151
|
Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021. [PMID: 33436514 DOI: 10.1101/2020.06.15.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Rui Huang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Lisa Cangioli
- Department of Biology, University of Florence, Florence, Italy
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
152
|
Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021; 6:6/1/e00974-20. [PMID: 33436514 PMCID: PMC7901481 DOI: 10.1128/msystems.00974-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
|
153
|
Wang Y, Cheng H, Chang F, Zhao L, Wang B, Wan Y, Yue M. Endosphere Microbiome and Metabolic Differences Between the Spots and Green Parts of Tricyrtis macropoda Leaves. Front Microbiol 2021; 11:599829. [PMID: 33505373 PMCID: PMC7829350 DOI: 10.3389/fmicb.2020.599829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Background Plant leaves are important organs for photosynthesis and biological energy production. The leaves of Tricyrtis macropoda have an unusual spotted pattern. However, whether the spots of T. macropoda affect the plant microbiome and metabolites is unclear. In this study, we compared differences in the endosphere microbiome and plant metabolites in green parts and spots and the effects of spots on the photosynthesis of leaves. Methods 16S/ITS sequences and metabolite spectra were obtained by high-throughput amplicon sequencing and ultra-high-performance liquid chromatography–high-resolution mass spectrometry, respectively. Changes in the diversity of the endophytic microbial community and metabolites were studied, and the effect of T. macropoda leaf spots on photosynthesis was examined by chlorophyll fluorescence. Results The results showed that the relative abundance of Cercospora fungi in the leaf spots of T. macropoda was significantly higher than that in the green parts (P < 0.05) while Colletotrichum fungi showed low abundance in the spots. Alkaloid and ketone metabolites were decreased in the green parts compared with the spots, and amino acids, organic acids, lipids, and other compounds were increased in the green parts compared with the spots. A combined analysis of microbial communities and metabolites showed a significant correlation between the endophytic fungal communities and metabolite production. The changes in these metabolites may cause changes in local leaf color. In addition, we found that the spot areas of T. macropoda can be photosynthetically normal. Conclusion This research showed the relationship between endophytic microorganisms and metabolites, and the findings advance our understanding of endophyte–plant interactions and provide a new direction for investigating the relationship between endophytes and phenotypes.
Collapse
Affiliation(s)
- Yan Wang
- Microbiology Institute of Shaanxi, Xi'an, China
| | - Huyin Cheng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fan Chang
- Microbiology Institute of Shaanxi, Xi'an, China
| | - Le Zhao
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Bin Wang
- College of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, China
| | - Yi Wan
- Microbiology Institute of Shaanxi, Xi'an, China
| | - Ming Yue
- School of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
154
|
Wang H, Kim KP, Kim IH. Evaluation of the combined effects of different dose levels of Zinc oxide with probiotics complex supplementation on the growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs. J Anim Physiol Anim Nutr (Berl) 2021; 105:286-293. [PMID: 33423308 DOI: 10.1111/jpn.13493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023]
Abstract
This study was conducted to assess the effects of different dose levels of zinc oxide (ZnO) combined with probiotics complex supplementation on the growth, performance, nutrient digestibility, faecal lactobacillus and Enterobacteria counts, noxious gas emissions and faecal score of weaned piglets. A total of 180 crossbred weaning pigs ([Yorkshire × Landrace] × Duroc; 6.61 ± 1.29 kg [mean ± SE]; 28 days old) were used in a 42-day trial. All pigs were randomly allotted to 1 of 4 treatment diets based on initial BW and sex (9 replicate pens/treatment; 2 gilts and 3 barrows/pen). Dietary treatment groups were as follows: CON, basal diet +ZnO 3,000 ppm; BZS, basal diet +ZnO 2,100 ppm +0.1% SynerZymeF10; BZS1, basal diet +ZnO 1,200 ppm +0.1% SynerZymeF10; BZS2, basal diet +ZnO 300 ppm +0.1% SynerZymeF10. During the phase 3, decreasing the ZnO concentration led to a linear reduction in ADG (p = 0.044), and the ADG was lower (p < 0.05) in BZS2 compared with CON treatment during the whole experimental period. The effects of dietary ZnO with probiotics complex were not detected (p > 0.05) on nutrient digestibility, Lactobacillus and E. coli counts, faecal gas emissions and faecal scores. In conclusion, the diet supplementation of ZnO (1,200 ppm) with probiotics complex has been shown to have comparable efficacy to ZnO (3,000 ppm) diet on growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Animal Resource & Science, Dankook University, Cheonan, Choognam, Korea
| | - Kun Phil Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choognam, Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choognam, Korea
| |
Collapse
|
155
|
LaPelusa M, Donoviel D, Branzini SE, Carlson PE, Culler S, Cheema AK, Kaddurah-Daouk R, Kelly D, de Cremoux I, Knight R, Krajmalnik-Brown R, Mayo SL, Mazmanian SK, Mayer EA, Petrosino JF, Garrison K. Microbiome for Mars: surveying microbiome connections to healthcare with implications for long-duration human spaceflight, virtual workshop, July 13, 2020. MICROBIOME 2021; 9:2. [PMID: 33397500 PMCID: PMC7781430 DOI: 10.1186/s40168-020-00951-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The inaugural "Microbiome for Mars" virtual workshop took place on July 13, 2020. This event assembled leaders in microbiome research and development to discuss their work and how it may relate to long-duration human space travel. The conference focused on surveying current microbiome research, future endeavors, and how this growing field could broadly impact human health and space exploration. This report summarizes each speaker's presentation in the order presented at the workshop.
Collapse
Affiliation(s)
- Michael LaPelusa
- Department of Medicine, Vanderbilt University Medical Center, One Hundred Oaks - North 719 Thompson Lane Suite 20400, Nashville, TN, 37204, USA.
| | - Dorit Donoviel
- Department of Pharmacology and Chemical Biology, Center for Space Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sergio E Branzini
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Paul E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Stephanie Culler
- Persephone Biosciences Inc, JLABS, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, NC, 27708, USA
| | - Denise Kelly
- Seventure Partners, 5-7 rue de Monttessuy, 75340 Cedex 07, Paris, France
| | | | - Rob Knight
- Departments of Pediatrics, Bioengineering, and Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, MC 0763, La Jolla, CA, 92093-0763, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Stephen L Mayo
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Bl, Pasadena, CA, 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Bl, Pasadena, CA, 91125, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Keith Garrison
- Department of Medicine, The University of Texas at Houston Health Sciences Center, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
156
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
157
|
Effects of a low allergenic soybean variety on gut permeability, microbiota composition, ileal digestibility of amino acids, and growth performance in pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
158
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
159
|
Campbell PM, Humphreys GJ, Summers AM, Konkel JE, Knight CG, Augustine T, McBain AJ. Does the Microbiome Affect the Outcome of Renal Transplantation? Front Cell Infect Microbiol 2020; 10:558644. [PMID: 33425774 PMCID: PMC7785772 DOI: 10.3389/fcimb.2020.558644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
The role of the human microbiome in health and disease is becoming increasingly apparent. Emerging evidence suggests that the microbiome is affected by solid organ transplantation. Kidney transplantation is the gold standard treatment for End-Stage Renal Disease (ESRD), the advanced stage of Chronic Kidney Disease (CKD). The question of how ESRD and transplantation affect the microbiome and vice versa includes how the microbiome is affected by increased concentrations of toxins such as urea and creatinine (which are elevated in ESRD), whether restoration of renal function following transplantation alters the composition of the microbiome, and the impact of lifelong administration of immunosuppressive drugs on the microbiome. Changes in microbiome composition and activity have been reported in ESRD and in therapeutic immunosuppression, but the effect on the outcome of transplantation is not well-understood. Here, we consider the current evidence that changes in kidney function and immunosuppression following transplantation influence the oral, gut, and urinary microbiomes in kidney transplant patients. The potential for changes in these microbiomes to lead to disease, systemic inflammation, or rejection of the organ itself is discussed, along with the possibility that restoration of kidney function might re-establish orthobiosis.
Collapse
Affiliation(s)
- Paul M Campbell
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Angela M Summers
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher G Knight
- School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Titus Augustine
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
160
|
Qiu XQ, Cao KF, Zhang XF, Tong CY, Ma HL, Xu HM, Ma Y, Zou Z, Zhang XL, Li RQ. Defending the homeland: microbiome molecules provide protection to their vertebrate hosts. Future Microbiol 2020; 15:1697-1712. [PMID: 33350865 DOI: 10.2217/fmb-2020-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: The resident bacterial microbiome may shape and protect the health of vertebrate host. An array of molecules secreted by microbiome may contribute to the ecological stability of the microbiome itself. Material & methods: ELISA, radioactivity, immunofluorescence and cytokines measurements were used to observe the bioactivity and stability of colicin Ia level in oviparous and viviparous animal circulation. Results: Colicin Ia, a protein antimicrobial produced by Escherichia coli, is not present in animals at birth, but increases in concentration with the establishment of a stable gut microbiome and drops when the microbiome is experimentally disrupted. Colicin introduced in vivo is transported to tissues at concentrations able to prevent or eliminate bacterial infection. Conclusion: Our findings suggest an unexpected benefit provided by the presence of a resident microbiome in the form of active, circulating, bacterially-synthesized antimicrobial molecules.
Collapse
Affiliation(s)
- Xiao-Qing Qiu
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Fu Cao
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Feng Zhang
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong-Yi Tong
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong-Lung Ma
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Min Xu
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ma
- National Center for Antimicrobial Resistance, National Institute of Food & Drug Inspection, Beijing, 100050, China
| | - Zhen Zou
- Department of Biochemistry & Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, 100005, China
| | - Xiang-Li Zhang
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong-Qi Li
- Laboratory of Biomembrane & Membrane Protein, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
161
|
Martin-Gallausiaux C, Malabirade A, Habier J, Wilmes P. Fusobacterium nucleatum Extracellular Vesicles Modulate Gut Epithelial Cell Innate Immunity via FomA and TLR2. Front Immunol 2020; 11:583644. [PMID: 33408714 PMCID: PMC7779620 DOI: 10.3389/fimmu.2020.583644] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) derived from the gut microbiota are largely uncharacterized and their impacts on host intestinal physiology remain unresolved. Here, we isolated EVs from F. nucleatum for detailed characterization. Our analyses highlight the presence of the outer membrane protein porin FomA on EVs. Besides, we evaluated the impact of EVs on human intestinal epithelial cells (IECs) in a non-inflammatory context. Our results show no detrimental impact on the epithelial barrier. No internalization of EVs was observed. Moreover, we demonstrate that F. nucleatum EVs trigger innate immunity of IECs by promoting NF-κB activation via the dynamin-mediated endocytosis. The NF-κB activation was found to be TLR2-dependent yet, TLR4 was dispensable. Using competitive binding assays, we establish that FomA is involved in the NF-κB response. Taken together, our data indicate that EVs induce effects similar to those observed with whole F. nucleatum bacteria on IECs. In particular, our study highlights the role of TLR2 and FomA as major modulators of the gut epithelium immune responses to F. nucleatum.
Collapse
Affiliation(s)
| | - Antoine Malabirade
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janine Habier
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
162
|
Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far? Front Microbiol 2020; 11:585857. [PMID: 33362735 PMCID: PMC7758234 DOI: 10.3389/fmicb.2020.585857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
163
|
Xu Z, Takizawa F, Casadei E, Shibasaki Y, Ding Y, Sauters TJC, Yu Y, Salinas I, Sunyer JO. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution. Sci Immunol 2020; 5:5/44/eaay3254. [PMID: 32034088 DOI: 10.1126/sciimmunol.aay3254] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Although mammalian secretory immunoglobulin A (sIgA) targets mucosal pathogens for elimination, its interaction with the microbiota also enables commensal colonization and homeostasis. This paradoxical requirement in the control of pathogens versus microbiota raised the question of whether mucosal (secretory) Igs (sIgs) evolved primarily to protect mucosal surfaces from pathogens or to maintain microbiome homeostasis. To address this central question, we used a primitive vertebrate species (rainbow trout) in which we temporarily depleted its mucosal Ig (sIgT). Fish devoid of sIgT became highly susceptible to a mucosal parasite and failed to develop compensatory IgM responses against it. IgT depletion also induced a profound dysbiosis marked by the loss of sIgT-coated beneficial taxa, expansion of pathobionts, tissue damage, and inflammation. Restitution of sIgT levels in IgT-depleted fish led to a reversal of microbial translocation and tissue damage, as well as to restoration of microbiome homeostasis. Our findings indicate that specialization of sIgs in pathogen and microbiota control occurred concurrently early in evolution, thus revealing primordially conserved principles under which primitive and modern sIgs operate in the control of microbes at mucosal surfaces.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas J C Sauters
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yongyao Yu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
164
|
Noor SO, Al-Zahrani DA, Hussein RM, Baeshen MN, Moussa TAA, Abo-Aba SM, Al-Hejin AM, Baeshen NA, Huelsenbeck JP. Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Arch Microbiol 2020; 203:1211-1219. [PMID: 33231748 DOI: 10.1007/s00203-020-02119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to compare the fungal rhizosphere communities of Rhazya stricta, Enneapogon desvauxii, Citrullus colocynthis, Senna italica, and Zygophyllum simplex, and the gut mycobiota of Poekilocerus bufonius (Orthoptera, Pyrgomorphidae, "Usherhopper"). A total of 164,485 fungal reads were observed from the five plant rhizospheres and Usherhopper gut. The highest reads were in S. italica rhizosphere (29,883 reads). Species richness in the P. bufonius gut was the highest among the six samples. Ascomycota was dominant in all samples, with the highest reads in E. desvauxii (26,734 reads) rhizosphere. Sordariomycetes and Dothideomycetes were the dominant classes detected with the highest abundance in C. colocynthis and E. desvauxii rhizospheres. Aspergillus and Ceratobasidium were the most abundant genera in the R. stricta rhizosphere, Fusarium and Penicillium in the E. desvauxii rhizosphere and P. bufonius gut, Ceratobasidium and Myrothecium in the C. colocynthis rhizosphere, Aspergillus and Fusarium in the S. italica rhizosphere, and Cochliobolus in the Z. simplex rhizosphere. Aspergillus terreus was the most abundant species in the R. stricta and S. italica rhizospheres, Fusarium sp. in E. desvauxii rhizosphere, Ceratobasidium sp. in C. colocynthis rhizosphere, Cochliobolus sp. in Z. simplex rhizosphere, and Penicillium sp. in P. bufonius gut. The phylogenetic results revealed the unclassified species were related closely to Ascomycota and the species in E. desvauxii, S. italica and Z. simplex rhizospheres were closely related, where the species in the P. bufonius gut, were closely related to the species in the R. stricta, and C. colocynthis rhizospheres.
Collapse
Affiliation(s)
- Samah O Noor
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dhafer A Al-Zahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaei M Hussein
- University of Jeddah, College of Sciences and Arts, Department of Biological Sciences, Al Kamel Province, Jeddah, Saudi Arabia.,Genetics and Cytology Dept. Genetic Engineering Division, National Resesrch Centre, Dokki, Cairo, Egypt
| | - Mohammed N Baeshen
- University of Jeddah, College of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| | - Tarek A A Moussa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Salah M Abo-Aba
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Microbial Genetics, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Al-Hejin
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John P Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, USA
| |
Collapse
|
165
|
Masson F, Lemaitre B. Growing Ungrowable Bacteria: Overview and Perspectives on Insect Symbiont Culturability. Microbiol Mol Biol Rev 2020; 84:e00089-20. [PMID: 33177190 PMCID: PMC7667007 DOI: 10.1128/mmbr.00089-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insects are often involved in endosymbiosis, that is, the housing of symbiotic microbes within their tissues or within their cells. Endosymbionts are a major driving force in insects' evolution, because they dramatically affect their host physiology and allow them to adapt to new niches, for example, by complementing their diet or by protecting them against pathogens. Endosymbiotic bacteria are, however, fastidious and therefore difficult to manipulate outside of their hosts, especially intracellular species. The coevolution between hosts and endosymbionts leads to alterations in the genomes of endosymbionts, limiting their ability to cope with changing environments. Consequently, few insect endosymbionts are culturable in vitro and genetically tractable, making functional genetics studies impracticable on most endosymbiotic bacteria. However, recently, major progress has been made in manipulating several intracellular endosymbiont species in vitro, leading to astonishing discoveries on their physiology and the way they interact with their host. This review establishes a comprehensive picture of the in vitro tractability of insect endosymbiotic bacteria and addresses the reason why most species are not culturable. By compiling and discussing the latest developments in the design of custom media and genetic manipulation protocols, it aims at providing new leads to expand the range of tractable endosymbionts and foster genetic research on these models.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
166
|
Nicolaro M, Portal DE, Shinder B, Patel HV, Singer EA. The human microbiome and genitourinary malignancies. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1245. [PMID: 33178777 PMCID: PMC7607065 DOI: 10.21037/atm-20-2976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human microbiome contains a vast network of understudied organisms that have an intimate role in our health and wellness. These microbiomes differ greatly between individuals, creating what may be thought of as a unique and dynamic microbial signature. Microbes have been shown to have various roles in metabolism, local and systemic inflammation, as well as immunity. Recent findings have confirmed the importance of both the gut and urinary microbiomes in genitourinary malignancies. Numerous studies have identified differences in microbial signatures between healthy patients and those with urologic malignancies. The microbiomes have been shown to contain microbes that may contribute to the etiology of disease state as well as yield information in regard to a person’s health and their responsiveness to certain drugs such as immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs). Less well understood are the effects of antibiotics on oncologic outcomes in such treatment courses. This review will explore our current understanding and advancements in the field of microbiome research and discuss its intimate association with genitourinary diseases including bladder cancer, prostate cancer, and kidney cancer. With a better understanding of the association between the microbiome and genitourinary malignancy, further investigation may produce reliable predictors of disease, prognostic indicators as well as therapeutic targets.
Collapse
Affiliation(s)
- Michael Nicolaro
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Daniella E Portal
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Brian Shinder
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Hiren V Patel
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Eric A Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
167
|
Batista MA, Calvo-Fortes F, Silveira-Nunes G, Camatta GC, Speziali E, Turroni S, Teixeira-Carvalho A, Martins-Filho OA, Neretti N, Maioli TU, Santos RR, Brigidi P, Franceschi C, Faria AMC. Inflammaging in Endemic Areas for Infectious Diseases. Front Immunol 2020; 11:579972. [PMID: 33262758 PMCID: PMC7688519 DOI: 10.3389/fimmu.2020.579972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Immunosenescence is marked by a systemic process named inflammaging along with a series of defects in the immunological activity that results in poor responses to infectious agents and to vaccination. Inflammaging, a state of low-grade chronic inflammation, usually leads to chronic inflammatory diseases and frailty in the elderly. However, some elderly escape from frailty and reach advanced age free of the consequences of inflammaging. This process has been called immunological remodeling, and it is the hallmark of healthy aging as described in the studies of centenarians in Italy. The biological markers of healthy aging are still a matter of debate, and the studies on the topic have focused on inflammatory versus remodeling processes and molecules. The sub-clinical inflammatory status associated with aging might be a deleterious event for populations living in countries where chronic infectious diseases are not prevalent. Nevertheless, in other parts of the world where they are, two possibilities may occur. Inflammatory responses may have a protective effect against these infectious agents. At the same time, the long-term consequences of protective immune responses during chronic infections may result in accelerated immunosenescence in these individuals. Therefore, the biological markers of healthy aging can vary according to environmental, cultural, and geographical settings that reflect worldwide, and in a non-biased, non-westernized perspective, the changes that we experience regarding our contacts with microorganisms and the outcomes of such contacts.
Collapse
Affiliation(s)
- Marina Andrade Batista
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Calvo-Fortes
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Giovanna Caliman Camatta
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | - Nicola Neretti
- Departament of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tatiani Uceli Maioli
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Ribeiro Santos
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Center for Biophysics, Bioinformatics, Biocomplexity, University of Bologna, Bologna, Italy.,Laboratory of Systems Biology of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Ana Maria Caetano Faria
- Programa de Pós Graduação em Nutrição e Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
168
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
169
|
Sang H, Xie Y, Su X, Zhang M, Zhang Y, Liu K, Wang J. Mushroom Bulgaria inquinans Modulates Host Immunological Response and Gut Microbiota in Mice. Front Nutr 2020; 7:144. [PMID: 33134305 PMCID: PMC7578393 DOI: 10.3389/fnut.2020.00144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 01/21/2023] Open
Abstract
We aimed to determine the prebiotic impact of Mushroom Bulgaria inquinans (BI) on the host immune response and gut microbiota. Male C57BL/6 mice were fed a diet supplemented with 0, 1, or 2% BI for 4 wks. Compared to mice fed with a control diet (0% BI), mice fed with 1 or 2% BI had an increase of T cell proliferation from the spleen, but such change was not found between 1 and 2% BI treated mice. Also, BI at 2% increased the production of IL-2 of splenocytes stimulated with T-cell mitogens, but BI at 1 and 2% did not affect productions of other splenic-T cell cytokines including IL-4, IL-10, and IFN-γ. Interestingly, BI at 1 or 2% inhibited T cell proliferation of mesenteric lymph node (mLN) but this effect was not found between 1 and 2% BI treated mice. Furthermore, BI inhibited the production of IL-2 in anti-CD3/CD28-stimulated T cells from mLN in a dose-dependent manner. Meanwhile, BI at 2%, not 1% inhibited the production of IL-4, IL-10, and IFN-γ of mLN. Since BI at 2% produced a more significant effect on the immune response, we further used BI at 2% to evaluate the effect of BI on gut microbiota. Of note, BI reduced the diversity of gut microbiota and resulted in an increase of Faecalibaculum and Parabacteroides abundance and the decrease of Allobaculum, Candidatus_Saccharimonas, and Rikenella abundance at the genus level. Finally, the correlation was observed between specific bacteria genera and the productions of T-cell cytokines from mesenteric lymphocytes: Rikenella and Candidatus_Saccharimonas correlated positively with IL-2, IL-4, IL-10, and IFN-γ; Bacteroides and Parabacteroides correlated negatively with IL-2 and IL-4; Faecalibaculum correlated negatively with IFN-γ and IL-4 and Bacteroides and Bifidobacterium correlated negatively with IFN-γ. The specific role of each intestinal microbiota observed is still unclear, but BI might exert a prebiotic effect on gut microbiota by increasing the abundance of potentially beneficial bacteria (Faecalibaculum). This is helpful for further demonstrating the healthy-promotion mechanism of B. inquinans.
Collapse
Affiliation(s)
- Hongzhen Sang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China.,School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yu Xie
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China.,School of Physical Education, Henan University, Kaifeng, China
| | - Xing Su
- Department of Respiration, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Kun Liu
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Junpeng Wang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
170
|
Wu MC, Jan MS, Chiou JY, Wang YH, Wei JCC. Constipation might be associated with risk of allergic rhinitis: A nationwide population-based cohort study. PLoS One 2020; 15:e0239723. [PMID: 33006996 PMCID: PMC7531808 DOI: 10.1371/journal.pone.0239723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Allergic rhinitis (AR) is a burdensome respiratory disorder whose etiology and pathophysiology remain controversial and most likely multifactorial. Accumulated evidence indicates that gut dysbiosis contributes to AR via the gut-airway axis. Constipation could result in alteration of the intestinal microflora. The clinical impact of constipation on AR has not been studied. We aimed to evaluate the risk of AR in constipated patients using a nationwide longitudinal population-based cohort. Methods We identified 57786 patients with constipation and 57786 matched controls between 1999 and 2013 from the Longitudinal Health Insurance Database, which is a subset of Taiwanese National Health Insurance Research Database. Propensity score analysis was used for matching age, sex, comorbidities, and medications at a ratio of 1:1. Multiple Cox regression and subgroup analyses were used to estimate the adjusted hazard ratio of AR. Results The incidence of AR was 32.2 per 1,000 person-years in constipated patients, which was twice that of non-constipated patients. After adjustment for patients’ age, gender, comorbidities, and medications, patients with constipation had a 2.3-fold risk of AR compared to those without constipation (adjusted hazard ratio [aHR]: 2.30; 95% CI, 2.23–2.37). In subgroup analyses, patients aged 20–39 years had a 2.24-fold higher risk of AR in the constipation cohort (aHR; 95% CI, 2.12–2.36). Patients aged <20, 40–64, and ≥65 years had a 2.09, 2.05, and 2.07-fold risk of AR in the constipation cohort, respectively (aHR; 95% CI, 1.98–2.20, 1.94–2.18, and 1.92–2.23). Also, patients with constipation had a higher likelihood of AR, regardless of sex, and with or without comorbidities including hyperlipidemia, hypertension, chronic kidney disease, chronic liver disease, diabetes, chronic obstructive pulmonary disease, rheumatoid arthritis, dyspepsia, irritable bowel syndrome, and anxiety. Conclusion Constipation might be associated with an increased risk of incidental AR. It seems that physicians should keep a higher index of suspicion for AR in people with constipation. The patency issue of gut could not be ignored in patients with AR.
Collapse
Affiliation(s)
- Meng-Che Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Gastroenterology, Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jeng-Yuan Chiou
- School of Health Policy and Management, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
171
|
黄 嘉, 王 利, 吴 小, 陈 焕, 付 秀, 陈 少, 刘 涛. [Analysis of intestinal flora in patients with chronic rhinosinusitis based on highthroughput sequencing]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1319-1324. [PMID: 32990228 PMCID: PMC7544583 DOI: 10.12122/j.issn.1673-4254.2020.09.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the changes in diversity, relative abundance and distribution of intestinal flora in patients with chronic rhinosinusitis and nasal polyps (CRSwNP) using high-throughput sequencing technology identify the intestinal flora significantly related to pathogenesis and progression of CRSwNP. METHODS Ten patients with CRSwNP hospitalized in the Department of Otolaryngology-Head and Neck Surgery of Guangdong Provincial People's Hospital were selected as the case group with 10 healthy volunteers recruited in the same period as the control group. Fecal genomic DNA extraction kit was used to extract the DNA in the fecal samples, and the DNA fragment length was measured and quantified. The V3 and V4 highly variable regions of the 16S rDNA gene of prokaryotes were amplified followed by library construction, Illumina MiSeq sequencing, sequence alignment and species identification analysis. The relative abundance, diversity and distribution characteristics of the intestinal flora were analyzed, and the relevant metabolic pathways were predicted. RESULTS Compared with the control group, the patients with CRSwNP had significant changes in the overall structure of the intestinal flora, highlighted by increased abundance of Saccharopolyspora and decreased contents of Ruminococcae, Coprococcus, Collinsella and Dialister. Among the metabolic pathways predicted to be associated with CRSwNP, 9 showed significant changes in patients with CRSwNP as compared with the control group (P < 0.05). CONCLUSIONS Patients with CRSwNP have significant changes in the structural characteristics of intestinal flora related with multiple metabolic pathways, and these changes may play an important role in the development of chronic rhinosinusitis.
Collapse
Affiliation(s)
- 嘉裕 黄
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- 汕头大学医学院,广东 汕头 515063Shantou University Medical College, Shantou 515063, China
| | - 利平 王
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 小琴 吴
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 焕钧 陈
- 广东省英德市人民医院耳鼻咽喉科,广东 英德 513000Department of Otolaryngology, People's Hospital of Yingde City, Yingde 513000, China
| | - 秀丽 付
- 广东省英德市人民医院耳鼻咽喉科,广东 英德 513000Department of Otolaryngology, People's Hospital of Yingde City, Yingde 513000, China
| | - 少华 陈
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 涛 刘
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
172
|
Popkes M, Valenzano DR. Microbiota-host interactions shape ageing dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190596. [PMID: 32772667 PMCID: PMC7435156 DOI: 10.1098/rstb.2019.0596] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Occupying the interface between host and environment, host-associated microbes play fundamental roles in nutrient absorption, essential metabolite synthesis, development of the immune system, defence against pathogens and pathogenesis. Microbiota composition and function is rather stable during adulthood, while it dramatically changes during early development, frailty and disease. Ageing is associated with progressive decrease of homeostasis, often resulting in disruption of the physiological balance between host and commensal microbes, ultimately leading to dysbiosis and host demise. Generally, high microbial diversity is associated with health and a youthful state, while low individual microbial diversity and larger inter-individual microbial diversity is associated with ageing and disease states. Different species are equipped with species-specific commensal, symbiotic and pathogenic microbial communities. How and whether the specific host-microbiota consortia co-evolved with host physiology to ensure homeostasis and promote individual fitness remains an open question. In this essay, we propose that the evolution of vertebrate-specific immune adaptations may have enabled the establishment of highly diverse, species-specific commensal microbial communities. We discuss how the maintenance of intact immune surveillance mechanisms, which allow discrimination between commensal and pathogenic bacteria, fail during ageing and lead to the onset of known ageing-related diseases. We discuss how host-microbiota interactions are key to maintaining homeostasis despite external perturbations, but also how they affect a range of host-specific ageing-related phenotypes. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Miriam Popkes
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- CECAD, University of Cologne, Cologne, Germany
| |
Collapse
|
173
|
Moeller AH, Sanders JG. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190597. [PMID: 32772670 PMCID: PMC7435157 DOI: 10.1098/rstb.2019.0597] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Every mammalian species harbours a gut microbiota, and variation in the gut microbiota within mammalian species can have profound effects on host phenotypes. In this review, we summarize recent evidence that gut microbiotas have influenced the course of mammalian adaptation and diversification. Associations with gut microbiotas have: (i) promoted the diversification of mammalian species by enabling dietary transitions onto difficult-to-digest carbon sources and toxic food items; (ii) shaped the evolution of adaptive phenotypic plasticity in mammalian species through the amplification of signals from the external environment and from postnatal developmental processes; and (iii) generated selection for host mechanisms, including innate and adaptive immune mechanisms, to control the gut microbiota for the benefit of host fitness. The stability of specific gut microbiotas within host species lineages varies substantially across the mammalian phylogeny, and this variation may alter the ultimate evolutionary outcomes of relationships with gut microbiotas in different mammalian clades. In some mammalian species, including humans, relationships with host species-specific gut microbiotas appear to have led to the evolution of host dependence on the gut microbiota for certain functions. These studies implicate the gut microbiota as a significant environmental factor and selective agent shaping the adaptive evolution of mammalian diet, phenotypic plasticity, gastrointestinal morphology and immunity. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
174
|
Li H, Fang Q, Nie Q, Hu J, Yang C, Huang T, Li H, Nie S. Hypoglycemic and Hypolipidemic Mechanism of Tea Polysaccharides on Type 2 Diabetic Rats via Gut Microbiota and Metabolism Alteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10015-10028. [PMID: 32811143 DOI: 10.1021/acs.jafc.0c01968] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diabetes mellitus is a serious threat to human health. Tea is cultivated around the world, and its polysaccharide components are reported to be an effective approach for managing type 2 diabetes with fewer adverse effects than medication. To examine the therapeutic effect of tea polysaccharides on diabetes, a type 2 diabetic rat model was generated. We showed that tea polysaccharides remarkably decreased fasting blood glucose and the levels of total cholesterol, total triglyceride, low-density lipoprotein cholesterol, and free fatty acid of type 2 diabetic rats. 16S rRNA sequencing and metabolomics were used to investigate the variation of gut microbiota and the metabolites profiles of diabetic rats after intervention of tea polysaccharides. We found that tea polysaccharides maintained the diversity of gut microbiota and restored the relative abundance of some bacterial genera (Lachnospira, Victivallis, Roseburia, and Fluviicola) which was reduced by diabetes. According to metabolomics analysis, we found that amino acid and other related metabolites was influenced by tea polysaccharides intervention. Correlation analysis among metabolites, gut microbiota, and parameters of hypoglycemic indicated that tea polysaccharides had hypoglycemic and hypolipidemic effect on type 2 diabetes via the modulation of gut microbiota and the improvement of host metabolism.
Collapse
Affiliation(s)
- Haishan Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qingying Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chao Yang
- Department of Urology and Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hu Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
175
|
Circulating Th1 and Th2 Subset Accumulation Kinetics in Septic Patients with Distinct Infection Sites: Pulmonary versus Nonpulmonary. Mediators Inflamm 2020; 2020:8032806. [PMID: 33005098 PMCID: PMC7509553 DOI: 10.1155/2020/8032806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background Persistent peripheral CD4+T cell differentiation towards T helper (Th)2 rather than Th1 has been proved to be related to immunosuppression and poor prognosis in sepsis. However, it is unclear whether these circulating Th1 and Th2 subtype accumulations differed in septic populations of distinct infection sites and presented different associations with outcomes among patients with pulmonary versus nonpulmonary sepsis. Methods From a secondary analysis of a prospective observational study, seventy-four previously immunocompetent patients with community-acquired severe sepsis within 24 hours upon onset were enrolled. Whole blood was collected on the admission day (D0), 3rd day (D3), and 7th day (D7). The patients were classified as pulmonary (n = 52) and nonpulmonary sepsis (n = 22). Circulating Th1 and Th2 populations were evaluated by flow cytometry, and clinical data related to disease severity and inflammatory response were collected. The associations of circulating Th1 and Th2 subset accumulations with distinct infection sites or outcomes within subgroups were explored. Results Patients with pulmonary sepsis held similar disease severity and 28-day mortality with those of nonpulmonary sepsis. Of note is the finding that circulating Th2 levels on D7 (P = 0.04) as well as Th2/Th1 on D3 (P = 0.01) and D7 (P = 0.04) were higher in the pulmonary sepsis compared with nonpulmonary sepsis while Th1 levels were lower on D0, D3, and D7 (P = 0.01, <0.01, and =0.05, respectively). Compared to 28-day survivors, higher Th2/Th1 driven by increased Th2 were observed among 28-day nonsurvivors on D3 and D7 in both groups. The association between circulatory Th2 populations or Th2/Th1 and 28-day death was detected in pulmonary sepsis (P < 0.05, HR > 1), rather than nonpulmonary sepsis. Conclusions Circulating Th2 accumulation was more apparent among pulmonary sepsis while nonpulmonary sepsis was characterized with the hyperactive circulating Th1 subset among previously immunocompetent patients. This finding suggested that circulating Th1 and Th2 subset accumulations vary in septic subgroups with different infection sites.
Collapse
|
176
|
Yang Y, Palm NW. Immunoglobulin A and the microbiome. Curr Opin Microbiol 2020; 56:89-96. [PMID: 32889295 DOI: 10.1016/j.mib.2020.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023]
Abstract
The trillions of microbes that constitutively colonize the intestine (the gut microbiota) impact diverse aspects of human physiology in health and disease. Immunoglobulin A (IgA) is the most abundant antibody isotype produced at mucosal surfaces, and nearly two grams of IgA is secreted into the intestine every day. Secretory IgA (SIgA) provides critical protection against pathogens and toxins, but can also directly bind to and 'coat' commensal bacteria in the gut. Commensal targeting by SIgA shapes gut microbiota composition, modulates bacterial behaviors, and enforces host-microbiota homeostasis in both mice and humans.
Collapse
Affiliation(s)
- Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
177
|
Zhu Y, Luo J, Yang Z, Miao Y. High-throughput sequencing analysis of differences in intestinal microflora between ulcerative colitis patients with different glucocorticoid response types. Genes Genomics 2020; 42:1197-1206. [PMID: 32844358 DOI: 10.1007/s13258-020-00986-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous investigations reported that the imbalance of intestinal microflora may be the initiation and promotion factor in the pathogenesis of inflammatory bowel disease such as ulcerative colitis (UC). Glucocorticoid is a very important class of regulatory molecules in the body. The response of different individuals to glucocorticoids can be divided into glucocorticoid sensitive, glucocorticoid resistance and glucocorticoid dependence. OBJECTIVE We aimed to investigate the differences in intestinal microflora composition and related metabolic pathways in UC patients with these three different glucocorticoid response types. METHODS The whole genomic DNA was extracted from fecal specimens. High-throughput sequencing technology was used to analyze the fecal 16S rRNA genome of UC patients with different glucocorticoid response types, and functional prediction was performed by PICRUSTs software. RESULTS The results showed that the intestinal microflora of the three groups were mainly composed of Firmicutes, Proteobacteria and Bacteroidetes. Although the species abundance and diversity of intestinal microflora in UC patients differed little among the three groups, the composition of intestinal microflora showed significant heterogeneity, which directly led to differences in the function of intestinal microbiota of UC patients with different glucocorticoid responses. Furthermore, of the 240 pathways, "PANTO-PWY: phosphopantothenate biosynthesis I", "COA-PWY-1: coenzyme A biosynthesis II (mammalian)" and "PWY-4242: pantothenate and coenzyme A biosynthesis III" were significantly different in the three groups. CONCLUSIONS These results indicate that UC patients with different glucocorticoids response types have different bacterial compositions and functions, which lays a foundation for further study of glucocorticoid resistance in UC patients.
Collapse
Affiliation(s)
- Yunzhen Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, People's Republic of China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, People's Republic of China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Kunming, 650500, People's Republic of China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, People's Republic of China.
| |
Collapse
|
178
|
Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B. The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals (Basel) 2020; 10:E1397. [PMID: 32796642 PMCID: PMC7459693 DOI: 10.3390/ani10081397] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Animal health is affected by many factors such as metabolic stress, the immune system, and epidemiological features that interconnect. The immune system has evolved along with the phylogenetic evolution as a highly refined sensing and response system, poised to react against diverse infectious and non-infectious stressors for better survival and adaptation. It is now known that high genetic merit for milk yield is correlated with a defective control of the inflammatory response, underlying the occurrence of several production diseases. This is evident in the mastitis model where high-yielding dairy cows show high disease prevalence of the mammary gland with reduced effectiveness of the innate immune system and poor control over the inflammatory response to microbial agents. There is growing evidence of epigenetic effects on innate immunity genes underlying the response to common microbial agents. The aforementioned agents, along with other non-infectious stressors, can give rise to abnormal activation of the innate immune system, underlying serious disease conditions, and affecting milk yield. Furthermore, the microbiome also plays a role in shaping immune functions and disease resistance as a whole. Accordingly, proper modulation of the microbiome can be pivotal to successful disease control strategies. These strategies can benefit from a fundamental re-appraisal of native cattle breeds as models of disease resistance based on successful coping of both infectious and non-infectious stressors.
Collapse
Affiliation(s)
- Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Vincenzo Lopreiato
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA
| | - Erminio Trevisi
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| |
Collapse
|
179
|
Gerardo NM, Hoang KL, Stoy KS. Evolution of animal immunity in the light of beneficial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190601. [PMID: 32772666 DOI: 10.1098/rstb.2019.0601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune system processes serve as the backbone of animal defences against pathogens and thus have evolved under strong selection and coevolutionary dynamics. Most microorganisms that animals encounter, however, are not harmful, and many are actually beneficial. Selection should act on hosts to maintain these associations while preventing exploitation of within-host resources. Here, we consider how several key aspects of beneficial symbiotic associations may shape host immune system evolution. When host immunity is used to regulate symbiont populations, there should be selection to evolve and maintain targeted immune responses that recognize symbionts and suppress but not eliminate symbiont populations. Associating with protective symbionts could relax selection on the maintenance of redundant host-derived immune responses. Alternatively, symbionts could facilitate the evolution of host immune responses if symbiont-conferred protection allows for persistence of host populations that can then adapt. The trajectory of immune system evolution will likely differ based on the type of immunity involved, the symbiont transmission mode and the costs and benefits of immune system function. Overall, the expected influence of beneficial symbiosis on immunity evolution depends on how the host immune system interacts with symbionts, with some interactions leading to constraints while others possibly relax selection on immune system maintenance. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kim L Hoang
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kayla S Stoy
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
180
|
Human Microbe-Disease Association Prediction by a Novel Double-Ended Random Walk with Restart. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3978702. [PMID: 32851068 PMCID: PMC7439206 DOI: 10.1155/2020/3978702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms in the human body play a vital role in metabolism, immune defense, nutrient absorption, cancer control, and prevention of pathogen colonization. More and more biological and clinical studies have shown that the imbalance of microbial communities is closely related to the occurrence and development of various complex human diseases. Finding potential microbial-disease associations is critical for understanding the pathology of a few diseases and thus further improving disease diagnosis and prognosis. In this study, we proposed a novel computational model to predict disease-associated microbes. Specifically, we first constructed a heterogeneous interconnection network based on known microbe-disease associations deposited in a few databases, the similarity between diseases, and the similarity between microorganisms. We then predicted novel microbe-disease associations by a new method called the double-ended restart random walk model (DRWHMDA) implemented on the interconnection network. In addition, we performed case studies of colon cancer and asthma for further evaluation. The results indicate that 10 and 9 of the top 10 microorganisms predicted to be associated with colorectal cancer and asthma were validated by relevant literatures, respectively. Our method is expected to be effective in identifying disease-related microorganisms and will help to reveal the relationship between microorganisms and complex human diseases.
Collapse
|
181
|
Ding J, Liao N, Zheng Y, Yang L, Zhou H, Xu K, Han C, Luo H, Qin C, Tang C, Wei L, Meng H. The Composition and Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to Squabs. Front Microbiol 2020; 11:1789. [PMID: 32849405 PMCID: PMC7417789 DOI: 10.3389/fmicb.2020.01789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian neonates obtain antibodies, nutrients, and microbiota from breast milk that help them resist the complex growth environment. Similar to mammals' lactation behavior for their offspring, parent pigeons regurgitate pigeon milk (PM) from their crops to feed the squabs. Whether pigeon milk is as valuable as mammalian milk is not clear, especially in terms of microbiota. This study adopted 16S rRNA gene sequencing to investigate the microbial composition and function in pigeon milk. We found abundant microbiota in pigeon milk. The dominant genera in parent pigeons' milk were Lactobacillus, Enterococcus, Veillonella, and Bifidobacterium. An analysis of squab milk (SM) showed that Lactobacillus also accounted for a considerable proportion, followed by Bifidobacterium. Most of the squab milk microbial genera were also detected in parent pigeons. Microbial functional analysis showed that the squab milk microbes were more involved in the pathways of carbohydrate metabolism, amino acid metabolism, and energy metabolism. These findings indicated that microbiota play an important role in squabs and can be transmitted from parent pigeons to squabs by pigeon milk. The presence of plentiful probiotics in squabs also suggests that adding probiotics in artificial pigeon milk may promote the growth and development of squabs and improve the production performance of pigeons.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Liao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhong Tang
- Shanghai Xinrong Big Emperor Pigeon Breeding Professional Cooperation, Shanghai, China
| | - Longxing Wei
- Fengxian District Animal Disease Prevention and Control Center, Shanghai, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
182
|
Niu X, Daniel S, Kumar D, Ding EY, Savani RC, Koh AY, Mirpuri J. Transient neonatal antibiotic exposure increases susceptibility to late-onset sepsis driven by microbiota-dependent suppression of type 3 innate lymphoid cells. Sci Rep 2020; 10:12974. [PMID: 32737397 PMCID: PMC7395748 DOI: 10.1038/s41598-020-69797-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Extended early antibiotic exposure in the neonatal intensive care unit is associated with an increased risk for the development of late-onset sepsis (LOS). However, few studies have examined the mechanisms involved. We sought to determine how the neonatal microbiome and intestinal immune response is altered by transient early empiric antibiotic exposure at birth. Neonatal mice were transiently exposed to broad-spectrum antibiotics from birth for either 3- (SE) or 7-days (LE) and were examined at 14-days-old. We found that mice exposed to either SE or LE showed persistent expansion of Proteobacteria (2 log difference, P < 0.01). Further, LE mice demonstrated baseline translocation of E. coli into the liver and spleen and were more susceptible K. pneumoniae-induced sepsis. LE mice had a significant and persistent decrease in type 3 innate lymphoid cells (ILC3) in the lamina propria. Reconstitution of the microbiome with mature microbiota by gavage in LE mice following antibiotic exposure resulted in an increase in ILC3 and partial rescue from LOS. We conclude that prolonged exposure to broad spectrum antibiotics in the neonatal period is associated with persistent alteration of the microbiome and innate immune response resulting in increased susceptibility to infection that may be partially rescued by microbiome reconstitution.
Collapse
Affiliation(s)
- Xinying Niu
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, MC9063, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Sarah Daniel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, MC9063, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Dharmendra Kumar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, MC9063, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Elizabeth Y Ding
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, MC9063, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Rashmin C Savani
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, MC9063, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Andrew Y Koh
- Division of Hematology and Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Mirpuri
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, MC9063, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| |
Collapse
|
183
|
Byun SH, Lee S, Kang SH, Choi HG, Hong SJ. Cross-Sectional Analysis of the Association between Periodontitis and Cardiovascular Disease Using the Korean Genome and Epidemiology Study Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145237. [PMID: 32698486 PMCID: PMC7400444 DOI: 10.3390/ijerph17145237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
This cross-sectional study aimed to evaluate the association between periodontitis and cardiovascular disease (CVD) by reviewing and discussing the role of the oral microbiome in periodontitis and CVD. This prospective cohort study used epidemiological data from the Korean Genome and Epidemiology Study from 2004 to 2016. We selected 9973 patients with periodontitis and 125,304 controls (non-periodontitis) from 173,209 participants and analyzed their medical histories to determine the relationship between cerebral stroke/ischemic heart disease and periodontitis. The participants were questioned about any previous history of hypertension, diabetes mellitus, hyperlipidemia, cerebral stroke (hemorrhagic or ischemic), ischemic heart disease (angina or myocardial infarction), and periodontitis. Their body mass index, smoking habit, alcohol intake, nutritional intake, and income were recorded. The Chi-square test, independent t-test, and two-tailed analyses were used for statistical analysis. The adjusted OR (aOR) of periodontitis for stroke was 1.35 (95% confidence interval (CI) = 1.16–1.57, p < 0.001). The aOR of periodontitis for ischemic heart disease was 1.34 (95% CI = 1.22–1.48, p < 0.001). We concluded that periodontitis was associated with CVD and may be a risk factor for CVD. However, further studies are required to determine the association between periodontal treatment and CVD.
Collapse
Affiliation(s)
- Soo Hwan Byun
- Department of Oral & Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
- Research Center of Clinical Dentistry, Hallym University Clinical Dentistry Graduate School, Chuncheon 24252, Korea
| | - Sunki Lee
- Division of Cardiology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea;
| | - Sung Hun Kang
- Department of Biomedical Sciences, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Hyo Geun Choi
- Research Center of Clinical Dentistry, Hallym University Clinical Dentistry Graduate School, Chuncheon 24252, Korea
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
- Correspondence: (H.G.C.); (S.J.H.)
| | - Seok Jin Hong
- Research Center of Clinical Dentistry, Hallym University Clinical Dentistry Graduate School, Chuncheon 24252, Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan 18450, Korea
- Correspondence: (H.G.C.); (S.J.H.)
| |
Collapse
|
184
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
185
|
He Y, Wang J, Li F, Shi Y. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections. Front Microbiol 2020; 11:1302. [PMID: 32582134 PMCID: PMC7291771 DOI: 10.3389/fmicb.2020.01302] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has become a pandemic, infecting more than 4,000,000 people worldwide. This review describes the main clinical features of COVID-19 and potential role of microbiota in COVID-19. SARS-CoV and SARS-CoV-2 have 79.5% nucleotide sequence identity and use angiotensin-converting enzyme 2 (ACE2) receptors to enter host cells. The distribution of ACE2 may determine how SARS-CoV-2 infects the respiratory and digestive tract. SARS and COVID-19 share similar clinical features, although the estimated fatality rate of COVID-19 is much lower. The communication between the microbiota and SARS-CoV-2 and the role of this association in diagnosis and treatment are unclear. Changes in the lung microbiota were identified in COVID-19 patients, and the enrichment of the lung microbiota with bacteria found in the intestinal tract is correlated with the onset of acute respiratory distress syndrome and long-term outcomes. ACE2 regulates the gut microbiota by indirectly controlling the secretion of antimicrobial peptides. Moreover, the gut microbiota enhances antiviral immunity by increasing the number and function of immune cells, decreasing immunopathology, and stimulating interferon production. In turn, respiratory viruses are known to influence microbial composition in the lung and intestine. Therefore, the analysis of changes in the microbiota during SARS-CoV-2 infection may help predict patient outcomes and allow the development of microbiota-based therapies.
Collapse
Affiliation(s)
- Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jianhui Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fang Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
186
|
Zhang X, Pan Z. Influence of microbiota on immunity and immunotherapy for gastric and esophageal cancers. Gastroenterol Rep (Oxf) 2020; 8:206-214. [PMID: 32665852 PMCID: PMC7333930 DOI: 10.1093/gastro/goaa014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
187
|
Luo M, Hu M, Feng X, XiaoLi W, Dong D, Wang W. Preventive effect of Lactobacillus reuteri on melanoma. Biomed Pharmacother 2020; 126:109929. [DOI: 10.1016/j.biopha.2020.109929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
|
188
|
Singh A, Nayak N, Rathi P, Verma D, Sharma R, Chaudhary A, Agarwal A, Tripathi YB, Garg N. Microbiome and host crosstalk: A new paradigm to cancer therapy. Semin Cancer Biol 2020; 70:71-84. [PMID: 32479952 DOI: 10.1016/j.semcancer.2020.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
The commensal microbiome of humans has co-evolved for thousands of years. The microbiome regulates human health and is also linked to several diseases, including cancer. The advances in next-generation sequencing have significantly contributed to our understanding of the microbiome and its association with cancer and cancer therapy. Recent studies have highlighted a close relationship of the microbiome to the pharmacological effect of chemotherapy and immunotherapy. The chemo-drugs usually interfere with the host immune system and reduces the microbiome diversity inside the body, which in turn leads to decreased efficacy of these drugs. The human microbiome, specifically the gut microbiome, increases the potency of chemo-drugs through metabolism, enzymatic degradation, ecological differences, and immunomodulation. Recent research exploits the involvement of microbiome to shape the efficacy and decrease the toxicity of these chemo-drugs. In this review, we have highlighted the recent development in understanding the relationship of the human microbiome with cancer and also emphasize on various roles of the microbiome in the modulation of cancer therapy. Additionally, we also summarize the ongoing research focussed on the improved efficacy of chemotherapy and immunotherapy using the host microbiome.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Preeti Rathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Deepanshu Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Ashun Chaudhary
- Central University of Himachal Pradesh, Shahpur, Dist. Kangra, Himachal Pradesh 176206, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Yamini Bhushan Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
189
|
Bartolini I, Risaliti M, Ringressi MN, Melli F, Nannini G, Amedei A, Muiesan P, Taddei A. Role of gut microbiota-immunity axis in patients undergoing surgery for colorectal cancer: Focus on short and long-term outcomes. World J Gastroenterol 2020; 26:2498-2513. [PMID: 32523307 PMCID: PMC7265137 DOI: 10.3748/wjg.v26.i20.2498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Human body is colonized by a huge amount of microorganisms mostly located in the gastrointestinal tract. These dynamic communities, the environment and their metabolites constitute the microbiota. Growing data suggests a causal role of a dysbiotic microbiota in several pathologies, such as metabolic and neurological disorders, immunity dysregulations and cancer, especially the well-studied colorectal cancer development. However, many were preclinical studies and a complete knowledge of the pathogenetic mechanisms in humans is still absent. The gut microbiota can exert direct or indirect effects in different phases of colorectal cancer genesis. For example, Fusobacterium nucleatum promotes cancer through cellular proliferation and some strains of Escherichia coli and Bacteroides fragilis produce genotoxins. However, dysbiosis may also cause a pro-inflammatory state and the stimulation of a Th17 response with IL-17 and IL-22 secretion that have a pro-oncogenic activity, as demonstrated for Fusobacterium nucleatum. Microbiota has a crucial role in several stages of postoperative course; dysbiosis in fact seems related with surgical site infections and Enterococcus faecalis (and other collagenase-producers microbes) are suggested as a cause of anastomotic leak. Consequently, unbalanced presence of some species, together with altered immune response may also have a prognostic role. Microbiota has also a substantial role in effectiveness of chemotherapy, chemoresistance and in the related side effects. In other words, a complete knowledge of the fine pathological mechanisms of gut microbiota may provide a wide range of new diagnostic tools other than therapeutic targets in the light of tailored medicine.
Collapse
Affiliation(s)
- Ilenia Bartolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Risaliti
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Filippo Melli
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Paolo Muiesan
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
190
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. No correlation between microbiota composition and blood parameters in nesting flatback turtles (Natator depressus). Sci Rep 2020; 10:8333. [PMID: 32433567 PMCID: PMC7239873 DOI: 10.1038/s41598-020-65321-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The microbiota is considered critical for normal vertebrate homeostasis and it may exert its effects at a local level within the gastrointestinal tract, or systemically through the production of bacterial metabolites. To date, investigations into the role that the microbiota plays in reptile physiology are rare. To address this knowledge gap, we explored the relationship between differences in microbial communities to see if they accounted for differences in haematology and biochemistry values, in different populations of nesting flatback turtles (Natator depressus). We found that microbiota composition was not correlated to any of the blood analytes we measured in flatbacks. This study is the first of its kind in reptiles and highlights the need for further investigations to determine mechanisms by which the microbiota influences the physiology and health of reptiles.
Collapse
Affiliation(s)
- T Franciscus Scheelings
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia.
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
191
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
192
|
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: the gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim Microbiome 2020; 2:17. [PMID: 33499954 PMCID: PMC7807503 DOI: 10.1186/s42523-020-00034-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background The microbiota plays a critical role in host homeostasis and has been shown to be a major driving force in host evolution. However, our understanding of these important relationships is hampered by a lack of data for many species, and by significant gaps in sampling of the evolutionary tree. In this investigation we improve our understanding of the host-microbiome relationship by obtaining samples from all seven extant species of sea turtle, and correlate microbial compositions with host evolutionary history. Results Our analysis shows that the predominate phyla in the microbiota of nesting sea turtles was Proteobacteria. We also demonstrate a strong relationship between the bacterial phyla SR1 and sea turtle phylogeny, and that sea turtle microbiotas have changed very slowly over time in accordance with their similarly slow phenotypic changes. Conclusions This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
Collapse
Affiliation(s)
| | - Robert J Moore
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Thi Thu Hao Van
- RMIT University School of Science, Bundoora West Campus, Plenty Rd, Bundoora, Victoria, 3083, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| |
Collapse
|
193
|
Huo W, Feng Z, Hu S, Cui L, Qiao T, Dai L, Qi P, Zhang L, Liu Y, Li J. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food Funct 2020; 11:4291-4303. [PMID: 32356856 DOI: 10.1039/d0fo00597e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysaccharides isolated from mushrooms have been identified as potential prebiotics that could impact gut microbiota. In this study, a water-soluble polysaccharide (MP) extracted from wild morels was evaluated for its effects on the gut microbiota of non-treated and cyclophosphamide (CP)-treated mice. The results showed that MP restored the spleen weight and increased the counts of white blood cells and lymphocytes in the peripheral blood and spleen of the CP-treated mice. Mice treated with MP exhibited increased levels of short-chain fatty acid (SCFA)-producing bacteria, especially Lachnospiraceae, compared to normal mice, and increased levels of Bacteroidetes and SCFA-producing bacteria, especially Ruminococcaceae, compared to the CP-treated mice. Moreover, MP treatment increased the production of valeric acid and decreased the production of acetic acid in the non-treated mice and increased the production of acetic acid, propionic acid, butyric acid, and valeric acid in the CP-treated mice. These results show that MP is potentially good for health.
Collapse
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi'an 710043, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Lee J, d'Aigle J, Atadja L, Quaicoe V, Honarpisheh P, Ganesh BP, Hassan A, Graf J, Petrosino J, Putluri N, Zhu L, Durgan DJ, Bryan RM, McCullough LD, Venna VR. Gut Microbiota-Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ Res 2020; 127:453-465. [PMID: 32354259 DOI: 10.1161/circresaha.119.316448] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE The elderly experience profound systemic responses after stroke, which contribute to higher mortality and more severe long-term disability. Recent studies have revealed that stroke outcomes can be influenced by the composition of gut microbiome. However, the potential benefits of manipulating the gut microbiome after injury is unknown. OBJECTIVE To determine if restoring youthful gut microbiota after stroke aids in recovery in aged subjects, we altered the gut microbiome through young fecal transplant gavage in aged mice after experimental stroke. Further, the effect of direct enrichment of selective bacteria producing short-chain fatty acids (SCFAs) was tested as a more targeted and refined microbiome therapy. METHODS AND RESULTS Aged male mice (18-20 months) were subjected to ischemic stroke by middle cerebral artery occlusion. We performed fecal transplant gavage 3 days after middle cerebral artery occlusion using young donor biome (2-3 months) or aged biome (18-20 months). At day 14 after stroke, aged stroke mice receiving young fecal transplant gavage had less behavioral impairment, and reduced brain and gut inflammation. Based on data from microbial sequencing and metabolomics analysis demonstrating that young fecal transplants contained much higher SCFA levels and related bacterial strains, we selected 4 SCFA-producers (Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and Lactobacillus fermentum) for transplantation. These SCFA-producers alleviated poststroke neurological deficits and inflammation, and elevated gut, brain and plasma SCFA concentrations in aged stroke mice. CONCLUSIONS This is the first study suggesting that the poor stroke recovery in aged mice can be reversed via poststroke bacteriotherapy following the replenishment of youthful gut microbiome via modulation of immunologic, microbial, and metabolomic profiles in the host.
Collapse
Affiliation(s)
- Juneyoung Lee
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - John d'Aigle
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Louise Atadja
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Victoria Quaicoe
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Pedram Honarpisheh
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Bhanu P Ganesh
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Ahmad Hassan
- Department of Molecular and Cell Biology, Institute of Systems Genomics, The University of Connecticut, Storrs (A.H., J.G.)
| | - Joerg Graf
- Department of Molecular and Cell Biology, Institute of Systems Genomics, The University of Connecticut, Storrs (A.H., J.G.)
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (J.P.)
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery (N.P.), Baylor College of Medicine, Houston, TX
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core, Center for Clinical and Translational Sciences (L.Z.), The University of Texas Health Science Center at Houston
| | - David J Durgan
- Department of Anesthesiology (D.J.D., R.M.B.), Baylor College of Medicine, Houston, TX
| | - Robert M Bryan
- Department of Anesthesiology (D.J.D., R.M.B.), Baylor College of Medicine, Houston, TX
| | - Louise D McCullough
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| | - Venugopal Reddy Venna
- From the Department of Neurology, McGovern Medical School (J.L., J.d'A., L.A., V.Q., P.H., B.P.G., L.D.M., V.R.V.), The University of Texas Health Science Center at Houston
| |
Collapse
|
195
|
Abusleme L, O'Gorman H, Dutzan N, Greenwell-Wild T, Moutsopoulos NM. Establishment and Stability of the Murine Oral Microbiome. J Dent Res 2020; 99:721-729. [PMID: 32345105 DOI: 10.1177/0022034520915485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Commensal microbiomes exert critical functions at barrier sites. In particular, establishment of the commensal microbiome after birth dictates immune functionality and tissue homeostasis at mucosal surfaces. To investigate the establishment and stability of the oral mucosal microbiome in mice, we evaluated oral microbiome communities shortly after birth, through adulthood, and up to 1 y of life in a controlled manner, using sequential oral samples from the same mice over time. We further evaluated transmissibility of oral microbiomes from parents and during cohousing experiments and evaluated susceptibility to oral inflammatory disease in mice harboring distinct microbiomes. Our work reveals basic principles in the establishment and stability of a health-associated oral microbiome after birth and provides insights that may be important for host-microbiome experimentation in animal models.
Collapse
Affiliation(s)
- L Abusleme
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Laboratory for Craniofacial Translational Research, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - H O'Gorman
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N Dutzan
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Laboratory for Craniofacial Translational Research, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - T Greenwell-Wild
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N M Moutsopoulos
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
196
|
Tsolis RM, Bäumler AJ. Gastrointestinal host-pathogen interaction in the age of microbiome research. Curr Opin Microbiol 2020; 53:78-89. [PMID: 32344325 DOI: 10.1016/j.mib.2020.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
The microbiota is linked to human health by governing susceptibility to infection. However, the interplay between enteric pathogens, the host, and its microbiota is complex, encompassing host cell manipulation by virulence factors, immune responses, and a diverse gut ecosystem. The host represents a foundation species that uses its immune system as a habitat filter to shape the gut microbiota. In turn, the gut microbiota protects against ecosystem invasion by opportunistic pathogens through priority effects that are based on niche modification or niche preemption. Frank pathogens can overcome these priority effects by using their virulence factors to manipulate host-derived habitat filters, thereby constructing new nutrient-niches in the intestinal lumen that support ecosystem invasion. The emerging picture identifies pathogens as ecosystem engineers and suggests that virulence factors are useful tools for identifying host-derived habitat filters that balance the microbiota.
Collapse
Affiliation(s)
- Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
197
|
Cui C, Lu Y, Yue Y, Wu S, Wang S, Yu M, Sun Z. Camel milk regulates T‐cell proliferation to alleviate dextran sodium sulphate‐induced colitis in mice. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Changwan Cui
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Yiping Lu
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Yuanyi Yue
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Si Wu
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Shuang Wang
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Miao Yu
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Zhengrong Sun
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| |
Collapse
|
198
|
Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020; 12:nu12040944. [PMID: 32235316 PMCID: PMC7230231 DOI: 10.3390/nu12040944] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing–remitting systemic disease of the gastrointestinal tract, characterized by an inflammatory process that requires lifelong treatment. The underlying causes of IBD are still unclear, as this heterogeneous disorder results from a complex interplay between genetic variability, the host immune system and environmental factors. The current knowledge recognizes diet as a risk factor for the development of IBD and attributes a substantial pathogenic role to the intestinal dysbiosis inducing an aberrant mucosal immune response in genetically predisposed individuals. This review focused on the clinical evidence available that considers the impact of some nutrients on IBD onset and the role of different diets in the management of IBD and their effects on the gut microbiota composition. The effects of the Specific Carbohydrate Diet, low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, gluten free diet, anti-inflammatory diet and Mediterranean diet are investigated with regard to their impact on microbiota and on the evolution of the disease. At present, no clear indications toward a specific diet are available but the assessment of dysbiosis prior to the recommendation of a specific diet should become a standard clinical approach in order to achieve a personalized therapy.
Collapse
|
199
|
Pereira AC, Bandeira V, Fonseca C, Cunha MV. Egyptian Mongoose ( Herpestes ichneumon) Gut Microbiota: Taxonomical and Functional Differences across Sex and Age Classes. Microorganisms 2020; 8:microorganisms8030392. [PMID: 32168965 PMCID: PMC7143146 DOI: 10.3390/microorganisms8030392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The Egyptian mongoose (Herpestes ichneumon) is a medium-size carnivore that, in Europe, is restricted to Iberia. The bio-ecology of this species remains to be elucidated in several dimensions, including gut microbiota that is nowadays recognized as a fundamental component of mammals. In this work, we investigated the gut microbiota of this herpestid by single-molecule real-time sequencing of twenty paired male (n = 10) and female (n = 10) intestinal samples. This culture-independent approach enabled microbial profiling based on 16S rDNA and investigation of taxonomical and functional features. The core gut microbiome of the adult subpopulation was dominated by Firmicutes, Fusobacteria, Actinobacteria, and Proteobacteria. Eight genera were uniquely found in adults and five in non-adults. When comparing gut bacterial communities across sex, four genera were exclusive of females and six uniquely found in males. Despite these compositional distinctions, alpha- and beta-diversity analyses showed no statistically significant differences across sex or between adult and non-adult specimens. However, when function was inferred, males presented a significantly higher abundance of amino acid and citrate cycle metabolic pathways, compared to the significant overrepresentation in females of galactose metabolic pathways. Additionally, adults exhibited a significantly higher abundance of cationic antimicrobial peptide resistance pathways, while non-adults bared a significant overrepresentation of two-component systems associated with antibiotic synthesis, flagellin and biofilm production, and chemotaxis control. This study adds new insights into the mongoose bio-ecology palette, highlighting taxonomical and functional microbiome dissimilarities across sex and age classes, possibly related to primary production resources and life-history traits that impact on behavior and diet.
Collapse
Affiliation(s)
- André C. Pereira
- INIAV, IP- National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Victor Bandeira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (V.B.)
| | - Carlos Fonseca
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (V.B.)
| | - Mónica V. Cunha
- INIAV, IP- National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-214-403-500
| |
Collapse
|
200
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|