151
|
Jiang Q, Cao Y, Ruan JW, Hu P. A comparative immune response to COVID-19 vaccination between children and adults. Influenza Other Respir Viruses 2022; 17:e13070. [PMID: 36394189 PMCID: PMC9835434 DOI: 10.1111/irv.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qi Jiang
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yue Cao
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Jin Wei Ruan
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Peng Hu
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
152
|
Heiskanen A, Galipeau Y, Little J, Mortimer L, Ramotar K, Langlois M, Cooper CL. Seasonal respiratory virus circulation was diminished during the COVID-19 pandemic. Influenza Other Respir Viruses 2022; 17:e13065. [PMID: 36369746 PMCID: PMC9835453 DOI: 10.1111/irv.13065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Measures introduced during the COVID-19 pandemic intended to address the spread of SARS-CoV-2 may also influence the incidence of other common seasonal respiratory viruses (SRV). This evaluation reports laboratory-confirmed cases of common SRV in a well-defined region of central Canada to address this issue. METHODS Surveillance data for common non-SARS-CoV-2 SRV in Ottawa, Canada, was provided by the Eastern Ontario Regional Laboratory Association (EORLA) reference virology lab. Weekly reports of the number of positive tests and the proportion that yielded positive results were analyzed from August 26, 2018, to January 2, 2022. RESULTS A drastic reduction in influenza and other common SRV was observed during the 2020-2021 influenza season in the Ottawa region. Influenza was virtually undetected post-SARS-CoV-2 emergence. Rhinoviruses and enteroviruses were the only viruses that remained relatively unaffected during this period. CONCLUSIONS We speculated that the introduction of nonpharmaceutical measures including masking to prevent SARS-CoV-2 transmission contributed to the near absence of SRV in the Ottawa region. These measures should remain a key component in addressing spikes in SRV activity and future pandemics.
Collapse
Affiliation(s)
- Aliisa Heiskanen
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaCanada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaCanada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaCanada
| | | | | | - Marc‐André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of MedicineUniversity of OttawaOttawaCanada,University of Ottawa Centre for Infection, Immunity and Inflammation (CI3)OttawaCanada
| | - Curtis L. Cooper
- School of Epidemiology and Public Health, Faculty of MedicineUniversity of OttawaOttawaCanada,Ottawa Hospital Research InstituteOttawaCanada
| |
Collapse
|
153
|
Touizer E, Alrubbayi A, Ford R, Hussain N, Gerber PP, Shum HL, Rees-Spear C, Muir L, Gea-Mallorquí E, Kopycinski J, Jankovic D, Pinder C, Fox TA, Williams I, Mullender C, Maan I, Waters L, Johnson M, Madge S, Youle M, Barber T, Burns F, Kinloch S, Rowland-Jones S, Gilson R, Matheson NJ, Morris E, Peppa D, McCoy LE. Attenuated humoral responses in HIV infection after SARS-CoV-2 vaccination are linked to global B cell defects and cellular immune profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.11.516111. [PMID: 36380764 PMCID: PMC9665338 DOI: 10.1101/2022.11.11.516111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
People living with HIV (PLWH) on suppressive antiretroviral therapy (ART) can have residual immune dysfunction and often display poorer responses to vaccination. We assessed in a cohort of PLWH (n=110) and HIV negative controls (n=64) the humoral and spike-specific B-cell responses following 1, 2 or 3 SARS-CoV-2 vaccine doses. PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls at all studied timepoints. Moreover, their neutralization breadth was reduced with fewer individuals developing a neutralizing response against the Omicron variant (BA.1) relative to controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs) and pronounced B cell dysfunction. Improved neutralization breadth was seen after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global, but not spike-specific, MBC dysfunction. In contrast to the inferior antibody responses, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, a subset of PLWH with low or absent neutralization had detectable functional T cell responses. These individuals had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3 + CD127 + CD8 + T cells after two doses of SARS-CoV-2 vaccination, which may compensate for sub-optimal serological responses in the event of infection. Therefore, normalisation of B cell homeostasis could improve serological responses to vaccines in PLWH and evaluating T cell immunity could provide a more comprehensive immune status profile in these individuals and others with B cell imbalances.
Collapse
Affiliation(s)
- Emma Touizer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Aljawharah Alrubbayi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- Nuffield Department of Medicine, University of Oxford, UK
| | - Rosemarie Ford
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Noshin Hussain
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, UK
| | - Hiu-Long Shum
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Chloe Rees-Spear
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Luke Muir
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | | | | | - Dylan Jankovic
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Christopher Pinder
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Thomas A Fox
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Ian Williams
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
| | | | - Irfaan Maan
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
- Institute for Global Health, University College London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
| | - Margaret Johnson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Sara Madge
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Michael Youle
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Tristan Barber
- Institute for Global Health, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Fiona Burns
- Institute for Global Health, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | - Sabine Kinloch
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK
| | | | - Richard Gilson
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
- Institute for Global Health, University College London, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Emma Morris
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, UK
- Institute for Global Health, University College London, UK
| | - Laura E McCoy
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, UK
| |
Collapse
|
154
|
Halliday A, Long AE, Baum HE, Thomas AC, Shelley KL, Oliver E, Gupta K, Francis O, Williamson MK, Di Bartolo N, Randell MJ, Ben-Khoud Y, Kelland I, Mortimer G, Ball O, Plumptre C, Chandler K, Obst U, Secchi M, Piemonti L, Lampasona V, Smith J, Gregorova M, Knezevic L, Metz J, Barr R, Morales-Aza B, Oliver J, Collingwood L, Hitchings B, Ring S, Wooldridge L, Rivino L, Timpson N, McKernon J, Muir P, Hamilton F, Arnold D, Woolfson DN, Goenka A, Davidson AD, Toye AM, Berger I, Bailey M, Gillespie KM, Williams AJK, Finn A. Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2. Front Immunol 2022; 13:968317. [PMID: 36439154 PMCID: PMC9682908 DOI: 10.3389/fimmu.2022.968317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.
Collapse
Affiliation(s)
- Alice Halliday
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Holly E. Baum
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Amy C. Thomas
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathryn L. Shelley
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | | | - Natalie Di Bartolo
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Randell
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yassin Ben-Khoud
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ilana Kelland
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Georgina Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Olivia Ball
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Charlie Plumptre
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kyla Chandler
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ulrike Obst
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Massimiliano Secchi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joyce Smith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lea Knezevic
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Jane Metz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Rachael Barr
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Begonia Morales-Aza
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jennifer Oliver
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lucy Collingwood
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nicholas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Jorgen McKernon
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Peter Muir
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant Filton, Bristol, United Kingdom
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
155
|
Talarico LB, Toledano A, Contrini MM, Torrado LE, Martínez MP, Gaillard MI, Caratozzolo A, Byrne AB, Bonnin FA, Tineo MS, Yfran EW, Acosta PL, López EL. Distinct Immune Phenotypes and Cytokine Profiles in Children with Differing Severity of COVID-19. Pediatr Infect Dis J 2022; 41:919-926. [PMID: 36102684 PMCID: PMC9555606 DOI: 10.1097/inf.0000000000003669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is usually mild and self-limited in children. However, a few Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infections in children may progress to severe disease with respiratory distress or can result in a multisystem inflammatory syndrome (MIS-C) associated with COVID-19. The immune mechanisms for these differential clinical outcomes are largely unknown. METHODS A prospective cohort study was performed to analyze the laboratory parameters, antibody response, immune phenotypes and cytokine profiles of 51 children with different clinical presentations of COVID-19. RESULTS We found that the absolute lymphocyte counts gradually decreased with disease severity. Furthermore, SARS-CoV-2 IgG levels in the acute phase and convalescence were not significantly different in patients with different disease severity. A decrease in CD3 + , CD4 + and CD8 + T cells was observed as disease severity increased. Both CD4 + and CD8 + T cells were activated in children with COVID-19, but no difference in the percentage of HLADR + -expressing cells was detected across the severity groups. In contrast, MIS-C patients exhibited augmented exhausted effector memory CD8 + T cells. Interestingly, the cytokine profile in sera of moderate/severe and MIS-C patients revealed an increase in anti-inflammatory IL-1RA and a suppression of tumor necrosis factor-α, RANTES, eotaxin and PDGF-BB. MIS-C patients also exhibited augmented IL-1β. CONCLUSIONS We report distinct immune profiles dependent on severity in pediatric COVID-19 patients. Further investigation in a larger population will help unravel the immune mechanisms underlying pediatric COVID-19.
Collapse
Affiliation(s)
- Laura Beatriz Talarico
- Department of Medicine, Laboratory of Infectious Diseases and Molecular Biology, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Analía Toledano
- Department of Medicine, Laboratory of Infectious Diseases and Molecular Biology, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Marta Contrini
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lidia E. Torrado
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Martínez
- Immunology, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Immunology, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Caratozzolo
- Department of Medicine, Laboratory of Infectious Diseases and Molecular Biology, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Alana Brooke Byrne
- Department of Medicine, Laboratory of Infectious Diseases and Molecular Biology, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Florencia Agustina Bonnin
- Department of Medicine, Laboratory of Infectious Diseases and Molecular Biology, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Soledad Tineo
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Walter Yfran
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricio Leandro Acosta
- Department of Medicine, Laboratory of Infectious Diseases and Molecular Biology, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Eduardo Luis López
- Department of Medicine, Pediatric Infectious Diseases Program, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
156
|
Baroncelli S, Galluzzo CM, Orlando S, Mphwere R, Kavalo T, Luhanga R, Amici R, Floridia M, Andreotti M, Scarcella P, Marazzi MC, Giuliano M. Dynamics of SARS-CoV-2 exposure in Malawian infants between February 2020 and May 2021. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100110. [PMID: 36128323 PMCID: PMC9477783 DOI: 10.1016/j.jcvp.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background Very limited information is available on SARS-CoV-2 seroprevalence in infants in sub-Saharan countries. Objective In this study, we aimed to determine the rate and the temporal evolution of SARS CoV-2 seropositivity in breastfed Malawian infants. Study design Blood samples (n = 250) from 158 infants, born to HIV-negative women and women living with HIV, collected from February 2020 to May 2021, were first tested using an Anti-IgG/A/M SARS CoV 2 ELISA assay against trimeric spike protein, and then, if positive, confirmed using a second ELISA assay detecting IgG against Receptor Binding Domain. Results The confirmed prevalence of anti-SARS CoV-2 antibodies was 31.0% (95% CI: 23.7%-38.3%) with no significant difference between HIV-exposed and HIV-unexposed infants (29.3% and 37.1% respectively, P = 0.410). The presence of anti-SARS-CoV-2 IgG was not associated with maternal socioeconomic or demographic indices. Conclusions Our data underline the wide spread of the SARS-CoV-2 infection in the pediatric population in sub-Saharan Africa. Design of more specific serological tests for African samples and improvements in serosurveillance programs are needed for more rigorous monitoring of the dynamics of SARS-CoV-2 infection in Africa.
Collapse
Affiliation(s)
- Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Clementina Maria Galluzzo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Orlando
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Robert Mphwere
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Thom Kavalo
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Richard Luhanga
- DREAM Program, Community of S. Egidio, P.O. Box 30355, Blantyre, Malawi
| | - Roberta Amici
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Floridia
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Scarcella
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Marina Giuliano
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
157
|
Porter AK, Kleinschmidt SE, Andres KL, Reusch CN, Krisko RM, Taiwo OA, Olsen GW, Longnecker MP. Antibody response to COVID-19 vaccines among workers with a wide range of exposure to per- and polyfluoroalkyl substances. ENVIRONMENT INTERNATIONAL 2022; 169:107537. [PMID: 36183490 PMCID: PMC9489981 DOI: 10.1016/j.envint.2022.107537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a broad class of synthetic chemicals; some are present in most humans in developed countries. Several studies have shown associations between certain PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), and reduced antibody concentration after vaccination against diseases such as Tetanus. Recent studies have reported associations between COVID-19 occurrence and exposure to certain types of PFAS. However, studies of antibody concentration after COVID-19 vaccination in relation to PFAS serum concentrations have not been reported. We examined COVID-19 antibody responses to vaccines and PFAS serum concentrations among employees and retirees from two 3M facilities, one of which historically manufactured PFOS, PFOA, and perfluorohexane sulfonic acid (PFHxS). Participants completed enrollment and follow-up study visits in the Spring of 2021, when vaccines were widely available. In total 415 participants with 757 observations were included in repeated measures analyses. Log-transformed concentrations of anti-spike IgG and neutralizing antibodies were modeled in relation to concentration of PFAS at enrollment after adjusting for antigenic stimulus group (9 groups determined by COVID-19 history and number and type of vaccination) and other variables. The fully adjusted IgG concentration was 3.45 percent lower (95% CI -7.03, 0.26) per 14.5 ng/mL (interquartile range) increase in PFOS; results for neutralizing antibody and PFOS were similar. For PFOA, PFHxS, and perfluorononanoic acid (PFNA), the results were comparable to those for PFOS, though of smaller magnitude. In our study data, the fully adjusted coefficients relating concentration of vaccine-induced antibodies to COVID-19 and interquartile range difference in serum concentration of PFOS, PFOA, PFHxS, and PFNA were inverse but small with confidence intervals that included zero. Our analysis showed that the coefficient for the four PFAS examined in detail was considerably affected by adjustment for antigenic stimulus group.
Collapse
Affiliation(s)
- Anna K Porter
- Ramboll U.S. Consulting, 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States.
| | | | - Kara L Andres
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Courtney N Reusch
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Ryan M Krisko
- 3M Company, Environment, Health, Safety and Product Stewardship, St. Paul, MN 55144, United States
| | - Oyebode A Taiwo
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Geary W Olsen
- 3M Company, Corporate Occupational Medicine, St. Paul, MN 55144, United States
| | - Matthew P Longnecker
- Ramboll U.S. Consulting, 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| |
Collapse
|
158
|
Cruz-Cardenas JA, Gutierrez M, López-Arredondo A, Castañeda-Delgado JE, Rojas-Martinez A, Nakamura Y, Enciso-Moreno JA, Palomares LA, Brunck MEG. A pseudovirus-based platform to measure neutralizing antibodies in Mexico using SARS-CoV-2 as proof-of-concept. Sci Rep 2022; 12:17966. [PMID: 36289285 PMCID: PMC9606276 DOI: 10.1038/s41598-022-22921-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
The gold-standard method to evaluate a functional antiviral immune response is to titer neutralizing antibodies (NAbs) against a viral pathogen. This is historically performed using an in vitro assay of virus-mediated infection, which requires BSL-3 facilities. As these are insufficient in Latin American countries, including Mexico, scant information is obtained locally about viral pathogens NAb, using a functional assay. An alternative solution to using a BSL-3 assay with live virus is to use a BSL-2-safe assay with a non-replicative pseudovirus. Pseudoviral particles can be engineered to display a selected pathogen's entry protein on their surface, and to deliver a reporter gene into target cells upon transduction. Here we comprehensively describe the first development of a BSL-2 safe NAbs-measuring functional assay in Mexico, based on the production of pseudotyped lentiviral particles. As proof-of-concept, the assay is based on Nanoluc luciferase-mediated luminescence measurements from target cells transduced with SARS-CoV-2 Spike-pseudotyped lentiviral particles. We applied the optimized assay in a BSL-2 facility to measure NAbs in 65 serum samples, which evidenced the assay with 100% sensitivity, 86.6% specificity and 96% accuracy. Overall, this is the first report of a BSL-2 safe pseudovirus-based functional assay developed in Mexico to measure NAbs, and a cornerstone methodology necessary to measure NAbs with a functional assay in limited resources settings.
Collapse
Affiliation(s)
| | - Michelle Gutierrez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | | | | | | | - Yukio Nakamura
- Cell Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Japan
| | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas-IMSS, Zacatecas, México
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Laura A Palomares
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Marion E G Brunck
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, México.
| |
Collapse
|
159
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
160
|
Lavell AHA, Sikkens JJ, Edridge AWD, van der Straten K, Sechan F, Oomen M, Buis DTP, Schinkel M, Burger JA, Poniman M, van Rijswijk J, de Jong MD, de Bree GJ, Peters EJG, Smulders YM, Sanders RW, van Gils MJ, van der Hoek L, Bomers MK. Recent infection with HCoV-OC43 may be associated with protection against SARS-CoV-2 infection. iScience 2022; 25:105105. [PMID: 36101832 PMCID: PMC9458542 DOI: 10.1016/j.isci.2022.105105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Antibodies against seasonal human coronaviruses (HCoVs) are known to cross-react with SARS-CoV-2, but data on cross-protective effects of prior HCoV infections are conflicting. In a prospective cohort of healthcare workers (HCWs), we studied the association between seasonal HCoV (OC43, HKU1, 229E and NL63) nucleocapsid protein IgG and SARS-CoV-2 infection during the first pandemic wave in the Netherlands (March 2020 - June 2020), by 4-weekly serum sampling. HCW with HCoV-OC43 antibody levels in the highest quartile, were less likely to become SARS-CoV-2 seropositive when compared with those with lower levels (6/32, 18.8%, versus 42/97, 43.3%, respectively: p = 0.019; HR 0.37, 95% CI 0.16-0.88). We found no significant association with HCoV-OC43 spike protein IgG, or with antibodies against other HCoVs. Our results indicate that the high levels of HCoV-OC43-nucleocapsid antibodies, as an indicator of a recent infection, are associated with protection against SARS-CoV-2 infection; this supports and informs efforts to develop pancoronavirus vaccines.
Collapse
Affiliation(s)
- A H Ayesha Lavell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jonne J Sikkens
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Arthur W D Edridge
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Ferdyansyah Sechan
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Melissa Oomen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - David T P Buis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Michiel Schinkel
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Judith A Burger
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Menno D de Jong
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Edgar J G Peters
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Yvo M Smulders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.,Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Marije K Bomers
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
161
|
Anderson EM, Li SH, Awofolaju M, Eilola T, Goodwin E, Bolton MJ, Gouma S, Manzoni TB, Hicks P, Goel RR, Painter MM, Apostolidis SA, Mathew D, Dunbar D, Fiore D, Brock A, Weaver J, Millar JS, DerOhannessian S, Greenplate AR, Frank I, Rader DJ, Wherry EJ, Bates P, Hensley SE. SARS-CoV-2 infections elicit higher levels of original antigenic sin antibodies compared with SARS-CoV-2 mRNA vaccinations. Cell Rep 2022; 41:111496. [PMID: 36261003 PMCID: PMC9578169 DOI: 10.1016/j.celrep.2022.111496] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
It is important to determine if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and SARS-CoV-2 mRNA vaccinations elicit different types of antibodies. Here, we characterize the magnitude and specificity of SARS-CoV-2 spike-reactive antibodies from 10 acutely infected health care workers with no prior SARS-CoV-2 exposure history and 23 participants who received SARS-CoV-2 mRNA vaccines. We found that infection and primary mRNA vaccination elicit S1- and S2-reactive antibodies, while secondary vaccination boosts mostly S1 antibodies. Using absorption assays, we found that SARS-CoV-2 infections elicit a large proportion of original antigenic sin-like antibodies that bind efficiently to the spike of common seasonal human coronaviruses but poorly to the spike of SARS-CoV-2. In converse, vaccination modestly boosts antibodies reactive to the spike of common seasonal human coronaviruses, and these antibodies cross-react more efficiently to the spike of SARS-CoV-2. Our data indicate that SARS-CoV-2 infections and mRNA vaccinations elicit fundamentally different antibody responses.
Collapse
Affiliation(s)
- Elizabeth M Anderson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuk Hang Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moses Awofolaju
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theresa Eilola
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus J Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishi R Goel
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark M Painter
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debora Dunbar
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle Fiore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Brock
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JoEllen Weaver
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S Millar
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie DerOhannessian
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
162
|
Jeong HW, Kim SM, Jung MK, Noh JY, Yoo JS, Kim EH, Kim YI, Yu K, Jang SG, Gil J, Casel MA, Rare R, Choi JH, Kim HS, Kim JH, Um J, Kim C, Kim Y, Chin BS, Jung S, Choi JY, Song KH, Kim YD, Park JS, Song JY, Shin EC, Choi YK. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Rep Med 2022; 3:100764. [PMID: 36182684 PMCID: PMC9482837 DOI: 10.1016/j.xcrm.2022.100764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/14/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022]
Abstract
Omicron has become the globally dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, creating additional challenges due to its ability to evade neutralization. Here, we report that neutralizing antibodies against Omicron variants are undetected following COVID-19 infection with ancestral or past SARS-CoV-2 variant viruses or after two-dose mRNA vaccination. Compared with two-dose vaccination, a three-dose vaccination course induces broad neutralizing antibody responses with improved durability against different SARS-CoV-2 variants, although neutralizing antibody titers against Omicron remain low. Intriguingly, among individuals with three-dose vaccination, Omicron breakthrough infection substantially augments serum neutralizing activity against a broad spectrum of SARS-CoV-2 variants, including Omicron variants BA.1, BA.2, and BA.5. Additionally, after Omicron breakthrough infection, memory T cells respond to the spike proteins of both ancestral and Omicron SARS-CoV-2 by producing cytokines with polyfunctionality. These results suggest that Omicron breakthrough infection following three-dose mRNA vaccination induces pan-SARS-CoV-2 immunity that may protect against emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Hye Won Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Min Kyung Jung
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Kwangmin Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Juryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mark Anthony Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Rollon Rare
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hee-Sung Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Jun Hyoung Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Jihye Um
- Public Health Research Institute, National Medical Center, Seoul 04564, Republic of Korea
| | - Chaeyoon Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Yeonjae Kim
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Bum Sik Chin
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Sungmin Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Yong-Dae Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Jun-Sun Park
- Public Health Research Institute, National Medical Center, Seoul 04564, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Republic of Korea.
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea; Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
163
|
Sedegah M, Porter C, Goguet E, Ganeshan H, Belmonte M, Huang J, Belmonte A, Inoue S, Acheampong N, Malloy AMW, Hollis-Perry M, Jackson-Thompson B, Ramsey KF, Alcorta Y, Maiolatesi SE, Wang G, Reyes AE, Illinik L, Sanchez-Edwards M, Burgess TH, Broder CC, Laing ED, Pollett SD, Villasante E, Mitre E, Hollingdale MR. Cellular interferon-gamma and interleukin-2 responses to SARS-CoV-2 structural proteins are broader and higher in those vaccinated after SARS-CoV-2 infection compared to vaccinees without prior SARS-CoV-2 infection. PLoS One 2022; 17:e0276241. [PMID: 36251675 PMCID: PMC9576055 DOI: 10.1371/journal.pone.0276241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.
Collapse
Affiliation(s)
- Martha Sedegah
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Chad Porter
- Translational Clinical Research Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Harini Ganeshan
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Maria Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Jun Huang
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Arnel Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Sandra Inoue
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Neda Acheampong
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Monique Hollis-Perry
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Belinda Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Kathy F. Ramsey
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Yolanda Alcorta
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Santina E. Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Gregory Wang
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Anatolio E. Reyes
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Luca Illinik
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Margaret Sanchez-Edwards
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Timothy H. Burgess
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eileen Villasante
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael R. Hollingdale
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- * E-mail: ,
| |
Collapse
|
164
|
Discriminating cross-reactivity in polyclonal IgG1 responses against SARS-CoV-2 variants of concern. Nat Commun 2022; 13:6103. [PMID: 36243713 PMCID: PMC9568977 DOI: 10.1038/s41467-022-33899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Existing assays to measure antibody cross-reactivity against different SARS-CoV-2 spike (S) protein variants lack the discriminatory power to provide insights at the level of individual clones. Using a mass spectrometry-based approach we are able to monitor individual donors' IgG1 clonal responses following a SARS-CoV-2 infection. We monitor the plasma clonal IgG1 profiles of 8 donors who had experienced an infection by either the wild type Wuhan Hu-1 virus or one of 3 VOCs (Alpha, Beta and Gamma). In these donors we chart the full plasma IgG1 repertoires as well as the IgG1 repertoires targeting the SARS-CoV-2 spike protein trimer VOC antigens. The plasma of each donor contains numerous anti-spike IgG1 antibodies, accounting for <0.1% up to almost 10% of all IgG1s. Some of these antibodies are VOC-specific whereas others do recognize multiple or even all VOCs. We show that in these polyclonal responses, each clone exhibits a distinct cross-reactivity and also distinct virus neutralization capacity. These observations support the need for a more personalized look at the antibody clonal responses to infectious diseases.
Collapse
|
165
|
Pre-Pandemic Cross-Reactive Immunity against SARS-CoV-2 among Central and West African Populations. Viruses 2022; 14:v14102259. [PMID: 36298814 PMCID: PMC9611584 DOI: 10.3390/v14102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
For more than two years after the emergence of COVID-19 (Coronavirus Disease-2019), significant regional differences in morbidity persist. These differences clearly show lower incidence rates in several regions of the African and Asian continents. The work reported here aimed to test the hypothesis of a pre-pandemic natural immunity acquired by some human populations in central and western Africa, which would, therefore, pose the hypothesis of an original antigenic sin with a virus antigenically close to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To identify such pre-existing immunity, sera samples collected before the emergence of COVID-19 were tested to detect the presence of IgG reacting antibodies against SARS-CoV-2 proteins of major significance. Sera samples from French blood donors collected before the pandemic served as a control. The results showed a statistically significant difference of antibodies prevalence between the collected samples in Africa and the control samples collected in France. Given the novelty of our results, our next step consists in highlighting neutralizing antibodies to evaluate their potential for pre-pandemic protective acquired immunity against SARS-CoV-2. In conclusion, our results suggest that, in the investigated African sub-regions, the tested populations could have been potentially and partially pre-exposed, before the COVID-19 pandemic, to the antigens of a yet non-identified Coronaviruses.
Collapse
|
166
|
Martin MA, Keith M, Pace RM, Williams JE, Ley SH, Barbosa-Leiker C, Caffé B, Smith CB, Kunkle A, Lackey KA, Navarrete AD, Pace CDW, Gogel AC, Eisenberg DT, Fehrenkamp BD, McGuire MA, McGuire MK, Meehan CL, Brindle E. SARS-CoV-2 specific antibody trajectories in mothers and infants over two months following maternal infection. Front Immunol 2022; 13:1015002. [PMID: 36304449 PMCID: PMC9596287 DOI: 10.3389/fimmu.2022.1015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
Infants exposed to caregivers infected with SARS-CoV-2 may have heightened infection risks relative to older children due to their more intensive care and feeding needs. However, there has been limited research on COVID-19 outcomes in exposed infants beyond the neonatal period. Between June 2020 - March 2021, we conducted interviews and collected capillary dried blood spots from 46 SARS-CoV-2 infected mothers and their infants (aged 1-36 months) for up to two months following maternal infection onset (COVID+ group, 87% breastfeeding). Comparative data were also collected from 26 breastfeeding mothers with no known SARS-CoV-2 infection or exposures (breastfeeding control group), and 11 mothers who tested SARS-CoV-2 negative after experiencing symptoms or close contact exposure (COVID- group, 73% breastfeeding). Dried blood spots were assayed for anti-SARS-CoV-2 S-RBD IgG and IgA positivity and anti-SARS-CoV-2 S1 + S2 IgG concentrations. Within the COVID+ group, the mean probability of seropositivity among infant samples was lower than that of corresponding maternal samples (0.54 and 0.87, respectively, for IgG; 0.33 and 0.85, respectively, for IgA), with likelihood of infant infection positively associated with the number of maternal symptoms and other household infections reported. COVID+ mothers reported a lower incidence of COVID-19 symptoms among their infants as compared to themselves and other household adults, and infants had similar PCR positivity rates as other household children. No samples returned by COVID- mothers or their infants tested antibody positive. Among the breastfeeding control group, 44% of mothers but none of their infants tested antibody positive in at least one sample. Results support previous research demonstrating minimal risks to infants following maternal COVID-19 infection, including for breastfeeding infants.
Collapse
Affiliation(s)
- Melanie A. Martin
- Department of Anthropology, University of Washington, Seattle, WA, United States,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States,*Correspondence: Melanie A. Martin,
| | - Monica Keith
- Department of Anthropology, University of Washington, Seattle, WA, United States,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Sylvia H. Ley
- Department of Epidemiology, Tulane University School of Public Health, New Orleans, LA, United States
| | - Celestina Barbosa-Leiker
- College of Nursing, Washington State University Health Sciences Spokane, Spokane, WA, United States
| | - Beatrice Caffé
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Caroline B. Smith
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Amanda Kunkle
- Department of Anthropology, University of Washington, Seattle, WA, United States
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Alexandra D. Navarrete
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christina D. W. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Alexandra C. Gogel
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Dan T.A. Eisenberg
- Department of Anthropology, University of Washington, Seattle, WA, United States,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Bethaney D. Fehrenkamp
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States,Washington, Wyoming, Alaska, Montana and Idaho (WWAMI) Medical Education, University of Idaho, Moscow, ID, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Eleanor Brindle
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States,Maternal, Newborn and Child Health & Nutrition, PATH, Seattle, WA, United States
| |
Collapse
|
167
|
Jaago M, Rähni A, Pupina N, Pihlak A, Sadam H, Tuvikene J, Avarlaid A, Planken A, Planken M, Haring L, Vasar E, Baćević M, Lambert F, Kalso E, Pussinen P, Tienari PJ, Vaheri A, Lindholm D, Timmusk T, Ghaemmaghami AM, Palm K. Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. Sci Rep 2022; 12:16817. [PMID: 36207326 PMCID: PMC9540097 DOI: 10.1038/s41598-022-20849-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mariliis Jaago
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annika Rähni
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Helle Sadam
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- DXLabs LLC, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anu Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Margus Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, Psychiatry Clinic of Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miljana Baćević
- Dental Biomaterial Research Unit (d-BRU), Faculty of Medicine, University of Liege, Liege, Belgium
| | - France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liege, Liege, Belgium
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
- SleepWell Research Programme, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, Department of Neurology, Neurocenter, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tõnis Timmusk
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Amir M Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
168
|
Cantoni D, Murray MJ, Kalemera MD, Dicken SJ, Stejskal L, Brown G, Lytras S, Coey JD, McKenna J, Bridgett S, Simpson D, Fairley D, Thorne LG, Reuschl A, Forrest C, Ganeshalingham M, Muir L, Palor M, Jarvis L, Willett B, Power UF, McCoy LE, Jolly C, Towers GJ, Doores KJ, Robertson DL, Shepherd AJ, Reeves MB, Bamford CGG, Grove J. Evolutionary remodelling of N-terminal domain loops fine-tunes SARS-CoV-2 spike. EMBO Rep 2022; 23:e54322. [PMID: 35999696 PMCID: PMC9535765 DOI: 10.15252/embr.202154322] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host.
Collapse
Affiliation(s)
- Diego Cantoni
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
| | - Matthew J Murray
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | - Samuel J Dicken
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Lenka Stejskal
- Division of Evolution, Infection and GenomicsUniversity of ManchesterManchesterUK
| | - Georgina Brown
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Spyros Lytras
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
| | - Jonathon D Coey
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | | | | | - David Simpson
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | | | - Lucy G Thorne
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | - Calum Forrest
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | - Luke Muir
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Machaela Palor
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Lisa Jarvis
- Scottish National Blood Transfusion ServiceGlasgowUK
| | - Brian Willett
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
| | - Ultan F Power
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Laura E McCoy
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Clare Jolly
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Greg J Towers
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Katie J Doores
- Department of Infectious DiseasesKing's College LondonLondonUK
| | - David L Robertson
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
| | | | - Matthew B Reeves
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Connor G G Bamford
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Joe Grove
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Division of Infection and ImmunityUniversity College LondonLondonUK
| |
Collapse
|
169
|
Salgado Del Riego E, Saiz ML, Corte-Iglesias V, Leoz Gordillo B, Martin-Martin C, Rodríguez-Pérez M, Escudero D, Lopez-Larrea C, Suarez-Alvarez B. Divergent SARS-CoV-2-specific T cell responses in intensive care unit workers following mRNA COVID-19 vaccination. Front Immunol 2022; 13:942192. [PMID: 36275696 PMCID: PMC9582956 DOI: 10.3389/fimmu.2022.942192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The cellular immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in response to full mRNA COVID-19 vaccination could be variable among healthy individuals. Studies based only in specific antibody levels could show an erroneous immune protection at long times. For that, we analyze the antibody levels specific to the S protein and the presence of SARS-CoV-2-specific T cells by ELISpot and AIM assays in intensive care unit (ICU) workers with no antecedents of COVID-19 and vaccinated with two doses of mRNA COVID-19 vaccines. All individuals were seronegative for the SARS-CoV-2 protein S before vaccination (Pre-v), but 34.1% (14/41) of them showed pre-existing T lymphocytes specific for some viral proteins (S, M and N). One month after receiving two doses of COVID-19 mRNA vaccine (Post-v1), all cases showed seroconversion with high levels of total and neutralizing antibodies to the spike protein, but six of them (14.6%) had no T cells reactive to the S protein. Specifically, they lack of specific CD8+ T cells, but maintain the contribution of CD4+ T cells. Analysis of the immune response against SARS-CoV-2 at 10 months after full vaccination (Post-v10), exhibited a significant reduction in the antibody levels (p<0.0001) and protein S-reactive T cells (p=0.0073) in all analyzed individuals, although none of the individuals become seronegative and 77% of them maintained a competent immune response. Thus, we can suggest that the immune response to SARS-CoV-2 elicited by the mRNA vaccines was highly variable among ICU workers. A non-negligible proportion of individuals did not develop a specific T cell response mediated by CD8+ T cells after vaccination, that may condition the susceptibility to further viral infections with SARS-CoV-2. By contrast, around 77% of individuals developed strong humoral and cellular immune responses to SARS-CoV-2 that persisted even after 10 months. Analysis of the cellular immune response is highly recommended for providing exact information about immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Salgado Del Riego
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Blanca Leoz Gordillo
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cristina Martin-Martin
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mercedes Rodríguez-Pérez
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Dolores Escudero
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
- Translational Microbiology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
170
|
Li J, Reinke S, Shen Y, Schollmeyer L, Liu YC, Wang Z, Hardt S, Hipfl C, Hoffmann U, Frischbutter S, Chang HD, Alexander T, Perka C, Radbruch H, Qin Z, Radbruch A, Dong J. A ubiquitous bone marrow reservoir of preexisting SARS-CoV-2-reactive memory CD4+ T lymphocytes in unexposed individuals. Front Immunol 2022; 13:1004656. [PMID: 36268016 PMCID: PMC9576920 DOI: 10.3389/fimmu.2022.1004656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating, blood-borne SARS-CoV-2-reactive memory T cells in persons so far unexposed to SARS-CoV-2 or the vaccines have been described in 20-100% of the adult population. They are credited with determining the efficacy of the immune response in COVID-19. Here, we demonstrate the presence of preexisting memory CD4+ T cells reacting to peptides of the spike, membrane, or nucleocapsid proteins of SARS-CoV-2 in the bone marrow of all 17 persons investigated that had previously not been exposed to SARS-CoV-2 or one of the vaccines targeting it, with only 15 of these persons also having such cells detectable circulating in the blood. The preexisting SARS-CoV-2-reactive memory CD4+ T cells of the bone marrow are abundant and polyfunctional, with the phenotype of central memory T cells. They are tissue-resident, at least in those persons who do not have such cells in the blood, and about 30% of them express CD69. Bone marrow resident SARS-CoV-2-reactive memory CD4+ memory T cells are also abundant in vaccinated persons analyzed 10-168 days after 1°-4° vaccination. Apart from securing the bone marrow, preexisting cross-reactive memory CD4+ T cells may play an important role in shaping the systemic immune response to SARS-CoV-2 and the vaccines, and contribute essentially to the rapid establishment of long-lasting immunity provided by memory plasma cells, already upon primary infection.
Collapse
Affiliation(s)
- Jinchan Li
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Simon Reinke
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yu Shen
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Lena Schollmeyer
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Yuk-Chien Liu
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Zixu Wang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Hipfl
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ute Hoffmann
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
- Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Berlin, Germany
| | - Hyun-Dong Chang
- Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
- *Correspondence: Jun Dong,
| |
Collapse
|
171
|
Wells DA, Cantoni D, Mayora‐Neto M, Genova CD, Sampson A, Ferrari M, Carnell G, Nadesalingam A, Smith P, Chan A, Raddi G, Castillo‐Olivares J, Baxendale H, Temperton N, Heeney JL. Human seasonal coronavirus neutralization and COVID-19 severity. J Med Virol 2022; 94:4820-4829. [PMID: 35705514 PMCID: PMC9349487 DOI: 10.1002/jmv.27937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.
Collapse
Affiliation(s)
- David A. Wells
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
- DIOSynVaxUniversity of CambridgeCambridgeUK
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Martin Mayora‐Neto
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Alexander Sampson
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Matteo Ferrari
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
- DIOSynVaxUniversity of CambridgeCambridgeUK
| | - George Carnell
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Angalee Nadesalingam
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Peter Smith
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Andrew Chan
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
- DIOSynVaxUniversity of CambridgeCambridgeUK
| |
Collapse
|
172
|
Satomi H, Katano H, Kanno H, Kobayashi M, Ohkuma Y, Hashidume N, Usui T, Tsukada S, Ito I. An autopsy case of fulminant myocarditis after severe acute respiratory syndrome coronavirus 2 vaccine inoculation. Pathol Int 2022; 72:519-524. [PMID: 36040128 PMCID: PMC9537995 DOI: 10.1111/pin.13267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
A 61-year-old woman without significant medical history developed fever 3 days after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and went into shock the next day. She was negative for SARS-CoV-2 mRNA in real-time polymerase chain reaction (PCR). Finally, she died 10 days after vaccination. At autopsy, the heart showed moderate dilatation of both ventricles, and the myocardium showed an uneven color change and decreased elasticity. Histologically, severe myocarditis with extensive myocytolysis was observed. The myocarditis showed severe inflammatory cell infiltration with T-lymphocyte and macrophage predominance, and in addition to the inflammatory cells described above, vast nuclear dust accompanying neutrophilic infiltration was observed. In the bone marrow and lymph nodes, hemophagocytosis was observed. In postmortem examination, nucleic acids of any cardiotropic viruses including SARS-CoV-2 were not detected using multivirus real-time PCR system. We discussed the relationship between the possible immune reaction after vaccination and the myocarditis observed in this case from immunopathological viewpoints. This mRNA vaccine is the first applied nucleic acid vaccine for humans, and its mechanism of efficacy and immune acquisition remain unclear. We hope the accumulation of more detailed analyses of the similar cases to reveal the mechanism of this kind of adverse reaction.
Collapse
Affiliation(s)
- Hidetoshi Satomi
- Department of PathologyNagano Red Cross HospitalNaganoJapan
- Department of PathologyShinshu University School of MedicineMatsumotoJapan
- Present address:
Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Harutaka Katano
- Department of PathologyNational Institute of Infectious DiseasesShinjukuTokyoJapan
| | - Hiroyuki Kanno
- Department of PathologyShinshu University School of MedicineMatsumotoJapan
| | - Mikiko Kobayashi
- Department of PathologyShinshu University School of MedicineMatsumotoJapan
- Present address:
Department of Diagnostic PathologyMarunouchi HospitalMatsumotoJapan
| | - Yukari Ohkuma
- Department of CardiologyNagano Red Cross HospitalNaganoJapan
| | - Naoto Hashidume
- Department of CardiologyNagano Red Cross HospitalNaganoJapan
| | - Tatsuya Usui
- Department of CardiologyNagano Red Cross HospitalNaganoJapan
| | | | - Ichiro Ito
- Department of PathologyNagano Red Cross HospitalNaganoJapan
| |
Collapse
|
173
|
Sundberg E, Hoffman T, Nilsson A, Pahnke S, Enblad G, Kolstad L, Rönnberg B, Lundkvist Å, Torkki M, Zhou O, Anderson J, Harila‐Saari A, Palle J. COVID-19 seroprevalence and clinical picture in Swedish pediatric oncology and hematology patients. Pediatr Blood Cancer 2022; 69:e29773. [PMID: 35615775 PMCID: PMC9348419 DOI: 10.1002/pbc.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Children develop symptomatic coronavirus disease 2019 (COVID-19) more rarely than adults upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pediatric oncology and hematology patients may be at increased risk of severe COVID-19 due to their underlying disease or treatment. We investigated COVID-19 and seroprevalence of anti-SARS-CoV-2 antibodies, respectively, in a Swedish cohort of pediatric oncology and hematology patients. PROCEDURE Patients (n = 136) were recruited between June 2020 and September 2021 at Uppsala University Children's Hospital, Sweden. Up to six consecutive blood samples per patient were analyzed for wild-type anti-S1 IgM and IgG antibodies (including after vaccination, n = 4). Clinical data on COVID-19 (including polymerase chain reaction [PCR] test results) were collected from electronic medical records. A questionnaire was completed at recruitment. RESULTS A cumulative seroprevalence (IgM and IgG) of 33% (45/136 patients, 95% confidence interval: 25%-41%) was observed in this patient cohort, of whom 66% (90/136 patients) were under severe immunosuppressive treatment during the study period. Increasing patient age (p = .037) and PCR test results (p < .002) were associated with seropositivity in nonvaccinated cases. Most seropositive, nonvaccinated cases (32/43, 74%) were never PCR-verified for SARS-CoV-2 infection. Of the 13 patients with PCR-verified infection, nine (69%) reported mild disease. A majority (63%) reported continued school attendance during the pandemic. CONCLUSIONS Swedish pediatric oncology and hematology patients developed antibodies against SARS-CoV-2, despite their diagnosis and/or treatment, and the observed seroprevalence was similar to that in national pediatric outpatients. PCR-verified cases underestimate the true incidence of COVID-19 in this patient cohort.
Collapse
Affiliation(s)
- Emil Sundberg
- Department of Children's Oncology and HematologyUppsala University HospitalUppsalaSweden,Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Tove Hoffman
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC)Uppsala UniversityUppsalaSweden
| | - Anna Nilsson
- Department of Women's and Children's Health, Pediatric OncologyKarolinska InstitutetStockholmSweden
| | - Simon Pahnke
- Unit of Oncology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Linda Kolstad
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC)Uppsala UniversityUppsalaSweden
| | - Bengt Rönnberg
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC)Uppsala UniversityUppsalaSweden,Laboratory of Clinical MicrobiologyUppsala University HospitalUppsalaSweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center (ZSC)Uppsala UniversityUppsalaSweden
| | - Milla Torkki
- Department of Children's Oncology and HematologyUppsala University HospitalUppsalaSweden
| | - Otto Zhou
- Department of Children's Oncology and HematologyUppsala University HospitalUppsalaSweden
| | - Jenna Anderson
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Arja Harila‐Saari
- Department of Children's Oncology and HematologyUppsala University HospitalUppsalaSweden,Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Josefine Palle
- Department of Children's Oncology and HematologyUppsala University HospitalUppsalaSweden,Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| |
Collapse
|
174
|
Wang E, Chakraborty AK. Design of immunogens for eliciting antibody responses that may protect against SARS-CoV-2 variants. PLoS Comput Biol 2022; 18:e1010563. [PMID: 36156540 PMCID: PMC9536555 DOI: 10.1371/journal.pcbi.1010563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/06/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of SARS-CoV-2 variants and the history of outbreaks caused by zoonotic coronaviruses point to the need for next-generation vaccines that confer protection against variant strains. Here, we combined analyses of diverse sequences and structures of coronavirus spikes with data from deep mutational scanning to design SARS-CoV-2 variant antigens containing the most significant mutations that may emerge. We trained a neural network to predict RBD expression and ACE2 binding from sequence, which allowed us to determine that these antigens are stable and bind to ACE2. Thus, they represent viable variants. We then used a computational model of affinity maturation (AM) to study the antibody response to immunization with different combinations of the designed antigens. The results suggest that immunization with a cocktail of the antigens is likely to promote evolution of higher titers of antibodies that target SARS-CoV-2 variants than immunization or infection with the wildtype virus alone. Finally, our analysis of 12 coronaviruses from different genera identified the S2’ cleavage site and fusion peptide as potential pan-coronavirus vaccine targets. SARS-CoV-2 variants have already emerged and future variants may pose greater threats to the efficacy of current vaccines. Rather than using a reactive approach to vaccine development that would lag behind the evolution of the virus, such as updating the sequence in the vaccine with a current variant, we sought to use a proactive approach that predicts some of the mutations that could arise that could evade current immune responses. Then, by including these mutations in a new vaccine antigen, we might be able to protect against those potential variants before they appear. Toward this end, we used various computational methods including sequence analysis and machine learning to design such antigens. We then used simulations of antibody development, and the results suggest that immunization with our designed antigens is likely to result in an antibody response that is better able to target SARS-CoV-2 variants than current vaccines. We also leveraged our sequence analysis to suggest that a particular site on the spike protein could serve as a useful target for a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
175
|
Herman JD, Atyeo C, Zur Y, Cook CE, Patel NJ, Vanni KM, Kowalski EN, Qian G, Shadick NA, Laffenburger D, Wallace ZS, Sparks JA, Alter G. Impact of cross-coronavirus immunity in post-acute sequelae of COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.25.22280335. [PMID: 36203557 PMCID: PMC9536039 DOI: 10.1101/2022.09.25.22280335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Beyond the unpredictable acute illness caused by SARS-CoV-2, one-fifth of infections unpredictably result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie post-acute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus or the dysregulation of immunity. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2 or other pathogen specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2 and a panel of endemic pathogens or routine vaccine antigens using Systems Serology in a cohort of patients with pre-existing rheumatic disease who either developed or did not develop PASC. A distinct humoral immune response was observed in individuals with PASC. Specifically, individuals with PASC harbored less inflamed and weaker Fcγ receptor binding anti-SARS-CoV-2 antibodies and a significantly expanded and more inflamed antibody response against endemic Coronavirus OC43. Individuals with PASC, further, generated more avid IgM responses and developed an expanded inflammatory OC43 S2-specific Fc-receptor binding response, linked to cross reactivity across SARS-CoV-2 and common coronaviruses. These findings implicate previous common Coronavirus imprinting as a marker for the development of PASC.
Collapse
Affiliation(s)
- Jonathan D Herman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yonatan Zur
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Claire E Cook
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Naomi J Patel
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen M Vanni
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Emily N Kowalski
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Grace Qian
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Nancy A Shadick
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Douglas Laffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
176
|
Jia L, Weng S, Wu J, Tian X, Zhang Y, Wang X, Wang J, Yan D, Wang W, Fang F, Zhu Z, Qiu C, Zhang W, Xu Y, Wan Y. Preexisting antibodies targeting SARS-CoV-2 S2 cross-react with commensal gut bacteria and impact COVID-19 vaccine induced immunity. Gut Microbes 2022; 14:2117503. [PMID: 36100957 PMCID: PMC9481142 DOI: 10.1080/19490976.2022.2117503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The origins of preexisting SARS-CoV-2 cross-reactive antibodies and their potential impacts on vaccine efficacy have not been fully clarified. In this study, we demonstrated that S2 was the prevailing target of the preexisting S protein cross-reactive antibodies in both healthy human and SPF mice. A dominant antibody epitope was identified on the connector domain of S2 (1147-SFKEELDKYFKNHT-1160, P144), which could be recognized by preexisting antibodies in both human and mouse. Through metagenomic sequencing and fecal bacteria transplant, we demonstrated that the generation of S2 cross-reactive antibodies was associated with commensal gut bacteria. Furthermore, six P144 reactive monoclonal antibodies were isolated from naïve SPF mice and were proven to cross-react with commensal gut bacteria collected from both human and mouse. A variety of cross-reactive microbial proteins were identified using LC-MS, of which E. coli derived HSP60 and HSP70 proteins were confirmed to be able to bind to one of the isolated monoclonal antibodies. Mice with high levels of preexisting S2 cross-reactive antibodies mounted higher S protein specific binding antibodies, especially against S2, after being immunized with a SARS-CoV-2 S DNA vaccine. Similarly, we found that levels of preexisting S2 and P144-specific antibodies correlated positively with RBD binding antibody titers after two doses of inactivated SARS-CoV-2 vaccination in human. Collectively, our study revealed an alternative origin of preexisting S2-targeted antibodies and disclosed a previously neglected aspect of the impact of gut microbiota on host anti-SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Liqiu Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,Ying Xu State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Xiangxiang Tian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Yifan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Xuyang Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Dongmei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Wanhai Wang
- Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Fang Fang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Zhaoqin Zhu Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chao Qiu
- Institutes of Biomedical Sciences & Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China,Chao Qiu Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China,Wenhong Zhang Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Ying Xu State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China,CONTACT Yanmin Wan Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
177
|
Castanha PMS, Tuttle DJ, Kitsios GD, Jacobs JL, Braga-Neto U, Duespohl M, Rathod S, Marti MM, Wheeler S, Naqvi A, Staines B, Mellors J, Morris A, McVerry BJ, Shah F, Schaefer C, Macatangay BJC, Methe B, Fernandez CA, Barratt-Boyes SM, Burke D, Marques ETA. Contribution of Coronavirus-Specific Immunoglobulin G Responses to Complement Overactivation in Patients with Severe Coronavirus Disease 2019. J Infect Dis 2022; 226:766-777. [PMID: 35267024 PMCID: PMC8992249 DOI: 10.1093/infdis/jiac091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Excessive complement activation has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19), but the mechanisms leading to this response remain unclear. METHODS We measured plasma levels of key complement markers, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies against SARS-CoV-2 and seasonal human common cold coronaviruses (CCCs) in hospitalized patients with COVID-19 of moderate (n = 18) and critical severity (n = 37) and in healthy controls (n = 10). RESULTS We confirmed that complement activation is systemically increased in patients with COVID-19 and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes were markedly increased in patients with severe COVID-19 and correlated with higher immunoglobulin (Ig) G titers, greater complement activation, and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCCs were strongly correlated with circulating immune complex levels, complement activation, and disease severity. CONCLUSIONS These findings indicate that early, nonneutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in patients with COVID-19.
Collapse
Affiliation(s)
- Priscila M S Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dylan J Tuttle
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jana L Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ulisses Braga-Neto
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Matthew Duespohl
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle M Marti
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Asma Naqvi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittany Staines
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Faraaz Shah
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bernard J C Macatangay
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barbara Methe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian A Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donald Burke
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ernesto T A Marques
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
178
|
Abdelhafiz AS, Ali A, Kamel MM, Ahmed EH, Sayed DM, Bakry RM. Sinopharm's BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10091462. [PMID: 36146540 PMCID: PMC9502803 DOI: 10.3390/vaccines10091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected millions of people worldwide. During the early stages of vaccination in Egypt, the ChAdOx1 nCoV-19 and BBIBP-CorV vaccines were the most distributed. The aim of this study was to compare the immune responses and short-term efficacies of these two vaccines. We recruited adults who received two doses of either vaccine. Samples were collected after the first dose of ChAdOx1 nCoV-1 and after the second dose of both vaccines. Antibodies against SARS-CoV-2 antigens were measured using LABScreen™ COVID Plus kits, and cell-mediated immune responses were assessed using flow cytometry. Of the 109 recruited subjects, 60 (55%) received the ChAdOx1 nCoV-19 vaccine, and the remainder received the BBIBP-CorV vaccine. The total antibody level did not significantly differ between the two groups. The level of the anti-spike subunit 2 (S2) antibody was significantly higher in the ChAdOx1 nCoV-19 group. The percentages of both total T cells and B cells were unaffected by the type of vaccination. However, the ChAdOx1 nCoV-1 vaccine was significantly associated with a higher percentage of CD8+ cells. The vaccines did not significantly differ in the number or severity of infections postvaccination. None of the participants were admitted to the hospital or died of COVID-19 infection. In conclusion, the BBIBP-CorV vaccine is associated with an immune response and protection against infection that is comparable to that of the ChAdOx1 nCoV-1 vaccine. Follow-up is needed to study the long-term protective effects of both vaccines. Inactivated vaccines are easier to manufacture in developing countries and their limited side effects may lead to better economic benefits by limiting the number of absences from work.
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, El-Khalig Square, Cairo 11796, Egypt
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo 11517, Egypt
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Mahmoud M. Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, El-Khalig Square, Cairo 11796, Egypt
- Correspondence: ; Tel.: +201-000-219-408
| | - Eman Hasan Ahmed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Douaa M. Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Rania M. Bakry
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
179
|
Meyer-Arndt L, Braun J, Fauchere F, Vanshylla K, Loyal L, Henze L, Kruse B, Dingeldey M, Jürchott K, Mangold M, Maraj A, Braginets A, Böttcher C, Nitsche A, de la Rosa K, Ratswohl C, Sawitzki B, Holenya P, Reimer U, Sander LE, Klein F, Paul F, Bellmann-Strobl J, Thiel A, Giesecke-Thiel C. SARS-CoV-2 mRNA vaccinations fail to elicit humoral and cellular immune responses in patients with multiple sclerosis receiving fingolimod. J Neurol Neurosurg Psychiatry 2022; 93:960-971. [PMID: 35835468 PMCID: PMC9380499 DOI: 10.1136/jnnp-2022-329395] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND SARS-CoV-2 mRNA vaccination of healthy individuals is highly immunogenic and protective against severe COVID-19. However, there are limited data on how disease-modifying therapies (DMTs) alter SARS-CoV-2 mRNA vaccine immunogenicity in patients with autoimmune diseases. METHODS As part of a prospective cohort study, we investigated the induction, stability and boosting of vaccine-specific antibodies, B cells and T cells in patients with multiple sclerosis (MS) on different DMTs after homologous primary, secondary and booster SARS-CoV-2 mRNA vaccinations. Of 126 patients with MS analysed, 105 received either anti-CD20-based B cell depletion (aCD20-BCD), fingolimod, interferon-β, dimethyl fumarate, glatiramer acetate, teriflunomide or natalizumab, and 21 were untreated MS patients for comparison. RESULTS In contrast to all other MS patients, and even after booster, most aCD20-BCD- and fingolimod-treated patients showed no to markedly reduced anti-S1 IgG, serum neutralising activity and a lack of receptor binding domain-specific and S2-specific B cells. Patients receiving fingolimod additionally lacked spike-reactive CD4+ T cell responses. The duration of fingolimod treatment, rather than peripheral blood B and T cell counts prior to vaccination, determined whether a humoral immune response was elicited. CONCLUSIONS The lack of immunogenicity under long-term fingolimod treatment demonstrates that functional immune responses require not only immune cells themselves, but also access of these cells to the site of inoculation and their unimpeded movement. The absence of humoral and T cell responses suggests that fingolimod-treated patients with MS are at risk for severe SARS-CoV-2 infections despite booster vaccinations, which is highly relevant for clinical decision-making and adapted protective measures, particularly considering additional recently approved sphingosine-1-phosphate receptor antagonists for MS treatment.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florent Fauchere
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lucie Loyal
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Beate Kruse
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manuela Dingeldey
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karsten Jürchott
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ardit Maraj
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andre Braginets
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christoph Ratswohl
- Department of Cancer and Immunology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Immunomics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
180
|
Monteiro A, Chang AJ, Welliver RR, Baron S, Hicar MD. Humoral cross-coronavirus responses against the S2 region in children with Kawasaki disease. Virology 2022; 575:83-90. [PMID: 36088793 PMCID: PMC9437773 DOI: 10.1016/j.virol.2022.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022]
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C), a post infectious complication of SARS CoV-2 infection, shares enough features with Kawasaki Disease (KD) that some have hypothesized cross-coronavirus (CoV) immunity may explain the shared pathology. Recent studies have shown that humoral cross-reactivity of the CoVs, particularly of OC43, is focused on the S2 region of the Spike protein. Due to efforts utilizing CoV S2 regions to produce a cross-CoV vaccine, we wished to assess SARS-CoV-2 S2 reactivity in children with KD and assess if cardiac involvement in KD correlated with S2 CoV antibody targeting. The presence of cross-reactivity does not distinguish KD from febrile controls and does not correlate with cardiac involvement in KD. These findings support that, in relation to cardiac vascular inflammation, vaccines targeting the S2 region appear to be a safe approach, but there is disparity in the ability of CoV species to raise cross-reactive S2 targeted antibodies.
Collapse
Affiliation(s)
- Ajit Monteiro
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Arthur J Chang
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R Ross Welliver
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
181
|
Chen S, Guan F, Candotti F, Benlagha K, Camara NOS, Herrada AA, James LK, Lei J, Miller H, Kubo M, Ning Q, Liu C. The role of B cells in COVID-19 infection and vaccination. Front Immunol 2022; 13:988536. [PMID: 36110861 PMCID: PMC9468879 DOI: 10.3389/fimmu.2022.988536] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.
Collapse
Affiliation(s)
- Shiru Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Internal Medicine, The Division of Gastroenterology and Hepatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andres A. Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| |
Collapse
|
182
|
Neutralizing-antibody response to SARS-CoV-2 for 12 months after the COVID-19 workplace outbreaks in Japan. PLoS One 2022; 17:e0273712. [PMID: 36040882 PMCID: PMC9426944 DOI: 10.1371/journal.pone.0273712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to elucidate the 12-month durability of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients infected during the 2020 workplace outbreaks of coronavirus disease 2019 (COVID-19) in Japan. We followed 33 Japanese patients infected with SARS-CoV-2 in April 2020 for 12 months (12M). Patients were tested for NAbs and for antibodies against the SARS-CoV-2 nucleocapsid (anti-NC-Ab) and antibodies against the spike receptor-binding domain (anti-RBD-Ab). Tests were performed at 2M, 6M, and 12M after the primary infection (api) with commercially available test kits. In 90.9% (30/33) of patients, NAbs persisted for 12M api, though the median titers significantly declined from 78.7% (interquartile range [IQR]: 73.0–85.0%) at 2M, to 59.8% (IQR: 51.2–77.9) at 6M (P = 0.008), and to 56.2% (IQR: 39.6–74.4) at 12M (P<0.001). An exponential decay model showed that the NAb level reached undetectable concentrations at 35.5 months api (95% confidence interval: 26.5–48.0 months). Additionally, NAb titers were significantly related to anti-RBD-Ab titers (rho = 0.736, P<0.001), but not to anti-NC-Ab titers. In most patients convalescing from COVID-19, NAbs persisted for 12M api. This result suggested that patients need a booster vaccination within one year api, even though NAbs could be detected for over two years api. Anti-RBD-Ab titers could be used as a surrogate marker for predicting residual NAb levels.
Collapse
|
183
|
Hasan M, Moiz B, Qaiser S, Masood KI, Ghous Z, Hussain A, Ali N, Simas JP, Veldhoen M, Alves P, Abidi SH, Ghias K, Khan E, Hasan Z. IgG antibodies to SARS-CoV-2 in asymptomatic blood donors at two time points in Karachi. PLoS One 2022; 17:e0271259. [PMID: 36001587 PMCID: PMC9401161 DOI: 10.1371/journal.pone.0271259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION An estimated 1.5 million cases were reported in Pakistan until 23 March, 2022. However, SARS-CoV-2 PCR testing capacity has been limited and the incidence of COVID-19 infections is unknown. Volunteer healthy blood donors can be a control population for assessment of SARS-CoV-2 exposure in the population. We determined COVID-19 seroprevalence during the second pandemic wave in Karachi in donors without known infections or symptoms in 4 weeks prior to enrollment. MATERIALS AND METHODS We enrolled 558 healthy blood donors at the Aga Khan University Hospital between December 2020 and February 2021. ABO blood groups were determined. Serum IgG reactivity were measured to spike and receptor binding domain (RBD) proteins. RESULTS Study subjects were predominantly males (99.1%) with a mean age of 29.0±7.4 years. Blood groups were represented by; B (35.8%), O (33.3%), A (23.8%) and AB (7%). Positive IgG responses to spike were detected in 53.4% (95% CI, 49.3-37.5) of blood donors. Positive IgG antibodies to RBD were present in 16.7% (95% CI; 13.6-19.8) of individuals. No significant difference was found between the frequency of IgG antibodies to spike or RBD across age groups. Frequencies of IgG to Spike and RBD antibodies between December 2020 and February 2021 were found to be similar. Seropositivity to either antigen between individuals of different blood groups did not differ. Notably, 31.2% of individuals with IgG antibodies to spike also had IgG antibodies to RBD. Amongst donors who had previously confirmed COVID-19 and were seropositive to spike, 40% had IgG to RBD. CONCLUSIONS Our study provides insights into the seroprevalence of antibodies to COVID-19 in a healthy cohort in Karachi. The differential dynamics of IgG to spike and RBD likely represent both exposure to SARS-CoV-2 and associate with protective immunity in the population.
Collapse
Affiliation(s)
- Muhammad Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Bushra Moiz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Shama Qaiser
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zara Ghous
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Areeba Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Natasha Ali
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Alves
- IBET ITQB, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Erum Khan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
184
|
Sen SR, Sanders EC, Santos AM, Bhuvan K, Tang DY, Gelston AA, Miller BM, Ricks-Oddie JL, Weiss GA. Evidence for deleterious effects of immunological history in SARS-CoV-2. PLoS One 2022; 17:e0272163. [PMID: 36001626 PMCID: PMC9401162 DOI: 10.1371/journal.pone.0272163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
A previous report demonstrated the strong association between the presence of antibodies binding to an epitope region from SARS-CoV-2 nucleocapsid, termed Ep9, and COVID-19 disease severity. Patients with anti-Ep9 antibodies (Abs) had hallmarks of antigenic interference (AIN), including early IgG upregulation and cytokine-associated injury. Thus, the immunological memory of a prior infection was hypothesized to drive formation of suboptimal anti-Ep9 Abs in severe COVID-19 infections. This study identifies a putative primary antigen capable of stimulating production of cross-reactive, anti-Ep9 Abs. Binding assays with patient blood samples directly show cross-reactivity between Abs binding to Ep9 and only one bioinformatics-derived, homologous putative antigen, a sequence derived from the neuraminidase protein of H3N2 influenza A virus. This cross-reactive binding is highly influenza strain specific and sensitive to even single amino acid changes in epitope sequence. The neuraminidase protein is not present in the influenza vaccine, and the anti-Ep9 Abs likely resulted from the widespread influenza infection in 2014. Therefore, AIN from a previous infection could underlie some cases of COVID-19 disease severity.
Collapse
Affiliation(s)
- Sanjana R. Sen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Emily C. Sanders
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Alicia M. Santos
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Keertna Bhuvan
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Derek Y. Tang
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Aidan A. Gelston
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Brian M. Miller
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Joni L. Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, University of California, Irvine, Irvine CA, United States of America
- Biostatics, Epidemiology and Research Design Unit, Institute for Clinical and Translational Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Gregory A. Weiss
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States of America
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States of America
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
185
|
Knopf J, Sjöwall J, Frodlund M, Hinkula J, Herrmann M, Sjöwall C. NET Formation in Systemic Lupus Erythematosus: Changes during the COVID-19 Pandemic. Cells 2022; 11:cells11172619. [PMID: 36078028 PMCID: PMC9455008 DOI: 10.3390/cells11172619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The severity of the coronavirus disease in 2019 (COVID-19) is strongly linked to a dysregulated immune response. This fuels the fear of severe disease in patients with autoimmune disorders continuously using immunosuppressive/immunomodulating medications. One complication of COVID-19 is thromboembolism caused by intravascular aggregates of neutrophil extracellular traps (NETs) occluding the affected vessels. Like COVID-19, systemic lupus erythematosus (SLE) is characterized by, amongst others, an increased risk of thromboembolism. An imbalance between NET formation and clearance is suggested to play a prominent role in exacerbating autoimmunity and disease severity. Serologic evidence of exposure to SARS-CoV-2 has a minor impact on the SLE course in a Swedish cohort reportedly. Herein, we assessed NET formation in patients from this cohort by neutrophil elastase (NE) activity and the presence of cell-free DNA, MPO-DNA, and NE-DNA complexes and correlated the findings to the clinical parameters. The presence of NE-DNA complexes and NE activity differed significantly in pre-pandemic versus pandemic serum samples. The latter correlated significantly with the hemoglobin concentration, blood cell counts, and complement protein 3 and 4 levels in the pre-pandemic but only with the leukocyte count and neutrophil levels in the pandemic serum samples. Taken together, our data suggest a change, especially in the NE activity independent of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| | - Johanna Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Infectious Diseases, Linköping University, SE-581 85 Linköping, Sweden
| | - Martina Frodlund
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, SE-581 85 Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, SE-581 85 Linköping, Sweden
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
186
|
Abstract
Despite effective spike-based vaccines and monoclonal antibodies, the SARS-CoV-2 pandemic continues more than two and a half years post-onset. Relentless investigation has outlined a causative dynamic between host-derived antibodies and reciprocal viral subversion. Integration of this paradigm into the architecture of next generation antiviral strategies, predicated on a foundational understanding of the virology and immunology of SARS-CoV-2, will be critical for success. This review aims to serve as a primer on the immunity endowed by antibodies targeting SARS-CoV-2 spike protein through a structural perspective. We begin by introducing the structure and function of spike, polyclonal immunity to SARS-CoV-2 spike, and the emergence of major SARS-CoV-2 variants that evade immunity. The remainder of the article comprises an in-depth dissection of all major epitopes on SARS-CoV-2 spike in molecular detail, with emphasis on the origins, neutralizing potency, mechanisms of action, cross-reactivity, and variant resistance of representative monoclonal antibodies to each epitope.
Collapse
Affiliation(s)
- John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, United States; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
187
|
Carlsson M, Söderberg-Nauclér C. COVID-19 Modeling Outcome versus Reality in Sweden. Viruses 2022; 14:1840. [PMID: 36016462 PMCID: PMC9415753 DOI: 10.3390/v14081840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/20/2022] Open
Abstract
It has been very difficult to predict the development of the COVID-19 pandemic based on mathematical models for the spread of infectious diseases, and due to major non-pharmacological interventions (NPIs), it is still unclear to what extent the models would have fit reality in a "do nothing" scenario. To shed light on this question, the case of Sweden during the time frame from autumn 2020 to spring 2021 is particularly interesting, since the NPIs were relatively minor and only marginally updated. We found that state of the art models are significantly overestimating the spread, unless we assume that social interactions significantly decrease continuously throughout the time frame, in a way that does not correlate well with Google-mobility data nor updates to the NPIs or public holidays. This leads to the question of whether modern SEIR-type mathematical models are unsuitable for modeling the spread of SARS-CoV-2 in the human population, or whether some particular feature of SARS-CoV-2 dampened the spread. We show that, by assuming a certain level of pre-immunity to SARS-CoV-2, we obtain an almost perfect data-fit, and discuss what factors could cause pre-immunity in the mathematical models. In this scenario, a form of herd-immunity under the given restrictions was reached twice (first against the Wuhan-strain and then against the alpha-strain), and the ultimate decline in cases was due to depletion of susceptibles rather than the vaccination campaign.
Collapse
Affiliation(s)
- Marcus Carlsson
- Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 171 77 Stockholm, Sweden
- Department of Biosciences, InFLAMES Research Flagship Center, MediCity, University of Turku, 20500 Turku, Finland
| |
Collapse
|
188
|
Sumi T, Harada K. Immune response to SARS-CoV-2 in severe disease and long COVID-19. iScience 2022; 25:104723. [PMID: 35813874 PMCID: PMC9251893 DOI: 10.1016/j.isci.2022.104723] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023] Open
Abstract
COVID-19 is mild to moderate in otherwise healthy individuals but may nonetheless cause life-threatening disease and/or a wide range of persistent symptoms. The general determinant of disease severity is age mainly because the immune response declines in aging patients. Here, we developed a mathematical model of the immune response to SARS-CoV-2 and revealed that typical age-related risk factors such as only a several 10% decrease in innate immune cell activity and inhibition of type-I interferon signaling by autoantibodies drastically increased the viral load. It was reported that the numbers of certain dendritic cell subsets remained less than half those in healthy donors even seven months after infection. Hence, the inflammatory response was ongoing. Our model predicted the persistent DC reduction and showed that certain patients with severe and even mild symptoms could not effectively eliminate the virus and could potentially develop long COVID.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
189
|
Solomon MD, Escobar GJ, Lu Y, Schlessinger D, Steinman JB, Steinman L, Lee C, Liu VX. Risk of severe COVID-19 infection among adults with prior exposure to children. Proc Natl Acad Sci U S A 2022; 119:e2204141119. [PMID: 35895714 PMCID: PMC9388132 DOI: 10.1073/pnas.2204141119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Susceptibility and severity of COVID-19 infection vary widely. Prior exposure to endemic coronaviruses, common in young children, may protect against SARS-CoV-2. We evaluated risk of severe COVID-19 among adults with and without exposure to young children in a large, integrated healthcare system. Adults with children 0-5 years were matched 1:1 to adults with children 6-11 years, 12-18 years, and those without children based upon a COVID-19 propensity score and risk factors for severe COVID-19. COVID-19 infections, hospitalizations, and need for intensive care unit (ICU) were assessed in 3,126,427 adults, of whom 24% (N = 743,814) had children 18 years or younger, and 8.8% (N = 274,316) had a youngest child 0-5 years. After 1:1 matching, propensity for COVID-19 infection and risk factors for severe COVID-19 were well balanced between groups. Rates of COVID-19 infection were slightly higher for adults with exposure to older children (incident risk ratio, 1.09, 95% confidence interval, [1.05-1.12] and IRR 1.09 [1.05-1.13] for adults with children 6-11 and 12-18, respectively), compared to those with children 0-5 years, although no difference in rates of COVID-19 illness requiring hospitalization or ICU admission was observed. However, adults without exposure to children had lower rates of COVID-19 infection (IRR 0.85, [0.83-0.87]) but significantly higher rates of COVID-19 hospitalization (IRR 1.49, [1.29-1.73]) and hospitalization requiring ICU admission (IRR 1.76, [1.19-2.58]) compared to those with children aged 0-5. In a large, real-world population, exposure to young children was associated with less severe COVID-19 illness. Endemic coronavirus cross-immunity may play a role in protection against severe COVID-19.
Collapse
Affiliation(s)
- Matthew D. Solomon
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
- Department of Cardiology, Kaiser Oakland Medical Center, Oakland, CA 94611
| | - Gabriel J. Escobar
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| | - Yun Lu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| | - David Schlessinger
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| | | | - Lawrence Steinman
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Department of Neurology, Stanford University, Stanford, CA 94305
- Department of Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| |
Collapse
|
190
|
Agrati C, Carsetti R, Bordoni V, Sacchi A, Quintarelli C, Locatelli F, Ippolito G, Capobianchi MR. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology 2022; 167:287-302. [PMID: 35971810 PMCID: PMC9538066 DOI: 10.1111/imm.13564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID‐19 pandemic has represented an unprecedented challenge for the humanity, and scientists around the world provided a huge effort to elucidate critical aspects in the fight against the pathogen, useful in designing public health strategies, vaccines and therapeutic approaches. One of the first pieces of evidence characterizing the SARS‐CoV‐2 infection has been its breadth of clinical presentation, ranging from asymptomatic to severe/deadly disease, and the indication of the key role played by the immune response in influencing disease severity. This review is aimed at summarizing what the SARS‐CoV‐2 infection taught us about the immune response, highlighting its features of a double‐edged sword mediating both protective and pathogenic processes. We will discuss the protective role of soluble and cellular innate immunity and the detrimental power of a hyper‐inflammation‐shaped immune response, resulting in tissue injury and immunothrombotic events. We will review the importance of B‐ and T‐cell immunity in reducing the clinical severity and their ability to cross‐recognize viral variants.
Collapse
Affiliation(s)
- Chiara Agrati
- Laboratory of Cellular Immunology, INMI L. Spallanzani, IRCCS
| | - Rita Carsetti
- B cell laboratory, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandra Sacchi
- Molecular Virology and antimicrobial immunity Laboratory, Department of Science, Roma Tre University, Rome, Italy
| | - Concetta Quintarelli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS.,Department of Pediatrics, Catholic University of Sacred Heart, Rome, Italy
| | - Giuseppe Ippolito
- General Directorate for Research and Health Innovation, Italian Ministry of Health
| | - Maria R Capobianchi
- Sacro Cuore Don Calabria Hospital IRCCS, Negrar di Valpolicella (Verona).,Saint Camillus International University of Health Sciences, Rome
| |
Collapse
|
191
|
Qavi AJ, Wu C, Lloyd M, Zaman MMU, Luan J, Ballman C, Leung DW, Crick SL, Farnsworth CW, Amarasinghe GK. Plasmonic Fluor-Enhanced Antigen Arrays for High-Throughput, Serological Studies of SARS-CoV-2. ACS Infect Dis 2022; 8:1468-1479. [PMID: 35867632 PMCID: PMC9344907 DOI: 10.1021/acsinfecdis.2c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serological testing for acute infection or prior exposure is critical for patient management and coordination of public health decisions during outbreaks. Current methods have several limitations, including variable performance, relatively low analytical and clinical sensitivity, and poor detection due to antigenic drift. Serological methods for SARS-CoV-2 detection for the ongoing COVID-19 pandemic suffer from several of these limitations and serves as a reminder of the critical need for new technologies. Here, we describe the use of ultrabright fluorescent reagents, Plasmonic Fluors, coupled with antigen arrays that address a subset of these limitations. We demonstrate its application using patient samples in SARS-CoV-2 serological assays. In our multiplexed assay, SARS-CoV-2 antigens were spotted into 48-plex arrays within a single well of a 96-well plate and used to evaluate remnant laboratory samples of SARS-CoV-2 positive patients. Signal-readout was performed with Auragent Bioscience's Empower microplate reader, and microarray analysis software. Sample volumes of 1 μL were used. High sensitivity of the Plasmonic Fluors combined with the array format enabled us to profile patient serological response to eight distinct SARS-CoV-2 antigens and evaluate responses to IgG, IgM, and IgA. Sensitivities for SARS-CoV-2 antigens during the symptomatic state ranged between 72.5 and 95.0%, specificity between 62.5 and 100%, and the resulting area under the curve values between 0.76 and 0.97. Together, these results highlight the increased sensitivity for low sample volumes and multiplex capability. These characteristics make Plasmonic Fluor-enhanced antigen arrays an attractive technology for serological studies for the COVID-19 pandemic and beyond.
Collapse
Affiliation(s)
- Abraham J. Qavi
- Department
of Pathology & Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chao Wu
- Department
of Pathology & Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Matthew Lloyd
- Department
of Pathology & Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | | | - Jingyi Luan
- Auragent
Bioscience, St. Louis, Missouri 63108, United
States
| | - Claire Ballman
- Department
of Pathology & Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Daisy W. Leung
- Department
of Internal Medicine, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Scott L. Crick
- Auragent
Bioscience, St. Louis, Missouri 63108, United
States
| | - Christopher W. Farnsworth
- Department
of Pathology & Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gaya K. Amarasinghe
- Department
of Pathology & Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
192
|
Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D, Cassotta A, Foglierini M, Mele F, Abdelnabi R, Weynand B, Noack J, Montiel-Ruiz M, Bianchi S, Benigni F, Sprugasci N, Joshi A, Bowen JE, Stewart C, Rexhepaj M, Walls AC, Jarrossay D, Morone D, Paparoditis P, Garzoni C, Ferrari P, Ceschi A, Neyts J, Purcell LA, Snell G, Corti D, Lanzavecchia A, Veesler D, Sallusto F. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 2022; 377:735-742. [PMID: 35857703 PMCID: PMC9348755 DOI: 10.1126/science.abq2679] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
Collapse
Affiliation(s)
- Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | | | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dora Pinto
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, B-3000 Leuven, Belgium
| | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Siro Bianchi
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
- Global Virus Network, Baltimore, MD 21201, USA
| | | | | | - Davide Corti
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
- National Institute of Molecular Genetics, 20122 Milano, Italy
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
193
|
Claireaux M, Caniels TG, de Gast M, Han J, Guerra D, Kerster G, van Schaik BDC, Jongejan A, Schriek AI, Grobben M, Brouwer PJM, van der Straten K, Aldon Y, Capella-Pujol J, Snitselaar JL, Olijhoek W, Aartse A, Brinkkemper M, Bontjer I, Burger JA, Poniman M, Bijl TPL, Torres JL, Copps J, Martin IC, de Taeye SW, de Bree GJ, Ward AB, Sliepen K, van Kampen AHC, Moerland PD, Sanders RW, van Gils MJ. A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat Commun 2022; 13:4539. [PMID: 35927266 PMCID: PMC9352689 DOI: 10.1038/s41467-022-32232-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/22/2022] [Indexed: 12/21/2022] Open
Abstract
Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Tom G Caniels
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Marlon de Gast
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Denise Guerra
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Gius Kerster
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Barbera D C van Schaik
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Angela I Schriek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Karlijn van der Straten
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Yoann Aldon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Jonne L Snitselaar
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Wouter Olijhoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Aafke Aartse
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Mitch Brinkkemper
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Judith A Burger
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Meliawati Poniman
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Tom P L Bijl
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Isabel Cuella Martin
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Public Health, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands.
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Experimental Virology, Amsterdam, the Netherlands.
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| |
Collapse
|
194
|
Farcet MR, Schwaiger J, Karbiener M, Kreil TR. Function matters: Coronavirus cross-binding antibodies do not cross-neutralize. Front Med (Lausanne) 2022; 9:924426. [PMID: 35983096 PMCID: PMC9378960 DOI: 10.3389/fmed.2022.924426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background During the current pandemic, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralization capacity of the immunoglobulin (IG) supply has changed from undetectable for lots manufactured from plasma collected before the pandemic, to now highly potent. Objective As antibodies induced by exposure to or vaccination against coronaviruses were shown to be cross-coronavirus reactive, it was of interest to understand whether SARS-CoV-2 neutralizing antibodies would result in increased functional IG potency also against seasonal coronaviruses. Methods IG lots from US plasma collected before SARS-CoV-2 emerged and collected during the pandemic were analyzed by live virus neutralization assay for SARS-CoV-2 and seasonal human coronaviruses (HCoVs) NL63 and OC43 neutralizing antibody content. Results Pre-pandemic IG showed no SARS-CoV-2 neutralizing antibody titers. However, IG lots produced from plasma of post-coronavirus disease 2019 (COVID-19) individuals exhibited robust anti-SARS-CoV-2 potency (1,267 IU/ml) which further increased ~4-fold in pandemic IG lots reaching a mean titer of 5,122 IU/ml. Nonetheless, neutralizing antibody potencies to the HCoVs NL63 and OC43 remained stable over this period, i.e., have not increased correspondingly. Conclusion The present results show that cross-coronavirus-reactive antibodies are not cross-neutralizing, i.e., SARS-CoV-2 antibodies do not neutralize seasonal coronaviruses NL63 and OC43.
Collapse
Affiliation(s)
| | | | | | - Thomas R. Kreil
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| |
Collapse
|
195
|
Ito Y, Honda A, Kurokawa M. COVID-19 mRNA Vaccine in Patients With Lymphoid Malignancy or Anti-CD20 Antibody Therapy: A Systematic Review and Meta-Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e691-e707. [PMID: 35459624 PMCID: PMC8958822 DOI: 10.1016/j.clml.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 04/09/2023]
Abstract
BACKGROUND The humoral response to vaccination in individuals with lymphoid malignancies or those undergoing anti-CD20 antibody therapy is impaired, but details of the response to mRNA vaccines to protect against COVID-19 remain unclear. This systematic review and meta-analysis aimed to characterize the response to COVID-19 mRNA vaccines in patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy. MATERIALS AND METHODS A literature search retrieved 52 relevant articles, and random-effect models were used to analyze humoral and cellular responses. RESULTS Lymphoid malignancies and anti-CD20 antibody therapy for non-malignancies were significantly associated with lower seropositivity rates (risk ratio 0.60 [95% CI 0.53-0.69]; risk ratio 0.45 [95% CI 0.39-0.52], respectively). Some subtypes (chronic lymphocytic leukemia, treatment-naïve chronic lymphocytic leukemia, myeloma, and non-Hodgkin's lymphoma) exhibited impaired humoral response. Anti-CD20 antibody therapy within 6 months of vaccination decreased humoral response; moreover, therapy > 12 months before vaccination still impaired the humoral response. However, anti-CD20 antibody therapy in non-malignant patients did not attenuate T cell responses. CONCLUSION These data suggest that patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy experience an impaired humoral response, but cellular response can be detected independent of anti-CD20 antibody therapy. Studies with long-term follow-up of vaccine effectiveness are warranted (PROSPERO registration number: CRD42021265780).
Collapse
Affiliation(s)
- Yusuke Ito
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
196
|
Kazmierski J, Friedmann K, Postmus D, Emanuel J, Fischer C, Jansen J, Richter A, Bosquillon de Jarcy L, Schüler C, Sohn M, Sauer S, Drosten C, Saliba A, Sander LE, Müller MA, Niemeyer D, Goffinet C. Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses. Mol Syst Biol 2022; 18:e10961. [PMID: 35975552 PMCID: PMC9382356 DOI: 10.15252/msb.202210961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.
Collapse
Affiliation(s)
- Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Kirstin Friedmann
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Jackson Emanuel
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Cornelius Fischer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Laure Bosquillon de Jarcy
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Christiane Schüler
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Madlen Sohn
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Sascha Sauer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Antoine‐Emmanuel Saliba
- Helmholtz Institute for RNA‐based Infection Research (HIRI)Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Marcel A Müller
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
197
|
Tsukinoki K, Yamamoto T, Saito J, Sakaguchi W, Iguchi K, Inoue Y, Ishii S, Sato C, Yokoyama M, Shiraishi Y, Kato N, Shimada H, Makabe A, Saito A, Tanji M, Nagaoka I, Saruta J, Yamaguchi T, Kimoto S, Yamaguchi H. Prevalence of saliva immunoglobulin A antibodies reactive with severe acute respiratory syndrome coronavirus 2 among Japanese people unexposed to the virus. Microbiol Immunol 2022; 66:403-410. [PMID: 35607844 PMCID: PMC9347685 DOI: 10.1111/1348-0421.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
While the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to public health as the number of cases and COVID-19-related deaths are increasing worldwide, the incidence of the virus infection is extremely low in Japan compared with many other countries. To explain this uncommon phenomenon, we investigated the prevalence of naturally occurring ("natural") antibodies, focusing on those of the secretory immunoglobulin A (sIgA) form, reactive with SARS-CoV-2 among Japanese people. One hundred and eighty healthy Japanese volunteers of a wide range of age who had been considered to be unexposed to SARS-CoV-2 participated in this study. Saliva samples and blood samples were collected from all of the 180 participants and 139 adults (aged ≥ 20 years) included therein, respectively. The determination of saliva IgA antibodies, mostly comprising sIgA antibodies, as well as serum IgA and immunoglobulin G antibodies, reactive with the receptor binding domain of the SARS-CoV-2 spike-1 subunit proteins was conducted using an enzyme-linked immunosorbent assay. The major findings were that 52.78% (95% confidence interval, 45.21%-60.25%) of the individuals who had not been exposed to SARS-CoV-2 were positive for saliva IgA antibodies with a wide range of levels between 0.002 and 3.272 ng/mL, and that there may be a negative trend in positivity for the antibodies according to age. As we had expected, a frequent occurrence of assumable "natural" sIgA antibodies reactive with SARS-CoV-2 among the studied Japanese participant population was observed.
Collapse
Affiliation(s)
- Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of DentistryKanagawa Dental UniversityKanagawaJapan
| | | | | | - Wakako Sakaguchi
- Department of Environmental Pathology, Graduate School of DentistryKanagawa Dental UniversityKanagawaJapan
| | - Keiichiro Iguchi
- Department of OrthodonticsKanagawa Dental UniversityKanagawaJapan
| | - Yoshinori Inoue
- Department of Pediatric DentistryKanagawa Dental UniversityKanagawaJapan
| | - Shigeru Ishii
- Department of Advanced Oral SurgeryKDU Yokohama ClinicKanagawaJapan
| | | | - Mina Yokoyama
- Department of Pediatric DentistryKanagawa Dental UniversityKanagawaJapan
| | | | - Noriaki Kato
- EPS Research Center, EPS Holdings, Inc.TokyoJapan
| | | | - Akio Makabe
- Sites Support Section, Foods DepartmentEP Mediate Co., Ltd.TokyoJapan
| | - Akihiro Saito
- Sites Support Section, Foods DepartmentEP Mediate Co., Ltd.TokyoJapan
| | | | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Faculty of Health ScienceJuntendo UniversityTokyoJapan
| | - Juri Saruta
- Department of Education PlanningKanagawa Dental UniversityKanagawaJapan
| | | | - Shigenari Kimoto
- Department of Pediatric DentistryKanagawa Dental UniversityKanagawaJapan
| | - Hideyo Yamaguchi
- EPS Research Center, EPS Holdings, Inc.TokyoJapan
- Department of Diagnostics and Disease Control, Institute of Medical MycologyTeikyo UniversityTokyoJapan
| |
Collapse
|
198
|
Zhu Y, Chew KY, Wu M, Karawita AC, McCallum G, Steele LE, Yamamoto A, Labzin LI, Yarlagadda T, Khromykh AA, Wang X, Sng JDJ, Stocks CJ, Xia Y, Kollmann TR, Martino D, Joensuu M, Meunier FA, Balistreri G, Bielefeldt-Ohmann H, Bowen AC, Kicic A, Sly PD, Spann KM, Short KR. Ancestral SARS-CoV-2, but not Omicron, replicates less efficiently in primary pediatric nasal epithelial cells. PLoS Biol 2022; 20:e3001728. [PMID: 35913989 PMCID: PMC9371332 DOI: 10.1371/journal.pbio.3001728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023] Open
Abstract
Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remain to be determined. Here, we use primary nasal epithelial cells (NECs) from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the NECs of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the NECs of children. Importantly, the Delta variant also replicated to significantly lower titers in the NECs of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.
Collapse
Affiliation(s)
- Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Melanie Wu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Anjana C. Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Georgina McCallum
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Lauren E. Steele
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Larisa I. Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tejasri Yarlagadda
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Xiaohui Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Claudia J. Stocks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yao Xia
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Tobias R. Kollmann
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - David Martino
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Asha C. Bowen
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, Perth, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter D. Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Kirsten M. Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
199
|
Pedersen J, Koumakpayi IH, Babuadze G, Baz M, Ndiaye O, Faye O, Diagne CT, Dia N, Naghibosadat M, McGeer A, Muberaka S, Moukandja IP, Ndidi S, Tauil CB, Lekana-Douki JB, Loucoubar C, Faye O, Sall A, Magalhães KG, Weis N, Kozak R, Kobinger GP, Fausther-Bovendo H. Cross-reactive immunity against SARS-CoV-2 N protein in Central and West Africa precedes the COVID-19 pandemic. Sci Rep 2022; 12:12962. [PMID: 35902675 PMCID: PMC9333058 DOI: 10.1038/s41598-022-17241-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/22/2022] [Indexed: 12/22/2022] Open
Abstract
Early predictions forecasted large numbers of severe acute respiratory syndrome coronavirus (SARS-CoV-2) cases and associated deaths in Africa. To date, Africa has been relatively spared. Various hypotheses were postulated to explain the lower than anticipated impact on public health in Africa. However, the contribution of pre-existing immunity is yet to be investigated. In this study, the presence of antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in pre-pandemic samples from Africa, Europe, South and North America was examined by ELISA. The protective efficacy of N specific antibodies isolated from Central African donors was tested by in vitro neutralization and in a mouse model of SARS-CoV-2 infection. Antibodies against SARS-CoV-2 S and N proteins were rare in all populations except in Gabon and Senegal where N specific antibodies were prevalent. However, these antibodies failed to neutralize the virus either in vitro or in vivo. Overall, this study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. However, this pre-existing humoral immunity does not impact viral fitness in rodents suggesting that other human immune defense mechanisms could be involved. In Africa, seroprevalence studies using the N protein are over-estimating SARS-CoV-2 circulation.
Collapse
Affiliation(s)
- Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Quebec City, Canada
| | | | - Giorgi Babuadze
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mariana Baz
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Quebec City, Canada
| | | | - Oumar Faye
- Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Ndongo Dia
- Institut Pasteur de Dakar, Dakar, Senegal
| | - Maedeh Naghibosadat
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Samira Muberaka
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | - Stella Ndidi
- Centre Hospitalier Universitaire de Libreville, Libreville, Gabon
| | - Carlos B Tauil
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Jean-Bernard Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | | | | | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, Brazil
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Kozak
- Biological Sciences Platform, University of Toronto, Sunnybrook Research Institute at Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Gary P Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Hugues Fausther-Bovendo
- Département de Microbiologie-Infectiologie et Immunologie, Université Laval, Quebec City, Canada. .,Global Urgent and Advanced Research and Development, 911 Rue Principale, Unit 100, Batiscan, QC, G0X 1A0, Canada.
| |
Collapse
|
200
|
Ng KW, Faulkner N, Finsterbusch K, Wu M, Harvey R, Hussain S, Greco M, Liu Y, Kjaer S, Swanton C, Gandhi S, Beale R, Gamblin SJ, Cherepanov P, McCauley J, Daniels R, Howell M, Arase H, Wack A, Bauer DLV, Kassiotis G. SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci Transl Med 2022; 14:eabn3715. [PMID: 35895836 DOI: 10.1126/scitranslmed.abn3715] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Katja Finsterbusch
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yafei Liu
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Sonia Gandhi
- Neurodegradation Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Cherepanov
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rodney Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David L V Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK
| |
Collapse
|