151
|
Kaltsidis H, Cheeseman H, Kopycinski J, Ashraf A, Cox MC, Clark L, Anjarwalla I, Dally L, Bergin P, Spentzou A, Higgs C, Gotch F, Gazzard B, Gomez R, Hayes P, Kelleher P, Gill DK, Gilmour J. Measuring human T cell responses in blood and gut samples using qualified methods suitable for evaluation of HIV vaccine candidates in clinical trials. J Immunol Methods 2011; 370:43-54. [DOI: 10.1016/j.jim.2011.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
|
152
|
Coming of age: reconstruction of heterosexual HIV-1 transmission in human ex vivo organ culture systems. Mucosal Immunol 2011; 4:383-96. [PMID: 21430654 DOI: 10.1038/mi.2011.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterosexual transmission of human immunodeficiency virus-1 (HIV-1), from men to women, involves exposure to infectious HIV-1 in semen. Therefore, the cellular and molecular processes that underlie HIV-1 transmission are closely interconnected with fundamental principles of human reproductive biology. Human ex vivo organ culture systems allow experimental reconstruction of HIV-1 transmission, using human semen and premenopausal cervicovaginal mucosal tissue, with specific emphasis on the progression from exposure to development of primary HIV-1 infection. Clearly, an isolated piece of human tissue cannot duplicate the full complexity of events in natural infections, but with correct observation of conventional medical and ethical standards, there is no opportunity to study HIV-1 exposure and primary infection in young women. Human mucosal organ cultures allow direct study of HIV-1 infection in a reproducible format while retaining major elements of complexity and variability that typify community-based HIV-1 transmission. Experimental manipulation of human mucosal tissue both allows and requires acquisition of new insights into basic processes of human mucosal immunology. Expanding from the current foundations, we believe that human organ cultures will become increasingly prominent in experimental studies of HIV-1 transmission and continuing efforts to prevent HIV-1 infection at human mucosal surfaces.
Collapse
|
153
|
Pertel T, Reinhard C, Luban J. Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon. Retrovirology 2011; 8:49. [PMID: 21696578 PMCID: PMC3130655 DOI: 10.1186/1742-4690-8-49] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023] Open
Abstract
Background Vpx is a virion-associated protein encoded by SIVSM, a lentivirus endemic to the West African sooty mangabey (Cercocebus atys). HIV-2 and SIVMAC, zoonoses resulting from SIVSM transmission to humans or Asian rhesus macaques (Macaca mulatta), also encode Vpx. In myeloid cells, Vpx promotes reverse transcription and transduction by these viruses. This activity correlates with Vpx binding to DCAF1 (VPRBP) and association with the DDB1/RBX1/CUL4A E3 ubiquitin ligase complex. When delivered experimentally to myeloid cells using VSV G-pseudotyped virus-like particles (VLPs), Vpx promotes reverse transcription of retroviruses that do not normally encode Vpx. Results Here we show that Vpx has the extraordinary ability to completely rescue HIV-1 transduction of human monocyte-derived dendritic cells (MDDCs) from the potent antiviral state established by prior treatment with exogenous type 1 interferon (IFN). The magnitude of rescue was up to 1,000-fold, depending on the blood donor, and was also observed after induction of endogenous IFN and IFN-stimulated genes (ISGs) by LPS, poly(I:C), or poly(dA:dT). The effect was relatively specific in that Vpx-associated suppression of soluble IFN-β production, of mRNA levels for ISGs, or of cell surface markers for MDDC differentiation, was not detected. Vpx did not rescue HIV-2 or SIVMAC transduction from the antiviral state, even in the presence of SIVMAC or HIV-2 VLPs bearing additional Vpx, or in the presence of HIV-1 VLPs bearing all accessory genes. In contrast to the effect of Vpx on transduction of untreated MDDCs, HIV-1 rescue from the antiviral state was not dependent upon Vpx interaction with DCAF1 or on the presence of DCAF1 within the MDDC target cells. Additionally, although Vpx increased the level of HIV-1 reverse transcripts in MDDCs to the same extent whether or not MDDCs were treated with IFN or LPS, Vpx rescued a block specific to the antiviral state that occurred after HIV-1 cDNA penetrated the nucleus. Conclusion Vpx provides a tool for the characterization of a potent, new HIV-1 restriction activity, which acts in the nucleus of type 1 IFN-treated dendritic cells.
Collapse
Affiliation(s)
- Thomas Pertel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
154
|
Kawamura T. [Langerhans cell and HIV]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2011; 34:70-5. [PMID: 21628848 DOI: 10.2177/jsci.34.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterosexual transmission of HIV is the most common mode of infection in the global HIV epidemic. In the absence of an effective vaccine, there is an urgent need for additional strategies to prevent new HIV infections. Evidence from a variety of investigations, including epidemiologic studies on sexual transmission, in vivo studies in rhesus monkey, and ex vivo studies using human explant models, indicate that CD4/CCR5-mediated de novo infection of Langerhans cells (LCs) is a major pathway involved in sexual transmission of HIV (LCs primary gate keeper model). However, it has been recently revealed that Langerin (a C-type lectin receptor) expressed on LC inactivate HIV. Thus, there may be multiple ways by which HIV interacts with LCs in the genital mucosa. In light of the current HIV infection rates in heterosexuals and the absence of a prophylactic vaccine, prevention strategies, such as topical microbicides that block sexual transmission of HIV, are urgently needed. This review focuses on the recent advances regarding the role of LCs in heterosexual transmission of HIV, and the relationship between the LCs primary gate keeper model and current prevention strategies worldwide.
Collapse
|
155
|
Abstract
Lentiviruses such as HIV have a daunting challenge in gaining access to a new host predominantly through the penile, rectal, or vaginal/cervical mucosal tissue after sexual exposure. Multiple mechanisms have evolved to help prevent such infections, including anatomical barriers, innate inhibitors, and adaptive immune responses. For lentiviruses, it appears that in naive or even conventionally vaccinated hosts, typical adaptive immune responses are generally too little and too late to prevent infection. Nevertheless, a combination of anatomical barriers and innate immune responses may limit transmission, especially in patients without predisposing conditions such as mucosal lesions or preexisting sexually transmitted infections. Furthermore, when infection does occur, most often the primary viremia of the acute infection can be traced back genetically to a single founder virus. Unfortunately, even a single virion can establish an infection that will ultimately lead to the demise of the host. This review seeks to describe the biology of and barriers to establishment of systemic, disseminated productive infection with HIV after sexual exposure and to discuss the possible mechanisms leading to infection by a single viral variant. Understanding the initial events of infection, before systemic spread, could provide insights into strategies for reducing acquisition or ameliorating clinical outcome.
Collapse
|
156
|
Ribeiro dos Santos P, Rancez M, Prétet JL, Michel-Salzat A, Messent V, Bogdanova A, Couëdel-Courteille A, Souil E, Cheynier R, Butor C. Rapid dissemination of SIV follows multisite entry after rectal inoculation. PLoS One 2011; 6:e19493. [PMID: 21573012 PMCID: PMC3090405 DOI: 10.1371/journal.pone.0019493] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/06/2011] [Indexed: 12/30/2022] Open
Abstract
Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum.
Collapse
Affiliation(s)
- Patricia Ribeiro dos Santos
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Magali Rancez
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean-Luc Prétet
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Michel-Salzat
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Messent
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anna Bogdanova
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Couëdel-Courteille
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Evelyne Souil
- Plateforme de Morpho-Histologie, Institut Cochin, INSERM U1016, CNRS URA8104, Université Paris Descartes UMR-S1016, Paris, France
| | - Rémi Cheynier
- Département d'Immunologie-Hématologie, Institut Cochin, INSERM U1016, CNRS URA8104, Université Paris Descartes UMR-S1016, Paris, France
| | - Cécile Butor
- Laboratoire de Transmission et Dissémination Virales, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
157
|
Attachment and fusion inhibitors potently prevent dendritic cell-driven HIV infection. J Acquir Immune Defic Syndr 2011; 56:204-12. [PMID: 21084994 DOI: 10.1097/qai.0b013e3181ff2aa5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) efficiently transfer captured (trans) or de novo-produced (cis) virus to CD4 T cells. Using monocyte-derived DCs, we evaluated entry inhibitors targeting HIV envelope (BMS-C, T-1249) or CCR5 (CMPD167) for their potency to prevent DC infection, DC-driven infection in T cells in trans and cis, and direct infection of DC-T-cell mixtures. Immature DC-T-cell cultures with distinct mechanisms of viral transfer yielded similar levels of infection and produced more proviral DNA compared with matched mature DC-T-cell cultures or infected immature DCs. Although all compounds completely blocked HIV replication, 16 times more of each inhibitor (250 vs 15.6 nM) was required to prevent low-level infection of DCs compared with the productive DC-T-cell cocultures. Across all cell systems tested, BMS-C blocked infection most potently. BMS-C was significantly more effective than CMPD167 at preventing DC infection. In fact, low doses of CMPD167 significantly enhanced DC infection. Elevated levels of CCL4 were observed when immature DCs were cultured with CMPD167. Viral entry inhibitors did not interfere with Candida albicans-specific DC cytokine/chemokine responses. These findings indicate that an envelope-binding small molecule is a promising tool for topical microbicide design to prevent the infection of early targets needed to establish and disseminate HIV infection.
Collapse
|
158
|
HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 2011; 118:298-308. [PMID: 21411754 DOI: 10.1182/blood-2010-07-297721] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.
Collapse
|
159
|
Zhao JL, Hao S, Feng MM, Li PF, Gong W, Xu XQ, Huan XP, Fu GF, Hou YY. Chinese human immunodeficiency virus-1 patients with different routes of transmission exhibit altered expression levels of blood dendritic cell subpopulations. Viral Immunol 2011; 24:35-43. [PMID: 21319977 DOI: 10.1089/vim.2010.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the pathogenesis of human immunodeficiency virus-1 (HIV-1). Reduced numbers of blood DCs have been observed in individuals with chronic HIV-1 infection. In the present study, we analyzed the expression levels of monocytes, myeloid dendritic cell (mDC) precursors, mDCs, and plasmacytoid dendritic cells (pDCs), in HIV-1-infected patients in China who were infected via different routes of transmission, including heterosexual and homosexual sexual contact, and blood transmission through importation of blood or blood products, to further elucidate their role in HIV. Compared with HIV-negative individuals (n = 40), relative levels of CD11c+CD14⁻mDCs, CD11c++CD123(low) mDCs, and CD11c⁻CD123+ pDCs in total peripheral blood mononuclear cells (PBMCs) were significantly lower in all HIV patients (n = 93), and in those with blood transmission (n = 26) and heterosexual transmission (n = 43), while relative levels of CD11c+CD14⁻mDCs were significantly lower in HIV patients infected via homosexual transmission (n = 24). The results of correlation analysis demonstrated a significant negative correlation between CD4+ T-cell counts and the relative levels of CD11c++CD123(low) mDCs in HIV-I patients infected via blood transmission. There was no significant correlation between CD4+ T-cell counts and the expression level of other DC subpopulations in PBMCs from HIV patients. The results of this study suggest that HIV-1 patients with different routes of transmission exhibit altered expression levels of blood DC subpopulations, which contributes to dysregulated immune responses and pathogenesis of HIV-1.
Collapse
Affiliation(s)
- Jun-Li Zhao
- Immunology and Reproductive Biology Laboratory of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Cromwell MA, Carville A, Mansfield K, Klumpp S, Westmoreland SV, Lackner AA, Johnson RP. SIV-specific CD8+ T cells are enriched in female genital mucosa of rhesus macaques and express receptors for inflammatory chemokines. Am J Reprod Immunol 2011; 65:242-7. [PMID: 21223428 DOI: 10.1111/j.1600-0897.2010.00966.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PROBLEM Mucosal T lymphocyte responses in the female reproductive tract, the primary site of HIV transmission in women, may be critical for initial control of virus infection. In addition, characterization of genital immune responses to HIV will be important for the development of a vaccine capable of preventing infection by this route. METHOD OF STUDY We analyzed lymphocytes isolated from vagina and cervix of chronically SIV-infected macaques for the frequency of SIV Gag tetramer-binding cells and expression of chemokine receptors. RESULTS We found that the frequency of SIV-specific CD8+ T cell responses was 3- to 30-fold higher in genital tissues than in peripheral blood. SIV-specific CD8+ T cells in genital tissues expressed high levels of CXCR3 and CCR5, chemokine receptors normally expressed on memory T cells that home to inflamed tissues. Cells expressing CXCR3 colocalized with its chemokine ligand CXCL9 [monokine induced by interferon gamma, MIG] in the vaginal lamina propria. CONCLUSION These results indicate that the frequency of SIV-specific CD8+ T cells in the female genital mucosa is enriched compared with peripheral blood and provide initial information regarding the signals that direct recruitment of T cells to the female reproductive tract.
Collapse
Affiliation(s)
- Mandy A Cromwell
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Shen R, Richter HE, Smith PD. Early HIV-1 target cells in human vaginal and ectocervical mucosa. Am J Reprod Immunol 2010; 65:261-7. [PMID: 21118402 DOI: 10.1111/j.1600-0897.2010.00939.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
After translocation through the pleuristratified epithelium of the lower female genital tract, HIV-1 encounters potential target mononuclear cells in the lamina propria of the vagina and ectocervix. Here we show that each major type of genital mononuclear cells, including dendritic cells (DCs), macrophages and lymphocytes, are susceptible to HIV-1 in vitro. Among suspensions of vaginal and ectocervical mononuclear cells, DCs were the first cells to take up virus, containing GFP-tagged virions as early as 15 min after exposure. At 2 hr after exposure, DCs still contained the largest proportion of HIV-1(+) cells compared to lamina propria macrophages and lymphocytes from the same mucosal compartment. By 4 days, however, lymphocytes from both vaginal and ectocervical mucosa supported the highest level of HIV-1 replication. Genital macrophages from the same mucosal tissues also were permissive to HIV-1, in sharp contrast to intestinal macrophages, which we have shown previously do not support HIV-1 replication. Thus, among human vaginal and ectocervical mononuclear target cells, DCs are the first to take up HIV-1 and T cells support the most robust viral replication. Further characterization of the parameters of HIV-1 infection in genital mononuclear cells will enhance our understanding of HIV-1 infection in the female genital tract.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
162
|
Lai BE, Geonnotti AR, Desoto MG, Montefiori DC, Katz DF. Semi-solid gels function as physical barriers to human immunodeficiency virus transport in vitro. Antiviral Res 2010; 88:143-51. [PMID: 20709109 PMCID: PMC3072786 DOI: 10.1016/j.antiviral.2010.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/01/2010] [Accepted: 08/06/2010] [Indexed: 12/17/2022]
Abstract
Vaginal gels may act as physical barriers to HIV during sexual transmission. However, the extent and significance of this effect are not well understood. During male-to-female sexual transmission of HIV, semen containing infectious HIV is present within the lower female reproductive tract. In cases where a topical gel has previously been applied to the vaginal epithelium, virions must move through gel layers before reaching vulnerable tissue. This additional barrier could affect the functioning of anti-HIV microbicide gels and placebos. To better understand HIV transport in gels, we: (1) quantified diffusion coefficients of HIV virions within semi-solid delivery vehicles; and (2) tested the barrier functioning of thin gel layers in a Transwell system. Two gels used as placebos in microbicides clinical trials, hydroxyethyl cellulose (HEC) and methylcellulose (MC), were found to hinder HIV transport in vitro. The diffusion coefficients for HIV virions in undiluted HEC and MC were 4±2 x 10⁻¹² and 7±1 x 10⁻¹² cm²/s, respectively. These are almost 10,000 times lower than the diffusion coefficient for HIV in water. Substantial gel dilution (80%:diluent/gel, v/v) was required before diffusion coefficients rose to even two orders of magnitude lower than those in water. In the Transwell system, gel layers of approximately 150-μm thickness reduced HIV transport. There was a log reduction in the amount of HIV that had breached the Transwell membrane after 0-, 4-, and 8-h incubations. The ability of a gel to function as a physical barrier to HIV transport from semen to tissue will also depend on its distribution over the epithelium and effects of dilution by vaginal fluids or semen. Results here can serve as a baseline for future design of products that act as barriers to HIV transmission. The potential barrier function of placebo gels should be considered in the design and interpretation of microbicides clinical trials.
Collapse
Affiliation(s)
- Bonnie E Lai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
163
|
Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin Biol Ther 2010; 10:1181-95. [PMID: 20624114 DOI: 10.1517/14712598.2010.496776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD There are currently over thirty million people infected with HIV and there are no vaccines available to prevent HIV infections or disease. The genitourinary, rectal and oral mucosa are the mucosal HIV transmission routes. An effective vaccine that can induce both systemic and local mucosal immunity is generally accepted as a major means of protection against mucosal HIV transmission and AIDS. WHAT THE READER WILL GAIN Structure and cells that comprise the oral, vaginal and rectal mucosa pertaining to HIV transmission and vaccination strategies through each mucosal route to prevent mucosal and systemic infection will be discussed. AREAS COVERED IN THIS REVIEW Covering publications from 1980s through 2010, mucosal transmission of HIV and current and previous approaches to vaccinations are discussed. TAKE HOME MESSAGE Although oral transmission of HIV is far less common than vaginal and rectal transmissions, infections through this route do occur through oral sex as well as vertically from mother to child. Mucosal vaccination strategies against oral and other mucosal HIV transmissions are under intensive research but the lack of consensus on immune correlates of protection and lack of safe and effective mucosal adjuvants and delivery systems hamper progress towards a licensed vaccine.
Collapse
Affiliation(s)
- Mingke Yu
- EpitoGenesis, Inc., Walnut Creek, CA 94598, USA
| | | |
Collapse
|
164
|
Sagar M. HIV-1 transmission biology: selection and characteristics of infecting viruses. J Infect Dis 2010; 202 Suppl 2:S289-96. [PMID: 20846035 DOI: 10.1086/655656] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Individuals with recent human immunodeficiency virus type 1 (HIV-1) acquisition are likely to be a major source for other new infections because they have a high level of plasma virus, and the circulating virions possess unique properties that are highly suited for transmission. The acute infection period, however, presents a unique "window of opportunity," because there are a limited number of genetic variants. Studies aim to elucidate the nature of the transmitted viruses and understand the mechanisms that inhibit the majority of variants present in the chronically infected partner from establishing a productive infection in the naive host. Greater understanding of these issues may open promising new ways to effectively block HIV-1 transmission.
Collapse
Affiliation(s)
- Manish Sagar
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA.
| |
Collapse
|
165
|
Mayer KH, Venkatesh KK. Antiretroviral therapy as HIV prevention: status and prospects. Am J Public Health 2010; 100:1867-76. [PMID: 20724682 PMCID: PMC2936983 DOI: 10.2105/ajph.2009.184796] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2010] [Indexed: 01/01/2023]
Abstract
As antiretroviral treatment of HIV infection has become increasingly accessible, attention has focused on whether these drugs can used for prevention because of increased tolerability of newer medications, decreased cost, and the limitations of other approaches. We review the status of antiretroviral HIV prevention, including chemoprophylaxis, as well as the effects of treatment of infected individuals on prevention. It is possible that the life-saving agents that have transformed the natural history of AIDS can be a critical component of HIV prevention efforts, but their ultimate role in affecting HIV transmission dynamics remains to be defined.
Collapse
Affiliation(s)
- Kenneth H Mayer
- Alpert Medical School, Brown University, Providence, RI, USA.
| | | |
Collapse
|
166
|
Changyong G, Sun M, Li H, Brockmeyer N, Wu N. Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN(+) dendritic cells. Eur J Med Res 2010; 15:377-82. [PMID: 20952346 PMCID: PMC3351904 DOI: 10.1186/2047-783x-15-9-377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells (DC) are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40) is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4) and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN)(+) DC were analyzed by flow cytometry (FCM) and mixed lymphocyte reaction (MLR). Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC.
Collapse
Affiliation(s)
- G Changyong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, PR China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - M Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - H Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, PR China
| | - N Brockmeyer
- Department of Dermatology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - N Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
167
|
Abstract
OBJECTIVE Increasing data support a role for antibody-dependent cellular cytotoxicity (ADCC) in controlling HIV-1 infection. We recently isolated a naturally occurring dimeric form of the anti-HIV-1 antibody 2G12 and found it to be significantly more potent than 2G12 monomer in neutralizing primary virus strains. However, given the unusual structure of dimeric 2G12 with two Fc regions, it was not clear whether 2G12 dimer could bind to the CD16 Fc receptor on ADCC effector cells or trigger ADCC. Here we compared the in-vitro ADCC activities of 2G12 monomer and dimer and investigated the effects of including ADCC-enhancing mutations in both forms of 2G12. METHODS An in-vitro ADCC assay using target cells stably expressing gp160 was developed to evaluate the activities of 2G12 monomer and dimer with and without ADCC-enhancing mutations that increase the CD16-binding affinity of the 2G12 Fc region. RESULTS Both 2G12 monomer and 2G12 dimer elicited ADCC, although the dimer showed increased potency [lower half-maximal concentration (EC(50))] in triggering ADCC, thus confirming its ability to bind CD16 and trigger ADCC. The ADCC-enhancing mutations improved the ADCC activity of 2G12 monomer more than 2G12 dimer such that their EC(50) values were nearly equal. However, no increase in nonspecific ADCC activity was observed using 2G12 IgGs with these mutations. CONCLUSION Given the likelihood that ADCC plays a role in protecting against initial infection and/or controlling chronic infection, these data suggest 2G12 dimers and/or addition of ADCC-enhancing mutations could augment the prophylactic and/or therapeutic potential of 2G12.
Collapse
|
168
|
Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA. PPARgamma and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog 2010; 6:e1000981. [PMID: 20617179 PMCID: PMC2895661 DOI: 10.1371/journal.ppat.1000981] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 06/02/2010] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARgamma) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARgamma and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARgamma and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARgamma and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission.
Collapse
Affiliation(s)
- Timothy M. Hanley
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wendy Blay Puryear
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
169
|
Duenas-Decamp MJ, Peters PJ, Repik A, Musich T, Gonzalez-Perez MP, Caron C, Brown R, Ball J, Clapham PR. Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis. Future Virol 2010; 5:435-451. [PMID: 20930940 DOI: 10.2217/fvl.10.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.
Collapse
Affiliation(s)
- Maria José Duenas-Decamp
- Program in Molecular Medicine & Department of Molecular Genetics & Microbiology, Biotech 2, 373 Plantation Street, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
García-Lerma JG, Cong ME, Mitchell J, Youngpairoj AS, Zheng Q, Masciotra S, Martin A, Kuklenyik Z, Holder A, Lipscomb J, Pau CP, Barr JR, Hanson DL, Otten R, Paxton L, Folks TM, Heneine W. Intermittent prophylaxis with oral truvada protects macaques from rectal SHIV infection. Sci Transl Med 2010; 2:14ra4. [PMID: 20371467 DOI: 10.1126/scitranslmed.3000391] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
HIV continues to spread globally, mainly through sexual contact. Despite advances in treatment and care, preventing transmission with vaccines or microbicides has proven difficult. A promising strategy to avoid transmission is prophylactic treatment with antiretroviral drugs before exposure to HIV. Clinical trials evaluating the efficacy of daily treatment with the reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) or Truvada (TDF plus emtricitabine) are under way. We hypothesized that intermittent prophylactic treatment with long-acting antiviral drugs would be as effective as daily dosing in blocking the earliest stages of viral replication and preventing mucosal transmission. We tested this hypothesis by intermittently giving prophylactic Truvada to macaque monkeys and then exposing them rectally to simian-human immunodeficiency virus (SHIV) once a week for 14 weeks. A simple regimen with an oral dose of Truvada given 1, 3, or 7 days before exposure followed by a second dose 2 hours after exposure was as protective as daily drug administration, possibly because of the long intracellular persistence of the drugs. In addition, a two-dose regimen initiated 2 hours before or after virus exposure was effective, and full protection was obtained by doubling the Truvada concentration in both doses. We saw no protection if the first dose was delayed until 24 hours after exposure, underscoring the importance of blocking initial replication in the mucosa. Our results show that intermittent prophylactic treatment with an antiviral drug can be highly effective in preventing SHIV infection, with a wide window of protection. They strengthen the possibility of developing feasible, cost-effective strategies to prevent HIV transmission in humans.
Collapse
Affiliation(s)
- J Gerardo García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
[Roles of dendritic cell in disease progression of AIDS primate models]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2010; 31:57-65. [PMID: 20446455 DOI: 10.3724/sp.j.1141.2010.01057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Non-human primate models are widely used in research of AIDS mechanism, transmission, vaccine and drugs. Dendritic cells (DC), as antigen presenting cells linking the innate immunity and acquired immunity, play a pivotal role in AIDS progression. Studies on the change of DC subsets number, phenotype and function in AIDS non-human primate models are important for revealing some mechanism of AIDS progression. This article reviews the progress in DC subsets of non-human primate AIDS models, which will provide an avenue for further study in AIDS.
Collapse
|
172
|
Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, Lisco A. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol 2010; 3:280-90. [PMID: 20147895 PMCID: PMC3173980 DOI: 10.1038/mi.2010.2] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection and dissemination of human immunodeficiency virus (HIV)-1 through the female body after vaginal intercourse depends on the activation/differentiation status of mucosal CD4 T cells. In this study, we investigated this status and the susceptibility to HIV-1 infection of human cervico-vaginal tissue ex vivo. We found that virtually all T cells are of the effector memory phenotype with broad CC chemokine receptor 5 (CCR5) expression. As it does in vivo, human cervico-vaginal tissue ex vivo preferentially supports the productive infection of R5 HIV-1 rather than that of X4 HIV-1 in spite of the broad expression of CXC chemokine receptor 4 (CXCR4). X4 HIV-1 replicated only in the few tissues that were enriched in CD27(+)CD28(+) effector memory CD4 T cells. Productive infection of R5 HIV-1 occurred preferentially in activated CD38(+)CD4 T cells and was followed by a similar activation of HIV-1-uninfected (bystander) CD4 T cells that may amplify viral infection. These results provide new insights into the dependence of HIV-1 infection and dissemination on the activation/differentiation of cervico-vaginal lymphocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Leonid Margolis
- Corresponding authors: National Institutes of Health, Building 10, Room 9D58, 10 Center Drive, Bethesda, MD, , , Tel: 301-5941751, Fax: 301-4800857
| | - Andrea Lisco
- Corresponding authors: National Institutes of Health, Building 10, Room 9D58, 10 Center Drive, Bethesda, MD, , , Tel: 301-5941751, Fax: 301-4800857
| |
Collapse
|
173
|
González N, Bermejo M, Calonge E, Jolly C, Arenzana-Seisdedos F, Pablos JL, Sattentau QJ, Alcamí J. SDF-1/CXCL12 production by mature dendritic cells inhibits the propagation of X4-tropic HIV-1 isolates at the dendritic cell-T-cell infectious synapse. J Virol 2010; 84:4341-51. [PMID: 20181695 PMCID: PMC2863755 DOI: 10.1128/jvi.02449-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/15/2010] [Indexed: 11/20/2022] Open
Abstract
An efficient mode of HIV-1 infection of CD4 lymphocytes occurs in the context of infectious synapses, where dendritic cells (DCs) enhance HIV-1 transmission to lymphocytes. Emergence of CXCR4-using (X4) HIV-1 strains occurs late in the course of HIV-1 infection, suggesting that a selective pressure suppresses the switch from CCR5 (R5) to X4 tropism. We postulated that SDF-1/CXCL12 chemokine production by DCs could be involved in this process. We observed CXCL12 expression by DCs in vivo in the parafollicular compartment of lymph nodes. The role of mature monocyte-derived dendritic cells (mMDDCs) in transmitting R5 and X4 HIV-1 strains to autologous lymphocytes was studied using an in vitro infection system. Using this model, we observed a strong enhancement of lymphocyte infection with R5, but not with X4, viruses. This lack of DC-mediated enhancement in the propagation of X4 viruses was proportional to CXCL12 production by mMDDCs. When CXCL12 activity was inhibited with specific neutralizing antibodies or small interfering RNAs (siRNAs), the block to mMDDC transfer of X4 viruses to lymphocytes was removed. These results suggest that CXCL12 production by DCs resident in lymph nodes represents an antiviral mechanism in the context of the infectious synapse that could account for the delayed appearance of X4 viruses.
Collapse
Affiliation(s)
- Nuria González
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Mercedes Bermejo
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Esther Calonge
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Clare Jolly
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - José L. Pablos
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Quentin J. Sattentau
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, Unité de Pathogénie Virale Moléculaire, Institut Pasteur, Paris, France, Servicio de Reumatología, Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
174
|
Kaushic C, Ferreira VH, Kafka JK, Nazli A. HIV infection in the female genital tract: discrete influence of the local mucosal microenvironment. Am J Reprod Immunol 2010; 63:566-75. [PMID: 20384619 DOI: 10.1111/j.1600-0897.2010.00843.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Women acquire HIV infections predominantly at the genital mucosa through heterosexual transmission. Therefore, the immune milieu at female genital surfaces is a critical determinant of HIV susceptibility. In this review, we recapitulate the evidence suggesting that several distinctive innate immune mechanisms in the female genital tract (FGT) serve to significantly deter or facilitate HIV-1 infection. Epithelial cells lining the FGT play a key role in forming a primary barrier to HIV entry. These cells express Toll-like receptors and other receptors that recognize and respond directly to pathogens, including HIV-1. In addition, innate biological factors produced by epithelial and other cells in the FGT have anti-HIV activity. Female sex hormones, co-infection with other pathogens and components in semen may also exacerbate or down-modulate HIV transmission. A combination of innate and adaptive immune factors and their interactions with the local microenvironment determine the outcome of HIV transmission. Improving our understanding of the female genital microenvironment will be useful in developing treatments that augment and sustain protective immune responses in the genital mucosa, such as microbicides and vaccines, and will provide greater insight into viral pathogenesis in the FGT.
Collapse
Affiliation(s)
- Charu Kaushic
- Center For Gene Therapeutics, Michael G. DeGroote Institute of Infectious Diseases Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
175
|
Abstract
Measures to prevent sexual mucosal transmission of human immunodeficiency virus (HIV)-1 are urgently needed to curb the growth of the acquired immunodeficiency syndrome (AIDS) pandemic and ultimately bring it to an end. Studies in animal models and acute HIV-1 infection reviewed here reveal potential viral vulnerabilities at the mucosal portal of entry in the earliest stages of infection that might be most effectively targeted by vaccines and microbicides, thereby preventing acquisition and averting systemic infection, CD4 T-cell depletion and pathologies that otherwise rapidly ensue.
Collapse
Affiliation(s)
- Ashley T Haase
- Department of Microbiology, University of Minnesota, Minnesota 55455, USA.
| |
Collapse
|
176
|
Stimulation of HIV-1 replication in immature dendritic cells in contact with primary CD4 T or B lymphocytes. J Virol 2010; 84:4172-82. [PMID: 20147388 DOI: 10.1128/jvi.01567-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sexual transmission is the major route of HIV-1 infection worldwide. Dendritic cells (DCs) from the mucosal layers are considered to be the initial targets of HIV-1 and probably play a crucial role in HIV-1 transmission. We investigated the role of cell-to-cell contact between HIV-1-exposed immature DCs and various lymphocyte subsets in the stimulation of HIV-1 replication. We found that HIV-1 replication and production in DCs were substantially enhanced by the coculture of DCs with primary CD4 T or nonpermissive B lymphocytes but not with primary activated CD8 T lymphocytes or human transformed CD4 T lymphocytes. Most of the new virions released by cocultures of HIV-1-exposed immature DCs and primary B lymphocytes expressed the DC-specific marker CD1a and were infectious for both immature DCs and peripheral blood mononuclear cells (PBMCs). Cocultured DCs thus produced large numbers of infectious viral particles under these experimental conditions. The soluble factors present in the supernatants of the cocultures were not sufficient to enhance HIV-1 replication in DCs, for which cell-to-cell contact was required. The neutralizing monoclonal antibody IgG1b12 and polyclonal anti-HIV-1 sera efficiently blocked HIV-1 transfer to CD4 T lymphocytes but did not prevent the increase in viral replication in DCs. Neutralizing antibodies thus proved to be more efficient at blocking HIV-1 transfer than previously thought. Our findings show that HIV-1 exploits DC-lymphocyte cross talk to upregulate replication within the DC reservoir. We provide evidence for a novel mechanism that may facilitate HIV-1 replication and transmission. This mechanism may favor HIV-1 pathogenesis, immune evasion, and persistence.
Collapse
|
177
|
Abstract
The HIV vaccines tested in the halted Step efficacy trial and the modestly successful phase 3 RV144 trial were designed to elicit strong systemic immune responses; therefore, strategies to direct immune responses into mucosal sites should be tested in an effort to improve AIDS vaccine efficacy. However, as increased CD4(+) T-cell activation and recruitment to mucosal sites have the potential to enhance HIV transmission, mucosal immune responses to HIV vaccines should primarily consist of effector CD8(+) T cells and plasma cells. Controlling the level of mucosal T-cell activation may be a critical factor in developing an effective mucosal AIDS vaccine. Immunization routes and adjuvants that can boost antiviral immunity in mucosal surfaces offer a reasonable opportunity to improve AIDS vaccine efficacy. Nonhuman primate models offer the best system for preclinical evaluation of these approaches.
Collapse
Affiliation(s)
- Meritxell Genescà
- Center for Comparative Medicine, California National Primate Research Center, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Christopher J. Miller
- Center for Comparative Medicine, California National Primate Research Center, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
178
|
Buckheit RW, Watson KM, Morrow KM, Ham AS. Development of topical microbicides to prevent the sexual transmission of HIV. Antiviral Res 2010; 85:142-58. [PMID: 19874851 PMCID: PMC2815091 DOI: 10.1016/j.antiviral.2009.10.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/12/2009] [Accepted: 10/16/2009] [Indexed: 01/07/2023]
Abstract
Women comprise almost 50% of the population of people living with HIV and the majority of these women contracted the virus through sexual transmission in monogamous relationships in the developing world. In these environments, where women are not empowered to protect themselves through the negotiation of condom use, effective means of preventing HIV transmission are urgently needed. In the absence of an approved and effective vaccine, microbicides have become the strategy of choice to provide women with the ability to prevent HIV transmission from their infected partners. Topical microbicides are agents specifically developed and formulated for use in either the vaginal or rectal environment that prevent infection by sexually transmitted infectious organisms, including pathogenic viruses, bacteria and fungi. Although a microbicidal product will have many of the same properties as other anti-infective agents and would be similarly developed through human clinical trials, microbicide development bears its own challenges related to formulation and delivery and the unique environment in which the product must act, as well as the requirement to develop a product that is acceptable to the user. Herein, perspectives based on preclinical and clinical microbicide development experience, which have led to an evolving microbicide development algorithm, will be discussed. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of anti-retroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Robert W Buckheit
- ImQuest BioSciences, Inc., 7340 Executive Way, Suite R, Frederick, MD 21704, USA.
| | | | | | | |
Collapse
|
179
|
Shen R, Smythies LE, Clements RH, Novak L, Smith PD. Dendritic cells transmit HIV-1 through human small intestinal mucosa. J Leukoc Biol 2009; 87:663-70. [PMID: 20007245 DOI: 10.1189/jlb.0909605] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To dissect the early events in the transmission of HIV-1 from mother to child, we investigated whether DCs participate in HIV-1 entry into human small intestinal mucosa. We isolated human MNLs from jejunal lamina propria and identified a subpopulation of CD11c(+)HLA-DR(+) MNLs that expressed DC-SIGN, CD83, CD86, CD206, and CCR7, indicating a DC phenotype. Jejunal DCs also expressed the HIV-1 receptor CD4 and coreceptors CCR5 and CXCR4 and in suspension rapidly took up cell-free HIV-1. HIV-1 inoculated onto the apical surface of explanted jejunum was transported by lamina propria DCs through the mucosa and transmitted in trans to blood and intestinal lymphocytes. These findings indicate that in addition to intestinal epithelial cells, which we showed previously transcytose infectious HIV-1 to indicator cells, intestinal DCs play an important role in transporting HIV-1 through the intestinal mucosa and the subsequent transmission to T cells.
Collapse
Affiliation(s)
- Ruizhong Shen
- Departmentsof Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | |
Collapse
|
180
|
Zariffard MR, Saifuddin M, Finnegan A, Spear GT. HSV type 2 infection increases HIV DNA detection in vaginal tissue of mice expressing human CD4 and CCR5. AIDS Res Hum Retroviruses 2009; 25:1157-64. [PMID: 19886831 DOI: 10.1089/aid.2009.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to develop an in vivo murine model that can be used to study the influence of HSV-2 on HIV infection. Mice expressing transgenes for human CD4, CCR5, and Cyclin T1 were infected intravaginally with HSV-2 and 3-7 days later infected with HIV. HIV DNA was detected by real-time PCR. The frequency of detection of HIV DNA was significantly higher (65%) in vaginal tissue of HSV-2-infected mice compared to mock-infected mice (35%) when HIV was given 3 days after HSV-2. HSV-2-infected mice also had significantly higher levels of HIV DNA in vaginal tissue. HIV DNA was not detected in vaginal tissue of mice lacking human CD4. Longer periods (5 or 7 days) between infection with HSV-2 and HIV did not increase the frequency of detection or the amount of HIV DNA detected. HIV DNA was also detected in lymph nodes from some of the mice that were infected intravaginally with HSV-2 and HIV. Flow cytometric and mRNA analysis of human CD4 in vaginal tissue suggested that HSV-2 infection increased the number of T cells expressing human CD4 in vaginal tissue. This study provides evidence that HIV infection of cells occurs in the vagina of mice expressing human CD4, CCR5, and Cyclin T1 and that HSV-2 infection increases HIV infection. These findings demonstrate that this model can be used to study the mechanisms responsible for increased susceptibility to HIV in HSV-2-infected persons and for testing preventative treatments.
Collapse
Affiliation(s)
- M. Reza Zariffard
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | | | - Alison Finnegan
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Gregory T. Spear
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| |
Collapse
|
181
|
Muratori C, Ruggiero E, Sistigu A, Bona R, Federico M. Human immunodeficiency virus type 1 (HIV-1) protease inhibitors block cell-to-cell HIV-1 endocytosis in dendritic cells. J Gen Virol 2009; 90:2777-2787. [DOI: 10.1099/vir.0.012609-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sexual transmission is now the most frequent means of diffusion of human immunodeficiency virus type 1 (HIV-1). Even if the underlying mechanism is still largely unknown, there is a consensus regarding the key role played by mucosal dendritic cells (DCs) in capturing HIV through contact with infected subepithelial lymphocytes, and their capacity to spread HIV by trans-infection. We found that HIV protease inhibitors (PIs) reduced virion endocytosis strongly in monocyte-derived immature (i) DCs contacting HIV-1-infected cells, and that this phenomenon led to dramatically impaired trans-infection activity. This inhibitory effect was not mediated by the block of viral protease activity, as it was also operative when donor cells were infected with a PI-resistant HIV-1 strain. The block of virus maturation imposed by PIs did not correlate with significant variations in the levels of virus expression in donor cells or of Gag/Env virion incorporation. Also, PIs did not affect the endocytosis activity of DCs. In contrast, we noticed that PI treatment inhibited the formation of cell–cell conjugates whilst reducing the expression of ICAM-1 in target iDCs. Our results contribute to a better delineation of the mechanisms underlying HIV-1 trans-infection activity in DCs, whilst having implications for the development of new anti-HIV microbicide strategies.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Eliana Ruggiero
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Sistigu
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Federico
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
182
|
Ceballos A, Remes Lenicov F, Sabatté J, Rodríguez Rodrígues C, Cabrini M, Jancic C, Raiden S, Donaldson M, Agustín Pasqualini R, Marin-Briggiler C, Vazquez-Levin M, Capani F, Amigorena S, Geffner J. Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells. ACTA ACUST UNITED AC 2009; 206:2717-33. [PMID: 19858326 PMCID: PMC2806607 DOI: 10.1084/jem.20091579] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Semen is the main vector for HIV-1 dissemination worldwide. It contains three major sources of infectious virus: free virions, infected leukocytes, and spermatozoa-associated virions. We focused on the interaction of HIV-1 with human spermatozoa and dendritic cells (DCs). We report that heparan sulfate is expressed in spermatozoa and plays an important role in the capture of HIV-1. Spermatozoa-attached virus is efficiently transmitted to DCs, macrophages, and T cells. Interaction of spermatozoa with DCs not only leads to the transmission of HIV-1 and the internalization of the spermatozoa but also results in the phenotypic maturation of DCs and the production of IL-10 but not IL-12p70. At low values of extracellular pH (∼6.5 pH units), similar to those found in the vaginal mucosa after sexual intercourse, the binding of HIV-1 to the spermatozoa and the consequent transmission of HIV-1 to DCs were strongly enhanced. Our observations support the notion that far from being a passive carrier, spermatozoa acting in concert with DCs might affect the early course of sexual transmission of HIV-1 infection.
Collapse
Affiliation(s)
- Ana Ceballos
- Centro Nacional de Referencia para SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Cell-mediated immunity to HIV in the female reproductive tract. J Reprod Immunol 2009; 83:190-5. [PMID: 19857902 DOI: 10.1016/j.jri.2009.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 07/12/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022]
Abstract
The majority of HIV infections occur via sexual transmission across a mucosal barrier. In the case of male-to-female transmission, HIV-susceptible target cells are abundant in the ectocervix and vagina but are also present in the upper reproductive tract (endocervix and uterus). While the mechanisms of HIV transmission in the female reproductive tract are an active area of investigation, cell-mediated immune responses in reproductive tissues have not been thoroughly characterized. HIV-specific CD8+ T cells are present in reproductive tissues, to some extent mirroring populations present in the blood and gastrointestinal mucosa. Innate natural killer (NK) cells and regulatory T cells are also present in the genital tract. Furthermore, there is mounting evidence that the female reproductive tract may be uniquely susceptible to infection at specific times during the menstrual cycle, due to hormonal regulation of both innate and adaptive immune responses. This review provides an overview of recent findings on cell-mediated immunity to HIV in the female reproductive tract.
Collapse
|
184
|
Vaccines and microbicides preventing HIV-1, HSV-2, and HPV mucosal transmission. J Invest Dermatol 2009; 130:352-61. [PMID: 19829304 DOI: 10.1038/jid.2009.227] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1, herpes simplex virus type 2 (HSV-2), and human papillomavirus (HPV), among other sexually transmitted infections, represent a major burden for global health. Initial insights into the mucosal transmission of these viral pathogens have raised optimism with regard to the rapid generation of protective vaccines. Nevertheless, setbacks for HIV-1 and HSV-2 vaccines have seriously challenged the initial enthusiasm. Recently, two new vaccines that efficiently prevented HPV infection have renewed the hope that vaccinal prevention of viral mucosal sexually transmitted infections is possible. HIV-1 and HSV-2 differ from HPV, and each virus needs to be tackled with a distinct approach. However, vaccines are not the only possible answer. Topically applied agents (microbicides) are an attractive alternative in the prevention of HIV-1 and HSV-2 mucosal transmission. Progress in understanding the mechanisms of genital transmission of HIV-1 and HSV-2 is required for successful vaccine or microbicide candidates to emerge from current approaches.
Collapse
|
185
|
Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J Virol 2009; 83:11196-200. [PMID: 19692470 DOI: 10.1128/jvi.01899-08] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To reliably infect a primate model for human immunodeficiency virus (HIV), approximately 10,000-fold more virus must be delivered vaginally than intravenously. However, the vaginal mechanisms that help protect against HIV are poorly understood. Here, we report that human cervicovaginal mucus (CVM), obtained from donors with normal lactobacillus-dominated vaginal flora, efficiently traps HIV, causing it to diffuse more than 1,000-fold more slowly than it does in water. Lactobacilli acidify CVM to pH approximately 4 by continuously producing lactic acid. At this acidic pH, we found that lactic acid, but not HCl, abolished the negative surface charge on HIV without lysing the virus membrane. In contrast, in CVM neutralized to pH 6 to 7, as occurs when semen temporarily neutralizes the vagina, HIV maintained its native surface charge and diffused only 15-fold more slowly than it would in water. Thus, methods that can maintain both a high lactic acid content and acidity for CVM during coitus may contribute to both vaginal and penile protection by trapping HIV before it can reach target cells. Our results reveal that CVM likely plays an important but currently unappreciated role in decreasing the rate of HIV sexual transmission.
Collapse
|
186
|
Stone M, Ma ZM, Genescà M, Fritts L, Blozois S, McChesney MB, Miller CJ. Limited dissemination of pathogenic SIV after vaginal challenge of rhesus monkeys immunized with a live, attenuated lentivirus. Virology 2009; 392:260-70. [PMID: 19647847 DOI: 10.1016/j.virol.2009.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/26/2022]
Abstract
In non-human primate models of AIDS, attenuated lentiviruses provide the most reliable protection from challenge with pathogenic virus but the extent to which the vaccine virus replicates after challenge is unclear. At 7 and 14 days after vaginal challenge with pathogenic SIVmac239, plasma SIVenv RNA levels were significantly lower in female macaques immunized 6 months earlier with live, attenuated SHIV89.6 compared to unimmunized control animals. In 2 SHIV-immunized, unprotected macaques SIV replication produced moderate-level plasma viremia with dissemination of challenge virus to all tissues on day 14 after challenge. In protected, SHIV-immunized monkeys, SIV replication was controlled in all tissues, from the day of challenge through 14 days post-challenge. Further, in CD8(+) T cell-depleted SHIV-immunized animals, SIV replication and dissemination were more rapid than in control animals. These findings suggest that replication of a pathogenic AIDS virus can be controlled at the site of mucosal inoculation by live-attenuated lentivirus immunization.
Collapse
Affiliation(s)
- Mars Stone
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616 USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Hirbod T, Kaldensjö T, Lopalco L, Klareskog E, Andersson S, Uberti-Foppa C, Ferrari D, Manghi M, Andersson J, Loré K, Broliden K. Abundant and superficial expression of C-type lectin receptors in ectocervix of women at risk of HIV infection. J Acquir Immune Defic Syndr 2009; 51:239-47. [PMID: 19363450 DOI: 10.1097/qai.0b013e3181a74f89] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dendritic cells (DCs) are among the first cells to encounter HIV after mucosal exposure and can bind virus via C-type lectin receptors (CLRs). Here, we characterized the distribution of various DC subtypes and the density of the CLRs, DC-SIGN, langerin, and mannose receptor in the ectocervix of HIV-seronegative women with low- and high-risk behavior for acquiring HIV. MATERIAL AND METHODS Cryosections from ectocervical biopsies, collected from sexually active low-risk healthy HIV immunoglobulin G-negative women (n = 10) and HIV immunoglobulin G-negative commercial sex workers (n = 8), were assessed by computerized image analysis. RESULTS We identified various distinct DC populations. CD11c(-)CD1a(+)langerin(+) cells were localized in the epithelium, whereas CD11c(+)CD1a(-)DC-SIGN and CD11c(-)CD1a(-)CD68(+)DC-SIGN(+)mannose receptor(+) cells were restricted to the lamina propria of the ectocervix. CD123(+) cells were found at low incidence and did not express any of the investigated CLRs. The density of CLR expression was significantly higher in the high-risk as compared with the low-risk women. CONCLUSIONS The superficial and abundant presence of potential HIV target cells makes the ectocervix a likely site for HIV transmission. The detected variations in density and localization of potential HIV receptors should be considered when developing topical prophylactic measures.
Collapse
Affiliation(s)
- Taha Hirbod
- Infectious Diseases Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Pala P, Gomez-Roman VR, Gilmour J, Kaleebu P. An African perspective on mucosal immunity and HIV-1. Mucosal Immunol 2009; 2:300-14. [PMID: 19421180 DOI: 10.1038/mi.2009.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HIV prevention mandates an understanding of the mechanisms of mucosal immunity with attention to some unique features of the epidemic and mucosal environment in the developing world. An effective vaccine will have to induce mucosal protection against a highly diverse virus, which is equipped with a number of immune evasion strategies. Its development will require assessment of mucosal immune responses, and it will have to protect a mucosal environment where inflammation and altered immune responses are common because of the presence of other mucosal infections, such as sexually transmitted infections and parasites, and where nutritional status may also be compromised. Ideally, not only prevention methods would protect adults but also provide cover against gastrointestinal transmission through maternal milk. Prevention might also be complemented by microbicides and circumcision, two alternative approaches to mucosal protection. It seems unlikely that a single solution will work in all instances and intervention might have to act at multiple levels and be tailored to local circumstances. We review here some of the mucosal events associated with HIV infection that are most relevant in an African setting.
Collapse
Affiliation(s)
- P Pala
- Medical Research Council-Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | | |
Collapse
|
189
|
gp340 promotes transcytosis of human immunodeficiency virus type 1 in genital tract-derived cell lines and primary endocervical tissue. J Virol 2009; 83:8596-603. [PMID: 19553331 DOI: 10.1128/jvi.00744-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.
Collapse
|
190
|
Saïdi H. Microbicides: an emerging science of HIV-1 prevention in women-15th Conference on Retroviruses and Opportunistic Infections, Boston, USA, 3-6 February 2008. Rev Med Virol 2009; 19:69-76. [PMID: 19086006 DOI: 10.1002/rmv.601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Women account for almost 60% of human immunodeficiency virus type 1 (HIV-1) infections in Sub-Saharan Africa. HIV-1 prevention tools such as condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are anti-microbial medications formulated for topical administration to prevent the sexual transmission of HIV-1 and other pathogens. Ideally, they will afford bidirectional protection to both men and women who are engaged in vaginal or anal sex. Since the use of condom is often difficult or impossible, this multifunctional role of microbicides will be crucial in the fight against AIDS. The 15th Conference on Retroviruses and Opportunistic Infections (CROI) was recently held in Boston, USA, where one of the most interesting subject area discussed by researchers from all around the world was the latest developments and understandings in microbicide-related basic science and pre-clinical product development as well as in product manufacturing and formulation that address the issue of user adherence.
Collapse
Affiliation(s)
- Héla Saïdi
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France.
| |
Collapse
|
191
|
HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 2009; 114:85-94. [PMID: 19436054 DOI: 10.1182/blood-2008-12-194845] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) play a key role in the pathogenesis of HIV infection. HIV interacts with these cells through 2 pathways in 2 temporal phases, initially via endocytosis and then via de novo replication. Here the transcriptional response of human DCs to HIV-1 was studied in these phases and at different stages of the virus replication cycle using purified HIV-1 envelope proteins, and inactivated and viable HIV-1. No differential gene expression was detected in response to envelope. However, more than 100 genes were differentially expressed in response to entry of viable and inactivated HIV-1 in the first phase. A completely different set of genes was differentially expressed in the second phase, predominantly in response to viable HIV-1, including up-regulation of immune regulation genes, whereas genes encoding lysosomal enzymes were down-regulated. Cathepsins B, C, S, and Z RNA and protein decreased, whereas cathepsin L was increased, probably reflecting a concomitant decrease in cystatin C. The net effect was markedly diminished cathepsin activity likely to result in enhanced HIV-1 survival and transfer to contacting T lymphocytes but decreased HIV-1 antigen processing and presentation to these T cells.
Collapse
|
192
|
Thibault S, Fromentin R, Tardif MR, Tremblay MJ. TLR2 and TLR4 triggering exerts contrasting effects with regard to HIV-1 infection of human dendritic cells and subsequent virus transfer to CD4+ T cells. Retrovirology 2009; 6:42. [PMID: 19419540 PMCID: PMC2691729 DOI: 10.1186/1742-4690-6-42] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 05/06/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recognition of microbial products through Toll-like receptors (TLRs) initiates inflammatory responses orchestrated by innate immune cells such as dendritic cells (DCs). As these cells are patrolling mucosal surfaces, a portal of entry for various pathogens including human immunodeficiency virus type-1 (HIV-1), we investigated the impact of TLR stimulation on productive HIV-1 infection of DCs and viral spreading to CD4+ T cells. RESULTS We report here that engagement of TLR2 on DCs increases HIV-1 transmission toward CD4+ T cells by primarily affecting de novo virus production by DCs. No noticeable and consistent effect was observed following engagement of TLR5, 7 and 9. Additional studies indicated that both HIV-1 infection of DCs and DC-mediated virus transmission to CD4+ T cells were reduced upon TLR4 triggering due to secretion of type-I interferons. CONCLUSION It can thus be proposed that exposure of DCs to TLR2-binding bacterial constituents derived, for example, from pathogens causing sexually transmissible infections, might influence the process of DC-mediated viral dissemination, a phenomenon that might contribute to a more rapid disease progression.
Collapse
|
193
|
Abstract
Gastrointestinal disease has been recognized as a major manifestation of human immunodeficiency virus infection since the earliest recognition of acquired immunodeficiency syndrome (AIDS). Originally, these disease manifestations were considered to be sequelae of the immune destruction that characterizes AIDS rather than being central to the pathogenesis of AIDS. Over time, it has become clear that the mucosal immune system in general and the intestinal immune system in particular are central to the pathogenesis of AIDS, with most of the critical events (eg, transmission, viral amplification, CD4+ T-cell destruction) occurring in the gastrointestinal tract. Compared with peripheral blood, these tissues are not easily accessible for analysis and have only begun to be examined in detail recently. In addition, although the resulting disease can progress over years, many critical events happen within the first few weeks of infection, when most patients are unaware that they are infected. Moreover, breakdown of the mucosal barrier and resulting microbial translocation are believed to be major drivers of AIDS progression. In this review, we focus on the interaction between primate lentiviruses and the gastrointestinal tract and discuss how this interaction promotes the pathogenesis of AIDS and drives immune dysfunction and progression to AIDS. This article draws extensively on work done in the nonhuman primate model of AIDS to fill gaps in our understanding of AIDS in humans.
Collapse
Affiliation(s)
- Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | | |
Collapse
|
194
|
Gram-positive bacteria enhance HIV-1 susceptibility in Langerhans cells, but not in dendritic cells, via Toll-like receptor activation. Blood 2009; 113:5157-66. [PMID: 19279330 DOI: 10.1182/blood-2008-10-185728] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although numerous studies have shown a higher risk of acquiring HIV infection in the presence of other sexually transmitted diseases, the biologic mechanisms responsible for enhanced HIV acquisition are unclear. Because Langerhans cells (LCs) are suspected to be the initial HIV targets after sexual exposure, we studied whether microbial components augment HIV infection in LCs by activating Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) pattern recognition receptors. We found that TLR1/2 and TLR2/6 agonists dramatically enhanced both HIV susceptibility and replication in immature monocyte-derived LCs, whereas TLR3-5, TLR7-9, and NOD1,2 agonists did not significantly affect HIV infection. The same infection-enhancing effects were observed when LCs were incubated with other related bacterial components as well as with whole Gram(+) bacteria. In resident LCs in human skin, TLR2 agonists also significantly increased HIV susceptibility. By contrast, TLR2 agonists and related bacterial components decreased HIV susceptibility in monocyte-derived dendritic cells (DCs). We found that TLR2 activation of LCs, but not DCs, resulted in a significant down-regulation of APOBEC3G, which is a cellular restriction factor for HIV. Given these data, we hypothesize that ligation of TLR2 by Gram(+) bacterial products may underlie enhanced sexual transmission of HIV that occurs with concomitant bacterial sexually transmitted disease infections.
Collapse
|
195
|
Selection of a simian-human immunodeficiency virus strain resistant to a vaginal microbicide in macaques. J Virol 2009; 83:5067-76. [PMID: 19279098 DOI: 10.1128/jvi.00055-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PSC-RANTES binds to CCR5, inhibits human immunodeficiency virus type 1 (HIV-1) entry, and has been shown as a vaginal microbicide to protect rhesus macaques from a simian-human immunodeficiency virus chimera (SHIV(SF162-p3)) infection in a dose-dependent manner. In this study, env gene sequences from SHIV(SF162-p3)-infected rhesus macaques treated with PSC-RANTES were analyzed for possible drug escape variants. Two specific mutations located in the V3 region of gp120 (K315R) and C-helical domain of gp41 (N640D) were identified in a macaque (m584) pretreated with a 100 microM dose of PSC-RANTES. These two env mutations were found throughout infection (through week 77) but were found at only low frequencies in the inoculating SHIV(SF162-p3) stock and in the other SHIV(SF162-p3)-infected macaques. HIV-1 env genes from macaque m584 (env(m584)) and from inoculating SHIV(SF162-p3) (env(p3)) were cloned into an HIV-1 backbone. Increases in 50% inhibitory concentrations to PSC-RANTES with env(m584) were modest (sevenfold) and most pronounced in cells expressing rhesus macaque CCR5 as compared to human CCR5. Nonetheless, virus harboring env(m584), unlike inoculating virus env(p3), could replicate even at the highest tissue culture PSC-RANTES concentrations (100 nM). Dual-virus competitions revealed a dramatic increase in fitness of chimeric virus containing env(m584) (K315R/N640D) over that containing env(p3), but again, only in rhesus CCR5-expressing cells. This study is the first to describe the immediate selection and infection of a drug-resistant SHIV variant in the face of a protective vaginal microbicide, PSC-RANTES. This rhesus CCR5-specific/PSC- RANTES resistance selection is particularly alarming given the relative homogeneity of the SHIV(SF162-p3) stock compared to the potential exposure to a heterogeneous HIV-1 population in human transmission.
Collapse
|
196
|
Abstract
The vast majority of new HIV infections are acquired via the genital and rectal mucosa. Here, we provide an overview of our current knowledge of how HIV establishes local infection, with an emphasis on viral invasion through the female genital tract. Studies using human explant tissues and in vivo animal studies have improved our understanding of the cellular and molecular pathways of infection; this information could be harnessed to design effective HIV vaccines and microbicides.
Collapse
|
197
|
St John EP, Zariffard MR, Martinson JA, Simoes JA, Landay AL, Spear GT. Effect of mucosal fluid from women with bacterial vaginosis on HIV trans-infection mediated by dendritic cells. Virology 2009; 385:22-7. [PMID: 19117586 PMCID: PMC2678409 DOI: 10.1016/j.virol.2008.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/02/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Women with bacterial vaginosis (BV) have a higher risk of HIV transmission but the cause of risk is unknown. Dendritic cells (DC) are implicated in transmission of HIV and we previously observed that DC mature when exposed to mucosal fluid from women with BV. We hypothesized that maturation of DC by BV mucosal fluid would enhance DC-mediated trans-infection of HIV. Monocyte-derived DC (MDDC) were treated with mucosal fluid, incubated with HIV(Bal), and HIV trans-infection was evaluated. While LPS-treated MDDC increased HIV(Bal)trans-infection, BV fluid reduced trans-infection. HIV(Bal) DNA levels in MDDC were not affected by BV fluid or LPS but productive infection of MDDC was decreased by LPS and BV fluid. Mucosal fluid from women with BV does not increase MDDC-mediated trans-infection suggesting that BV does not increase HIV susceptibility by increasing DC-mediated trans-infection. However, indirect effects of DC maturation on HIV transmission cannot be ruled out.
Collapse
Affiliation(s)
- Elizabeth P St John
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
198
|
Yamamoto T, Tsunetsugu-Yokota Y, Mitsuki YY, Mizukoshi F, Tsuchiya T, Terahara K, Inagaki Y, Yamamoto N, Kobayashi K, Inoue JI. Selective transmission of R5 HIV-1 over X4 HIV-1 at the dendritic cell-T cell infectious synapse is determined by the T cell activation state. PLoS Pathog 2009; 5:e1000279. [PMID: 19180188 PMCID: PMC2627922 DOI: 10.1371/journal.ppat.1000279] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/23/2008] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DC–T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DC–T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection. The cellular tropism of HIV-1 is determined by the binding of HIV-1 envelope to chemokine coreceptors, CCR5 or CXCR4, in addition to a major entry receptor, CD4. The mystery still now is that despite the mixed infection of CCR5-utilizing (R5) and CXCR4-utilizing (X4) HIV-1 in many AIDS patients, R5 is predominantly isolated from newly infected individuals whatever the mode of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced initially by antigen-presenting DCs, we postulated that the selective expansion of R5 may largely occur at the level of antigen-dependent DC–T cell interaction, called immunological synapse. Thus, the immunological synapse serves as an infectious synapse through which the virus can be rapidly disseminated in vivo. In this study, we prepared X4 and R5 HIV-1 expressing red or green fluorescence and showed that the selective expansion of R5 over X4 did occur, depending on the activation status of CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yu-ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Molecular Virology, Bio-Response, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Tsuchiya
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Inagaki
- Department of Molecular Virology, Bio-Response, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kazuo Kobayashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Jun-ichiro Inoue
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
199
|
Masopust D. Developing an HIV cytotoxic T-lymphocyte vaccine: issues of CD8 T-cell quantity, quality and location. J Intern Med 2009; 265:125-37. [PMID: 19093965 DOI: 10.1111/j.1365-2796.2008.02054.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Issues of quantity, quality and location impact the ability of CD8 T cells to mediate protection from infection. These issues are considered in light of human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccination. Methods are reviewed that result in 100- to 1000-fold higher frequencies of vaccine-specific memory CD8 T cells than that achieved by current HIV/SIV vaccine approaches. Data demonstrating that location within mucosal tissues has a direct impact on memory CD8 T-cell function are discussed. Arguments are made that establishing memory CD8 T cells within mucosal sites of transmission, a priori to natural infection, may be essential for conferring optimal and rapid protection. Lastly, it is proposed that heterologous prime-boost vaccination with recombinant live replicating vectors, which has the potential to induce tremendous numbers of cytolytic memory CD8 T cells within mucosal tissues, would provide a far more stringent test of the hypothesis that memory CD8 T cells could, in principal, form the basis for a preventative HIV vaccine.
Collapse
Affiliation(s)
- D Masopust
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
200
|
HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathog 2008; 4:e1000215. [PMID: 19112504 PMCID: PMC2603331 DOI: 10.1371/journal.ppat.1000215] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients with HIV-1 often present with a wide range of hematopoietic abnormalities, some of which may be due to the presence of opportunistic infections and to therapeutic drug treatments. However, many of these abnormalities are directly related to HIV-1 replication in the bone marrow (BM). Although the most primitive hematopoietic progenitor cells (HPCs) are resistant to HIV-1 infection, once these cells begin to differentiate and become committed HPCs they become increasingly susceptible to HIV-1 infection and permissive to viral gene expression and infectious virus production. Trafficking of BM-derived HIV-1-infected monocytes has been shown to be involved in the dissemination of HIV-1 into the central nervous system (CNS), and it is possible that HIV-1 replication in the BM and infection of BM HPCs may be involved in the early steps leading to the development of HIV-1-associated dementia (HAD) as an end result of this cellular trafficking process. In addition, the growth and development of HPCs in the BM of patients with HIV-1 has also been shown to be impaired due to the presence of HIV-1 proteins and changes in the cytokine milieu, potentially leading to an altered maturation process and to increased cell death within one or more BM cell lineages. Changes in the growth and differentiation process of HPCs may be involved in the generation of monocyte populations that are more susceptible and/or permissive to HIV-1, and have potentially altered trafficking profiles to several organs, including the CNS. A monocyte subpopulation with these features has been shown to expand during the course of HIV-1 disease, particularly in HAD patients, and is characterized by low CD14 expression and the presence of cell surface CD16.
Collapse
|