151
|
Large herbivores suppress liana infestation in an African savanna. Proc Natl Acad Sci U S A 2021; 118:2101676118. [PMID: 34580170 DOI: 10.1073/pnas.2101676118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages-declining wildlife populations and their displacement by livestock-may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana, Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana-tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.
Collapse
|
152
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
153
|
Villar N, Rocha-Mendes F, Guevara R, Galetti M. Large herbivore-palm interactions modulate the spatial structure of seedling communities and productivity in Neotropical forests. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
154
|
Khoo MD, Lim BT, Soh MC, Loy RH, Lua H, Lee BPH, Loo AH, Er KB. Persistence of a locally endangered mouse-deer amidst the re-emergence of two larger ungulates in small urban rainforest fragments. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
155
|
Ram AK, Yadav NK, Kandel PN, Mondol S, Pandav B, Natarajan L, Subedi N, Naha D, Reddy CS, Lamichhane BR. Tracking forest loss and fragmentation between 1930 and 2020 in Asian elephant (Elephas maximus) range in Nepal. Sci Rep 2021; 11:19514. [PMID: 34593854 PMCID: PMC8484620 DOI: 10.1038/s41598-021-98327-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Forest cover is the primary determinant of elephant distribution, thus, understanding forest loss and fragmentation is crucial for elephant conservation. We assessed deforestation and patterns of forest fragmentation between 1930 and 2020 in Chure Terai Madhesh Lanscape (CTML) which covers the entire elephant range in Nepal. Forest cover maps and fragmentation matrices were generated using multi-source data (Topographic maps and Landsat satellite images of 1930, 1975, 2000, and 2020) and spatiotemporal change was quantified. At present, 19,069 km2 forest cover in CTML is available as the elephant habitat in Nepal. Overall, 21.5% of elephant habitat was lost between 1930 and 2020, with a larger (12.3%) forest cover loss between 1930 and 1975. Area of the large forests (Core 3) has decreased by 43.08% whereas smaller patches (Core 2, Core 1, edge and patch forests) has increased multifold between 1930 and 2020. The continued habitat loss and fragmentation probably fragmented elephant populations during the last century and made them insular with long-term ramifications for elephant conservation and human-elephant conflict. Given the substantial loss in forest cover and high levels of fragmentation, improving the resilience of elephant populations in Nepal would urgently require habitat and corridor restoration to enable the movement of elephants.
Collapse
Affiliation(s)
- Ashok Kumar Ram
- Wildlife Institute of India (WII), Dehradun, India.
- Ministry of Forests and Environment, Singhadurbar, Kathmandu, Nepal.
| | - Nabin Kumar Yadav
- Ministry of Industry, Tourism, Forests and Environment, Province 2, Janakpur, Nepal
| | | | | | | | | | - Naresh Subedi
- National Trust for Nature Conservation (NTNC), Khumaltar, Lalitpur, Nepal
| | - Dipanjan Naha
- Savannah Research Ecology Laboratory, University of Georgia, Athens, GA, USA
| | - C Sudhakar Reddy
- National Remote Sensing Centre, Indian Space Research Organization, Balanagar, Hyderabad, 500 037, India
| | | |
Collapse
|
156
|
Cretois B, Linnell JDC, Van Moorter B, Kaczensky P, Nilsen EB, Parada J, Rød JK. Coexistence of large mammals and humans is possible in Europe's anthropogenic landscapes. iScience 2021; 24:103083. [PMID: 34585121 PMCID: PMC8455722 DOI: 10.1016/j.isci.2021.103083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022] Open
Abstract
A critical question in the conservation of large mammals in the Anthropocene is to know the extent to which they can tolerate human disturbance. Surprisingly, little quantitative data is available about large-scale effects of human activity and land use on their broad scale distribution in Europe. In this study, we quantify the relative importance of human land use and protected areas as opposed to biophysical constraints on large mammal distribution. We analyze data on large mammal distribution to quantify the relative effect of anthropogenic variables on species' distribution as opposed to biophysical constraints. We finally assess the effect of anthropogenic variables on the size of the species' niche by simulating a scenario where we assumed no anthropogenic pressure on the landscape. Results show that large mammal distribution is primarily constrained by biophysical constraints rather than anthropogenic variables. This finding offers grounds for cautious optimism concerning wildlife conservation in the Anthropocene. Biophysical factors had a far greater impact on species distribution than human factors This indicates that most species have a broad tolerance of human land use at coarse scales We provide grounds for cautious optimism for wildlife conservation in the Anthropocene
Collapse
Affiliation(s)
- Benjamin Cretois
- Department of Geography, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Norwegian Institute for Nature Research, PO Box 5685, Torgard, 7485 Trondheim, Norway
| | - John D C Linnell
- Norwegian Institute for Nature Research, PO Box 5685, Torgard, 7485 Trondheim, Norway.,Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Bram Van Moorter
- Norwegian Institute for Nature Research, PO Box 5685, Torgard, 7485 Trondheim, Norway
| | - Petra Kaczensky
- Norwegian Institute for Nature Research, PO Box 5685, Torgard, 7485 Trondheim, Norway.,Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Erlend B Nilsen
- Norwegian Institute for Nature Research, PO Box 5685, Torgard, 7485 Trondheim, Norway
| | - Jorge Parada
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jan Ketil Rød
- Department of Geography, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
157
|
Hasselerharm CD, Yanco E, McManus JS, Smuts BH, Ramp D. Wildlife-friendly farming recouples grazing regimes to stimulate recovery in semi-arid rangelands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147602. [PMID: 34029808 DOI: 10.1016/j.scitotenv.2021.147602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
While rangeland ecosystems are globally important for livestock production, they also support diverse wildlife assemblages and are crucial for biodiversity conservation. As rangelands around the world have become increasingly degraded and fragmented, rethinking farming practice in these landscapes is vital for achieving conservation goals, rangeland recovery, and food security. An example is reinstating livestock shepherding, which aims to recouple grazing regimes to vegetation conditioned to semi-arid climates and improve productivity by reducing overgrazing and rewiring past ecological functions. Tracking the large-scale ecosystem responses to shifts in land management in such sparsely vegetated environments have so far proven elusive. Therefore, our goal was to develop a remote tracking method capable of detecting vegetation changes and environmental responses on rangeland farms engaging in contrasting farming practices in South Africa: wildlife friendly farming (WFF) implementing livestock shepherding with wildlife protection, or rotational grazing livestock farming with wildlife removal. To do so, we ground-truthed Sentinel-2 satellite imagery using drone imagery and machine learning methods to trace historical vegetation change on four farms over a four-year period. First, we successfully classified land cover maps cover using drone footage and modelled vegetation cover using satellite vegetation indices, achieving 93.4% accuracy (к = 0.901) and an r-squared of 0.862 (RMSE = 0.058) respectively. We then used this model to compare the WFF farm to three neighbouring rotational grazing farms, finding that satellite-derived vegetation productivity was greater and responded more strongly to rainfall events on the WFF farm. Furthermore, vegetation cover and grass cover, patch size, and aggregation were greater on the WFF farm when classified using drone data. Overall, we found that remotely assessing regional environmental benefits from contrasting farming practices in rangeland ecosystems could aid further adoption of wildlife-friendly practices and help to assess the generality of this case study.
Collapse
Affiliation(s)
- Chris D Hasselerharm
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| | - Esty Yanco
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| | - Jeannine S McManus
- Research Department, Landmark Foundation, Riversdale, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa.
| | - Bool H Smuts
- Research Department, Landmark Foundation, Riversdale, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa.
| | - Daniel Ramp
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|
158
|
Houdt S, Brown RP, Wanger TC, Twine W, Fynn R, Uiseb K, Cooney R, Traill LW. Divergent views on trophy hunting in Africa, and what this may mean for research and policy. Conserv Lett 2021. [DOI: 10.1111/conl.12840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shaya Houdt
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - Richard P. Brown
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - Thomas C. Wanger
- Sustainability, Agriculture and Technology Lab, School of Engineering Westlake University Hangzhou China
- Agroecology University of Göttingen Göttingen Germany
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province Westlake University Hangzhou China
| | - Wayne Twine
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Richard Fynn
- Okavango Research Institute University of Botswana Maun Botswana
| | - Kenneth Uiseb
- Ministry of Environment, Forestry and Tourism Directorate of Scientific Services Windhoek Namibia
| | - Rosie Cooney
- IUCN CEESP/SSC Sustainable Use and Livelihoods Specialist Group Gland Switzerland
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Lochran W. Traill
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
159
|
Bautista C, Revilla E, Berezowska-Cnota T, Fernández N, Naves J, Selva N. Spatial ecology of conflicts: unravelling patterns of wildlife damage at multiple scales. Proc Biol Sci 2021; 288:20211394. [PMID: 34465240 PMCID: PMC8437235 DOI: 10.1098/rspb.2021.1394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human encroachment into natural habitats is typically followed by conflicts derived from wildlife damage to agriculture and livestock. Spatial risk modelling is a useful tool to gain the understanding of wildlife damage and mitigate conflicts. Although resource selection is a hierarchical process operating at multiple scales, risk models usually fail to address more than one scale, which can result in the misidentification of the underlying processes. Here, we addressed the multi-scale nature of wildlife damage occurrence by considering ecological and management correlates interacting from household to landscape scales. We studied brown bear (Ursus arctos) damage to apiaries in the North-eastern Carpathians as our model system. Using generalized additive models, we found that brown bear tendency to avoid humans and the habitat preferences of bears and beekeepers determine the risk of bear damage at multiple scales. Damage risk at fine scales increased when the broad landscape context also favoured damage. Furthermore, integrated-scale risk maps resulted in more accurate predictions than single-scale models. Our results suggest that principles of resource selection by animals can be used to understand the occurrence of damage and help mitigate conflicts in a proactive and preventive manner.
Collapse
Affiliation(s)
- Carlos Bautista
- Institute of Nature Conservation of the Polish Academy of Sciences (IOP PAN), Adama Mickiewicza 33, 31-120 Kraków, Poland
| | - Eloy Revilla
- Estación Biológica de Doñana CSIC (EBD-CSIC), Americo Vespucio 26, 41092 Sevilla, Spain
| | - Teresa Berezowska-Cnota
- Institute of Nature Conservation of the Polish Academy of Sciences (IOP PAN), Adama Mickiewicza 33, 31-120 Kraków, Poland
| | - Néstor Fernández
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.,Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Javier Naves
- Estación Biológica de Doñana CSIC (EBD-CSIC), Americo Vespucio 26, 41092 Sevilla, Spain
| | - Nuria Selva
- Institute of Nature Conservation of the Polish Academy of Sciences (IOP PAN), Adama Mickiewicza 33, 31-120 Kraków, Poland
| |
Collapse
|
160
|
Iteba JO, Hein T, Singer GA, Masese FO. Livestock as vectors of organic matter and nutrient loading in aquatic ecosystems in African savannas. PLoS One 2021; 16:e0257076. [PMID: 34495982 PMCID: PMC8425544 DOI: 10.1371/journal.pone.0257076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Populations of large wildlife have declined in many landscapes around the world, and have been replaced or displaced by livestock. The consequences of these changes on the transfer of organic matter (OM) and nutrients from terrestrial to aquatic ecosystems are not well understood. We used behavioural data, excretion and egestion rates and C: N: P stoichiometry of dung and urine of zebu cattle, to develop a metabolism-based estimate of loading rates of OM (dung), C, N and P into the Mara River, Kenya. We also directly measured the deposition of OM and urine by cattle into the river during watering. Per head, zebu cattle excrete and/or egest 25.6 g dry matter (DM, 99.6 g wet mass; metabolism) - 27.7 g DM (direct input) of OM, 16.0-21.8 g C, 5.9-9.6 g N, and 0.3-0.5 g P per day into the river. To replace loading rates OM of an individual hippopotamus by cattle, around 100 individuals will be needed, but much less for different elements. In parts of the investigated sub-catchments loading rates by cattle were equivalent to or higher than that of the hippopotamus. The patterns of increased suspended materials and nutrients as a result of livestock activity fit into historical findings on nutrients concentrations, dissolved organic carbon and other variables in agricultural and livestock areas in the Mara River basin. Changing these patterns of carbon and nutrient transport and cycling are having significant effects on the structure and functioning of both terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Jacob O. Iteba
- Department of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Fisheries and Aquatic Sciences, University of Eldoret, Eldoret, Kenya
| | - Thomas Hein
- Department of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- WasserCluster Lunz, Lunz am See, Austria
| | - Gabriel A. Singer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Frank O. Masese
- Department of Fisheries and Aquatic Sciences, University of Eldoret, Eldoret, Kenya
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Aquatic Science and Ecosystems Group, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
161
|
Beca G, Valentine LE, Galetti M, Hobbs RJ. Ecosystem roles and conservation status of bioturbator mammals. Mamm Rev 2021. [DOI: 10.1111/mam.12269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabrielle Beca
- School of Biological Sciences University of Western Australia Crawley WA6009Australia
| | - Leonie E. Valentine
- School of Biological Sciences University of Western Australia Crawley WA6009Australia
| | - Mauro Galetti
- Department of Biology University of Miami Coral Gables FL33146USA
- Departamento de Ecologia Universidade Estadual Paulista Rio Claro SP13506‐900Brazil
| | - Richard J. Hobbs
- School of Biological Sciences University of Western Australia Crawley WA6009Australia
| |
Collapse
|
162
|
Yang C, Zhang P, Wu Y, Dai Q, Luo G, Zhou H, Zhao D, Ran J. Livestock limits snow leopard’s space use by suppressing its prey, blue sheep, at Gongga Mountain, China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
163
|
Leopard Panthera pardus density and survival in an ecosystem with depressed abundance of prey and dominant competitors. ORYX 2021. [DOI: 10.1017/s0030605321000223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
The leopard Panthera pardus is in range-wide decline, and many populations are highly threatened. Prey depletion is a major cause of global carnivore declines, but the response of leopard survival and density to this threat is unclear: by reducing the density of a dominant competitor (the lion Panthera leo) prey depletion could create both costs and benefits for subordinate competitors. We used capture–recapture models fitted to data from a 7-year camera-trap study in Kafue National Park, Zambia, to obtain baseline estimates of leopard population density and sex-specific apparent survival rates. Kafue is affected by prey depletion, and densities of large herbivores preferred by lions have declined more than the densities of smaller herbivores preferred by leopards. Lion density is consequently low. Estimates of leopard density were comparable to ecosystems with more intensive protection and favourable prey densities. However, our study site is located in an area with good ecological conditions and high levels of protection relative to other portions of the ecosystem, so extrapolating our estimates across the Park or into adjacent Game Management Areas would not be valid. Our results show that leopard density and survival within north-central Kafue remain good despite prey depletion, perhaps because (1) prey depletion has had weaker effects on preferred leopard prey compared to larger prey preferred by lions, and (2) the density of dominant competitors is consequently low. Our results show that the effects of prey depletion can be more complex than uniform decline of all large carnivore species, and warrant further investigation.
Collapse
|
164
|
Schols R, Carolus H, Hammoud C, Muzarabani KC, Barson M, Huyse T. Invasive snails, parasite spillback, and potential parasite spillover drive parasitic diseases of Hippopotamus amphibius in artificial lakes of Zimbabwe. BMC Biol 2021; 19:160. [PMID: 34412627 PMCID: PMC8377832 DOI: 10.1186/s12915-021-01093-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Humans impose a significant pressure on large herbivore populations, such as hippopotami, through hunting, poaching, and habitat destruction. Anthropogenic pressures can also occur indirectly, such as artificial lake creation and the subsequent introduction of invasive species that alter the ecosystem. These events can lead to drastic changes in parasite diversity and transmission, but generally receive little scientific attention. Results In order to document and identify trematode parasites of the common hippopotamus (Hippopotamus amphibius) in artificial water systems of Zimbabwe, we applied an integrative taxonomic approach, combining molecular diagnostics and morphometrics on archived and new samples. In doing so, we provide DNA reference sequences of the hippopotamus liver fluke Fasciola nyanzae, enabling us to construct the first complete Fasciola phylogeny. We describe parasite spillback of F. nyanzae by the invasive freshwater snail Pseudosuccinea columella, as a consequence of a cascade of biological invasions in Lake Kariba, one of the biggest artificial lakes in the world. Additionally, we report an unknown stomach fluke of the hippopotamus transmitted by the non-endemic snail Radix aff. plicatula, an Asian snail species that has not been found in Africa before, and the stomach fluke Carmyerius cruciformis transmitted by the native snail Bulinus truncatus. Finally, Biomphalaria pfeifferi and two Bulinus species were found as new snail hosts for the poorly documented hippopotamus blood fluke Schistosoma edwardiense. Conclusions Our findings indicate that artificial lakes are breeding grounds for endemic and non-endemic snails that transmit trematode parasites of the common hippopotamus. This has important implications, as existing research links trematode parasite infections combined with other stressors to declining wild herbivore populations. Therefore, we argue that monitoring the anthropogenic impact on parasite transmission should become an integral part of wildlife conservation efforts. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01093-2.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium. .,Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium.
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, KU Leuven-VIB Center for Microbiology, Leuven, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Limnology Research Unit, Ghent University, Ghent, Belgium
| | | | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana.,Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
165
|
Abstract
Africa has experienced unprecedented growth across a range of development indices for decades. However, this growth is often at the expense of Africa’s biodiversity and ecosystems, jeopardizing the livelihoods of millions of people depending on the goods and services provided by nature, with broader consequences for achieving the United Nations Sustainable Development Goals. Encouragingly, Africa can still take a more sustainable path. Here, we synthesize the key learnings from the African Ecological Futures project. We report results from a participatory scenario planning process around four collectively-owned scenarios and narratives for the evolution of Africa’s ecological resource base over the next 50 years. These scenarios provided a lens to review pressures on the natural environment, through the drivers, pressures, state, impacts, and responses (DPSIR) framework. Based on the outcomes from each of these steps, we discuss opportunities to reorient Africa’s development trajectories towards a sustainable path. These opportunities fall under the broad categories of “effective natural resource governance”, “strategic planning capabilities”, “investment safeguards and frameworks”, and “new partnership models”. Underpinning all these opportunities are “data, management information, and decision support frameworks”. This work can help inform collaborative action by a broad set of actors with an interest in ensuring a sustainable ecological future for Africa.
Collapse
|
166
|
Nhleko ZN, Ahrens R, Ferreira SM, McCleery RA. Poaching is directly and indirectly driving the decline of South Africa's large population of white rhinos. Anim Conserv 2021. [DOI: 10.1111/acv.12720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoliswa N. Nhleko
- Interdisciplinary Program in Ecology University of Florida Gainesville FL USA
- Savanna Node Scientific Services SANParks Skukuza South Africa
| | - Robert Ahrens
- Fisheries and Aquatic Sciences Program University of Florida Gainesville FL USA
- Fisheries Research and Monitoring Division NOAA Pacific Islands Fisheries Science Center Honolulu HI USA
| | - Sam M. Ferreira
- Savanna Node Scientific Services SANParks Skukuza South Africa
| | - Robert A. McCleery
- Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
| |
Collapse
|
167
|
Beauchesne D, Cazelles K, Archambault P, Dee LE, Gravel D. On the sensitivity of food webs to multiple stressors. Ecol Lett 2021; 24:2219-2237. [PMID: 34288313 DOI: 10.1111/ele.13841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
Evaluating the effects of multiple stressors on ecosystems is becoming increasingly vital with global changes. The role of species interactions in propagating the effects of stressors, although widely acknowledged, has yet to be formally explored. Here, we conceptualise how stressors propagate through food webs and explore how they affect simulated three-species motifs and food webs of the Canadian St. Lawrence System. We find that overlooking species interactions invariably underestimate the effects of stressors, and that synergistic and antagonistic effects through food webs are prevalent. We also find that interaction type influences a species' susceptibility to stressors; species in omnivory and tri-trophic food chain interactions in particular are sensitive and prone to synergistic and antagonistic effects. Finally, we find that apex predators were negatively affected and mesopredators benefited from the effects of stressors due to their trophic position in the St. Lawrence System, but that species sensitivity is dependent on food web structure. In conceptualising the effects of multiple stressors on food webs, we bring theory closer to practice and show that considering the intricacies of ecological communities is key to assess the net effects of stressors on species.
Collapse
Affiliation(s)
- David Beauchesne
- Département de biologie, ArcticNet, Québec Océan, Université Laval, Québec, QC, Canada.,Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Kevin Cazelles
- Department of Integrative Biology, University Of Guelph, Guelph, ON, Canada
| | - Philippe Archambault
- Département de biologie, ArcticNet, Québec Océan, Université Laval, Québec, QC, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
168
|
Seabloom EW, Batzer E, Chase JM, Stanley Harpole W, Adler PB, Bagchi S, Bakker JD, Barrio IC, Biederman L, Boughton EH, Bugalho MN, Caldeira MC, Catford JA, Daleo P, Eisenhauer N, Eskelinen A, Haider S, Hallett LM, Svala Jónsdóttir I, Kimmel K, Kuhlman M, MacDougall A, Molina CD, Moore JL, Morgan JW, Muthukrishnan R, Ohlert T, Risch AC, Roscher C, Schütz M, Sonnier G, Tognetti PM, Virtanen R, Wilfahrt PA, Borer ET. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecol Lett 2021; 24:2100-2112. [PMID: 34240557 DOI: 10.1111/ele.13838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota. St. Paul, MN, USA
| | - Evan Batzer
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle (Saale), Germany
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany.,Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Reykjavík, Iceland
| | - Lori Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames Iowa, USA
| | | | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Jane A Catford
- Department of Geography, King's College London, London, UK
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP - CONICET, Mar del Plata, Argentina
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany.,Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | | | - Kaitlin Kimmel
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Cecilia D Molina
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina, Buenos Aires, Argentina
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - John W Morgan
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, Australia
| | | | - Timothy Ohlert
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology, Birmensdorf, Switzerland
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology, Birmensdorf, Switzerland
| | | | - Pedro M Tognetti
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina, Buenos Aires, Argentina
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Peter A Wilfahrt
- Department of Ecology, Evolution, and Behavior, University of Minnesota. St. Paul, MN, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota. St. Paul, MN, USA
| |
Collapse
|
169
|
Wells HBM, Crego RD, Opedal ØH, Khasoha LM, Alston JM, Reed CG, Weiner S, Kurukura S, Hassan AA, Namoni M, Ekadeli J, Kimuyu DM, Young TP, Kartzinel TR, Palmer TM, Pringle RM, Goheen JR. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits. J Anim Ecol 2021; 90:2510-2522. [PMID: 34192343 DOI: 10.1111/1365-2656.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2-1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.
Collapse
Affiliation(s)
- Harry B M Wells
- Lolldaiga Hills Research Programme, Nanyuki, Kenya.,Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK.,Space for Giants, Nanyuki, Kenya
| | - Ramiro D Crego
- National Zoo and Smithsonian Conservation Biology Institute, Conservation Ecology Center, Front Royal, VA, USA
| | | | - Leo M Khasoha
- Mpala Research Centre, Nanyuki, Kenya.,Program in Ecology, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Jesse M Alston
- Program in Ecology, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.,Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - Courtney G Reed
- Mpala Research Centre, Nanyuki, Kenya.,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Sarah Weiner
- Mpala Research Centre, Nanyuki, Kenya.,Program in Ecology, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | | | | | | | | | - Duncan M Kimuyu
- Mpala Research Centre, Nanyuki, Kenya.,Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Truman P Young
- Mpala Research Centre, Nanyuki, Kenya.,Department of Plant Sciences and Ecology Graduate Group, University of California, Davis, CA, USA
| | - Tyler R Kartzinel
- Mpala Research Centre, Nanyuki, Kenya.,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Todd M Palmer
- Mpala Research Centre, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jacob R Goheen
- Mpala Research Centre, Nanyuki, Kenya.,Program in Ecology, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
170
|
Natarajan L, Kumar A, Qureshi Q, Desai AA, Pandav B. Evaluation of Wall‐Barriers to Manage Human Conflict with Asian Elephants in India. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lakshminarayanan Natarajan
- Elephant Cell and Department of Endangered Species Management Wildlife Institute of India Dehradun Uttarakhand 248 001 India
| | - Ankit Kumar
- Elephant Cell and Department of Endangered Species Management Wildlife Institute of India Dehradun Uttarakhand 248 001 India
| | - Qamar Qureshi
- Landscape Level Planning and Management Wildlife Institute of India Dehradun Uttarakhand 248 001 India
| | - Ajay A Desai
- Wildlife Institute of India, Dehradun Uttarakhand 248001, India and B.C. 65, Camp Belgaum Karnataka 590 001 India
| | - Bivash Pandav
- Elephant Cell and Department of Endangered Species Management Wildlife Institute of India Dehradun Uttarakhand 248 001 India
| |
Collapse
|
171
|
Vinks MA, Creel S, Schuette P, Becker MS, Rosenblatt E, Sanguinetti C, Banda K, Goodheart B, Young-Overton K, Stevens X, Chifunte C, Midlane N, Simukonda C. Response of lion demography and dynamics to the loss of preferred larger prey. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02298. [PMID: 33434324 DOI: 10.1002/eap.2298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Large carnivores are experiencing range contraction and population declines globally. Prey depletion due to illegal offtake is considered a major contributor, but the effects of prey depletion on large carnivore demography are rarely tested. We measured African lion density and tested the factors that affect survival using mark-recapture models fit to six years of data from known individuals in Kafue National Park (KNP), Zambia. KNP is affected by prey depletion, particularly for large herbivores that were preferred prey for KNP lions a half-century ago. This provides a unique opportunity to test whether variables that explain local prey density also affect lion survival. Average lion density within our study area was 3.43 individuals/100 km2 (95% CI, 2.79-4.23), which was much lower than lion density reported for another miombo ecosystem with similar vegetation structure and rainfall that was less affected by prey depletion. Despite this, comparison to other lion populations showed that age- and sex-specific survival rates for KNP lions were generally good, and factors known to correlate with local prey density had small effects on lion survival. In contrast, recruitment of cubs was poor and average pride size was small. In particular, the proportion of the population comprised of second-year cubs was low, indicating that few cubs are recruited into the subadult age class. Our findings suggest that low recruitment might be a better signal of low prey density than survival. Thus, describing a lion population's age structure in addition to average pride size may be a simple and effective method of initially evaluating whether a lion population is affected by prey depletion. These dynamics should be evaluated for other lion populations and other large carnivore species. Increased resource protection and reducing the underlying drivers of prey depletion are urgent conservation needs for lions and other large carnivores as their conservation is increasingly threatened by range contraction and population declines.
Collapse
Affiliation(s)
- Milan A Vinks
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Scott Creel
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
- Institut för Vilt, Fisk Och Miljö, Sveriges Lantbruksuniversitet, Umeå, Sweden
| | - Paul Schuette
- Marine Mammals Management, U.S. Fish and Wildlife Service, 1011 East Tudor Road, Anchorage, Alaska, 99503, USA
| | - Matthew S Becker
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, Aiken Center, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | | - Ben Goodheart
- Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
- Zambian Carnivore Programme, Mfuwe, Zambia
| | - Kim Young-Overton
- Panthera, 8 West 40 Street, Floor 18, New York, New York, 10018, USA
| | - Xia Stevens
- Panthera, 8 West 40 Street, Floor 18, New York, New York, 10018, USA
| | - Clive Chifunte
- Institut för Vilt, Fisk Och Miljö, Sveriges Lantbruksuniversitet, Umeå, Sweden
- Zambia Department of National Parks and Wildlife, Chilanga, Zambia
| | - Neil Midlane
- Wilderness Safaris, Block H, The Terraces, Steenberg Office Park, 1 Silverwood Close, Tokai, Cape Town, South Africa
| | - Chuma Simukonda
- Zambia Department of National Parks and Wildlife, Chilanga, Zambia
| |
Collapse
|
172
|
Abstract
Giant land vertebrates have evolved more than 30 times, notably in dinosaurs and mammals. The evolutionary and biomechanical perspectives considered here unify data from extant and extinct species, assessing current theory regarding how the locomotor biomechanics of giants has evolved. In terrestrial tetrapods, isometric and allometric scaling patterns of bones are evident throughout evolutionary history, reflecting general trends and lineage-specific divergences as animals evolve giant size. Added to data on the scaling of other supportive tissues and neuromuscular control, these patterns illuminate how lineages of giant tetrapods each evolved into robust forms adapted to the constraints of gigantism, but with some morphological variation. Insights from scaling of the leverage of limbs and trends in maximal speed reinforce the idea that, beyond 100-300 kg of body mass, tetrapods reduce their locomotor abilities, and eventually may lose entire behaviours such as galloping or even running. Compared with prehistory, extant megafaunas are depauperate in diversity and morphological disparity; therefore, turning to the fossil record can tell us more about the evolutionary biomechanics of giant tetrapods. Interspecific variation and uncertainty about unknown aspects of form and function in living and extinct taxa still render it impossible to use first principles of theoretical biomechanics to tightly bound the limits of gigantism. Yet sauropod dinosaurs demonstrate that >50 tonne masses repeatedly evolved, with body plans quite different from those of mammalian giants. Considering the largest bipedal dinosaurs, and the disparity in locomotor function of modern megafauna, this shows that even in terrestrial giants there is flexibility allowing divergent locomotor specialisations.
Collapse
Affiliation(s)
- John R. Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA,UK
| |
Collapse
|
173
|
Yusefi GH, Safi K, Tarroso P, Brito JC. The impacts of extreme climate change on mammals differ among functional groups at regional scale: The case of Iranian terrestrial mammals. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gholam Hosein Yusefi
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources University of Porto Vairão Portugal
- Department of Biology Faculty of Sciences University of Porto Porto Portugal
- Mohitban Society Tehran Iran
| | - Kamran Safi
- Max Planck Institute for Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
| | - Pedro Tarroso
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources University of Porto Vairão Portugal
| | - José Carlos Brito
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources University of Porto Vairão Portugal
- Department of Biology Faculty of Sciences University of Porto Porto Portugal
| |
Collapse
|
174
|
Pérez-González J, Carranza J, Martínez R, Benítez-Medina JM. Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals (Basel) 2021; 11:1630. [PMID: 34072907 PMCID: PMC8229303 DOI: 10.3390/ani11061630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Host genetic diversity tends to limit disease spread in nature and buffers populations against epidemics. Genetic diversity in wildlife is expected to receive increasing attention in contexts related to disease transmission and human health. Ungulates such as wild boar (Sus scrofa) and red deer (Cervus elaphus) are important zoonotic hosts that can be precursors to disease emergence and spread in humans. Tuberculosis is a zoonotic disease with relevant consequences and can present high prevalence in wild boar and red deer populations. Here, we review studies on the genetic diversity of ungulates and determine to what extent these studies consider its importance on the spread of disease. This assessment also focused on wild boar, red deer, and tuberculosis. We found a disconnection between studies treating genetic diversity and those dealing with infectious diseases. Contrarily, genetic diversity studies in ungulates are mainly concerned with conservation. Despite the existing disconnection between studies on genetic diversity and studies on disease emergence and spread, the knowledge gathered in each discipline can be applied to the other. The bidirectional applications are illustrated in wild boar and red deer populations from Spain, where TB is an important threat for wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Córdoba, Spain;
| | - Remigio Martínez
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| | - José Manuel Benítez-Medina
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| |
Collapse
|
175
|
Di Minin E, Slotow R, Fink C, Bauer H, Packer C. A pan-African spatial assessment of human conflicts with lions and elephants. Nat Commun 2021; 12:2978. [PMID: 34017002 PMCID: PMC8138028 DOI: 10.1038/s41467-021-23283-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
African lions (Panthera leo) and African savanna (Loxodonta africana) and forest (L. cyclotis) elephants pose threats to people, crops, and livestock, and are themselves threatened with extinction. Here, we map these human-wildlife conflicts across Africa. Eighty-two percent of sites containing lions and elephants are adjacent to areas with considerable human pressure. Areas at severe risk of conflict (defined as high densities of humans, crops, and cattle) comprise 9% of the perimeter of these species' ranges and are found in 18 countries hosting, respectively, ~ 74% and 41% of African lion and elephant populations. Although a variety of alternative conflict-mitigation strategies could be deployed, we focus on assessing the potential of high-quality mitigation fences. Our spatial and economic assessments suggest that investments in the construction and maintenance of strategically located mitigation fences would be a cost-effective strategy to support local communities, protect people from dangerous wildlife, and prevent further declines in lion and elephant populations.
Collapse
Affiliation(s)
- Enrico Di Minin
- Helsinki Lab of Interdisciplinary Conservation Science, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland.
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Rob Slotow
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christoph Fink
- Helsinki Lab of Interdisciplinary Conservation Science, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Hans Bauer
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney, UK
| | - Craig Packer
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
176
|
Harmsen H, Mbau JS, Muthama JN, Wang'ondu VW. Comparing law enforcement monitoring data and research data suggests an underestimation of bushmeat poaching through snaring in a Kenyan World Heritage Site. Afr J Ecol 2021. [DOI: 10.1111/aje.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henk Harmsen
- Wangari Maathai Institute for Peace and Environmental Studies University of Nairobi Nairobi Kenya
| | - Judith Syombua Mbau
- Land Resource Management and Agricultural Technology University of Nairobi Nairobi Kenya
| | - John Nzioka Muthama
- Wangari Maathai Institute for Peace and Environmental Studies University of Nairobi Nairobi Kenya
| | | |
Collapse
|
177
|
Large herbivores transform plant-pollinator networks in an African savanna. Curr Biol 2021; 31:2964-2971.e5. [PMID: 34004144 DOI: 10.1016/j.cub.2021.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
Pollination by animals is a key ecosystem service1,2 and interactions between plants and their pollinators are a model system for studying ecological networks,3,4 yet plant-pollinator networks are typically studied in isolation from the broader ecosystems in which they are embedded. The plants visited by pollinators also interact with other consumer guilds that eat stems, leaves, fruits, or seeds. One such guild, large mammalian herbivores, are well-known ecosystem engineers5-7 and may have substantial impacts on plant-pollinator networks. Although moderate herbivory can sometimes promote plant diversity,8 potentially benefiting pollinators, large herbivores might alternatively reduce resource availability for pollinators by consuming flowers,9 reducing plant density,10 and promoting somatic regrowth over reproduction.11 The direction and magnitude of such effects may hinge on abiotic context-in particular, rainfall, which modulates the effects of ungulates on vegetation.12 Using a long-term, large-scale experiment replicated across a rainfall gradient in central Kenya, we show that a diverse assemblage of native large herbivores, ranging from 5-kg antelopes to 4,000-kg African elephants, limited resource availability for pollinators by reducing flower abundance and diversity; this in turn resulted in fewer pollinator visits and lower pollinator diversity. Exclusion of large herbivores increased floral-resource abundance and pollinator-assemblage diversity, rendering plant-pollinator networks larger, more functionally redundant, and less vulnerable to pollinator extinction. Our results show that species extrinsic to plant-pollinator interactions can indirectly and strongly alter network structure. Forecasting the effects of environmental change on pollination services and interaction webs more broadly will require accounting for the effects of extrinsic keystone species.
Collapse
|
178
|
Li X, Risch AC, Sanders D, Liu G, Prather C, Wang Z, Hassan N, Gao Q, Wang D, Zhong Z. A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaofei Li
- College of Resources and Environmental Sciences/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province Jilin Agricultural University Changchun China
- Institute of Grassland Science/Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun China
| | - Anita C. Risch
- Community Ecology Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Dirk Sanders
- Environment and Sustainability Institute University of ExeterPenryn Campus Penryn Cornwall UK
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Chelse Prather
- Department of Biology University of Dayton Dayton OH USA
| | - Zhongnan Wang
- Institute of Grassland Science/Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun China
| | - Nazim Hassan
- Institute of Grassland Science/Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun China
| | - Qiang Gao
- College of Resources and Environmental Sciences/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province Jilin Agricultural University Changchun China
| | - Deli Wang
- Institute of Grassland Science/Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun China
| | - Zhiwei Zhong
- Institute of Grassland Science/Key Laboratory of Vegetation Ecology of the Ministry of Education Jilin Songnen Grassland Ecosystem National Observation and Research Station Northeast Normal University Changchun China
| |
Collapse
|
179
|
Costa HCM, Benchimol M, Peres CA. Wild ungulate responses to anthropogenic land use: a comparative Pantropical analysis. Mamm Rev 2021. [DOI: 10.1111/mam.12252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo C. M. Costa
- Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade Universidade Estadual de Santa Cruz Rodovia Jorge Amado km 16 Ilhéus BA45662‐900Brazil
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação ‐ LEAC Universidade Estadual de Santa Cruz Rodovia Jorge Amado km 16, Base Ambiental Ilhéus BA45662‐900Brazil
| | - Carlos A. Peres
- School of Environmental Sciences University of East Anglia NorwichNR47TJUK
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba Cidade Universitária João Pessoa Paraíba58051‐900Brazil
| |
Collapse
|
180
|
Janík T, Peters W, Šálek M, Romportl D, Jirků M, Engleder T, Ernst M, Neudert J, Heurich M. The declining occurrence of moose ( Alces alces) at the southernmost edge of its range raise conservation concerns. Ecol Evol 2021; 11:5468-5483. [PMID: 34026021 PMCID: PMC8131793 DOI: 10.1002/ece3.7441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
The border region between Austria, the Czech Republic, and Germany harbors the most south-western occurrence of moose in continental Europe. The population originated in Poland, where moose survived, immigrated from former Soviet Union or were reintroduced after the Second World War expanded west- and southwards. In recent years, the distribution of the nonetheless small Central European population seems to have declined, necessitating an evaluation of its current status. In this study, existing datasets of moose observations from 1958 to 2019 collected in the three countries were combined to create a database totaling 771 records (observations and deaths). The database was then used to analyze the following: (a) changes in moose distribution, (b) the most important mortality factors, and (c) the availability of suitable habitat as determined using a maximum entropy approach. The results showed a progressive increase in the number of moose observations after 1958, with peaks in the 1990s and around 2010, followed by a relatively steep drop after 2013. Mortality within the moose population was mostly due to human interactions, including 13 deadly wildlife-vehicle collisions, particularly on minor roads, and four animals that were either legally culled or poached. Our habitat model suggested that higher altitudes (ca. 700-1,000 m a.s.l.), especially those offering wetlands, broad-leaved forests and natural grasslands, are the preferred habitats of moose whereas steep slopes and areas of human activity are avoided. The habitat model also revealed the availability of large core areas of suitable habitat beyond the current distribution, suggesting that habitat was not the limiting factor explaining the moose distribution in the study area. Our findings call for immediate transboundary conservation measures to sustain the moose population, such as those aimed at preventing wildlife-vehicle collisions and illegal killings. Infrastructure planning and development activities must take into account the habitat requirements of moose.
Collapse
Affiliation(s)
- Tomáš Janík
- Faculty of ScienceDepartment of Physical Geography and GeoecologyCharles UniversityPrahaCzechia
- Department of Spatial EcologySilva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzechia
- Department of Visitor Management and National Park MonitoringBavarian Forest National ParkGrafenauGermany
| | - Wibke Peters
- Bavarian State Institute of ForestryFreisingGermany
| | - Martin Šálek
- Czech Academy of SciencesInstitute of Vertebrate BiologyBrnoCzechia
- Faculty of Environmental SciencesCzech University of Life Sciences PraguePrahaCzechia
| | - Dušan Romportl
- Faculty of ScienceDepartment of Physical Geography and GeoecologyCharles UniversityPrahaCzechia
- Department of Spatial EcologySilva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzechia
| | - Miloslav Jirků
- Biology Centre of the Czech Academy of SciencesInstitute of ParasitologyČeské BudějoviceCzechia
| | | | - Martin Ernst
- Faculty of Forestry and Wood TechnologyDepartment of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzechia
| | - Jiří Neudert
- Administration of Třeboňsko Protected Landscape Area and Biospheric ReservationTřeboňCzechia
| | - Marco Heurich
- Department of Visitor Management and National Park MonitoringBavarian Forest National ParkGrafenauGermany
- Faculty of Environment and Natural ResourcesChair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
- Inland Norway University of Applied ScienceInstitute for Forest and Wildlife ManagementKoppangNorway
| |
Collapse
|
181
|
Lundgren EJ, Ramp D, Stromberg JC, Wu J, Nieto NC, Sluk M, Moeller KT, Wallach AD. Equids engineer desert water availability. Science 2021; 372:491-495. [PMID: 33926950 DOI: 10.1126/science.abd6775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Megafauna play important roles in the biosphere, yet little is known about how they shape dryland ecosystems. We report on an overlooked form of ecosystem engineering by donkeys and horses. In the deserts of North America, digging of ≤2-meter wells to groundwater by feral equids increased the density of water features, reduced distances between waters, and, at times, provided the only water present. Vertebrate richness and activity were higher at equid wells than at adjacent dry sites, and, by mimicking flood disturbance, equid wells became nurseries for riparian trees. Our results suggest that equids, even those that are introduced or feral, are able to buffer water availability, which may increase resilience to ongoing human-caused aridification.
Collapse
Affiliation(s)
- Erick J Lundgren
- Centre for Compassionate Conservation, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia. .,Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Daniel Ramp
- Centre for Compassionate Conservation, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Jianguo Wu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Nathan C Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Martin Sluk
- Roger Williams Park Museum of Natural History, Providence, RI, USA
| | - Karla T Moeller
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Arian D Wallach
- Centre for Compassionate Conservation, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
182
|
Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
183
|
Amaya PC, Nourtier M, Montfort F, Fusari A, Randrianary T, Richard E, Prin T, Valls‐Fox H. Are elephants attracted by deforested areas in miombo woodlands? Afr J Ecol 2021. [DOI: 10.1111/aje.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Frédérique Montfort
- Nitidæ Montpellier France
- Forêts et Sociétés CIRAD Montpellier France
- Forêts et Sociétés Univ MontpellierCIRAD Montpellier France
| | | | | | | | | | - Hugo Valls‐Fox
- UMR SELMET CIRAD Montpellier France
- SELMET INRAE CIRADUniv MontpellierInstitut Agro Montpellier France
| |
Collapse
|
184
|
Jelil SN, Gaykar A, Girkar N, Ben C, Hayward MW, Krishnamurthy R. Mammal Persistence Along Riparian Forests in Western India Within a Hydropower Reservoir 55 Years Post Construction. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.643285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the negative impacts of dam construction on downstream river stretches and riparian forests are well studied, the status of wildlife presence and persistence in upstream reservoir deltas is virtually unknown. We investigated the drivers of terrestrial mammal occupancy and persistence along riparian forests of Koyna reservoir in western India 55 years after its construction. We adopted a catchment-wide field design grounded in the river continuum concept and sampled different stream orders within the reservoir. Camera traps, nested in an occupancy modeling framework, were deployed across 72 riparian sites and replicated for four seasons across all stream types. We recorded a total of nineteen species of terrestrial mammals during the study period. Multi-season occupancy models revealed three key patterns of mammal persistence: (a) ungulates were more frequently photo-captured in riparian forests; gaur and wild pig had the highest proportions of the total sampled area (0.84 ± 0.12 SE; 0.77 ± 0.07 SE, respectively); (b) small-sized ungulates were more vulnerable to local extinction than large-bodied ungulates; extinction probability was highest for barking deer (0.59 ± 0.07) and lowest for sambar (0.15 ± 0.07); and (c) distance from stream played major roles in determining mammal detection. Riparian forests are fundamentally important to ecosystem functioning and biodiversity conservation, and using the data from this study, managers can plan to sustain high mammal persistence along riparian forests at Koyna reservoir or similar Indian reserves. Further, our robust sampling approach, grounded in the terrestrial-riverine continuum concept, can be applied globally to understand species assemblages, aiding in multi-landscape and wildlife management planning.
Collapse
|
185
|
Magioli M, Ferraz KMPMDB, Chiarello AG, Galetti M, Setz EZF, Paglia AP, Abrego N, Ribeiro MC, Ovaskainen O. Land-use changes lead to functional loss of terrestrial mammals in a Neotropical rainforest. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
186
|
Abstract
Many large predators are also facultative scavengers that may compete with and depredate other species at carcasses. Yet, the ecological impacts of facultative scavenging by large predators, or their "scavenging effects," still receive relatively little attention in comparison to their predation effects. To address this knowledge gap, we comprehensively examine the roles played by, and impacts of, facultative scavengers, with a focus on large canids: the African wild dog (Lycaon pictus), dhole (Cuon alpinus), dingo (Canis dingo), Ethiopian wolf (Canis simensis), gray wolf (Canis lupus), maned wolf (Chrysocyon brachyurus), and red wolf (Canis rufus). Specifically, after defining facultative scavenging as use or usurpation of a carcass that a consumer has not killed, we (1) provide a conceptual overview of the community interactions around carcasses that can be initiated by facultative scavengers, (2) review the extent of scavenging by and the evidence for scavenging effects of large canids, (3) discuss external factors that may diminish or enhance the effects of large canids as scavengers, and (4) identify aspects of this phenomenon that require additional research attention as a guide for future work.
Collapse
Affiliation(s)
- Aaron J Wirsing
- School of Environment and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
187
|
Gordon IJ, Manning AD, Navarro LM, Rouet-Leduc J. Domestic Livestock and Rewilding: Are They Mutually Exclusive? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.550410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human influence extends across the globe, from the tallest mountains to the deep bottom of the oceans. There is a growing call for nature to be protected from the negative impacts of human activity (particularly intensive agriculture); so-called “land sparing”. A relatively new approach is “rewilding”, defined as the restoration of self-sustaining and complex ecosystems, with interlinked ecological processes that promote and support one another while minimising or gradually reducing human intervention. The key theoretical basis of rewilding is to return ecosystems to a “natural” or “self-willed” state with trophic complexity, dispersal (and connectivity) and stochastic disturbance in place. However, this is constrained by context-specific factors whereby it may not be possible to restore the native species that formed part of the trophic structure of the ecosystem if they are extinct (e.g., mammoths, Mammuthus spp., aurochs, Bos primigenius); and, populations/communities of native herbivores/predators may not be able to survive or be acceptable to the public in small scale rewilding projects close to areas of high human density. Therefore, the restoration of natural trophic complexity and disturbance regimes within rewilding projects requires careful consideration if the broader conservation needs of society are to be met. In some circumstances, managers will require a more flexible deliberate approach to intervening in rewilding projects using the range of tools in their toolbox (e.g., controlled burning regimes; using domestic livestock to replicate the impacts of extinct herbivore species), even if this is only in the early stages of the rewilding process. If this approach is adopted, then larger areas can be given over to conservation, because of the potential broader benefits to society from these spaces and the engagement of farmers in practises that are closer to their traditions. We provide examples, primarily European, where domestic and semi-domestic livestock are used by managers as part of their rewilding toolbox. Here managers have looked at the broader phenotype of livestock species as to their suitability in different rewilding systems. We assess whether there are ways of using livestock in these systems for conservation, economic (e.g., branded or certified livestock products) and cultural gains.
Collapse
|
188
|
Vucetich JA, Macdonald EA, Burnham D, Bruskotter JT, Johnson DDP, Macdonald DW. Finding Purpose in the Conservation of Biodiversity by the Commingling of Science and Ethics. Animals (Basel) 2021; 11:837. [PMID: 33809534 PMCID: PMC7998897 DOI: 10.3390/ani11030837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
Averting the biodiversity crisis requires closing a gap between how humans tend to behave, individually and collectively, and how we ought to behave-"ought to" in the sense of behaviors required to avert the biodiversity crisis. Closing that gap requires synthesizing insight from ethics with insights from social and behavioral sciences. This article contributes to that synthesis, which presents in several provocative hypotheses: (i) Lessening the biodiversity crisis requires promoting pro-conservation behavior among humans. Doing so requires better scientific understanding of how one's sense of purpose in life affects conservation-relevant behaviors. Psychology and virtue-focused ethics indicate that behavior is importantly influenced by one's purpose. However, conservation psychology has neglected inquiries on (a) the influence of one's purpose (both the content and strength of one's purpose) on conservation-related behaviors and (b) how to foster pro-conservation purposes; (ii) lessening the biodiversity crisis requires governance-the regulation of behavior by governments, markets or other organization through various means, including laws, norms, and power-to explicitly take conservation as one of its fundamental purposes and to do so across scales of human behaviors, from local communities to nations and corporations; (iii) lessening the biodiversity crisis requires intervention via governance to nudge human behavior in line with the purpose of conservation without undue infringement on other basic values. Aligning human behavior with conservation is inhibited by the underlying purpose of conservation being underspecified. Adequate specification of conservation's purpose will require additional interdisciplinary research involving insights from ethics, social and behavioral sciences, and conservation biology.
Collapse
Affiliation(s)
- John A. Vucetich
- College of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Ewan A. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Oxfordshire OX13 5QL, UK; (E.A.M.); (D.B.); (D.W.M.)
- Saïd Business School, University of Oxford, Oxford OX1 1HP, UK
| | - Dawn Burnham
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Oxfordshire OX13 5QL, UK; (E.A.M.); (D.B.); (D.W.M.)
| | - Jeremy T. Bruskotter
- Terrestrial Wildlife Ecology Lab, School Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA;
| | - Dominic D. P. Johnson
- Department of Politics and International Relations, University of Oxford, Oxford OX1 3UQ, UK;
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Oxfordshire OX13 5QL, UK; (E.A.M.); (D.B.); (D.W.M.)
| |
Collapse
|
189
|
Munsterman KS, Allgeier JE, Peters JR, Burkepile DE. A View From Both Ends: Shifts in Herbivore Assemblages Impact Top-Down and Bottom-Up Processes on Coral Reefs. Ecosystems 2021. [DOI: 10.1007/s10021-021-00612-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
190
|
Zhong Z, Li X, Sanders D, Liu Y, Wang L, Ortega YK, Pearson DE, Wang D. Soil engineering by ants facilitates plant compensation for large herbivore removal of aboveground biomass. Ecology 2021; 102:e03312. [PMID: 33586130 DOI: 10.1002/ecy.3312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 11/06/2022]
Abstract
The interplay between top-down and bottom-up processes determines ecosystem productivity. Yet, the factors that mediate the balance between these opposing forces remain poorly understood. Furthering this challenge, complex and often cryptic factors like ecosystem engineering and trait-mediated interactions may play major roles in mediating the outcomes of top-down and bottom-up interactions. In semiarid grasslands of northeastern China, we conducted a large-scale, three-year experiment to evaluate how soil engineering by ants and plasticity in plants independently and jointly influenced the top-down effects of grazing by a ubiquitous herbivore (cattle) on aboveground standing biomass of the dominant perennial grass, Leymus chinensis. Herbivory had strong top-down effects, reducing L. chinensis AB by 25% relative to baseline levels without cattle or ants. In contrast, soil engineering by ants facilitated weak bottom-up effects in the absence of herbivory. However, in the presence of herbivory, soil engineering effects were strong enough to fully offset herbivore removal of aboveground biomass. This outcome was mediated by L. chinensis's plasticity in reallocating growth from below- to aboveground biomass, a result linked to additive effects of engineers and herbivores increasing soil N availability and engineering effects improving soil structure. Soil engineering increased soil N by 12%, promoting aboveground biomass. Herbivores increased soil N by 13% via defecation, but this increase failed to offset their reductions in aboveground biomass in isolation. However, when combined, engineers and herbivores increased soil N by 26% and engineers improved soil bulk density, facilitating L. chinensis to shift resource allocations from below- to aboveground biomass sufficiently to fully offset herbivore suppression of aboveground biomass. Our results demonstrate that soil engineering and trait-mediated effects of plant plasticity can strongly mediate the outcome of top-down and bottom-up interactions. These cryptic but perhaps ubiquitous processes may help to explain the long-debated phenomenon of plant compensatory responses to large grazers.
Collapse
Affiliation(s)
- Zhiwei Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Li
- College of Resources and Environmental Sciences/Key Laboratory of Sustainable Utilization of Soil Resources in the Commodity Grain Bases in Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Dirk Sanders
- Environment and Sustainability Institute, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| | - Yiming Liu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Ling Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Yvette K Ortega
- Rocky Mountain Research Station, USDA Forest Service, 800 E. Beckwith Avenue, Missoula, Montana, 59801, USA
| | - Dean E Pearson
- Rocky Mountain Research Station, USDA Forest Service, 800 E. Beckwith Avenue, Missoula, Montana, 59801, USA.,Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| | - Deli Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
191
|
Magioli M, Ferraz KMPMD. Deforestation leads to prey shrinkage for an apex predator in a biodiversity hotspot. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00556-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
192
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
193
|
Ghosh T, Sharma A, Mondol S. Optimisation and application of a forensic microsatellite panel to combat Greater-one horned rhinoceros (Rhinoceros unicornis) poaching in India. Forensic Sci Int Genet 2021; 52:102472. [PMID: 33548856 DOI: 10.1016/j.fsigen.2021.102472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022]
Abstract
The Greater one-horned (GoH) rhinoceros is one of the most charismatic endemic megaherbivores of the Indian subcontinent. Threatened by poaching, habitat loss and disease, the species is found only in small areas of its historical distribution. Increasing demands for rhino horns in chinese traditional medicine has put the existing population under continuing threat, and large profits and low conviction rates make poaching difficult to contain. DNA forensics such as the RhoDIS-Africa program has helped in combating illegal rhino horn trade, but the approach is yet to be optimised for Indian GoH rhinoceros. Here we followed the International Society for Forensic Genetics (ISFG) guidelines to establish a 14 dinucleotide microsatellite panel for Indian GoH rhinoceros DNA profiling. Selected from a large initial pool (n = 34), the microsatellite markers showed high polymorphism, stable peak characteristics, consistent allele calls and produced precise, reproducible genotypes from different types of rhino samples. The panel also showed low genotyping error and produced high statistical power during individual identification (PIDsibs value of 1.2*10-4). As part of the official RhoDIS-India program, we used this panel to match poached rhino carcass with seized contraband as scientific evidence in court procedure. This program now moves to generate detailed allele-frequency maps of all GoH rhinoceros populations in India and Nepal for development of a genetic database and identification of poaching hotspots and trade routes across the subcontinent and beyond.
Collapse
Affiliation(s)
- Tista Ghosh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
| | - Amit Sharma
- World Wide Fund for Nature-India, 172B Lodhi Estate, New Delhi, 110003, India
| | - Samrat Mondol
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
194
|
Lundgren EJ, Schowanek SD, Rowan J, Middleton O, Pedersen RØ, Wallach AD, Ramp D, Davis M, Sandom CJ, Svenning JC. Functional traits of the world's late Quaternary large-bodied avian and mammalian herbivores. Sci Data 2021; 8:17. [PMID: 33473149 PMCID: PMC7817692 DOI: 10.1038/s41597-020-00788-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Prehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth's ecosystems due to the loss of their distinct trait combinations. The world's surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important. However, comprehensive and ecologically-relevant trait datasets for extinct and extant herbivores are lacking. Here, we present HerbiTraits, a comprehensive functional trait dataset for all late Quaternary terrestrial avian and mammalian herbivores ≥10 kg (545 species). HerbiTraits includes key traits that influence how herbivores interact with ecosystems, namely body mass, diet, fermentation type, habitat use, and limb morphology. Trait data were compiled from 557 sources and comprise the best available knowledge on late Quaternary large-bodied herbivores. HerbiTraits provides a tool for the analysis of herbivore functional diversity both past and present and its effects on Earth's ecosystems.
Collapse
Affiliation(s)
- Erick J Lundgren
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo, Australia.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Simon D Schowanek
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - John Rowan
- Department of Anthropology, University at Albany, Albany, NY, 12222, USA
| | - Owen Middleton
- School of Life Sciences, University of Sussex, Sussex, UK
| | - Rasmus Ø Pedersen
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Arian D Wallach
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Matt Davis
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| | | | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
195
|
Sigsgaard EE, Olsen K, Hansen MDD, Hansen OLP, Høye TT, Svenning JC, Thomsen PF. Environmental DNA metabarcoding of cow dung reveals taxonomic and functional diversity of invertebrate assemblages. Mol Ecol 2020; 30:3374-3389. [PMID: 33205529 PMCID: PMC8359373 DOI: 10.1111/mec.15734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
Insects and other terrestrial invertebrates are declining in species richness and abundance. This includes the invertebrates associated with herbivore dung, which have been negatively affected by grazing abandonment and the progressive loss of large herbivores since the Late Pleistocene. Importantly, traditional monitoring of these invertebrates is time‐consuming and requires considerable taxonomic expertise, which is becoming increasingly scarce. In this study, we investigated the potential of environmental DNA (eDNA) metabarcoding of cow dung samples for biomonitoring of dung‐associated invertebrates. From eight cowpats we recovered eDNA from 12 orders, 29 families, and at least 54 species of invertebrates (mostly insects), representing several functional groups. Furthermore, species compositions differed between the three sampled habitats of dry grassland, meadow, and forest. These differences were in accordance with the species’ ecology; for instance, several species known to be associated with humid conditions or lower temperatures were found only in the forest habitat. We discuss potential caveats of the method, as well as directions for future study and perspectives for implementation in research and monitoring.
Collapse
Affiliation(s)
| | - Kent Olsen
- Natural History Museum Aarhus, Aarhus, Denmark
| | | | - Oskar Liset Pryds Hansen
- Department of Biology, Aarhus University, Aarhus, Denmark.,Natural History Museum Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
196
|
Mena JL, Pacheco V. Mountains and traits: environmental heterogeneity and mammal assemblages along an elevational gradient in the Northern Andes. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2020. [DOI: 10.1080/01650521.2020.1851345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- José L. Mena
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Museo de Historia Natural “Vera Alleman Haeghebaert”, Universidad Ricardo Palma, Lima, Peru
| | - Víctor Pacheco
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
197
|
Di Bitetti MS, Iezzi ME, Cruz P, Varela D, De Angelo C. Effects of cattle on habitat use and diel activity of large native herbivores in a South American rangeland. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2020.125900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
198
|
Risch AC, Zimmermann S, Moser B, Schütz M, Hagedorn F, Firn J, Fay PA, Adler PB, Biederman LA, Blair JM, Borer ET, Broadbent AAD, Brown CS, Cadotte MW, Caldeira MC, Davies KF, di Virgilio A, Eisenhauer N, Eskelinen A, Knops JMH, MacDougall AS, McCulley RL, Melbourne BA, Moore JL, Power SA, Prober SM, Seabloom EW, Siebert J, Silveira ML, Speziale KL, Stevens CJ, Tognetti PM, Virtanen R, Yahdjian L, Ochoa-Hueso R. Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. GLOBAL CHANGE BIOLOGY 2020; 26:7173-7185. [PMID: 32786128 DOI: 10.1111/gcb.15308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.
Collapse
Affiliation(s)
- Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Stefan Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Barbara Moser
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Jennifer Firn
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Philip A Fay
- USDA-ARS Grassland, Soil, and Water Research Laboratory, Temple, TX, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | - Lori A Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - John M Blair
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Arthur A D Broadbent
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Cynthia S Brown
- Department of Agricultural Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON, Canada
| | - Maria C Caldeira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Augustina di Virgilio
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA (CONICET-UNCOMA), Bariloche, Argentina
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Johannes M H Knops
- Department of Health & Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, China
| | | | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton Campus, Vic., Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Julia Siebert
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Maria L Silveira
- Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| | - Karina L Speziale
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA (CONICET-UNCOMA), Bariloche, Argentina
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Pedro M Tognetti
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Laura Yahdjian
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
199
|
Lamichhane S, Khanal G, Karki JB, Aryal C, Acharya S. Natural and anthropogenic correlates of habitat use by wild ungulates in Shuklaphanta National Park, Nepal. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
200
|
Assessment of endemic northern swamp deer (Rucervus duvaucelii duvaucelii) distribution and identification of priority conservation areas through modeling and field surveys across north India. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|