151
|
Pradhan A, Aher L, Hegde V, Jangid KK, Rane J. Cooler canopy leverages sorghum adaptation to drought and heat stress. Sci Rep 2022; 12:4603. [PMID: 35301396 PMCID: PMC8931000 DOI: 10.1038/s41598-022-08590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the present study, individual and combined effects of drought and heat stress were investigated on key physiological parameters (canopy temperature, membrane stability index, chlorophyll content, relative water content, and chlorophyll fluorescence) in two popular sorghum cultivars (Sorghum bicolor cvs. Phule Revati and Phule Vasudha) during the seedling stage. Estimating canopy temperature through pixel-wise analysis of thermal images of plants differentiated the stress responses of sorghum cultivars more effectively than the conventional way of recording canopy temperature. Cultivar difference in maintaining the canopy temperature was also responsible for much of the variation found in critical plant physiological parameters such as cell membrane stability, chlorophyll content, and chlorophyll fluorescence in plants exposed to stress. Hence, the combined stress of drought and heat was more adverse than their individual impacts. The continued loss of water coupled with high-temperature exposure exacerbated the adverse effect of stresses with a remarkable increase in canopy temperature. However, Phule Vasudha, being a drought-tolerant variety, was relatively less affected by the imposed stress conditions than Phule Revati. Besides, the methodology of measuring and reporting plant canopy temperature, which emerged from this study, can effectively differentiate the sorghum genotypes under the combined stress of drought and heat. It can help select promising genotypes among the breeding lines and integrating the concept in the protocol for precision water management in crops like sorghum.
Collapse
Affiliation(s)
- Aliza Pradhan
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Lalitkumar Aher
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Vinay Hegde
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MH, 444104, India
| | - Krishna Kumar Jangid
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India.
| |
Collapse
|
152
|
Abdelhakim LOA, Mendanha T, Palma CFF, Vrobel O, Štefelová N, Ćavar Zeljković S, Tarkowski P, De Diego N, Wollenweber B, Rosenqvist E, Ottosen CO. Elevated CO 2 Improves the Physiology but Not the Final Yield in Spring Wheat Genotypes Subjected to Heat and Drought Stress During Anthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:824476. [PMID: 35330869 PMCID: PMC8940247 DOI: 10.3389/fpls.2022.824476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 05/12/2023]
Abstract
Heat and drought events often occur concurrently as a consequence of climate change and have a severe impact on crop growth and yield. Besides, the accumulative increase in the atmospheric CO2 level is expected to be doubled by the end of this century. It is essential to understand the consequences of climate change combined with the CO2 levels on relevant crops such as wheat. This study evaluated the physiology and metabolite changes and grain yield in heat-sensitive (SF29) and heat-tolerant (LM20) wheat genotypes under individual heat stress or combined with drought applied during anthesis at ambient (aCO2) and elevated CO2 (eCO2) levels. Both genotypes enhanced similarly the WUE under combined stresses at eCO2. However, this increase was due to different stress responses, whereas eCO2 improved the tolerance in heat-sensitive SF29 by enhancing the gas exchange parameters, and the accumulation of compatible solutes included glucose, fructose, β-alanine, and GABA to keep water balance; the heat-tolerant LM20 improved the accumulation of phosphate and sulfate and reduced the lysine metabolism and other metabolites including N-acetylornithine. These changes did not help the plants to improve the final yield under combined stresses at eCO2. Under non-stress conditions, eCO2 improved the yield of both genotypes. However, the response differed among genotypes, most probably as a consequence of the eCO2-induced changes in glucose and fructose at anthesis. Whereas the less-productive genotype LM20 reduced the glucose and fructose and increased the grain dimension as the effect of the eCO2 application, the most productive genotype SF29 increased the two carbohydrate contents and ended with higher weight in the spikes. Altogether, these findings showed that the eCO2 improves the tolerance to combined heat and drought stress but not the yield in spring wheat under stress conditions through different mechanisms. However, under non-stress conditions, it could improve mainly the yield to the less-productive genotypes. Altogether, the results demonstrated that more studies focused on the combination of abiotic stress are needed to understand better the spring wheat responses that help the identification of genotypes more resilient and productive under these conditions for future climate conditions.
Collapse
Affiliation(s)
| | - Thayna Mendanha
- Department of Food Science, Plant, Food and Climate, Aarhus University, Aarhus, Denmark
| | | | - Ondřej Vrobel
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
- Department of Genetic Resources for Vegetables, Centre of the Region Haná for Biotechnological and Agricultural Research, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | - Nikola Štefelová
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Sanja Ćavar Zeljković
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
- Department of Genetic Resources for Vegetables, Centre of the Region Haná for Biotechnological and Agricultural Research, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | - Petr Tarkowski
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
- Department of Genetic Resources for Vegetables, Centre of the Region Haná for Biotechnological and Agricultural Research, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Bernd Wollenweber
- Department of Agroecology, Crop Health, Aarhus University, Slagelse, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, Crop Sciences, University of Copenhagen, Taastrup, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Plant, Food and Climate, Aarhus University, Aarhus, Denmark
| |
Collapse
|
153
|
Ashry NM, Alaidaroos BA, Mohamed SA, Badr OAM, El-Saadony MT, Esmael A. Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi J Biol Sci 2022; 29:1760-1769. [PMID: 35280578 PMCID: PMC8913418 DOI: 10.1016/j.sjbs.2021.10.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Drought stress adversely affects plant health and productivity. Recently, drought-resistant bacterial isolates are used to combat drought resistance in crops. In this in vitro study, 20 bacterial isolates were isolated from harsh soil; their drought tolerance was evaluated using four concentrations of polyethylene glycol (PEG) 6000. The two most efficient isolates (DS4 and DS9) were selected and identified using 16S rRNA genetic sequencing. They were registered in the NCBI database and deposited under accession numbers MW916285 and MW916307 for Bacillus cereus (DS4) and Bacillus albus (DS9), respectively. These isolates were screened for plant growth-promoting properties compared to non-stressed conditions. Biochemical parameters; Proline, salicylic acid, gibberellic acid (GA), indole acetic acid (IAA), antioxidant activity, and antioxidant enzymes were measured under the same conditions, and in vitro seed germination was tested under stress conditions and inoculation with selected isolates. The results showed that under the harsh conditions of PEG6000, DS4 produced the highest amount of IAA of 1.61 µg/ml, followed by DS9 with 0.9 µg/ml. The highest amount of GA (49.95 µg/ml) was produced by DS9. On the other hand, the highest amount of siderophore was produced from DS4 isolate followed by DS9. Additionally, DS4 isolate recorded the highest exopolysaccharide (EPS) content of 3.4 mg/ml under PEG (-1.2 MPa) followed by DS9. The antioxidant activity increased in PEG concentrations depending manner, and the activity of the antioxidant enzymes increased, as catalase (CAT) recorded the highest activity in DS4 with an amount of 1.095 mg/ml. additionally, an increase in biofilm formation was observed under drought conditions. The isolated mixture protected the plant from the harmful effects of drought and showed an increase in the measured variables. Under unstressed conditions, the highest rates of emulsification index (EI 24%) were obtained for DS4 and DS9, at 14.92 and 11.54, respectively, and decreased under stress. The highest values of germination, total seedling length, and vigor index were obtained upon inoculation with the combination of two strains, and were 100%, 4.10 cm, and 410, respectively. Therefore, two strains combination is an effective vaccine capable of developing and improving drought tolerance in dryland plants.
Collapse
Affiliation(s)
- Noha M Ashry
- Agriculture Microbiology Department, Faculty of Agriculture, Benha University, Qalubia 13736, Egypt
| | - Bothaina A Alaidaroos
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Shereen A Mohamed
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt
| | - Omnia A M Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate, 13511, Egypt
| |
Collapse
|
154
|
Balfagón D, Terán F, de Oliveira TDR, Santa-Catarina C, Gómez-Cadenas A. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. PLANT CELL REPORTS 2022; 41:593-602. [PMID: 34232376 PMCID: PMC8989854 DOI: 10.1007/s00299-021-02744-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 06/01/2023]
Abstract
The activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion. Therefore, rootstock selection is key to improve crop performance and a sustainable production under changing climate conditions. Climate change is altering weather conditions such as mean temperatures and precipitation patterns. Rising temperatures, especially in certain regions, accelerates soil water depletion and increases drought risk, which affects agriculture yield. Previously, our research demonstrated that the citrus rootstock Carrizo citrange (Citrus sinensis × Poncirus trifoliata) is more tolerant than Cleopatra mandarin (C. reshni) to drought and heat stress combination, in part, due to a higher activation of the antioxidant system that alleviated damage produced by oxidative stress. Here, by using reciprocal grafts of both genotypes, we studied the importance of the rootstock on scion performance and antioxidant response under this stress combination. Carrizo rootstock, under stress combination, positively influenced Cleopatra scion by reducing H2O2 accumulation, increasing superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzymatic activities and inducing SOD1, APX2 and catalase (CAT) protein accumulations. On the contrary, Cleopatra rootstock induced decreases in APX2 expression, CAT activity and SOD1, APX2 and CAT contents on Carrizo scion. Taken together, our findings indicate that the activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion and highlight the importance of the rootstock selection to improve crop performance and maintain citrus yield under the current scenario of climate change.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Fátima Terán
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Tadeu Dos Reis de Oliveira
- Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
155
|
Bhardwaj A, Devi P, Chaudhary S, Rani A, Jha UC, Kumar S, Bindumadhava H, Prasad PVV, Sharma KD, Siddique KHM, Nayyar H. 'Omics' approaches in developing combined drought and heat tolerance in food crops. PLANT CELL REPORTS 2022; 41:699-739. [PMID: 34223931 DOI: 10.1007/s00299-021-02742-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - H Bindumadhava
- Dr. Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
156
|
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:227-239. [PMID: 34796604 DOI: 10.1111/plb.13363] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses have a detrimental impact on plant growth and productivity and are a major threat to sustainable crop production in rapidly changing environments. Proline, an important amino acid, plays an important role in maintaining the metabolism and growth of plants under abiotic stress conditions. Many insights indicate a positive relationship between proline accumulation and tolerance of plants to various abiotic stresses. Because of its metal chelator properties, it acts as a molecular chaperone, an antioxidative defence molecule that scavenges reactive oxygen species (ROS), as well as having signalling behaviour to activate specific gene functions that are crucial for plant recovery from stresses. It also acts as an osmoprotectant, a potential source to acquire nitrogen as well as carbon, and plays a significant role in the flowering and development of plants. Overproduction of proline in plant cells contributes to maintaining cellular homeostasis, water uptake, osmotic adjustment and redox balance to restore the cell structures and mitigate oxidative damage. Many reports reveal that transgenic plants, particularly those overexpressing genes tailored for proline accumulation, exhibit better adaptation to abiotic stresses. Therefore, this review aims to provide a comprehensive update on proline biosynthesis and accumulation in plants and its putative regulatory roles in mediating plant defence against abiotic stresses. Additionally, the current and future directions in research concerning manipulation of proline to induce gene functions that appear promising in genetics and genomics approaches to improve plant adaptive responses under changing climate conditions are also highlighted.
Collapse
Affiliation(s)
- U K Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M N Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - X Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - M A R Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
157
|
Wang Z, Zhang Y, Hu H, Chen L, Zhang H, Chen R. CabHLH79 Acts Upstream of CaNAC035 to Regulate Cold Stress in Pepper. Int J Mol Sci 2022; 23:ijms23052537. [PMID: 35269676 PMCID: PMC8910607 DOI: 10.3390/ijms23052537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Cold stress is one of the main restricting factors affecting plant growth and agricultural production. Complex cold signaling pathways induce the expression of hundreds of cold-sensitive genes. The NAC transcription factor CaNAC035 has previously been reported to significantly influence the response of pepper to cold stress. Here, using Yeast one-hybrid (Y1H) library screened to search for other relevant molecular factors, we identified that CabHLH79 directly binds to the CaNAC035 promoter. Different basic helix–loop–helix (bHLH) transcription factors (TFs) in plants significantly respond to multiple plant stresses, but the mechanism of bHLHs in the cold tolerance of pepper is still unclear. This study investigated the functional characterization of CabHLH79 in the regulation of cold resistance in pepper. Down-regulation of CabHLH79 in pepper by virus-induced gene silencing (VIGS) increased its sensitivity to low temperature, whereas overexpression of CabHLH79 in pepper or Arabidopsis enhanced cold resistance. Compared with control plants, VIGS mediated of CabHLH79 had lower enzyme activity and related gene expression levels, accompanied by higher reactive oxygen species (ROS) accumulation, relative electrolyte leakage (REL), and malondialdehyde accumulation (MDA) contents. Transient overexpression of CabHLH79 pepper positively regulated cold stress response genes and ROS genes, which reduced REL and MDA contents. Similarly, ectopic expression of CabHLH79 in Arabidopsis showed less ROS accumulation, and higher enzymes activities and expression levels. These results indicated that CabHLH79 enhanced cold tolerance by enhancing the expression of ROS-related and other cold stress tolerance-related genes. Taken together, our results showed a multifaceted module of bHLH79-NAC035 in the cold stress of pepper.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Yumeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huifang Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence: ; Tel./Fax: +86-29-8708-2613
| |
Collapse
|
158
|
Analysis of Effects of Recent Changes in Hydrothermal Conditions on Vegetation in Central Asia. LAND 2022. [DOI: 10.3390/land11030327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the relationship of hydrothermal conditions to vegetation changes is conducive to revealing the feedback mechanism connecting climate variations and vegetation. Based on the methods of Theil–Sen median analysis, and the Mann–Kendall trend test, this research investigated the spatiotemporal vegetation dynamics in Central Asia using the Normalized Difference Vegetation Index (NDVI) and grid climate data from 1982 to 2015. Further, the contributions of hydrothermal conditions to vegetation changes were quantified using a boosted regression tree model (BRT). The results demonstrated that the spatiotemporal characteristics of vegetation dynamics exhibited significant differences in different seasons, and most pixels showed increasing trends in the growing season and spring. Boosted regression tree analysis indicated that the contributions of hydrothermal conditions to vegetation dynamics exhibited temporal and spatial heterogeneity. During the annual, growing season, and summer examination periods, the contribution value of the increase in warming conditions (temperature or potential evapotranspiration) to vegetation degradation in the region due to the hydrothermal tradeoff effect (water) was 49.92%, 44.10%, and 44.95%, respectively. Moreover, the increase in warming conditions promoted vegetation growth, with a contribution value of 59.73% in spring. The contribution value of the increase in wetting conditions (precipitation or soil moisture) to vegetation growth was 48.46% in northern Central Asia, but the contribution value of the increase in warming conditions to vegetation degradation was 59.49% in Ustyurt Upland and the Aral Sea basin in autumn. However, the increase in warming conditions facilitated irrigation vegetation growth, with a contribution value of 59.86% in winter. The increasing potential evapotranspiration was the main factor affecting vegetation degradation in the Kyzylkum Desert and Karakum Desert during the annual, growing season, and autumn examination periods. Precipitation and soil moisture played decisive roles in vegetation dynamics in northern Central Asia during the growing season, summer, and autumn. This research provides reference information for ecological restoration in Central Asia.
Collapse
|
159
|
How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022; 23:ijms23041995. [PMID: 35216108 PMCID: PMC8879091 DOI: 10.3390/ijms23041995] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants’ growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•−) and hydroxyl (OH−)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
Collapse
|
160
|
Ahmad S, Wang GY, Muhammad I, Chi YX, Zeeshan M, Nasar J, Zhou XB. Interactive Effects of Melatonin and Nitrogen Improve Drought Tolerance of Maize Seedlings by Regulating Growth and Physiochemical Attributes. Antioxidants (Basel) 2022; 11:antiox11020359. [PMID: 35204247 PMCID: PMC8869313 DOI: 10.3390/antiox11020359] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Melatonin plays an important role in numerous vital life processes of animals and has recently captured the interests of plant biologists because of its potent role in plants. As well as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and/or as a direct free radical scavenger/indirect antioxidant. However, identifying a precise concentration of melatonin with an optimum nitrogen level for a particular application method to improve plant growth requires identification and clarification. This work establishes inimitable findings by optimizing the application of melatonin with an optimum level of nitrogen, alleviating the detrimental effects of drought stress in maize seedlings. Maize seedlings were subjected to drought stress of 40–45% field capacity (FC) at the five-leaf stage, followed by a soil drenching of melatonin 100 µM and three nitrogen levels (200, 250, and 300 kg ha−1) to consider the changes in maize seedling growth. Our results showed that drought stress significantly inhibited the physiological and biochemical parameters of maize seedlings. However, the application of melatonin with nitrogen remarkably improved the plant growth attributes, chlorophyll pigments, fluorescence, and gas exchange parameters. Moreover, melatonin and nitrogen application profoundly reduced the reactive oxygen species (ROS) accumulation by increasing maize antioxidant and nitrogen metabolism enzyme activities under drought-stress conditions. It was concluded that the mitigating potential of 100 µM melatonin with an optimum level of nitrogen (250 kg N ha−1) improves the plant growth, photosynthetic efficiency, and enzymatic activity of maize seedling under drought-stress conditions.
Collapse
|
161
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
162
|
Han S, Jiang S, Xiong R, Shafique K, Zahid KR, Wang Y. Response and tolerance mechanism of food crops under high temperature stress: a review. BRAZ J BIOL 2022; 82:e253898. [PMID: 35107484 DOI: 10.1590/1519-6984.253898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023] Open
Abstract
High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.
Collapse
Affiliation(s)
- S Han
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - S Jiang
- Zhengzhou Normal University, Bioengineering Research Center, Zhengzhou, Henan, P.R. China
| | - R Xiong
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - K R Zahid
- Shenzhen University, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen, Guangdong, China
| | - Y Wang
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| |
Collapse
|
163
|
Ma Y, Freitas H, Dias MC. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1024243. [PMID: 36618626 PMCID: PMC9815798 DOI: 10.3389/fpls.2022.1024243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/28/2022] [Indexed: 05/13/2023]
Abstract
Global climate change-induced abiotic stresses (e.g., drought, salinity, extreme temperatures, heavy metals, and UV radiation) have destabilized the fragile agroecosystems and impaired plant performance and thereby reducing crop productivity and quality. Biostimulants, as a promising and eco-friendly approach, are widely used to address environmental concerns and fulfill the need for developing sustainable/modern agriculture. Current knowledge revealed that plant and animal derived stimulants (e.g., seaweeds and phytoextracts, humic substances, and protein hydrolysate) as well as microbial stimulants (e.g., plant beneficial bacteria or fungi) have great potential to elicit plant tolerance to various abiotic stresses and thus enhancing plant growth and performance-related parameters (such as root growth/diameter, flowering, nutrient use efficiency/translocation, soil water holding capacity, and microbial activity). However, to successfully implement biostimulant-based agriculture in the field under changing climate, the understanding of agricultural functions and action mechanism of biostimulants coping with various abiotic stresses at physicochemical, metabolic, and molecular levels is needed. Therefore, this review attempts to unravel the underlying mechanisms of action mediated by diverse biostimulants in relation to abiotic stress alleviation as well as to discuss the current challenges in their commercialization and implementation in agriculture under changing climate conditions.
Collapse
|
164
|
Fang S, Yang H, Wei G, Shen T, Wan Z, Wang M, Wang X, Wu Z. Potassium application enhances drought tolerance in sesame by mitigating oxidative damage and regulating osmotic adjustment. FRONTIERS IN PLANT SCIENCE 2022; 13:1096606. [PMID: 36578346 PMCID: PMC9791050 DOI: 10.3389/fpls.2022.1096606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 05/10/2023]
Abstract
Potassium (K) is known for alleviating the negative effects of abiotic stresses on plants. To explore the functions of K in controlling reactive oxygen species (ROS), antioxidant activities, and osmoregulation in sesame under drought stress, a pot experiment was conducted with three K levels (0, 60, and 120 kg ha-1, recorded as K0, K1, and K2, respectively) and exposed to well-watered (WW, 75% ± 5% soil relative water content) and drought-stressed (DS, 50% ± 5% soil relative water content) conditions. The results showed that DS stimulated the production of ROS such as increased hydrogen peroxide (H2O2), leading to lipid peroxidation as characterized by higher malondialdehyde (MDA) and, consequently, resulting in the decline in relative water content (RWC) and photosynthetic pigments as compared with WW plants. These adverse effects were exacerbated when drought stress was prolonged. Concurrently, K application alleviated the magnitude of decline in the RWC, chlorophyll a, and chlorophyll b, and plants applied with K exhibited superior growth, with the optimal mitigation observed under K2 treatment. Additionally, DS plants treated with K exhibited lower lipid peroxidation, higher antioxidant activities, and increased osmotic solute accumulation in comparison with plants under K deficiency, which suggested that exogenous K application mitigated the oxidative damages and this was more prominent under K2 treatment. Noteworthily, proline and soluble protein, respectively, dominated in the osmotic regulation at 3 and 6 days of drought stress according to the analysis of the quantitative comparison among different osmotically active solutes. Based on the correlation of the aforementioned traits and the analysis of variance on the interaction effects of drought stress and potassium, we propose that superoxide dismutase (SOD), glutathione reductase (GR), and MDA could be critical indicators in balancing ROS detoxification and reproduction. In summary, our studies suggest that optimized K application keeps a balance between the production of antioxidants and ROS and simultaneously affects osmoregulation to alleviate the damage from drought stress.
Collapse
Affiliation(s)
- Sheng Fang
- *Correspondence: Sheng Fang, ; Ziming Wu,
| | | | | | | | | | | | | | - Ziming Wu
- *Correspondence: Sheng Fang, ; Ziming Wu,
| |
Collapse
|
165
|
Minussi Winck JE, Sarmento LFV, Zanon AJ, Librelon SS, Garcia A, Streck NA. Growth and transpiration of soybean genotypes with HaHB4® transcription factor for drought tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13557. [PMID: 34611890 DOI: 10.1111/ppl.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The expression of HaHB4® transcription factor reduces soybean sensitivity to abiotic stresses, such as water deficit. Studies that quantify the tolerance of HaHB4® soybean to the soil water content in comparison with cultivars currently sown in Brazil are lacking. The objective of this study was to determine the level of drought tolerance of soybean genotypes expressing the HaHB4® transcription factor (TS18-6-610108 and TS18-6-610084) and commercial cultivars (TMG 7063 IPRO and BS IRGA 1642 IPRO) subjected to water deficit during the vegetative phase. We used the fraction of transpirable soil water (FTSW) approach. Parameters related to leaf transpiration, dry matter accumulation, water use efficiency (WUE), and transpiration coefficient (TC) were evaluated in the four soybean genotypes and two treatments (T1-100% replacement of transpired water and T2-without replacement of transpired water). The FTSW threshold for the decline in transpiration was evaluated to identify the onset of water stress in soybean. TS18-6-610108 and BS IRGA 1642 IPRO maintains potential transpiration at low FTSW values. The TS18-6-610108 genotype has 14% higher WUE than the sensitive cultivar under water deficit. Under well-irrigated conditions, the HaHB4® genotypes showed the highest TC values, which indicate well-functioning physiological processes.
Collapse
Affiliation(s)
| | | | - Alencar Junior Zanon
- Departamento de Fitotecnia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Alexandre Garcia
- Tropical Melhoramento e Genética S.A., Cambé, Puerto Rico, Brazil
| | - Nereu Augusto Streck
- Departamento de Fitotecnia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
166
|
Dinis LT, Bernardo S, Yang C, Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA. Mediterranean viticulture in the context of climate change. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv20223702139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The exposure of viticulture to climate change and extreme weather conditions makes the winemaking sector particularly vulnerable, being one of its major challenges in the current century. While grapevine is considered a highly tolerant crop to several abiotic stresses, Mediterranean areas are frequently affected by adverse environmental factors, namely water scarcity, heat and high irradiance, and are especially vulnerable to climate change. Due to the high socio-economic value of this sector in Europe, the study of adaptation strategies to mitigate the negative climate change impacts are of main importance for its sustainability and competitiveness. Adaptation strategies include all the set of actions and processes that can be performed in response to climate change. It is crucial to improve agronomic strategies to offset the loss of productivity and likely changes in production and fruit quality. It is important to look for new insights concerning response mechanisms to these stresses to advance with more effective and precise measures. These measures should be adjusted to local terroirs and regional climate change projections for the sustainable development of the winemaking sector. This review describes the direct climate change impacts (on phenology, physiology, yield and berry quality), risks, and uncertainties for Mediterranean viticulture, as well as a set of canopy, soil and water management practices that winegrowers can use to adapt their vines to warmer and drier conditions.
Collapse
|
167
|
Xie H, Shi F, Li J, Yu M, Yang X, Li Y, Fan J. The Reciprocal Effect of Elevated CO 2 and Drought on Wheat-Aphid Interaction System. FRONTIERS IN PLANT SCIENCE 2022; 13:853220. [PMID: 35909776 PMCID: PMC9330134 DOI: 10.3389/fpls.2022.853220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/08/2022] [Indexed: 05/13/2023]
Abstract
Due to the rising concentration of atmospheric CO2, climate change is predicted to intensify episodes of drought. However, our understanding of how combined environmental conditions, such as elevated CO2 and drought together, will influence crop-insect interactions is limited. In the present study, the direct effects of combined elevated CO2 and drought stress on wheat (Triticum aestivum) nutritional quality and insect resistance, and the indirect effects on the grain aphid (Sitobion miscanthi) performance were investigated. The results showed that, in wheat, elevated CO2 alleviated low water content caused by drought stress. Both elevated CO2 and drought promoted soluble sugar accumulation. However, opposite effects were found on amino acid content-it was decreased by elevated CO2 and increased by drought. Further, elevated CO2 down-regulated the jasmonic acid (JA) -dependent defense, but up-regulated the salicylic acid (SA)-dependent defense. Meanwhile, drought enhanced abscisic acid accumulation that promoted the JA-dependent defense. For aphids, their feeding always induced phytohormone resistance in wheat under either elevated CO2 or drought conditions. Similar aphid performance between the control and the combined two factors were observed. We concluded that the aphid damage suffered by wheat in the future under combined elevated CO2 and drier conditions tends to maintain the status quo. We further revealed the mechanism by which it happened from the aspects of wheat water content, nutrition, and resistance to aphids.
Collapse
Affiliation(s)
- Haicui Xie
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Fengyu Shi
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jingshi Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Miaomiao Yu
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuetao Yang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jia Fan
| |
Collapse
|
168
|
Lima KRP, Cavalcante FLP, Paula-Marinho SDO, Pereira IMC, Lopes LDS, Nunes JVS, Coutinho ÍAC, Gomes-Filho E, Carvalho HHD. Metabolomic profiles exhibit the influence of endoplasmic reticulum stress on sorghum seedling growth over time. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:192-205. [PMID: 34902782 DOI: 10.1016/j.plaphy.2021.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Environmental stresses disturb the endoplasmic reticulum (ER) protein folding. However, primary metabolic responses induced by ER stress remain unclear. Thus, we investigated the morphophysiological and metabolomic changes under ER stress, induced by dithiothreitol (DTT) and tunicamycin (TM) treatments in sorghum seedlings from 24 to 96 h. The ER stress caused lipid peroxidation and increased the expression of SbBiP1, SbPDI, and SbIRE1. The development impairment was more pronounced in roots than in shoots as distinct metabolomic profiles were observed. DTT decreased root length, lateral roots, and root hair, while TM decreased mainly the root length. At 24 h, under ER stresses, the glutamic acid and o-acetyl-serine were biomarkers in the shoots. While homoserine, pyroglutamic acid, and phosphoric acid were candidates for roots. At the latest time (96 h), kestose and galactinol were key metabolites for shoots under DTT and TM, respectively. In roots, palatinose, trehalose, and alanine were common markers for DTT and TM late exposure. The accumulation of sugars such as arabinose and kestose occurred mainly in roots in the presence of DTT at a later time, which also inhibited glycolysis and the tricarboxylic acid cycle (TCA). Amino acid metabolism was induced, which also contributed TCA components decreasing, such as succinate in shoots and citrate in roots. Thus, our study may provide new insights into primary metabolism modulated by ER stress and seedling development.
Collapse
Affiliation(s)
- Karollyny Roger Pereira Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | | | | | - Isabelle Mary Costa Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | | | | | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | - Humberto Henrique de Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil.
| |
Collapse
|
169
|
Radha B, Sunitha NC, Sah RP, T P MA, Krishna GK, Umesh DK, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Ch L N M, S B, Marndi BC, Siddique KHM. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:996514. [PMID: 36714754 PMCID: PMC9874338 DOI: 10.3389/fpls.2022.996514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
Collapse
Affiliation(s)
- Beena Radha
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Vellayani, Thiruvananthapuram, Kerala, India
| | | | - Rameswar P Sah
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Md Azharudheen T P
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - G K Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Thrissur, Kerala, India
| | - Deepika Kumar Umesh
- Mulberry Breeding & Genetics Section, Central Sericultural Research and Training Institute-Berhampore, Central Silk Board, Murshidabad, West Bengal, India
| | - Sini Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, Kumarakom, Kerala, India
| | - Chandrappa Anilkumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Sameer Upadhyay
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Awadhesh Kumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Manikanta Ch L N
- Department of Plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Behera S
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Bishnu Charan Marndi
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Kadambot H M Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
170
|
Sherstneva O, Khlopkov A, Gromova E, Yudina L, Vetrova Y, Pecherina A, Kuznetsova D, Krutova E, Sukhov V, Vodeneev V. Analysis of chlorophyll fluorescence parameters as predictors of biomass accumulation and tolerance to heat and drought stress of wheat ( Triticum aestivum) plants. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:155-169. [PMID: 34813421 DOI: 10.1071/fp21209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Agricultural technologies aimed at increasing yields require the development of highly productive and stress-tolerant cultivars. Phenotyping can significantly accelerate breeding; however, no reliable markers have been identified to select the most promising cultivars at an early stage. In this work, we determined the light-induced dynamic of chlorophyll fluorescence (ChlF) parameters in young seedlings of 10 wheat (Triticum aestivum L.) cultivars and evaluated potency of these parameters as predictors of biomass accumulation and stress tolerance. Dry matter accumulation positively correlated with the effective quantum efficiency of photosystem II (Φ PSIIef ) and negatively correlated with the half-time of Φ PSIIef reaching (t 1/2 (Φ PSIIef )). There was a highly significant correlation between t 1/2 (Φ PSIIef ) and dry matter accumulation with increasing prediction period. Short-term heating and drought caused an inhibition of biomass accumulation and photosynthetic activity depending on the stressor intensity. The positive correlation between the Φ PSII dark level (Φ PSIId ) in young seedlings and tolerance to a rapidly increasing short-term stressor (heating) was shown. In the case of a long-term stressor (drought), we revealed a strong negative relationship between tolerance and the level of non-photochemical fluorescence quenching (NPQ). In general, the results show the potency of the ChlF parameters of young seedlings as predictors of biomass accumulation and stress tolerance.
Collapse
Affiliation(s)
- Oksana Sherstneva
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Andrey Khlopkov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Ekaterina Gromova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Lyubov Yudina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Yana Vetrova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Anna Pecherina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Darya Kuznetsova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Elena Krutova
- Agronomic Faculty, Nizhny Novgorod State Agricultural Academy, Nizhny Novgorod 603107, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| |
Collapse
|
171
|
Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and Physiological Responses to Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:832147. [PMID: 35449889 PMCID: PMC9016328 DOI: 10.3389/fpls.2022.832147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 05/07/2023]
Abstract
Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.
Collapse
Affiliation(s)
- Mariam Kourani
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Fady Mohareb
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
- *Correspondence: Fady Mohareb,
| | - Faisal I. Rezwan
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Maria Anastasiadi
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- John P. Hammond,
| |
Collapse
|
172
|
Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:854116. [PMID: 35574092 PMCID: PMC9093713 DOI: 10.3389/fpls.2022.854116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 05/10/2023]
Abstract
As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- *Correspondence: Jianrong Guo,
| | - Changdan Shan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Xinlei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- Baoshan Wang,
| |
Collapse
|
173
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
174
|
Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, Painuli S, Konovalov DA, Alfred MA, Kumar NVA, Imran M, Nadeem M, Sawicka B, Pszczółkowski P, Bienia B, Barbaś P, Mahmud S, Durazzo A, Lucarini M, Santini A, Martorell M, Calina D. Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6584693. [PMID: 39071243 PMCID: PMC11283336 DOI: 10.1155/2021/6584693] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 07/30/2024]
Abstract
Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as "lemon balm herb", can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Wafa Abbaass
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun (248002), Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Vigyan Dham, Dehradun, 248007 Uttarakhand, India
| | - Sakshi Painuli
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun (248002), Uttarakhand, India
- Himalayan Environmental Studies and Conservation Organization, Prem Nagar, Dehradun, 248001 Uttarakhand, India
| | - Dmitry Alekseevich Konovalov
- Department of Pharmacognozy and Botany, Pyatigorsk Medical and Pharmaceutical Institute, A Branch of Volgograd State Medical University Ministry of Health of the Russian Federation, Kalinina av.11, Pyatigorsk 357532, Russia
| | - Mary Angelia Alfred
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Poland, Akademicka 13 Str., 20-950 Lublin, Poland
| | - Piotr Pszczółkowski
- The Experimental Station for Variety Assessment of the Central Plant Research Center Uhnin, ZDOO Uhnin, 21-211 Dębowa Kłoda, Poland
| | - Bernadetta Bienia
- Department of Herbal Medicine, Carpathian State University in Krosno, Poland, Dmochowskiego 12 Str., 38-400 Krosno, Poland
| | - Piotr Barbaś
- Department of Potato Agronomy, Plant Breeding and Acclimatization Institute-National Research Institute, Jadwisin Research Center, Poland
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardetina 546, 00178 Rome, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardetina 546, 00178 Rome, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad De Desarrollo Tecnológico (UDT), Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
175
|
Venegas-Rioseco J, Ginocchio R, Ortiz-Calderón C. Increase in Phytoextraction Potential by Genome Editing and Transformation: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 11:86. [PMID: 35009088 PMCID: PMC8747683 DOI: 10.3390/plants11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Soil metal contamination associated with productive activities is a global issue. Metals are not biodegradable and tend to accumulate in soils, posing potential risks to surrounding ecosystems and human health. Plant-based techniques (phytotechnologies) for the in situ remediation of metal-polluted soils have been developed, but these have some limitations. Phytotechnologies are a group of technologies that take advantage of the ability of certain plants to remediate soil, water, and air resources to rehabilitate ecosystem services in managed landscapes. Regarding soil metal pollution, the main objectives are in situ stabilization (phytostabilization) and the removal of contaminants (phytoextraction). Genetic engineering strategies such as gene editing, stacking genes, and transformation, among others, may improve the phytoextraction potential of plants by enhancing their ability to accumulate and tolerate metals and metalloids. This review discusses proven strategies to enhance phytoextraction efficiency and future perspectives on phytotechnologies.
Collapse
Affiliation(s)
- Javiera Venegas-Rioseco
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rosanna Ginocchio
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Ortiz-Calderón
- Laboratorio de Bioquímica Vegetal y Fitorremediación, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| |
Collapse
|
176
|
Tavakol E, Jákli B, Cakmak I, Dittert K, Senbayram M. Optimization of Potassium Supply under Osmotic Stress Mitigates Oxidative Damage in Barley. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010055. [PMID: 35009058 PMCID: PMC8747552 DOI: 10.3390/plants11010055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 05/25/2023]
Abstract
Potassium (K) is the most abundant cation in plants, playing an important role in osmoregulation. Little is known about the effect of genotypic variation in the tolerance to osmotic stress under different K treatments in barley. In this study, we measured the interactive effects of osmotic stress and K supply on growth and stress responses of two barley cultivars (Hordeum vulgare L.) and monitored reactive oxygen species (ROS) along with enzymatic antioxidant activity and their respective gene expression level. The selected cultivars (cv. Milford and cv. Sahin-91Sahin-91) were exposed to osmotic stress (-0.7 MPa) induced by polyethylene glycol 6000 (PEG) under low (0.04 mM) and adequate (0.8 mM) K levels in the nutrient solution. Leaf samples were collected and analyzed for levels of K, ROS, kinetic activity of antioxidants enzymes and expression levels of respective genes during the stress period. The results showed that optimal K supply under osmotic stress significantly decreases ROS production and adjusts antioxidant activity, leading to the reduction of oxidative stress in the studied plants. The cultivar Milford had a lower ROS level and a better tolerance to stress compared to the cultivar Sahin-91. We conclude that optimized K supply is of great importance in mitigating ROS-related damage induced by osmotic stress, specifically in drought-sensitive barley cultivars.
Collapse
Affiliation(s)
- Ershad Tavakol
- K+S Minerals and Agriculture GmbH, Bertha-von-Suttner Str. 7, 34041 Kassel, Germany
| | - Bálint Jákli
- Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany;
| | - Ismail Cakmak
- Faculty of Engineering & Natural Sciences, Sabanci University, 34956 Tuzla, Turkey;
| | - Klaus Dittert
- Department of Crop Sciences, Section of Plant Nutrition and Crop Physiology, Georg-August-Universität Göttingen, 37075 Gottingen, Germany;
| | - Mehmet Senbayram
- Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, 63000 Sanliurfa, Turkey;
| |
Collapse
|
177
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
178
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
179
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
180
|
Lopez-Delacalle M, Camejo D, Garcia-Marti M, Lopez-Ramal MJ, Nortes PA, Martinez V, Rivero RM. Deciphering fruit sugar transport and metabolism from tolerant and sensitive tomato plants subjected to simulated field conditions. PHYSIOLOGIA PLANTARUM 2021; 173:1715-1728. [PMID: 33547642 DOI: 10.1111/ppl.13355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In the current state of climate change, we must assume that abiotic stresses act together under natural field conditions, these will increase in the coming years. Therefore, in this report we investigated how sugar metabolism was affected under simulated field conditions, where plants faced high ambient temperatures and a low-quality water irrigation. Our studies were carried out on fruits of two tomato recombinant lines, a tolerant and a sensitive one exposed to the combination of heat and salinity. Two ripening stages (mature green and red ripe fruits) were used in our analyzes, where the gene expression levels of the main biosynthetic genes and transporters, enzymatic activities and compounds related to the synthesis, accumulation, and degradation of sugars in plants were analyzed. The tolerant line showed highly significant differences in red ripe fruits in comparison to the sensitive one under the simulated field conditions (35°C + 60 mM NaCl), with an overexpression of the genes SlFBP, SlSPS, SlSUS3, and SlNi. These expression patterns correlated with a higher activity of the enzymes FBP, SPS, SUS3, AI, and G6PDH, which resulted in the accumulation of fructose, glucose and UDP-glucose. Our results showed the advantage of using tomato recombinant lines for rescuing important traits, such as the resistance to some abiotic stresses, and for the identification of important molecular and metabolic markers that could be used to determine fruit quality in green or red maturity stages under detrimental environmental field conditions.
Collapse
Affiliation(s)
- Maria Lopez-Delacalle
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Daymi Camejo
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Maria Garcia-Marti
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Maria Jose Lopez-Ramal
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Pedro A Nortes
- CEBAS-CSIC, Department of Irrigation, Campus Universitario Espinardo, Espinardo, Spain
| | - Vicente Martinez
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| | - Rosa M Rivero
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario Espinardo, Espinardo, Spain
| |
Collapse
|
181
|
He H, Wang Q, Wang L, Yang K, Yang R, You C, Ke J, Wu L. Photosynthetic physiological response of water-saving and drought-resistant rice to severe drought under wetting-drying alternation irrigation. PHYSIOLOGIA PLANTARUM 2021; 173:2191-2206. [PMID: 34549440 DOI: 10.1111/ppl.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Water-saving and drought-resistant rice (WDR) is widely grown in central China in recent years. However, studies have not explored the interaction effect of WDR and irrigation regimes on drought-resistance capacities under severe drought at sensitive growth periods. A pot experiment was conducted using a WDR cultivar Hanyou73 (HY73) and traditional high-yielding and drought-sensitive cultivar Huiliangyou 898 (HLY898). Three irrigation regimes, including flooding irrigation (W1), mild wetting-drying alternation irrigation (W2), and severe wetting-drying alternation irrigation (W3), were applied before heading. At heading, severe drought with -50 KPa soil water potential was established for all treatments and cultivars. The findings showed that cultivar HY73 under W2 treatment had the highest yield, 1000-grain yield, filled grain, relative water content, and photosynthesis potential compared with the other combinations. The higher net photosynthetic rate (Pn ) was attributed to larger mesophyll conductance (gm ) in drought for cultivar HY73 under W2 treatment compared with that for cultivar HLY898 and the other water treatments. Enhanced photo-respiration rate may be an important photoprotection mechanism for achieving high Pn for cultivar HY73 coupled with W2 treatment than for other combinations in drought. The relative expression level of OsPIP1;1 gene was significantly down-regulated during drought in all cultivars and water regimes. But OsPIP1;2, OsPIP2;3, OsTIP2;2, and OsTIP3;1 genes were upregulated to alleviate the significant decrease in gs and gm under drought. These results suggest that WDR and mild wetting-drying alternation irrigation (W2) have significant interaction effects in improving photosynthetic production potential by maintaining higher gm under severe drought.
Collapse
Affiliation(s)
- Haibing He
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Quan Wang
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Lele Wang
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Kun Yang
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Ru Yang
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Cuicui You
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Jian Ke
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | - Liquan Wu
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
182
|
Gu X, Gao S, Li J, Song P, Zhang Q, Guo J, Wang X, Han X, Wang X, Zhu Y, Zhu Z. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:269-279. [PMID: 34823144 DOI: 10.1016/j.plaphy.2021.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress limiting crop growth and yield. In this study, we characterized a novel drought tolerance induced WIH gene in rice, OsWIH2. Overexpression of OsWIH2 in rice resulted in significantly higher drought tolerance, probably due to the decreased water loss rate and reactive oxygen species (ROS) accumulation under drought stress. We identified a long-chain fatty acid HOTHEAD (HTH) that interacted with OsWIH2 using yeast two-hybrid screening. OsWIH2 is an enzyme which is involved in fatty acid synthesis. We further demonstrated that the drought-inducible bHLH transcription factor OsbHLH130 could activate the expression of OsWIH2. Overall, our results suggest that drought stress may induce OsbHLH130 accumulation, which in turn activates OsWIH2 expression, and the latter improves rice drought tolerance by participating in cuticular wax biosynthesis and reducing the water loss rate as well as ROS accumulation. This research provides new genes for crop improvement.
Collapse
Affiliation(s)
- Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuxin Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinfeng Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyu Han
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
183
|
La Fua J, Sabaruddin L, Santiaji Bande LO, Leomo S, Kade Sutariati GA, Khaeruni A, Safuan LO, Hs G, Corona Rakian T, Iswandi M, Umi Nurlila R. Isolation of Drought-Tolerant Endophyte Bacteria From Local Tomato Plants. Pak J Biol Sci 2021; 24:1055-1062. [PMID: 34842375 DOI: 10.3923/pjbs.2021.1055.1062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Exploration of drought-tolerant endophytic bacteria is significant to identify bacteria that can provide plant resistance to drought stress. This study aims to obtain the potential of endophytic bacteria to promote plant growth from tomato plants in dry land. <b>Materials and Methods:</b> Exploration of endophytic bacteria from healthy tomato plants in a dry and rocky land, Muna Regency, Indonesia. Selection of drought-tolerant endophytic bacteria using polyethylene glycol 6000. Selected isolates were tested to increase the viability of tomato seeds using a Completely Randomized Design (CRD). <b>Results:</b> There were 123 isolates of endophytic bacteria isolated from the roots and stems of local tomato plants in a dry and rocky land, Muna Regency, Indonesia. There were 39 (31.70%) isolates sensitive to drought, 55 (44.71%) isolates very sensitive to drought, 8 (6.50%) isolates tolerant to drought and 21 (17.02%) isolates very tolerant to drought. Dryness for the maximum polyethylene glycol concentration at osmotic pressure of -2.00 MPa. Inoculation of endophytic bacteria in local tomato seeds increased the viability and vigour of local tomato seeds compared to the absence of endophytic bacteria. Of the 21 isolates of drought-tolerant endophytic bacteria, there were 12 potential isolates in increasing the viability of local tomato seeds belonging to the <i>Pseudomonas</i> sp. and <i>Bacillus</i> sp. bacterial groups. <b>Conclusion:</b> <i>Pseudomonas </i>sp. and Bacillus sp. isolates identified the endophytic bacteria, which can be drought-tolerant and increase tomato seeds' viability.
Collapse
|
184
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
185
|
Yang Z, Bai C, Wang P, Fu W, Wang L, Song Z, Xi X, Wu H, Zhang G, Wu J. Sandbur Drought Tolerance Reflects Phenotypic Plasticity Based on the Accumulation of Sugars, Lipids, and Flavonoid Intermediates and the Scavenging of Reactive Oxygen Species in the Root. Int J Mol Sci 2021; 22:ijms222312615. [PMID: 34884421 PMCID: PMC8657935 DOI: 10.3390/ijms222312615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
The perennial grass Cenchrus spinifex (common sandbur) is an invasive species that grows in arid and semi-arid regions due to its remarkable phenotypic plasticity, which confers the ability to withstand drought and other forms of abiotic stress. Exploring the molecular mechanisms of drought tolerance in common sandbur could lead to the development of new strategies for the protection of natural and agricultural environments from this weed. To determine the molecular basis of drought tolerance in C. spinifex, we used isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins differing in abundance between roots growing in normal soil and roots subjected to moderate or severe drought stress. The analysis of these proteins revealed that drought tolerance in C. spinifex primarily reflects the modulation of core physiological activities such as protein synthesis, transport and energy utilization as well as the accumulation of flavonoid intermediates and the scavenging of reactive oxygen species. Accordingly, plants subjected to drought stress accumulated sucrose, fatty acids, and ascorbate, shifted their redox potential (as determined by the NADH/NAD ratio), accumulated flavonoid intermediates at the expense of anthocyanins and lignin, and produced less actin, indicating fundamental reorganization of the cytoskeleton. Our results show that C. spinifex responds to drought stress by coordinating multiple metabolic pathways along with other adaptations. It is likely that the underlying metabolic plasticity of this species plays a key role in its invasive success, particularly in semi-arid and arid environments.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
| | - Chao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Peng Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Weidong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
| | - Le Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
| | - Xin Xi
- Beijing Plant Protection Station, Beijing 100029, China;
| | - Hanwen Wu
- E.H. Graham Centre for Agricultural Innovation (A Collaborative Alliance between Charles Sturt University and the NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia;
| | - Guoliang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- Correspondence: (G.Z.); (J.W.); Tel.: +86-82109570 (G.Z.); +86-64807375 (J.W.)
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
- Correspondence: (G.Z.); (J.W.); Tel.: +86-82109570 (G.Z.); +86-64807375 (J.W.)
| |
Collapse
|
186
|
Li S, Hamani AKM, Zhang Y, Liang Y, Gao Y, Duan A. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought. BMC PLANT BIOLOGY 2021; 21:536. [PMID: 34781896 PMCID: PMC8591842 DOI: 10.1186/s12870-021-03304-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Leaf hydraulic and economics traits are critical for balancing plant water and CO2 exchange, and their relationship has been widely studied. Leaf anatomical traits determine the efficiency of CO2 diffusion within mesophyll structure. However, it remains unclear whether leaf anatomical traits are associated with leaf hydraulic and economics traits acclimation to long-term drought. RESULTS To address this knowledge gap, eight hydraulic traits, including stomatal and venation structures, four economics traits, including leaf dry mass per area (LMA) and the ratio between palisade and spongy mesophyll thickness (PT/ST), and four anatomical traits related to CO2 diffusion were measured in tomato seedlings under the long-term drought conditions. Redundancy analysis indicated that the long-term drought decreased stomatal conductance (gs) mainly due to a synchronized reduction in hydraulic structure such as leaf hydraulic conductance (Kleaf) and major vein width. Simultaneously, stomatal aperture on the adaxial surface and minor vein density (VDminor) also contributed a lot to this reduction. The decreases in mesophyll thickness (Tmes) and chlorophyll surface area exposed to leaf intercellular air spaces (Sc/S) were primarily responsible for the decline of mesophyll conductance (gm) thereby affecting photosynthesis. Drought increased leaf density (LD) thus limited CO2 diffusion. In addition, LMA may not be important in regulating gm in tomato under drought. Principal component analysis revealed that main anatomical traits such as Tmes and Sc/S were positively correlated to Kleaf, VDminor and leaf thickness (LT), while negatively associated with PT/ST. CONCLUSIONS These findings indicated that leaf anatomy plays an important role in maintaining the balance between water supply and CO2 diffusion responses to drought. There was a strong coordination between leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought.
Collapse
Affiliation(s)
- Shuang Li
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Abdoul Kader Mounkaila Hamani
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Zhang
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
| | - Yueping Liang
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
| | - Yang Gao
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China.
| | - Aiwang Duan
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China.
| |
Collapse
|
187
|
Khan M, Hu J, Dahro B, Ming R, Zhang Y, Wang Y, Alhag A, Li C, Liu JH. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:705-724. [PMID: 34398993 DOI: 10.1111/tpj.15465] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 05/21/2023]
Abstract
Ethylene-responsive factors (ERFs) are plant-specific transcription factors involved in cold stress response, and raffinose is known to accumulate in plants exposed to cold. However, it remains elusive whether ERFs function in cold tolerance by modulating raffinose synthesis. Here, we identified a cold-responsive PtrERF108 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-tolerant plant closely related to citrus. PtrERF108 is localized in the nucleus and has transcriptional activation activity. Overexpression of PtrERF108 conferred enhanced cold tolerance of transgenic lemon, whereas virus-induced gene silencing (VIGS)-mediated knockdown of PtrERF108 in trifoliate orange greatly elevated cold sensitivity. Transcriptome profiling showed that PtrERF108 overexpression caused extensive reprogramming of genes associated with signaling transduction, physiological processes and metabolic pathways. Among them, a raffinose synthase (RafS)-encoding gene, PtrRafS, was confirmed as a direct target of PtrERF108. RafS activity and raffinose content were significantly increased in PtrERF108-overexpressing transgenic plants, but prominently decreased in the VIGS plants under cold conditions. Meanwhile, exogenous replenishment of raffinose could recover the cold tolerance of PtrERF108-silenced plants, whereas VIGS-mediated knockdown of PtrRafS resulted in cold-sensitive phenotype. Taken together, the current results demonstrate that PtrERF108 plays a positive role in cold tolerance by modulation of raffinose synthesis via regulating PtrRafS. Our findings reveal a new transcriptional module composed of ERF108-RafS underlying cold-induced raffinose accumulation in plants.
Collapse
Affiliation(s)
- Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Hu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
188
|
Sezgin Muslu A, Kadioglu A. The antioxidant defense and glyoxalase systems contribute to the thermotolerance of Heliotropium thermophilum. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1241-1253. [PMID: 34600601 DOI: 10.1071/fp21113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
This study focused on the impact of the antioxidant defence and glyoxalase systems on extreme heat tolerance of the thermophilic plant Heliotropium thermophilum L. For this purpose, plants were exposed to 20, 40, 60 and 80±5°C soil temperature gradually for 15days under laboratory conditions. Our results showed that the hydrogen peroxide and superoxide levels of H. thermophilum were lower at 40±5°C and higher at 80±5°C compared with plants grown at 20±5°C. Some antioxidant enzyme activities tended to increase in plants at 40, 60 and 80±5°C compared with those at 20±5°C and the protein contents responsible for the antioxidant enzymes were in parallel with these enzyme activities. The contents of both reduced and oxidised ascorbate and glutathione rose with increasing temperature. Methylglyoxal level was lower at 40±5°C and higher at 80±5°C compared with plants grown at 20±5°C. Glyoxalase activities highly increased with rising of soil temperature from 20±5°C to 80±5°C. The results of this study suggest that differential modulations of enzymatic antioxidants and the increase in non-enzymatic antioxidants and glyoxalase activities can contribute to the development of the thermotolerance of H. thermophilum through the detoxification of reactive oxygen species and methylglyoxal.
Collapse
Affiliation(s)
- Asiye Sezgin Muslu
- Faculty of Science, Department of Biology, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Asim Kadioglu
- Faculty of Science, Department of Biology, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
189
|
The Quantitative Trait Loci Mapping of Rice Plant and the Components of Its Extract Confirmed the Anti-Inflammatory and Platelet Aggregation Effects In Vitro and In Vivo. Antioxidants (Basel) 2021; 10:antiox10111691. [PMID: 34829563 PMCID: PMC8615199 DOI: 10.3390/antiox10111691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Unpredictable climate change might cause serious lack of food in the world. Therefore, in the present world, it is urgent to prepare countermeasures to solve problems in terms of human survival. In this research, quantitative trait loci (QTLs) were analyzed when rice attacked by white backed planthopper (WBPH) were analyzed using 120 Cheongcheong/Nagdong double haploid lines. Moreover, from the detected QTLs, WBPH resistance-related genes were screened in large candidate genes. Among them, OsCM, a major gene in the synthesis of Cochlioquinone-9 (cq-9), was screened. OsCM has high homology with the sequence of chorismate mutase, and exists in various functional and structural forms in plants that produce aromatic amino acids. It also induces resistance to biotic stress through the synthesis of secondary metabolites in plants. The WBPH resistance was improved in rice overexpressed through map-based cloning of the WBPH resistance-related gene OsCM, which was finally detected by QTL mapping. In addition, cq-9 increased the survival rate of caecal ligation puncture (CLP)-surgery mice by 60%. Moreover, the aorta of rat treated with cq-9 was effective in vasodilation response and significantly reduced the aggregation of rat platelets induced by collagen treatment. A cq-9, which is strongly associated with resistance to WBPH in rice, is also associated with positive effect of CLP surgery mice survival rate, vasodilation, and significantly reduced rat platelet aggregation induced by collagen treatment. Therefore, cq-9 presents research possibilities as a substance in a new paradigm that can act on both Plant-Insect in response to the present unpredictable future.
Collapse
|
190
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
191
|
Melandri G, Thorp KR, Broeckling C, Thompson AL, Hinze L, Pauli D. Assessing Drought and Heat Stress-Induced Changes in the Cotton Leaf Metabolome and Their Relationship With Hyperspectral Reflectance. FRONTIERS IN PLANT SCIENCE 2021; 12:751868. [PMID: 34745185 PMCID: PMC8569624 DOI: 10.3389/fpls.2021.751868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The study of phenotypes that reveal mechanisms of adaptation to drought and heat stress is crucial for the development of climate resilient crops in the face of climate uncertainty. The leaf metabolome effectively summarizes stress-driven perturbations of the plant physiological status and represents an intermediate phenotype that bridges the plant genome and phenome. The objective of this study was to analyze the effect of water deficit and heat stress on the leaf metabolome of 22 genetically diverse accessions of upland cotton grown in the Arizona low desert over two consecutive years. Results revealed that membrane lipid remodeling was the main leaf mechanism of adaptation to drought. The magnitude of metabolic adaptations to drought, which had an impact on fiber traits, was found to be quantitatively and qualitatively associated with different stress severity levels during the two years of the field trial. Leaf-level hyperspectral reflectance data were also used to predict the leaf metabolite profiles of the cotton accessions. Multivariate statistical models using hyperspectral data accurately estimated (R 2 > 0.7 in ∼34% of the metabolites) and predicted (Q 2 > 0.5 in 15-25% of the metabolites) many leaf metabolites. Predicted values of metabolites could efficiently discriminate stressed and non-stressed samples and reveal which regions of the reflectance spectrum were the most informative for predictions. Combined together, these findings suggest that hyperspectral sensors can be used for the rapid, non-destructive estimation of leaf metabolites, which can summarize the plant physiological status.
Collapse
Affiliation(s)
- Giovanni Melandri
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Kelly R. Thorp
- United States Department of Agriculture-Agricultural Research Service, Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Corey Broeckling
- Analytical Resources Core: Bioanalysis and Omics Center, Colorado State University, Fort Collins, CO, United States
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Alison L. Thompson
- United States Department of Agriculture-Agricultural Research Service, Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Lori Hinze
- United States Department of Agriculture-Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Duke Pauli
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
192
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
193
|
Sinha R, Fritschi FB, Zandalinas SI, Mittler R. The impact of stress combination on reproductive processes in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111007. [PMID: 34482910 DOI: 10.1016/j.plantsci.2021.111007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Historically, extended droughts combined with heat waves caused severe reductions in crop yields estimated at billions of dollars annually. Because global warming and climate change are driving an increase in the frequency and intensity of combined water-deficit and heat stress episodes, understanding how these episodes impact yield is critical for our efforts to develop climate change-resilient crops. Recent studies demonstrated that a combination of water-deficit and heat stress exacerbates the impacts of water-deficit or heat stress on reproductive processes of different cereals and legumes, directly impacting grain production. These studies identified several different mechanisms potentially underlying the effects of stress combination on anthers, pollen, and stigma development and function, as well as fertilization. Here we review some of these findings focusing on unbalanced reactive oxygen accumulation, altered sugar concentrations, and conflicting functions of different hormones, as contributing to the reduction in yield during a combination of water-deficit and heat stress. Future studies focused on the effects of water-deficit and heat stress combination on reproduction of different crops are likely to unravel additional mechanisms, as well as reveal novel ways to develop stress combination-resilient crops. These could mitigate some of the potentially devastating impacts of this stress combination on agriculture.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Felix B Fritschi
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA.
| |
Collapse
|
194
|
Laskoś K, Czyczyło‐Mysza IM, Dziurka M, Noga A, Góralska M, Bartyzel J, Myśków B. Correlation between leaf epicuticular wax composition and structure, physio-biochemical traits and drought resistance in glaucous and non-glaucous near-isogenic lines of rye. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:93-119. [PMID: 34288188 PMCID: PMC9291005 DOI: 10.1111/tpj.15428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 05/06/2023]
Abstract
The objective of this research was to investigate the differences between glaucous and non-glaucous near-isogenic lines (NILs) of winter rye (Secale cereale L.) in terms of epicuticular wax layer properties (weight, composition, and crystal morphology), selected physiological and biochemical responses, yield components, above-ground biomass, and plant height under soil drought stress. An important aspect of this analysis was to examine the correlation between the above characteristics. Two different NIL pairs were tested, each consisting of a typical glaucous line and a non-glaucous line with a recessive mutation. The drought experiment was conducted twice (2015-2016). Our study showed that wax accumulation during drought was not correlated with higher leaf hydration and glaucousness. Environmental factors had a large impact on the response of the lines to drought in individual years, both in terms of physiological and biochemical reactions, and the composition of epicuticular leaf wax. The analysed pairs displayed significantly different responses to drought. Demonstration of the correlation between the components of rye leaf wax and the physiological and biochemical parameters of rye NILs is a significant achievement of this work. Interestingly, the study showed a correlation between the wax components and the content of photosynthetic pigments and tocopherols, whose biosynthesis, similarly to the biosynthesis of wax precursors, is mainly located in chloroplasts. This suggests a relationship between wax biosynthesis and plant response to various environmental conditions and drought stress.
Collapse
Affiliation(s)
- Kamila Laskoś
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Ilona M. Czyczyło‐Mysza
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Angelika Noga
- The Franciszek Górski Institute of Plant Physiology Polish Academy of SciencesNiezapominajek 2130‐239Kraków
Poland
| | - Magdalena Góralska
- Department of Plant Genetics, Breeding and BiotechnologyWest‐Pomeranian University of TechnologySłowackiego 1771‐434SzczecinPoland
| | - Jakub Bartyzel
- Department of Applied Nuclear PhysicsFaculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyMickiewicza 330‐059KrakówPoland
| | - Beata Myśków
- Department of Plant Genetics, Breeding and BiotechnologyWest‐Pomeranian University of TechnologySłowackiego 1771‐434SzczecinPoland
| |
Collapse
|
195
|
Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie AR, Yan J, Qin F, Chen W, Brotman Y, Dai M. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol 2021; 22:260. [PMID: 34488839 PMCID: PMC8420056 DOI: 10.1186/s13059-021-02481-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive. Results Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance. Conclusion Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02481-1.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Jinfeng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Nir Sade
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany. .,Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Beersheba, Israel.
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan laboratory, Wuhan, 430070, China.
| |
Collapse
|
196
|
Will Casuarina glauca Stress Resilience Be Maintained in the Face of Climate Change? Metabolites 2021; 11:metabo11090593. [PMID: 34564409 PMCID: PMC8467279 DOI: 10.3390/metabo11090593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Actinorhizal plants have been regarded as promising species in the current climate change context due to their high tolerance to a multitude of abiotic stresses. While combined salt-heat stress effects have been studied in crop species, their impact on the model actinorhizal plant, Casuarina glauca, has not yet been fully addressed. The effect of single salt (400 mM NaCl) and heat (control at 26/22 °C, supra optimal temperatures at 35/22 °C and 45/22 °C day/night) conditions on C. glauca branchlets was characterised at the physiological level, and stress-induced metabolite changes were characterised by mass spectrometry-based metabolomics. C. glauca could withstand single salt and heat conditions. However, the harshest stress condition (400 mM NaCl, 45 °C) revealed photosynthetic impairments due to mesophyll and membrane permeability limitations as well as major stress-specific differential responses in C and N metabolism. The increased activity of enzymatic ROS scavengers was, however, revealed to be sufficient to control the plant oxidative status. Although C. glauca could tolerate single salt and heat stresses, their negative interaction enhanced the effects of salt stress. Results demonstrated that C. glauca responses to combined salt-heat stress could be explained as a sum of the responses from each single applied stress.
Collapse
|
197
|
Ren J, Hu J, Zhang A, Ren S, Jing T, Wang X, Sun M, Huang L, Zeng B. The whole-genome and expression profile analysis of WRKY and RGAs in Dactylis glomerata showed that DG6C02319.1 and Dg WRKYs may cooperate in the immunity against rust. PeerJ 2021; 9:e11919. [PMID: 34466285 PMCID: PMC8380429 DOI: 10.7717/peerj.11919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023] Open
Abstract
Orchardgrass (Dactylis glomerata) is one of the top four perennial forages worldwide and, despite its large economic advantages, often threatened by various environmental stresses. WRKY transcription factors (TFs) can regulate a variety of plant processes, widely participate in plant responses to biotic and abiotic stresses, and are one of the largest gene families in plants. WRKYs can usually bind W-box elements specifically. In this study, we identified a total of 93 DgWRKY genes and 281 RGAs, including 65, 169 and 47 nucleotide-binding site-leucine-rich repeats (NBS-LRRs), leucine-rich repeats receptor-like protein kinases (LRR-RLKs), and leucine-rich repeats receptor-like proteins (LRR-RLPs), respectively. Through analyzing the expression of DgWRKY genes in orchardgrass under different environmental stresses, it was found that many DgWRKY genes were differentially expressed under heat, drought, submergence, and rust stress. In particular, it was found that the greatest number of genes were differentially expressed under rust infection. Consistently, GO and KEGG enrichment analysis of all genes showed that 78 DgWRKY TFs were identified in the plant–pathogen interaction pathway, with 59 of them differentially expressed. Through cis-acting element prediction, 154 RGAs were found to contain W-box elements. Among them, DG6C02319.1 (a member of the LRR-RLK family) was identified as likely to interact with 14 DGWRKYs. Moreover, their expression levels in susceptible plants after rust inoculation were first up-regulated and then down-regulated, while those in the resistant plants were always up-regulated. In general, DgWRKYs responded to both biotic stress and abiotic stress. DgWRKYs and RGAs may synergistically respond to the response of orchardgrass to rust. This study provides meaningful insight into the molecular mechanisms of WRKY proteins in orchardgrass.
Collapse
Affiliation(s)
- Juncai Ren
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ailing Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuping Ren
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| | - Tingting Jing
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, Chongqing, China
| |
Collapse
|
198
|
Wang Y, Du F, Wang J, Li Y, Zhang Y, Zhao X, Zheng T, Li Z, Xu J, Wang W, Fu B. Molecular Dissection of the Gene OsGA2ox8 Conferring Osmotic Stress Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22179107. [PMID: 34502018 PMCID: PMC8430958 DOI: 10.3390/ijms22179107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Gibberellin 2-oxidase (GA2ox) plays an important role in the GA catabolic pathway and the molecular function of the OsGA2ox genes in plant abiotic stress tolerance remains largely unknown. In this study, we functionally characterized the rice gibberellin 2-oxidase 8 (OsGA2ox8) gene. The OsGA2ox8 protein was localized in the nucleus, cell membrane, and cytoplasm, and was induced in response to various abiotic stresses and phytohormones. The overexpression of OsGA2ox8 significantly enhanced the osmotic stress tolerance of transgenic rice plants by increasing the number of osmotic regulators and antioxidants. OsGA2ox8 was differentially expressed in the shoots and roots to cope with osmotic stress. The plants overexpressing OsGA2ox8 showed reduced lengths of shoots and roots at the seedling stage, but no difference in plant height at the heading stage was observed, which may be due to the interaction of OsGA2ox8 and OsGA20ox1, implying a complex feedback regulation between GA biosynthesis and metabolism in rice. Importantly, OsGA2ox8 was able to indirectly regulate several genes associated with the anthocyanin and flavonoid biosynthetic pathway and the jasmonic acid (JA) and abscisic acid (ABA) biosynthetic pathway, and overexpression of OsGA2ox8 activated JA signal transduction by inhibiting the expression of jasmonate ZIM domain-containing proteins. These results provide a basis for a future understanding of the networks and respective phenotypic effects associated with OsGA2ox8.
Collapse
Affiliation(s)
- Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Yingbo Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Yue Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (W.W.); (B.F.); Tel.: +86-10-82106698 (W.W. & B.F.); Fax: +86-10-68918559 (W.W. & B.F.)
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12, Beijing 100081, China; (Y.W.); (F.D.); (J.W.); (Y.L.); (Y.Z.); (X.Z.); (T.Z.); (Z.L.); (J.X.)
- Correspondence: (W.W.); (B.F.); Tel.: +86-10-82106698 (W.W. & B.F.); Fax: +86-10-68918559 (W.W. & B.F.)
| |
Collapse
|
199
|
Bian F, Wang Y, Duan B, Wu Z, Zhang Y, Bi Y, Wang A, Zhong H, Du X. Drought stress introduces growth, physiological traits and ecological stoichiometry changes in two contrasting Cunninghamia lanceolata cultivars planted in continuous-plantation soils. BMC PLANT BIOLOGY 2021; 21:379. [PMID: 34407754 PMCID: PMC8371764 DOI: 10.1186/s12870-021-03159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND The decrease in Cunninghamia lanceolata (Lamb.) production on continuously planted soil is an essential problem. In this study, two-year-old seedlings of two cultivars (a normal cultivar, NC, and a super cultivar, SC) were grown in two types of soil (not planted (NP) soil; continuously planted (CP) soil) with three watering regimes, and the interactive effects on plant growth and physiological traits were investigated in a greenhouse experiment. The water contents of the soil in the control (CK) (normal water content), medium water content (MWC) and low water content (LWC) treatments reached 75-80 %, 45-50 % and 20-25 % of the field water capacity, respectively. RESULTS The results indicated that the CP soil had a negative effect on growth and physiological traits and that the LWC treatment caused even more severe and comprehensive negative effects. In both cultivars, the CP soil significantly decreased the height increment (HI), basal diameter increment (DI), dry matter accumulation (DMA), net photosynthetic rate (Pn), total chlorophyll content (TChl), carotenoid content (Caro) and photosynthetic nitrogen use efficiency (PNUE). Compared to the NP soil, the CP soil also decreased the proline and soluble protein contents, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) and increased the nitrogen:phosphorus ratio in roots, stems and leaves. The LWC treatment decreased growth and photosynthesis, changed ecological stoichiometry, induced oxidative stress, promoted water use efficiency and damaged chloroplast ultrastructure. Significant increases in ascorbate peroxidase (APX), peroxidase (POD), soluble protein and proline contents were found in the LWC treatment. Compared with the NC, the SC was more tolerant to the CP soil and water stress, as indicated by the higher levels of DMA, Pn, and WUE. After exposure to the CP soil and watering regimes, the decreases in biomass accumulation and gas exchange were more pronounced. CONCLUSIONS The combination of drought and CP soil may have detrimental effects on C. lanceolata growth, and low water content enhances the impacts of CP soil stress on C. lanceolata seedlings. The superiority of the SC over the NC is significant in Chinese fir plantation soil. Therefore, continuously planted soil can be utilized to cultivate improved varieties of C. lanceolata and maintain water capacity. This can improve their growth and physiological performance to a certain extent.
Collapse
Affiliation(s)
- Fangyuan Bian
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Yukui Wang
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Zhizhuang Wu
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Yuanbing Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Yufang Bi
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Anke Wang
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Hao Zhong
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Xuhua Du
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan China
| |
Collapse
|
200
|
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021; 12:genes12081256. [PMID: 34440430 PMCID: PMC8394574 DOI: 10.3390/genes12081256] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agriculture Science (CAAS), Wuhan 430062, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Correspondence: (Y.L.); (M.A.E.-E.)
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Correspondence: (Y.L.); (M.A.E.-E.)
| |
Collapse
|