potential differences between the two types of tasks. In the first meta-analysis, we implemented a more liberal strategy for task selection (including social and emotional content). The results confirmed previously reported hyperactivations in patients with BPD in the bilateral amygdala and prefrontal cortex and hypoactivations in bilateral inferior frontal gyri. When applying a stricter approach to task selection, focusing narrowly on social cognition tasks, we only found activation in prefrontal areas, particularly in the anterior cingulate and ventromedial prefrontal cortex. We review the role of these areas in social cognition in healthy adults, suggesting that the observed BPD hyperactivations may reflect an overreliance on self-related thought in social cognition.
Collapse
Affiliation(s)
- Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck, Austria
| | - Jan-Patrick Berenz
- Department of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck, Austria
| | - Jeff Maerz
- Department of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck, Austria
| | - Raphael Perla
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck, Austria
| | - Anna Buchheim
- Department of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck, Austria
| | - Karin Labek
- Department of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
154
|
Jin P, Wang F, Zeng F, Yu J, Cui F, Yang B, Zhang L. Revealing the mechanism of central pain hypersensitivity in primary dysmenorrhea: evidence from neuroimaging. Quant Imaging Med Surg 2024; 14:3075-3085. [PMID: 38617141 PMCID: PMC11007516 DOI: 10.21037/qims-23-1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/29/2024] [Indexed: 04/16/2024]
Abstract
Background Primary dysmenorrhea (PDM) is the most common problem in menstruating women. A number of functional magnetic resonance imaging (fMRI) study have revealed that the brain plays a crucial role in the pathophysiology of PDM. However, these results have been inconsistent, and there is a lack of a comprehensive fMRI study to clarify the onset and long-term effects of PDM. The aim of this study was thus to investigate the onset and long-term effects of PDM in a cohort of patients with PDM. Methods This study employed a cross-sectional design with prospective data collection, in which 25 patients with PDM and 20 healthy controls (HCs) were recruited. The patients with PDM underwent fMRI scans both during the PDM during the pain phase (PDM-P) and nonpain phase (PDM-NP). The long-term effects of PDM on the brain was assessed by comparing PDM-NP findings with those of HCs, and the central mechanism of PDM was assessed by comparing the PDM-P findings with those of PDM-NP. To identify changes in brain function, the amplitude of low-frequency fluctuations and the regional homogeneity (ReHo) were measured. To assess changes in brain structure, voxel-based morphometry (VBM) was applied. The periaqueductal gray (PAG) was set as a region of for conducting seed-based whole-brain functional connectivity (FC) analysis. Subsequently, Pearson correlation analyses were employed to evaluate the associations between the abnormal brain region and the clinical information of the patients. Results There were neither functional nor structural differences between patients in the PDM-NP and HCs. Compared with those in PDM-NP, those in PDM-P showed increased ReHo in the left dorsolateral prefrontal cortex (DLPFC) but decreased FC between PAG and right superior parietal gyrus, bilateral inferior parietal gyrus, right calcarine gyrus, left superior occipital gyrus, left precentral gyrus, right DLPFC, and left crus I of the cerebellar hemisphere. Conclusions The results from this study suggest that the mechanism of central pain hypersensitivity of PDM may be related to the disorder of the FC between the PAG and descending pain modulation system, default mode network (DMN), and occipital lobe. These findings could help us better understand the pathophysiology of PDM from a neuroimaging perspective.
Collapse
Affiliation(s)
- Ping Jin
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangli Wang
- Department of Acupuncture and Moxibustion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Fanfan Zeng
- Department of Ultrasound, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Yu
- Department of Acupuncture and Moxibustion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Cui
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingkui Yang
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Zhang
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
155
|
Wannemueller A, Margraf J, Busch M, Jöhren HP, Suchan B. More than fear? Brain activation patterns of dental phobic patients before and after an exposure-based treatment. J Neural Transm (Vienna) 2024; 131:393-404. [PMID: 38424282 PMCID: PMC11016127 DOI: 10.1007/s00702-024-02754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Hyperactivation of brain networks conferring defensive mobilization is assumed to underlie inappropriate defensive-preparation in patients with Specific Phobia. However, studies targeting Dental Phobia (DP) yielded quite heterogeneous results and research concerning the effects of exposure treatments on phobic brain activation so far is missing. This functional Magnetic Resonance Imaging (fMRI) study aimed to investigate activation patterns in DP patients during exposure to phobia-related stimuli and the effects of an exposure-based fear treatment on phobia-related activation. Seventeen patients with DP and seventeen non-phobic, healthy controls participated in this fMRI experiment presenting dental-related and neutral auditory and visual stimuli. After completing a short exposure-based CBT program, patients were scanned a second time to illustrate treatment-related changes in brain activation patterns. Pre-treatment fMRI results demonstrate enhanced activation in DP-patients mainly in the precuneus and lateral parietal cortex. Moreover, a small activation focus was observed in the amygdala and anterior cingulate cortex (ACC) as parts of classically fear-related structures. Activation in all these clusters decreased significantly from pre- to post-treatment assessment and in the case of the ACC was correlated with dental fear reduction. Activation changes in the precuneus and lateral parietal cortex suggest a pronounced first-person perspective memory processing including a vivid recall of contextual information from an egocentric perspective triggered by exposure to phobia-related stimuli. Besides a treatment-sensitive hyperactivity of fear-sensitive structures, DP may also be characterized by a disturbed memory retrieval that can be reorganized by successful exposure treatment.
Collapse
Affiliation(s)
- André Wannemueller
- Center for the Study and Treatment of Mental Health, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany.
| | - Jürgen Margraf
- Center for the Study and Treatment of Mental Health, Ruhr University Bochum, Massenbergstr. 9-13, 44787, Bochum, Germany
| | - Martin Busch
- Grönemeyer-Institut for Microtherapy, Bochum, Germany
| | | | - Boris Suchan
- Clinical Neuropsychology, Neuropsychological Therapy Centre, Ruhr University, Bochum, Germany
| |
Collapse
|
156
|
Krieger-Redwood K, Wang X, Souter N, Gonzalez Alam TRDJ, Smallwood J, Jackson RL, Jefferies E. Graded and sharp transitions in semantic function in left temporal lobe. BRAIN AND LANGUAGE 2024; 251:105402. [PMID: 38484446 DOI: 10.1016/j.bandl.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Recent work has focussed on how patterns of functional change within the temporal lobe relate to whole-brain dimensions of intrinsic connectivity variation (Margulies et al., 2016). We examined two such 'connectivity gradients' reflecting the separation of (i) unimodal versus heteromodal and (ii) visual versus auditory-motor cortex, examining visually presented verbal associative and feature judgments, plus picture-based context and emotion generation. Functional responses along the first dimension sometimes showed graded change between modality-tuned and heteromodal cortex (in the verbal matching task), and other times showed sharp functional transitions, with deactivation at the extremes and activation in the middle of this gradient (internal generation). The second gradient revealed more visual than auditory-motor activation, regardless of content (associative, feature, context, emotion) or task process (matching/generation). We also uncovered subtle differences across each gradient for content type, which predominantly manifested as differences in relative magnitude of activation or deactivation.
Collapse
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Souter
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom; School of Psychology, University of Sussex, Brighton, United Kingdom
| | | | | | - Rebecca L Jackson
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom.
| |
Collapse
|
157
|
Chen Y, Zhang L, Yin H. Different emotion regulation strategies mediate the relations of corresponding connections within the default-mode network to sleep quality. Brain Imaging Behav 2024; 18:302-314. [PMID: 38057650 DOI: 10.1007/s11682-023-00828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Despite a long history of interest in the relation of emotion regulation to sleep quality, how different strategies link with sleep quality at the neural level is still poorly understood. Thus, we utilized the process model of emotion regulation as an organizing framework for examining the neurological underpinning of the links between the two emotion regulation strategies and sleep quality. 183 young adults (51.7% females, Mage = 22.16) were guided to undergo the MRI scans and then complete the Pittsburgh Sleep Quality Index (PSQI) and the emotion regulation Questionnaire (ERQ) formed by two dimensions: cognitive reappraisal and expressive suppression. Results found that emotion regulation mediated the association between functional connectivity within the intrinsic default-mode network (DMN) and sleep quality. Specifically, rsFC analysis showed that cognitive reappraisal was positively correlated with rsFC within DMN, including left superior temporal gyrus (lSTG)-left lateral occipital cortex (lLOC), lSTG-left anterior cingulate gyrus (lACG), right lateral occipital cortex (rLOC)-left middle frontal gyrus (lMFG), and rLOC-lSTG. Further mediation analysis indicated a mediated role of cognitive reappraisal in the links between the four connectivity within the DMN and sleep quality. In addition, expressive suppression was positively correlated with rsFC within DMN, including left precuneus cortex (lPrcu)-right Temporal Pole (rTP) and lPrcu- lSTG. Further mediation analysis indicated a mediated role of expressive suppression in the links between the two connectivity within the DMN and sleep quality. Overall, this finding supports the process model of emotion regulation in that the effects of reappraisal and suppression have varying neural circuits that impact that strategy's effect on sleep quality.
Collapse
Affiliation(s)
- Yang Chen
- Department of Psychology, School of Education Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China
- Centre for Mind & Brain Science, Hunan Normal University, Changsha, China
| | - Li Zhang
- Department of Psychology, School of Education Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China
- Centre for Mind & Brain Science, Hunan Normal University, Changsha, China
| | - Huazhan Yin
- Department of Psychology, School of Education Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China.
- Centre for Mind & Brain Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
158
|
Ahmed AK, Zhuo J, Gullapalli RP, Jiang L, Keaser ML, Greenspan JD, Chen C, Miller TR, Melhem ER, Sansur CA, Eisenberg HM, Gandhi D. Focused Ultrasound Central Lateral Thalamotomy for the Treatment of Refractory Neuropathic Pain: Phase I Trial. Neurosurgery 2024; 94:690-699. [PMID: 37947407 DOI: 10.1227/neu.0000000000002752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Magnetic resonance-guided focused ultrasound (MRgFUS) central lateral thalamotomy (CLT) has not yet been validated for treating refractory neuropathic pain (NP). Our aim was to assess the safety and potential efficacy of MRgFUS CLT for refractory NP. METHODS In this prospective, nonrandomized, single-arm, investigator-initiated phase I trial, patients with NP for more than 6 months related to phantom limb pain, spinal cord injury, or radiculopathy/radicular injury and who had undergone at least one previous failed intervention were eligible. The main outcomes were safety profile and pain as assessed using the brief pain inventory, the pain disability index, and the numeric rating scale. Medication use and the functional connectivity of the default mode network (DMN) were also assessed. RESULTS Ten patients were enrolled, with nine achieving successful ablation. There were no serious adverse events and 12 mild/moderate severity events. The mean age was 50.9 years (SD: 12.7), and the mean symptom duration was 12.3 years (SD: 9.7). Among eight patients with a 1-year follow-up, the brief pain inventory decreased from 7.6 (SD: 1.1) to 3.8 (SD: 2.8), with a mean percent decrease of 46.3 (SD: 40.6) (paired t -test, P = .017). The mean pain disability index decreased from 43.0 (SD: 7.5) to 25.8 (SD: 16.8), with a mean percent decrease of 39.3 (SD: 41.6) ( P = .034). Numeric rating scale scores decreased from a mean of 7.2 (SD: 1.8) to 4.0 (SD: 2.8), with a mean percent decrease of 42.8 (SD: 37.8) ( P = .024). Patients with predominantly intermittent pain or with allodynia responded better than patients with continuous pain or without allodynia, respectively. Some patients decreased medication use. Resting-state functional connectivity changes were noted, from disruption of the DMN at baseline to reactivation of connectivity between DMN nodes at 3 months. CONCLUSION MRgFUS CLT is feasible and safe for refractory NP and has potential utility in reducing symptoms as measured by validated pain scales.
Collapse
Affiliation(s)
- Abdul-Kareem Ahmed
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Li Jiang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore , Maryland , USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore , Maryland , USA
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore , Maryland , USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore , Maryland , USA
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore , Maryland , USA
- Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Timothy R Miller
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Charles A Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Howard M Eisenberg
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore , Maryland , USA
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore , Maryland , USA
| |
Collapse
|
159
|
Pelletier-Baldelli A, Sheridan MA, Rudolph MD, Eisenlohr-Moul T, Martin S, Srabani EM, Giletta M, Hastings PD, Nock MK, Slavich GM, Rudolph KD, Prinstein MJ, Miller AB. Brain network connectivity during peer evaluation in adolescent females: Associations with age, pubertal hormones, timing, and status. Dev Cogn Neurosci 2024; 66:101357. [PMID: 38359577 PMCID: PMC10878848 DOI: 10.1016/j.dcn.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Despite copious data linking brain function with changes to social behavior and mental health, little is known about how puberty relates to brain functioning. We investigated the specificity of brain network connectivity associations with pubertal indices and age to inform neurodevelopmental models of adolescence. We examined how brain network connectivity during a peer evaluation fMRI task related to pubertal hormones (dehydroepiandrosterone and testosterone), pubertal timing and status, and age. Participants were 99 adolescents assigned female at birth aged 9-15 (M = 12.38, SD = 1.81) enriched for the presence of internalizing symptoms. Multivariate analysis revealed that within Salience, between Frontoparietal - Reward and Cinguloopercular - Reward network connectivity were associated with all measures of pubertal development and age. Specifically, Salience connectivity linked with age, pubertal hormones, and status, but not timing. In contrast, Frontoparietal - Reward connectivity was only associated with hormones. Finally, Cinguloopercular - Reward connectivity related to age and pubertal status, but not hormones or timing. These results provide evidence that the salience processing underlying peer evaluation is jointly influenced by various indices of puberty and age, while coordination between cognitive control and reward circuitry is related to pubertal hormones, pubertal status, and age in unique ways.
Collapse
Affiliation(s)
- Andrea Pelletier-Baldelli
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc D Rudolph
- Sticht Center on Aging, Wake Forest School of Medicine, Wake Forest, NC, USA
| | - Tory Eisenlohr-Moul
- Department of Psychiatry, University of Illinois Chicago College of Medicine, Chicago, IL, USA
| | - Sophia Martin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ellora M Srabani
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matteo Giletta
- Department of Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
| | - Paul D Hastings
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Matthew K Nock
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen D Rudolph
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Bryant Miller
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
160
|
Fan S, Zhang J, Wu Y, Yu Y, Zheng H, Guo YY, Ji Y, Pang X, Tian Y. Changed brain entropy and functional connectivity patterns induced by electroconvulsive therapy in majoy depression disorder. Psychiatry Res Neuroimaging 2024; 339:111788. [PMID: 38335560 DOI: 10.1016/j.pscychresns.2024.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Our objective is to innovatively integrate both linear and nonlinear characteristics of brain signals in Electroconvulsive Therapy (ECT) research, with the goal of uncovering deeper insights into the pathogenesis of Major Depressive Disorder (MDD) and identifying novel targets for other physical intervention therapies. METHODS We measured brain entropy (BEN) in 42 MDD patients and 42 matched healthy controls (HC) using rs-fMRI data. Brain regions that differed significantly in patients with MDD before and after ECT were extracted. Then, we use these brain regions as seed points to investigate the differences in whole-brain resting-state functional connectivity (RSFC) patterns before and after ECT. RESULTS Compared to HCs, patients had higher BEN levels in the right precuneus (PCUN.R) and right angular gyrus (ANG.R). After ECT, patients had lower BEN levels in the PCUN.R and ANG.R. Compared with before ECT, patients showed significantly increased RSFC after ECT between the PCUN.R and right middle temporal gyrus and ANG.R. Significantly increased RSFC was observed between the ANG.R and right middle frontal gyrus and right supramarginal gyrus after ECT. CONCLUSION Combining the linear and nonlinear characteristics of brain signals can effectively explore the pathogenesis of depression and provide new targets for ECT.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Jiahua Zhang
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei,. 230601, PR China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Hao Zheng
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Yuan Yuan Guo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Xiaonan Pang
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Yanghua Tian
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, PR China; Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, PR China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, PR China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei,. 230601, PR China.
| |
Collapse
|
161
|
Vanutelli ME, Grigis C, Lucchiari C. Breathing Right… or Left! The Effects of Unilateral Nostril Breathing on Psychological and Cognitive Wellbeing: A Pilot Study. Brain Sci 2024; 14:302. [PMID: 38671954 PMCID: PMC11048276 DOI: 10.3390/brainsci14040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The impact of controlled breathing on cognitive and affective processing has been recognized since ancient times, giving rise to multiple practices aimed at achieving different psychophysical states, mostly related to mental clarity and focus, stress reduction, and relaxation. Previous scientific research explored the effects of forced unilateral nostril breathing (UNB) on brain activity and emotional and cognitive functions. Some evidence concluded that it had a contralateral effect, while other studies presented controversial results, making it difficult to come to an unambiguous interpretation. Also, a few studies specifically addressed wellbeing. In the present study, we invited a pilot sample of 20 participants to take part in an 8-day training program for breathing, and each person was assigned to either a unilateral right nostril (URNB) or left nostril breathing condition (ULNB). Then, each day, we assessed the participants' wellbeing indices using their moods and mind wandering scales. The results revealed that, after the daily practice, both groups reported improved wellbeing perception. However, the effect was specifically related to the nostril involved. URNB produced more benefits in terms of stress reduction and relaxation, while ULNB significantly and increasingly reduced mind-wandering occurrences over time. Our results suggest that UNB can be effectively used to increase wellbeing in the general population. Additionally, they support the idea that understanding the effects of unilateral breathing on wellbeing and cognition requires a complex interpretive model with multiple brain networks to address bottom-up and top-down processes.
Collapse
Affiliation(s)
- Maria Elide Vanutelli
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy
| | - Chiara Grigis
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
| | - Claudio Lucchiari
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
| |
Collapse
|
162
|
Han M, He C, Li T, Li Q, Chu T, Li J, Wang P. Altered dynamic and static brain activity and functional connectivity in COVID-19 patients: a preliminary study. Neuroreport 2024; 35:306-315. [PMID: 38305116 DOI: 10.1097/wnr.0000000000002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aimed to investigate the effects of COVID-19 on brain functional activity through resting-state functional MRI (rs-fMRI). fMRI scans were conducted on a cohort of 42 confirmed COVID-19-positive patients and 46 healthy controls (HCs) to assess brain functional activity. A combination of dynamic and static amplitude of low-frequency fluctuations (dALFF/sALFF) and dynamic and static functional connectivity (dFC/sFC) was used for evaluation. Abnormal brain regions identified were then used as feature inputs in the model to evaluate support vector machine (SVM) capability in recognizing COVID-19 patients. Moreover, the random forest (RF) model was employed to verify the stability of SVM diagnoses for COVID-19 patients. Compared to HCs, COVID-19 patients exhibited a decrease in sALFF in the right lingual gyrus and the left medial occipital gyrus and an increase in dALFF in the right straight gyrus. Moreover, there was a decline in sFC between both lingual gyri and the right superior occipital gyrus and a reduction in dFC with the precentral gyrus. The dynamic and static combined ALFF and FC could distinguish between COVID-19 patients and the HCs with an accuracy of 0.885, a specificity of 0.818, a sensitivity of 0.933 and an area under the curve of 0.909. The combination of dynamic and static ALFF and FC can provide information for detecting brain functional abnormalities in COVID-19 patients.
Collapse
Affiliation(s)
- Mingxing Han
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Chunni He
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Tianping Li
- Department of Radiology, The Second Hospital of Jiaxing, Jiaxing, People's Republic of China
| | - Qinglong Li
- Department of Magenetic Resonance Imaging (MRI), Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| |
Collapse
|
163
|
Al-Abyadh MHA, Alatawi MA, Emara EAM, Almasoud SA, Alsetoohy O, Ali ARM. Do Smartphone Addiction and Self-Regulation Failures Affect Students' Academic Life Satisfaction? The Role of Students' Mind Wandering and Cognitive Failures. Psychol Res Behav Manag 2024; 17:1231-1253. [PMID: 38524287 PMCID: PMC10959119 DOI: 10.2147/prbm.s437076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose The purpose of this study is to investigate how smartphone addiction and self-regulation failure influence students' academic life satisfaction considering the impacts of students' mind wandering and cognitive failures. It also sought to look at how students' minds wander, and cognitive failures are affected by smartphone addiction and self-regulation failure among university students. Methods The WarpPLS-SEM software was used to analyze the research data retrieved from a sample of 950 undergraduate students from universities in Egypt and the Kingdom of Saudi Arabia (KSA). Results In both countries, the findings revealed that students' smartphone addiction and self-regulation failures negatively affect students' academic life satisfaction and positively affect students' mind wandering and cognitive failures. Additionally, smartphone addiction is positively related to failures of students' self-regulation. Besides the negative influences of students' cognitive failures on their academic life satisfaction, cognitive failures mediated negatively the relationship between mind wandering and students' academic life satisfaction. Finally, students' mind wandering mediated the relationship between smartphone addiction, self-regulation failure, and academic life satisfaction. Discussion The study introduces fresh insights into the study variables that can be used to expand the literature on academic life satisfaction. The study provides theoretical and practical contributions to students, educators, and policymakers of education.
Collapse
Affiliation(s)
- Mohammed Hasan Ali Al-Abyadh
- Department of Special Education, College of Education in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
- College of Education, Thamar University, Dhamar, Yemen
| | - Marwan Atallah Alatawi
- Department of Special Education, College of Education and Art, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Eslam Abdelhafiz Mohamed Emara
- Department of Educational and Psychological Sciences, Faculty of Special Education, Damietta University, New Damietta, Egypt
| | - Sahar Abdulaziz Almasoud
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Omar Alsetoohy
- Department of Hotel Management, Faculty of Tourism and Hotels, University of Sadat City, Sadat City, Egypt
| | | |
Collapse
|
164
|
Peters‐Founshtein G, Gazit L, Naveh T, Domachevsky L, Korczyn AD, Bernstine H, Shaharabani‐Gargir L, Groshar D, Marshall GA, Arzy S. Lost in space(s): Multimodal neuroimaging of disorientation along the Alzheimer's disease continuum. Hum Brain Mapp 2024; 45:e26623. [PMID: 38488454 PMCID: PMC10941506 DOI: 10.1002/hbm.26623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 03/18/2024] Open
Abstract
Orientation is a fundamental cognitive faculty and the bedrock of the neurologic examination. Orientation is defined as the alignment between an individual's internal representation and the external world in the spatial, temporal, and social domains. While spatial disorientation is a recognized hallmark of Alzheimer's disease (AD), little is known about disorientation beyond space in AD. This study aimed to explore disorientation in spatial, temporal, and social domains along the AD continuum. Fifty-one participants along the AD continuum performed an ecological orientation task in the spatial, temporal, and social domains while undergoing functional MRI. Disorientation in AD followed a three-way association between orientation domain, brain region, and disease stage. Specifically, patients with early amnestic mild cognitive impairment exhibited spatio-temporal disorientation and reduced brain activity in temporoparietal regions, while patients with AD dementia showed additional social disorientation and reduced brain activity in frontoparietal regions. Furthermore, patterns of hypoactivation overlapped different subnetworks of the default mode network, patterns of fluorodeoxyglucose hypometabolism, and cortical atrophy characteristic of AD. Our results suggest that AD may encompass a disorder of orientation, characterized by a biphasic process manifesting as early spatio-temporal and late social disorientation. As such, disorientation may offer a unique window into the clinicopathological progression of AD. SIGNIFICANCE STATEMENT: Despite extensive research into Alzheimer's disease (AD), its core cognitive deficit remains a matter of debate. In this study, we investigated whether orientation, defined as the ability to align internal representations with the external world in spatial, temporal, and social domains, constitutes a core cognitive deficit in AD. To do so, we used PET-fMRI imaging to collect behavioral, functional, and metabolic data from 51 participants along the AD continuum. Our findings suggest that AD may constitute a disorder of orientation, characterized by an early spatio-temporal disorientation and followed by late social disorientation, manifesting in task-evoked and neurodegenerative changes. We propose that a profile of disorientation across multiple domains offers a unique window into the progression of AD and as such could greatly benefit disease diagnosis, monitoring, and evaluation of treatment response.
Collapse
Affiliation(s)
- Gregory Peters‐Founshtein
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of Nuclear MedicineSheba Medical CenterRamat‐GanIsrael
| | - Lidor Gazit
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of NeurologyHadassah Hebrew University Medical SchoolJerusalemIsrael
| | - Tahel Naveh
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of NeurologyHadassah Hebrew University Medical SchoolJerusalemIsrael
| | - Liran Domachevsky
- Department of Nuclear MedicineSheba Medical CenterRamat‐GanIsrael
- Department of Nuclear MedicineAssuta Medical CenterTel‐AvivIsrael
| | | | - Hanna Bernstine
- Department of Nuclear MedicineAssuta Medical CenterTel‐AvivIsrael
- Department of ImagingTel‐Aviv UniversityTel‐AvivIsrael
- Department of Nuclear MedicineRabin Medical CenterPetah TikvaIsrael
| | | | - David Groshar
- Department of Nuclear MedicineAssuta Medical CenterTel‐AvivIsrael
- Department of ImagingTel‐Aviv UniversityTel‐AvivIsrael
| | - Gad A. Marshall
- Department of Neurology, Center for Alzheimer Research and Treatment, Harvard Medical School, Brigham and Women's HospitalMassachusetts General HospitalBostonMassachusettsUSA
| | - Shahar Arzy
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of NeurologyHadassah Hebrew University Medical SchoolJerusalemIsrael
| |
Collapse
|
165
|
Fang A, Baran B, Feusner JD, Phan KL, Beatty CC, Crane J, Jacoby RJ, Manoach DS, Wilhelm S. Self-focused brain predictors of cognitive behavioral therapy response in a transdiagnostic sample. J Psychiatr Res 2024; 171:108-115. [PMID: 38266332 PMCID: PMC10922639 DOI: 10.1016/j.jpsychires.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Effective biomarkers of cognitive behavioral therapy (CBT) response provide information beyond available behavioral or self-report measures and may optimize treatment selection for patients based on likelihood of benefit. No single biomarker reliably predicts CBT response. In this study, we evaluated patterns of brain connectivity associated with self-focused attention (SFA) as biomarkers of CBT response for anxiety and obsessive-compulsive disorders. We hypothesized that pre-treatment as well as pre-to post-treatment changes in functional connectivity would be associated with improvement during CBT in a transdiagnostic sample. METHODS Twenty-seven patients with primary social anxiety disorder (n = 14) and primary body dysmorphic disorder (n = 13) were scanned before and after 12 sessions of CBT targeting their primary disorder. Eligibility was based on elevated trait SFA scores on the Public Self-Consciousness Scale. Seed-based resting state functional connectivity associated with symptom improvement was computed using a seed in the posterior cingulate cortex of the default mode network. RESULTS At pre-treatment, stronger positive connectivity of the seed with the cerebellum, and stronger negative connectivity with the putamen, were associated with greater clinical improvement. Between pre-to post-treatment, greater anticorrelation between the seed and postcentral gyrus, extending into the inferior parietal lobule and precuneus/superior parietal lobule was associated with clinical improvement, although this did not survive thresholding. CONCLUSIONS Pre-treatment functional connectivity with the default mode network was associated with CBT response. Behavioral and self-report measures of SFA did not contribute to predictions, thus highlighting the value of neuroimaging-based measures of SFA. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov Identifier: NCT02808702 https://clinicaltrials.gov/ct2/show/NCT02808702.
Collapse
Affiliation(s)
- Angela Fang
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525, USA.
| | - Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242-1407, USA
| | - Jamie D Feusner
- Centre for Addiction and Mental Health, Brain Imaging Health Center, Ontario, Toronto, Canada, M5T1R8; Department of Psychiatry, University of Toronto, Ontario, Toronto, Canada, M5T1R8; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, 43210-1240, USA
| | - Clare C Beatty
- Department of Psychology, Stony Brook University, Stony Brook, NY, 11794-2500, USA
| | - Jessica Crane
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525, USA
| | - Ryan J Jacoby
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129-2020, USA
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696, USA
| |
Collapse
|
166
|
Kim YW, Kim S, Jin MJ, Im CH, Lee SH. The Importance of Low-frequency Alpha (8-10 Hz) Waves and Default Mode Network in Behavioral Inhibition. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:53-66. [PMID: 38247412 PMCID: PMC10811390 DOI: 10.9758/cpn.22.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 01/23/2024]
Abstract
Objective : Alpha wave of electroencephalography (EEG) is known to be related to behavioral inhibition. Both the alpha wave and default mode network (DMN) are predominantly activated during resting-state. To study the mechanisms of the trait inhibition, this research investigating the relations among alpha wave, DMN and behavioral inhibition in resting-state. Methods : We explored the relationship among behavioral inhibition, resting-state alpha power, and DMN. Resting-state EEG, behavioral inhibition/behavioral activation scale (BIS/BAS), Barratt impulsivity scale, and no-go accuracy were assessed in 104 healthy individuals. Three groups (i.e., participants with low/middle/high band power) were formed based on the relative power of each total-alpha, low-alpha (LA), and high-alpha band. Source-reconstructed EEG and functional network measures of 25 DMN regions were calculated. Results : Significant differences and correlations were found based on LA band power alone. The high LA group had significantly greater BIS, clustering coefficient, efficiency, and strength, and significantly lower path length than low/middle LA group. BIS score showed a significant correlation with functional network measures of DMN. Conclusion : Our study revealed that LA power is related to behavioral inhibition and functional network measures of DMN of LA band appear to represent significant inhibitory function.
Collapse
Affiliation(s)
- Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Korea
| | - Min Jin Jin
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Institute of General Education, Kongju National University, Gongju, Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
167
|
Jauny G, Mijalkov M, Canal-Garcia A, Volpe G, Pereira J, Eustache F, Hinault T. Linking structural and functional changes during aging using multilayer brain network analysis. Commun Biol 2024; 7:239. [PMID: 38418523 PMCID: PMC10902297 DOI: 10.1038/s42003-024-05927-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
Brain structure and function are intimately linked, however this association remains poorly understood and the complexity of this relationship has remained understudied. Healthy aging is characterised by heterogenous levels of structural integrity changes that influence functional network dynamics. Here, we use the multilayer brain network analysis on structural (diffusion weighted imaging) and functional (magnetoencephalography) data from the Cam-CAN database. We found that the level of similarity of connectivity patterns between brain structure and function in the parietal and temporal regions (alpha frequency band) is associated with cognitive performance in healthy older individuals. These results highlight the impact of structural connectivity changes on the reorganisation of functional connectivity associated with the preservation of cognitive function, and provide a mechanistic understanding of the concepts of brain maintenance and compensation with aging. Investigation of the link between structure and function could thus represent a new marker of individual variability, and of pathological changes.
Collapse
Affiliation(s)
- Gwendolyn Jauny
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Thomas Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
168
|
Fields C, Glazebrook JF, Levin M. Principled Limitations on Self-Representation for Generic Physical Systems. ENTROPY (BASEL, SWITZERLAND) 2024; 26:194. [PMID: 38539706 PMCID: PMC10969210 DOI: 10.3390/e26030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 11/11/2024]
Abstract
The ideas of self-observation and self-representation, and the concomitant idea of self-control, pervade both the cognitive and life sciences, arising in domains as diverse as immunology and robotics. Here, we ask in a very general way whether, and to what extent, these ideas make sense. Using a generic model of physical interactions, we prove a theorem and several corollaries that severely restrict applicable notions of self-observation, self-representation, and self-control. We show, in particular, that adding observational, representational, or control capabilities to a meta-level component of a system cannot, even in principle, lead to a complete meta-level representation of the system as a whole. We conclude that self-representation can at best be heuristic, and that self models cannot, in general, be empirically tested by the systems that implement them.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| | - James F. Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL 61920, USA;
- Adjunct Faculty, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
169
|
Dimitriadis SI, Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, García-Molina A, Monte-Rubio G, Stillman C, Perera-Lluna A, Mataró M. Intrinsic functional brain connectivity changes following aerobic exercise, computerized cognitive training, and their combination in physically inactive healthy late-middle-aged adults: the Projecte Moviment. GeroScience 2024; 46:573-596. [PMID: 37872293 PMCID: PMC10828336 DOI: 10.1007/s11357-023-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
Lifestyle interventions have positive neuroprotective effects in aging. However, there are still open questions about how changes in resting-state functional connectivity (rsFC) contribute to cognitive improvements. The Projecte Moviment is a 12-week randomized controlled trial of a multimodal data acquisition protocol that investigated the effects of aerobic exercise (AE), computerized cognitive training (CCT), and their combination (COMB). An initial list of 109 participants was recruited from which a total of 82 participants (62% female; age = 58.38 ± 5.47) finished the intervention with a level of adherence > 80%. Only in the COMB group, we revealed an extended network of 33 connections that involved an increased and decreased rsFC within and between the aDMN/pDMN and a reduced rsFC between the bilateral supplementary motor areas and the right thalamus. No global and especially local rsFC changes due to any intervention mediated the cognitive benefits detected in the AE and COMB groups. Projecte Moviment provides evidence of the clinical relevance of lifestyle interventions and the potential benefits when combining them.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
| | - Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Institut d'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Badalona, Spain
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a La Recerca Metropolitana Nord, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Alberto García-Molina
- Institut d'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Gemma Monte-Rubio
- Centre for Comparative Medicine and Bioimage (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Chelsea Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandre Perera-Lluna
- B2SLab, Departament d'Enginyeria de Sistemes, CIBER-BBN, Automàtica I Informàtica Industrial, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain
- Department of Biomedical Engineering, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
170
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
171
|
Saxena A, Liu S, Handley ED, Dodell-Feder D. Social victimization, default mode network connectivity, and psychotic-like experiences in adolescents. Schizophr Res 2024; 264:462-470. [PMID: 38266514 DOI: 10.1016/j.schres.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
Social victimization (SV) and altered neural connectivity have been associated with each other and psychotic-like experiences (PLE). However, research has not directly examined the associations between these variables, which may speak to mechanisms of psychosis-risk. Here, we utilized two-year follow-up data from the Adolescent Brain Cognitive Development study to test whether SV increases PLE through two neural networks mediating socio-affective processes: the default mode (DMN) and salience networks (SAN). We find that a latent SV factor was significantly associated with PLE outcomes. Simultaneous mediation analyses indicated that the DMN partially mediated the SV-PLE association while the SAN did not. Further, multigroup testing found that while Black and Hispanic adolescents experienced SV differently than their White peers, the DMN similarly partially mediated the effect of SV on PLE for these racial groups. These cross-sectional results highlight the importance of SV and its potential impact on social cognitive neural networks for psychosis risk.
Collapse
Affiliation(s)
| | - Shangzan Liu
- University of Pennsylvania, United States of America
| | | | | |
Collapse
|
172
|
Teghil A, Boccia M. Brain connectivity patterns associated with individual differences in the access to experience-near personal semantics: a resting-state fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:87-99. [PMID: 38200283 PMCID: PMC10827898 DOI: 10.3758/s13415-023-01149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
It has been proposed that a continuum of specificity exists between episodic and semantic autobiographical memory. Personal semantics have been theorized to situate intermediately on this continuum, with more "experience-near" personal semantics (enPS) closer to the episodic end. We used individual differences in behavior as a model to investigate brain networks associated with the access to episodic autobiographical (EAM) and enPS information, assessing the relation between performance in the EAM and enPS conditions of the Autobiographical Fluency Task (AFT) and intrinsic brain connectivity. Results of an intrinsic connectivity contrast analysis showed that the global connectivity of two clusters in the left and right posterior cingulate cortex (PCC) was predicted by performance in the enPS conditions. Moreover, enPS scores predicted the connectivity strength of the right PCC with the bilateral anterior hippocampus (aHC), anterior middle temporal gyrus (aMTG) and medial orbitofrontal cortex, and the left aMTG and PCC. enPS scores also predicted the connectivity strength of the left PCC with the bilateral HC and MTG. The network highlighted involves parts of the core and of the dorsal medial subsystems of the Default Mode Network, in line with the proposal that enPS represents an intermediate entity between episodic and semantic memory.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
173
|
Agron AM, Martin A, Gilmore AW. Scene construction and autobiographical memory retrieval in autism spectrum disorder. Autism Res 2024; 17:204-214. [PMID: 38037250 PMCID: PMC10922094 DOI: 10.1002/aur.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Individuals with autism spectrum disorder (ASD) frequently exhibit difficulties in retrieving autobiographical memories (AMs) of specific events from their life. Such memory deficits are frequently attributed to underlying disruptions in self-referential or social cognition processes. This makes intuitive sense as these are hallmarks of ASD. However, an emerging literature suggests that parallel deficits also exist in ASD individuals' ability to reconstruct the rich spatial contexts in which events occur. This is a capacity known as scene construction, and in typically developing individuals is considered a core process in retrieving AMs. In this review, we discuss evidence of difficulties with scene construction in ASD, drawing upon experiments that involve AM retrieval, other forms of mental time travel, and spatial navigation. We also highlight aspects of extant data that cannot be accounted for using purely social explanations of memory deficits in ASD. We conclude by identifying key questions raised by our framework and suggest how they might be addressed in future research.
Collapse
Affiliation(s)
- Anna M. Agron
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Adrian W. Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| |
Collapse
|
174
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
175
|
Chen Q, Bonduelle SLB, Wu GR, Vanderhasselt MA, De Raedt R, Baeken C. Unraveling how the adolescent brain deals with criticism using dynamic causal modeling. Neuroimage 2024; 286:120510. [PMID: 38184159 DOI: 10.1016/j.neuroimage.2024.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
Sensitivity to criticism, which can be defined as a negative evaluation that a person receives from someone else, is considered a risk factor for the development of psychiatric disorders in adolescents. They may be more vulnerable to social evaluation than adults and exhibit more inadequate emotion regulation strategies such as rumination. The neural network involved in dealing with criticism in adolescents may serve as a biomarker for vulnerability to depression. However, the directions of the functional interactions between the brain regions within this neural network in adolescents are still unclear. In this study, 64 healthy adolescents (aged 14 to 17 years) were asked to listen to a series of self-referential auditory segments, which included negative (critical), positive (praising), and neutral conditions, during fMRI scanning. Dynamic Causal Modeling (DCM) with Parametric Empirical Bayesian (PEB) analysis was performed to map the interactions within the neural network that was engaged during the processing of these segments. Three regions were identified to form the interaction network: the left pregenual anterior cingulate cortex (pgACC), the left dorsolateral prefrontal cortex (DLPFC), and the right precuneus (preCUN). We quantified the modulatory effects of exposure to criticism and praise on the effective connectivity between these brain regions. Being criticized was found to significantly inhibit the effective connectivity from the preCUN to the DLPFC. Adolescents who scored high on the Perceived Criticism Measure (PCM) showed less inhibition of the preCUN-to-DLPFC connectivity when being criticized, which may indicate that they required more engagement of the Central Executive Network (which includes the DLPFC) to sufficiently disengage from negative self-referential processing. Furthermore, the inhibitory connectivity from the DLPFC to the pgACC was strengthened by exposure to praise as well as criticism, suggesting a recruitment of cognitive control over emotional responses when dealing with positive and negative evaluative feedback. Our novel findings contribute to a more profound understanding of how criticism affects the adolescent brain and can help to identify potential biomarkers for vulnerability to develop mood disorders before or during adulthood.
Collapse
Affiliation(s)
- Qinyuan Chen
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Sam Luc Bart Bonduelle
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Child and Adolescent Psychiatry, Vrije Universiteit Brussel (VUB), Brussels University Hospital (UZ Brussel), Brussels, Belgium
| | - Guo-Rong Wu
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Marie-Anne Vanderhasselt
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, Vrije Universiteit Brussel (VUB), Brussels University Hospital (UZ Brussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
176
|
Caceres GA, Scambray KA, Malee K, Smith R, Williams PL, Wang L, Jenkins LM. Relationship between brain structural network integrity and emotional symptoms in youth with perinatally-acquired HIV. Brain Behav Immun 2024; 116:101-113. [PMID: 38043871 PMCID: PMC10842701 DOI: 10.1016/j.bbi.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
Perinatally acquired HIV infection (PHIV) currently affects approximately 1.7 million children worldwide. Youth with PHIV (YPHIV) are at increased risk for emotional and behavioral symptoms, yet few studies have examined relationships between these symptoms and brain structure. Previous neuroimaging studies in YPHIV report alterations within the salience network (SN), cognitive control network (CCN), and default mode network (DMN). These areas have been associated with social and emotional processing, emotion regulation, and executive function. We examined structural brain network integrity from MRI using morphometric similarity networks and graph theoretical measures of segregation (transitivity), resilience (assortativity), and integration (global efficiency). We examined brain network integrity of 40 YPHIV compared to 214 youths without HIV exposure or infection. Amongst YPHIV, we related structural brain network metrics to the Emotional Symptoms Index of the Behavioral Assessment System for Children, 2nd edition. We also examined the relationship of inflammatory biomarkers in YPHIV to brain network integrity. YPHIV had significantly lower global efficiency in the SN, DMN, and the whole brain network compared to controls. YPHIV also demonstrated lower assortativity or resilience (i.e., network robustness) compared to controls in the DMN and whole brain network. Further, higher emotional symptom score was associated with higher global efficiency in the SN and lower global efficiency in the DMN, signaling more emotional challenges. A significant association was also found between several inflammatory and cardiac markers with structural network integrity. These findings suggest an impact of HIV on developing brain networks, and potential dysfunction of the SN and DMN in relation to network efficiency.
Collapse
Affiliation(s)
- Gabriella A Caceres
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kiana A Scambray
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kathleen Malee
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Renee Smith
- University of Illinois, Chicago, IL, United States
| | - Paige L Williams
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Lisanne M Jenkins
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
177
|
Salmon E, Meyer F, Genon S, Collette F, Bastin C. Neural correlates of impaired cognitive processes underlying self-unawareness in Alzheimer's disease. Cortex 2024; 171:1-12. [PMID: 37977109 DOI: 10.1016/j.cortex.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Self-unawareness concerning current symptoms remains a clinical challenge in Alzheimer's disease. Reduced self-awareness likely depends on complex biopsychosocial mechanisms that comprise multiple cognitive processes, regulated by personal goals and values. We specifically reviewed the cognitive processes impaired in unaware participants with AD by emphasizing the related impaired brain activity observed during task-based fMRI. Unawareness can be explained by a failure in functioning of or in connection between brain regions that intervene in access, retrieval and updating of (present or extended) self-information (posterior midline, medial temporal, inferior parietal cortices), or in its monitoring, evaluation, or control (medial and lateral prefrontal cortices). Although one must be cautious when relating function to brain regions, impaired processes were tentatively related to the Cognitive Awareness Model. Although brain function depends on neural networks, impaired brain activity during cognitive processes was discussed according to previous studies reporting correlations between brain regions and scores of anosognosia. The review provides a framework to help clinicians considering processes that can explain unawareness in dementia. In patients at early stages of AD, different levels of awareness of cognitive or social clinical changes might be described as impairment in the interaction between specific cognitive processes and contents.
Collapse
Affiliation(s)
- Eric Salmon
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| | - François Meyer
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| | - Sarah Genon
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium; Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany; Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany.
| | - Fabienne Collette
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| | - Christine Bastin
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
178
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576471. [PMID: 38328109 PMCID: PMC10849545 DOI: 10.1101/2024.01.20.576471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population-rather than individual-based inferences due to limited within-individual sampling. Here, three densely-sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely-sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously-unrecognized inter-individual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
|
179
|
Liu Y, Li J, Wisnowski JL, Leahy RM. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574423. [PMID: 38260447 PMCID: PMC10802375 DOI: 10.1101/2024.01.05.574423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cortical parcellation has long been a cornerstone in the field of neuroscience, enabling the cerebral cortex to be partitioned into distinct, non-overlapping regions that facilitate the interpretation and comparison of complex neuroscientific data. In recent years, these parcellations have frequently been based on the use of resting-state fMRI (rsfMRI) data. In parallel, methods such as independent components analysis have long been used to identify large-scale functional networks with significant spatial overlap between networks. Despite the fact that both forms of decomposition make use of the same spontaneous brain activity measured with rsfMRI, a gap persists in establishing a clear relationship between disjoint cortical parcellations and brain-wide networks. To address this, we introduce a novel parcellation framework that integrates NASCAR, a three-dimensional tensor decomposition method that identifies a series of functional brain networks, with state-of-the-art graph representation learning to produce cortical parcellations that represent near-homogeneous functional regions that are consistent with these brain networks. Further, through the use of the tensor decomposition, we avoid the limitations of traditional approaches that assume statistical independence or orthogonality in defining the underlying networks. Our findings demonstrate that these parcellations are comparable or superior to established atlases in terms of homogeneity of the functional connectivity across parcels, task contrast alignment, and architectonic map alignment. Our methodological pipeline is highly automated, allowing for rapid adaptation to new datasets and the generation of custom parcellations in just minutes, a significant advancement over methods that require extensive manual input. We describe this integrated approach, which we refer to as Untamed, as a tool for use in the fields of cognitive and clinical neuroscientific research. Parcellations created from the Human Connectome Project dataset using Untamed, along with the code to generate atlases with custom parcel numbers, are publicly available at https://untamed-atlas.github.io.
Collapse
Affiliation(s)
- Yijun Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica L. Wisnowski
- Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard M. Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
180
|
Roseman M, Elias U, Kletenik I, Ferguson MA, Fox MD, Horowitz Z, Marshall GA, Spiers HJ, Arzy S. A neural circuit for spatial orientation derived from brain lesions. Cereb Cortex 2024; 34:bhad486. [PMID: 38100330 PMCID: PMC10793567 DOI: 10.1093/cercor/bhad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.
Collapse
Affiliation(s)
- Moshe Roseman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Uri Elias
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Isaiah Kletenik
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Zalman Horowitz
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gad A Marshall
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
181
|
Wyatt LE, Hewan PA, Hogeveen J, Spreng RN, Turner GR. Exploration versus exploitation decisions in the human brain: A systematic review of functional neuroimaging and neuropsychological studies. Neuropsychologia 2024; 192:108740. [PMID: 38036246 DOI: 10.1016/j.neuropsychologia.2023.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Thoughts and actions are often driven by a decision to either explore new avenues with unknown outcomes, or to exploit known options with predictable outcomes. Yet, the neural mechanisms underlying this exploration-exploitation trade-off in humans remain poorly understood. This is attributable to variability in the operationalization of exploration and exploitation as psychological constructs, as well as the heterogeneity of experimental protocols and paradigms used to study these choice behaviours. To address this gap, here we present a comprehensive review of the literature to investigate the neural basis of explore-exploit decision-making in humans. We first conducted a systematic review of functional magnetic resonance imaging (fMRI) studies of exploration-versus exploitation-based decision-making in healthy adult humans during foraging, reinforcement learning, and information search. Eleven fMRI studies met inclusion criterion for this review. Adopting a network neuroscience framework, synthesis of the findings across these studies revealed that exploration-based choice was associated with the engagement of attentional, control, and salience networks. In contrast, exploitation-based choice was associated with engagement of default network brain regions. We interpret these results in the context of a network architecture that supports the flexible switching between externally and internally directed cognitive processes, necessary for adaptive, goal-directed behaviour. To further investigate potential neural mechanisms underlying the exploration-exploitation trade-off we next surveyed studies involving neurodevelopmental, neuropsychological, and neuropsychiatric disorders, as well as lifespan development, and neurodegenerative diseases. We observed striking differences in patterns of explore-exploit decision-making across these populations, again suggesting that these two decision-making modes are supported by independent neural circuits. Taken together, our review highlights the need for precision-mapping of the neural circuitry and behavioural correlates associated with exploration and exploitation in humans. Characterizing exploration versus exploitation decision-making biases may offer a novel, trans-diagnostic approach to assessment, surveillance, and intervention for cognitive decline and dysfunction in normal development and clinical populations.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- Department of Psychology, York University, Toronto, ON, Canada
| | - Patrick A Hewan
- Department of Psychology, York University, Toronto, ON, Canada
| | - Jeremy Hogeveen
- Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - R Nathan Spreng
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 2B4, Canada; Department of Psychology, McGill University, Montréal, QC, Canada; Department of Psychiatry, McGill University, Montréal, QC, Canada; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada.
| |
Collapse
|
182
|
DeRosa J, Kim H, Lewis-Peacock J, Banich MT. Neural Systems Underlying the Implementation of Working Memory Removal Operations. J Neurosci 2024; 44:e0283232023. [PMID: 37963765 PMCID: PMC10866188 DOI: 10.1523/jneurosci.0283-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Recently, multi-voxel pattern analysis has verified that information can be removed from working memory (WM) via three distinct operations replacement, suppression, or clearing compared to information being maintained ( Kim et al., 2020). While univariate analyses and classifier importance maps in Kim et al. (2020) identified brain regions that contribute to these operations, they did not elucidate whether these regions represent the operations similarly or uniquely. Using Leiden-community-detection on a sample of 55 humans (17 male), we identified four brain networks, each of which has a unique configuration of multi-voxel activity patterns by which it represents these WM operations. The visual network (VN) shows similar multi-voxel patterns for maintain and replace, which are highly dissimilar from suppress and clear, suggesting this network differentiates whether an item is held in WM or not. The somatomotor network (SMN) shows a distinct multi-voxel pattern for clear relative to the other operations, indicating the uniqueness of this operation. The default mode network (DMN) has distinct patterns for suppress and clear, but these two operations are more similar to each other than to maintain and replace, a pattern intermediate to that of the VN and SMN. The frontoparietal control network (FPCN) displays distinct multi-voxel patterns for each of the four operations, suggesting that this network likely plays an important role in implementing these WM operations. These results indicate that the operations involved in removing information from WM can be performed in parallel by distinct brain networks, each of which has a particular configuration by which they represent these operations.
Collapse
Affiliation(s)
- Jacob DeRosa
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309
| | - Hyojeong Kim
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309
| | | | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
183
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
184
|
Lipka R, Rosada C, Metz S, Hellmann-Regen J, Heekeren H, Wingenfeld K. No changes in triple network engagement following (combined) noradrenergic and glucocorticoid stimulation in healthy men. Soc Cogn Affect Neurosci 2024; 19:nsad073. [PMID: 38123464 PMCID: PMC10868128 DOI: 10.1093/scan/nsad073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Successful recovery from stress is integral for adaptive responding to the environment. At a cellular level, this involves (slow genomic) actions of cortisol, which alter or reverse rapid effects of noradrenaline and cortisol associated with acute stress. At the network scale, stress recovery is less well understood but assumed to involve changes within salience-, executive control-, and default mode networks. To date, few studies have investigated this phase and directly tested these assumptions. Here, we present results from a double-blind, placebo-controlled, between-group paradigm (N = 165 healthy males) administering 10 mg oral yohimbine and/or 10 mg oral hydrocortisone two hours prior to resting state scanning. We found no changes in within-network connectivity of the three networks, both after single and combined drug administration. We further report the results of Bayesian parameter inference to provide evidence for the null hypothesis. Our results contrast with previous findings, which may be attributable to systematic differences between paradigms, highlighting the need to isolate paradigm-specific effects from those related to stress.
Collapse
Affiliation(s)
- Renée Lipka
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
- Humboldt Universität zu Berlin, Berlin School of Mind and Brain, Berlin 10099, Germany
| | - Catarina Rosada
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
| | - Sophie Metz
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
- Charité—Universitätsmedizin Berlin, Institute of Medical Psychology, Campus Mitte, Berlin 10117, Germany
| | - Julian Hellmann-Regen
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
| | - Hauke Heekeren
- Universität Hamburg, Executive University Board, Hamburg 20148, Germany
| | - Katja Wingenfeld
- Charité—Universitätsmedizin Berlin, Department of Psychiatry and Neurosciences, Campus Benjamin Franklin, Berlin 12203, Germany
| |
Collapse
|
185
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
186
|
Runyan A, Cassani A, Reyna L, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Effects of Cortisol Administration on Resting-State Functional Connectivity in Women with Depression. Psychiatry Res Neuroimaging 2024; 337:111760. [PMID: 38039780 PMCID: PMC10843737 DOI: 10.1016/j.pscychresns.2023.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.
Collapse
Affiliation(s)
- Adam Runyan
- Department of Psychological Sciences, University of Central Missouri, 116 West S. St., Warrensburg, MO 64093, USA
| | - Alexis Cassani
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA.
| |
Collapse
|
187
|
Osumi M, Sumitani M, Iwatsuki K, Hoshiyama M, Imai R, Morioka S, Hirata H. Resting-state Electroencephalography Microstates Correlate with Pain Intensity in Patients with Complex Regional Pain Syndrome. Clin EEG Neurosci 2024; 55:121-129. [PMID: 37844609 DOI: 10.1177/15500594231204174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Objective: Severe pain and other symptoms in complex regional pain syndrome (CRPS), such as allodynia and hyperalgesia, are associated with abnormal resting-state brain network activity. No studies to date have examined resting-state brain networks in CRPS patients using electroencephalography (EEG), which can clarify the temporal dynamics of brain networks. Methods: We conducted microstate analysis using resting-state EEG signals to prospectively reveal direct correlations with pain intensity in CRPS patients (n = 17). Five microstate topographies were fitted back to individual CRPS patients' EEG data, and temporal microstate measures were subsequently calculated. Results: Our results revealed five distinct microstates, termed microstates A to E, from resting EEG data in patients with CRPS. Microstates C, D and E were significantly correlated with pain intensity before pain treatment. Particularly, microstates D and E were significantly improved together with pain alleviation after pain treatment. As microstates D and E in the present study have previously been related to attentional networks and the default mode network, improvement in these networks might be related to pain relief in CRPS patients. Conclusions: The functional alterations of these brain networks affected the pain intensity of CRPS patients. Therefore, EEG microstate analyses may be used to identify surrogate markers for pain intensity.
Collapse
Affiliation(s)
- Michihiro Osumi
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Health Sciences, Faculty of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Ryota Imai
- School of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
188
|
van der Horn HJ, Ling JM, Wick TV, Dodd AB, Robertson-Benta CR, McQuaid JR, Zotev V, Vakhtin AA, Ryman SG, Cabral J, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage 2024; 285:120470. [PMID: 38016527 PMCID: PMC10815936 DOI: 10.1016/j.neuroimage.2023.120470] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.
Collapse
Affiliation(s)
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Tracey V Wick
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | | | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131
| | - Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131; Department of Psychology, University of New Mexico, Albuquerque, NM 87131; Department of Neurology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
189
|
Bieth T, Ovando‐Tellez M, Lopez‐Persem A, Garcin B, Hugueville L, Lehongre K, Levy R, George N, Volle E. Time course of EEG power during creative problem-solving with insight or remote thinking. Hum Brain Mapp 2024; 45:e26547. [PMID: 38060194 PMCID: PMC10789201 DOI: 10.1002/hbm.26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Problem-solving often requires creativity and is critical in everyday life. However, the neurocognitive mechanisms underlying creative problem-solving remain poorly understood. Two mechanisms have been highlighted: the formation of new connections among problem elements and insight solving, characterized by sudden realization of a solution. In this study, we investigated EEG activity during a modified version of the remote associates test, a classical insight problem task that requires finding a word connecting three unrelated words. This allowed us to explore the brain correlates associated with the semantic remoteness of connections (by varying the remoteness of the solution word across trials) and with insight solving (identified as a Eurêka moment reported by the participants). Semantic remoteness was associated with power increase in the alpha band (8-12 Hz) in a left parieto-temporal cluster, the beta band (13-30 Hz) in a right fronto-temporal cluster in the early phase of the task, and the theta band (3-7 Hz) in a bilateral frontal cluster just prior to participants' responses. Insight solving was associated with power increase preceding participants' responses in the alpha and gamma (31-60 Hz) bands in a left temporal cluster and the theta band in a frontal cluster. Source reconstructions revealed the brain regions associated with these clusters. Overall, our findings shed new light on some of the mechanisms involved in creative problem-solving.
Collapse
Affiliation(s)
- Théophile Bieth
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Marcela Ovando‐Tellez
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Alizée Lopez‐Persem
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Béatrice Garcin
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Department of NeurologyAvicenne Hospital, AP‐HPBobignyFrance
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Richard Levy
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Emmanuelle Volle
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| |
Collapse
|
190
|
Kong Q, Li T, Reddy S, Hodges S, Kong J. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review. Neurotherapeutics 2024; 21:e00297. [PMID: 38237403 PMCID: PMC10903102 DOI: 10.1016/j.neurot.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/16/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques have demonstrated their potential for chronic pain management, yet their efficacy exhibits variability across studies. Refining stimulation targets and exploring additional targets offer a possible solution to this challenge. This study aimed to identify potential brain surface targets for NIBS in treating chronic pain disorders by integrating literature review, neuroimaging meta-analysis, and functional connectivity analysis on 90 chronic low back pain patients. Our results showed that the primary motor cortex (M1) (C3/C4, 10-20 EEG system) and prefrontal cortex (F3/F4/Fz) were the most used brain stimulation targets for chronic pain treatment according to the literature review. The bilateral precentral gyrus (M1), supplementary motor area, Rolandic operculum, and temporoparietal junction, were all identified as common potential NIBS targets through both a meta-analysis sourced from Neurosynth and functional connectivity analysis. This study presents a comprehensive summary of the current literature and refines the existing NIBS targets through a combination of imaging meta-analysis and functional connectivity analysis for chronic pain conditions. The derived coordinates (with integration of the international electroencephalography (EEG) 10/20 electrode placement system) within the above brain regions may further facilitate the localization of these targets for NIBS application. Our findings may have the potential to expand NIBS target selection beyond current clinical trials and improve chronic pain treatment.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tingting Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sveta Reddy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
191
|
Hinkle JT, Wildermuth E, Tong XJ, Ross CA, Bang J. Structural MRI Correlates of Anosognosia in Huntington's Disease. J Huntingtons Dis 2024; 13:315-320. [PMID: 39269851 DOI: 10.3233/jhd-240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Anosognosia, or unawareness of symptoms, is common in Huntington's disease (HD), but the neuroanatomical basis of this is unknown. Objective To identify neuroanatomical correlates of HD anosognosia using structural MRI data. Methods We leveraged a pre-processed dataset of 570 HD participants across the well-characterized PREDICT-HD and TRACK-HD cohort studies. Anosognosia index was operationalized as the score discrepancies between HD participants and their caregivers on the Frontal Systems Behavior Scale (FrSBe). Results Univariate correlation analyses identified volumes of globus pallidus, putamen, caudate, basal forebrain, substantia nigra, angular gyrus, and cingulate cortex as significant correlates of anosognosia after correction for multiple comparisons. A multivariable model constructed with stepwise regression that included volumetric data showed globus pallidus volume alone explained more variance in anosognosia severity than motor impairment or CAP score alone. Conclusions Anosognosia appears to be related to degeneration affecting both cortical and subcortical areas. Globus pallidus neurodegeneration in particular appears to be a key process of importance.
Collapse
Affiliation(s)
| | - Erin Wildermuth
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiao J Tong
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology JHUSOM, Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology JHUSOM, Baltimore, MD, USA
| | - Jee Bang
- Departments of Neurology and Division of Neurobiology, Department of Psychiatry JHUSOM, Baltimore, MD, USA
| |
Collapse
|
192
|
Newberg AB, Wintering NA, Hriso C, Vedaei F, Mohamed FB, Gottfried SE, Ross R. Alterations in cerebral glucose metabolism measured by FDG PET in subjects performing a meditation practice based on clitoral stimulation. F1000Res 2023; 11:1015. [PMID: 39931656 PMCID: PMC11809681 DOI: 10.12688/f1000research.122351.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Background The relationship between sexuality, or the libido, and spirituality or religion has long been debated in psychiatry. Recent studies have explored the neurophysiology of both sexual experiences and spiritual practices such as meditation or prayer. In the present study, we report changes in cerebral glucose metabolism in a unique meditation practice augmented by clitoral stimulation called, Orgasmic Meditation, in which a spiritual state is described to be attained by both male and female participants engaged in the practice as a pair. Methods Male (N=20) and female (N=20) subjects had an intravenous catheter connected to a bag of normal saline inserted prior to the practice. During the practice, men stimulated their partner's clitoris for exactly 15 minutes (he received no sexual stimulation). Midway through the practice, researchers injected 18F-fluorodeoxyglucose so the scan would reflect cerebral metabolism during the practice. Positron emission tomography (PET) imaging was performed approximately 30 minutes later. Results In the female participants, the meditation state showed significant decreases in the left inferior frontal, inferior parietal, insula, middle temporal, and orbitofrontal regions as well as in the right angular gyrus, anterior cingulate and parahippocampus compared to a neutral state (p<0.01). Male subjects had significant decreases in the left middle frontal, paracentral, precentral, and postcentral regions as well as the right middle frontal and paracentral regions during meditation (p<0.01). Men also had significantly increased metabolism in the cerebellum and right postcentral and superior temporal regions (p<0.01). Conclusions These findings represent a distinct pattern of brain activity, for both men and women, that is a hybrid between that of other meditation practices and sexual stimulation. Such findings have potential psychotherapeutic implications and may deepen our understanding of the relationship between spiritual and sexual experience.
Collapse
Affiliation(s)
- Andrew B. Newberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Nancy A. Wintering
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Faezeh Vedaei
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Feroze B. Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sara E. Gottfried
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Reneita Ross
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
193
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
194
|
Ding K, Shen Y, Liu Q, Li H. The Effects of Digital Addiction on Brain Function and Structure of Children and Adolescents: A Scoping Review. Healthcare (Basel) 2023; 12:15. [PMID: 38200921 PMCID: PMC10779052 DOI: 10.3390/healthcare12010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The escalating prevalence of studies investigating digital addiction (DA) and its detrimental impact on the human brain's structure and functionality has been noticeable in recent years. Yet, an overwhelming majority of these reviews have been predominantly geared towards samples comprising college students or adults and have only inspected a single variant of DA, such as internet gaming disorder, internet addiction disorder, problematic smartphone use, tablet overuse, and so forth. Reviews focusing on young children and adolescents (ages 0-18), or those which amalgamate various types of DA, are decidedly scarce. Given this context, summarizing the effects of DA on brain structure and functionality during the vital developmental stage (0-18 years) is of immense significance. A scoping review, complying with the PRISMA extension for such reviews, was conducted to amalgamate findings from 28 studies spanning a decade (2013-2023) and to examine the influence of assorted forms of DA on the brains of children and adolescents (0-18 years). The synthesized evidence indicated two primary results: (1) DA exerts harmful effects on the structure and functionality of the brains of children and adolescents, and (2) the prefrontal lobe is the region most consistently reported as impacted across all research. Furthermore, this review discerned a notable void of studies investigating the neural indices of digital addiction, along with a shortage of studies focusing on young children (0-6 years old) and longitudinal evidence. This research could provide the necessary theoretical basis for the thwarting and intervention of digital addiction, a measure indispensable for ensuring healthy brain development in children and adolescents.
Collapse
Affiliation(s)
- Keya Ding
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (Y.S.); (Q.L.)
| | - Yining Shen
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (Y.S.); (Q.L.)
| | - Qianming Liu
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (Y.S.); (Q.L.)
| | - Hui Li
- Faculty of Education and Human Development, The Education University of Hong Kong, 10 Lo Ping Road, Hong Kong
| |
Collapse
|
195
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
196
|
de Lacy N, Ramshaw MJ. Selectively predicting the onset of ADHD, oppositional defiant disorder, and conduct disorder in early adolescence with high accuracy. Front Psychiatry 2023; 14:1280326. [PMID: 38144472 PMCID: PMC10739523 DOI: 10.3389/fpsyt.2023.1280326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The externalizing disorders of attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD) are common in adolescence and are strong predictors of adult psychopathology. While treatable, substantial diagnostic overlap complicates intervention planning. Understanding which factors predict the onset of each disorder and disambiguating their different predictors is of substantial translational interest. Materials and methods We analyzed 5,777 multimodal candidate predictors from children aged 9-10 years and their parents in the ABCD cohort to predict the future onset of ADHD, ODD, and CD at 2-year follow-up. We used deep learning optimized with an innovative AI algorithm to jointly optimize model training, perform automated feature selection, and construct individual-level predictions of illness onset and all prevailing cases at 11-12 years and examined relative predictive performance when candidate predictors were restricted to only neural metrics. Results Multimodal models achieved ~86-97% accuracy, 0.919-0.996 AUROC, and ~82-97% precision and recall in testing in held-out, unseen data. In neural-only models, predictive performance dropped substantially but nonetheless achieved accuracy and AUROC of ~80%. Parent aggressive and externalizing traits uniquely differentiated the onset of ODD, while structural MRI metrics in the limbic system were specific to CD. Psychosocial measures of sleep disorders, parent mental health and behavioral traits, and school performance proved valuable across all disorders. In neural-only models, structural and functional MRI metrics in subcortical regions and cortical-subcortical connectivity were emphasized. Overall, we identified a strong correlation between accuracy and final predictor importance. Conclusion Deep learning optimized with AI can generate highly accurate individual-level predictions of the onset of early adolescent externalizing disorders using multimodal features. While externalizing disorders are frequently co-morbid in adolescents, certain predictors were specific to the onset of ODD or CD vs. ADHD. To our knowledge, this is the first machine learning study to predict the onset of all three major adolescent externalizing disorders with the same design and participant cohort to enable direct comparisons, analyze >200 multimodal features, and include many types of neuroimaging metrics. Future study to test our observations in external validation data will help further test the generalizability of these findings.
Collapse
Affiliation(s)
- Nina de Lacy
- Huntsman Mental Health Institute, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Michael J. Ramshaw
- Huntsman Mental Health Institute, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
197
|
Haihambo N, Ma Q, Baetens K, Bylemans T, Heleven E, Baeken C, Deroost N, Van Overwalle F. Two is company: The posterior cerebellum and sequencing for pairs versus individuals during social preference prediction. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1482-1499. [PMID: 37821755 PMCID: PMC10684703 DOI: 10.3758/s13415-023-01127-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023). In the current study, we investigated whether these cerebellar areas are selectively activated when we predict the sequences of (inter)actions based on protagonists' preferences. For the first time, we also compared predictions based on person-to-person interactions or single person activities. Participants were instructed to predict actions of one single or two interactive protagonists by selecting them and putting them in the correct chronological order after being informed about one of the protagonists' preferences. These conditions were contrasted against nonsocial (involving objects) and nonsequencing (prediction without generating a sequence) control conditions. Results showed that the posterior cerebellar Crus 1, Crus 2, and lobule IX, alongside the temporoparietal junction and dorsal medial prefrontal cortex were more robustly activated when predicting sequences of behavior of two interactive protagonists, compared to one single protagonist and nonsocial objects. Sequence predictions based on one single protagonist recruited lobule IX activation in the cerebellum and more ventral areas of the medial prefrontal cortex compared to a nonsocial object. These cerebellar activations were not found when making predictions without sequences. Together, these findings suggest that cerebellar mentalizing areas are involved in social mentalizing processes which require temporal sequencing, especially when they involve social interactions, rather than behaviors of single persons.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Tom Bylemans
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
198
|
Rahrig H, Ma L, Brown KW, Martelli AM, West SJ, Lasko EN, Chester DS. Inside the mindful moment: The effects of brief mindfulness practice on large-scale network organization and intimate partner aggression. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1581-1597. [PMID: 37880570 PMCID: PMC10842035 DOI: 10.3758/s13415-023-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Mindfulness can produce neuroplastic changes that support adaptive cognitive and emotional functioning. Recently interest in single-exercise mindfulness instruction has grown considerably because of the advent of mobile health technology. Accordingly, the current study sought to extend neural models of mindfulness by investigating transient states of mindfulness during single-dose exposure to focused attention meditation. Specifically, we examined the ability of a brief mindfulness induction to attenuate intimate partner aggression via adaptive changes to intrinsic functional brain networks. We employed a dual-regression approach to examine a large-scale functional network organization in 50 intimate partner dyads (total n = 100) while they received either mindfulness (n = 50) or relaxation (n = 50) instruction. Mindfulness instruction reduced coherence within the Default Mode Network and increased functional connectivity within the Frontoparietal Control and Salience Networks. Additionally, mindfulness decoupled primary visual and attention-linked networks. Yet, this induction was unable to elicit changes in subsequent intimate partner aggression, and such aggression was broadly unassociated with any of our network indices. These findings suggest that minimal doses of focused attention-based mindfulness can promote transient changes in large-scale brain networks that have uncertain implications for aggressive behavior.
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Liangsuo Ma
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Emily N Lasko
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - David S Chester
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
199
|
Yoon L, Keenan KE, Hipwell AE, Forbes EE, Guyer AE. Hooked on a thought: Associations between rumination and neural responses to social rejection in adolescent girls. Dev Cogn Neurosci 2023; 64:101320. [PMID: 37922608 PMCID: PMC10641579 DOI: 10.1016/j.dcn.2023.101320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Rumination is a significant risk factor for psychopathology in adolescent girls and is associated with heightened and prolonged physiological arousal following social rejection. However, no study has examined how rumination relates to neural responses to social rejection in adolescent girls; thus, the current study aimed to address this gap. Adolescent girls (N = 116; ages 16.95-19.09) self-reported on their rumination tendency and completed a social evaluation fMRI task where they received fictitious feedback (acceptance, rejection) from peers they liked or disliked. Rejection-related neural activity and subgenual anterior cingulate cortex (sgACC) connectivity were regressed on rumination, controlling for rejection sensitivity and depressive symptoms. Rumination was associated with distinctive neural responses following rejection from liked peers including increased neural activity in the precuneus, inferior parietal gyrus, dorsolateral prefrontal cortex, and supplementary motor area (SMA) and reduced sgACC connectivity with multiple regions including medial prefrontal cortex, precuneus and ventrolateral prefrontal cortex. Greater precuneus and SMA activity mediated the effect of rumination on slower response time to report emotional state after receiving rejection from liked peers. These findings provide clues for distinctive cognitive processes (e.g., mentalizing, conflict processing, memory encoding) following the receipt of rejection in girls with high levels of rumination.
Collapse
Affiliation(s)
- Leehyun Yoon
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Kate E Keenan
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda E Guyer
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Human Ecology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
200
|
Lyu W, Wu Y, Huang H, Chen Y, Tan X, Liang Y, Ma X, Feng Y, Wu J, Kang S, Qiu S, Yap PT. Aberrant dynamic functional network connectivity in type 2 diabetes mellitus individuals. Cogn Neurodyn 2023; 17:1525-1539. [PMID: 37969945 PMCID: PMC10640562 DOI: 10.1007/s11571-022-09899-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative correlation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xiaomeng Ma
- Department of Radiology, Jingzhou First People’s Hospital of Hubei Province, Jingzhou, Hubei China
| | - Yue Feng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Jinjian Wu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shangyu Kang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|