151
|
Zhu H, Guo L, Yu D, Du X. New insights into immunomodulatory properties of lactic acid bacteria fermented herbal medicines. Front Microbiol 2022; 13:1073922. [DOI: 10.3389/fmicb.2022.1073922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 pandemic has brought more attention to the immune system, the body’s defense against infectious diseases. The immunomodulatory ability of traditional herbal medicine has been confirmed through clinical trial research, and has obvious advantages over prescription drugs due to its high number of potential targets and low toxicity. The active compounds of herbal drugs primarily include polysaccharides, saponins, flavonoids, and phenolics and can be modified to produce new active compounds after lactic acid bacteria (LAB) fermentation. LAB, primary source of probiotics, can produce additional immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. Moreover, several compounds from herbal medicines can promote the growth and production of LAB-based immune active metabolites. Thus, LAB-mediated fermentation of herbal medicines has become a novel strategy for regulating human immune responses. The current review discusses the immunomodulatory properties and active compounds of LAB fermented herbal drugs, the interaction between LAB and herbal medicines, and changes in immunoregulatory components that occur during fermentation. This study also discusses the mechanisms by which LAB-fermented herbal medicines regulate the immune response, including activation of the innate or adaptive immune system and the maintenance of intestinal immune homeostasis.
Collapse
|
152
|
Preventing Surgery-Induced NK Cell Dysfunction Using Anti-TGF-β Immunotherapeutics. Int J Mol Sci 2022; 23:ijms232314608. [PMID: 36498937 PMCID: PMC9737532 DOI: 10.3390/ijms232314608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Natural Killer (NK) cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed postoperatively. This dysfunction is associated with increased morbidity and cancer recurrence. NK activity depends on the integration of activating and inhibitory signals, which may be modulated by transforming growth factor-beta (TGF-β). We hypothesized that impaired postoperative NK cell IFNγ production is due to altered signaling pathways caused by postoperative TGF-β. NK cell receptor expression, downstream phosphorylated targets, and IFNγ production were assessed using peripheral blood mononuclear cells (PBMCs) from patients undergoing cancer surgery. Healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma and in the presence/absence of a TGF-β-blocking monoclonal antibody (mAb) or the small molecule inhibitor (smi) SB525334. Single-cell RNA sequencing (scRNA-seq) was performed on PBMCs from six patients with colorectal cancer having surgery at baseline/on POD1. Intracellular IFNγ, activating receptors (CD132, CD212, NKG2D, DNAM-1), and downstream target (STAT5, STAT4, p38 MAPK, S6) phosphorylation were significantly reduced on POD1. Furthermore, this dysfunction was phenocopied in healthy NK cells through incubation with rTGF-β1 or POD1 plasma and was prevented by the addition of anti-TGF-β immunotherapeutics (anti-TGF-β mAb or TGF-βR smi). Targeted gene analysis revealed significant decreases in S6 and FKBP12, an increase in Shp-2, and a reduction in NK metabolism-associated transcripts on POD1. pSmad2/3 was increased and pS6 was reduced in response to rTGF-β1 on POD1, changes that were prevented by anti-TGF-β immunotherapeutics. Together, these results suggest that both canonical and mTOR pathways downstream of TGF-β mediate phenotypic changes that result in postoperative NK cell dysfunction.
Collapse
|
153
|
Fionda C, Ruggeri S, Sciumè G, Laffranchi M, Quinti I, Milito C, Palange P, Menichini I, Sozzani S, Frati L, Gismondi A, Santoni A, Stabile H. Age-dependent NK cell dysfunctions in severe COVID-19 patients. Front Immunol 2022; 13:1039120. [PMID: 36466890 PMCID: PMC9713640 DOI: 10.3389/fimmu.2022.1039120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023] Open
Abstract
Natural Killer (NK) cells are key innate effectors of antiviral immune response, and their activity changes in ageing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated the age-related changes of NK cell phenotype and function during SARS-CoV-2 infection, by comparing adult and elderly patients both requiring mechanical ventilation. Adult patients had a reduced number of total NK cells, while elderly showed a peculiar skewing of NK cell subsets towards the CD56lowCD16high and CD56neg phenotypes, expressing activation markers and check-point inhibitory receptors. Although NK cell degranulation ability is significantly compromised in both cohorts, IFN-γ production is impaired only in adult patients in a TGF-β-dependent manner. This inhibitory effect was associated with a shorter hospitalization time of adult patients suggesting a role for TGF-β in preventing an excessive NK cell activation and systemic inflammation. Our data highlight an age-dependent role of NK cells in shaping SARS-CoV-2 infection toward a pathophysiological evolution.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Ruggeri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ilaria Menichini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Luigi Frati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
154
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
155
|
Koh SK, Park J, Kim SE, Lim Y, Phan MTT, Kim J, Hwang I, Ahn YO, Shin S, Doh J, Cho D. Natural Killer Cell Expansion and Cytotoxicity Differ Depending on the Culture Medium Used. Ann Lab Med 2022; 42:638-649. [PMID: 35765872 PMCID: PMC9277036 DOI: 10.3343/alm.2022.42.6.638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/12/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Adoptive cell therapy using umbilical cord blood (UCB)-derived allogeneic natural killer (NK) cells has shown encouraging results. However, because of the insufficient availability of NK cells and limited UCB volume, more effective culture methods are required. NK cell expansion and functionality are largely affected by the culture medium. While human serum is a major affecting component in culture media, the way it regulates NK cell functionality remains elusive. We elucidated the effects of different culture media and human serum supplementation on UCB NK cell expansion and functionality. Methods UCB NK cells were cultured under stimulation with K562-OX40L-mbIL-18/21 feeder cells and IL-2 and IL-15 in serum-containing and serum-free culture media. The effects of the culture media and human serum supplementation on NK cell expansion and cytotoxicity were evaluated by analyzing the expansion rate, activating and inhibitory receptor levels, and the cytotoxicity of the UCB NK cells. Results The optimal medium for NK cell expansion was Dulbecco’s modified Eagle’s medium/Ham’s F12 with supplements and that for cytotoxicity was AIM V supplemented with Immune Cell Serum Replacement. Shifting media is an advantageous strategy for obtaining several highly functional UCB NK cells. Live cell imaging and killing time measurement revealed that human serum enhanced NK cell proliferation but delayed target recognition, resulting in reduced cytotoxicity. Conclusions Culture medium supplementation with human serum strongly affects UCB NK cell expansion and functionality. Thus, culture media should be carefully selected to ensure both NK cell quantity and quality for adoptive cell therapy.
Collapse
Affiliation(s)
- Seung Kwon Koh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Jeehun Park
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Yuree Lim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Minh-Trang Thi Phan
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Ilwoong Hwang
- Department of Emergency Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Yong-Oon Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University, Seoul, Korea.,Department of Laboratory Medicine, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Hospital, Seoul, Korea
| | - Junsang Doh
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul, Korea.,Institute of Engineering Research, Bio-MAX Institute, Seoul National University, Seoul, Korea
| | - Duck Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea.,Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea.,Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
156
|
Liu Z, Guo Y, Huang L, Jia Y, Liu H, Peng F, Duan L, Zhang H, Fu R. Bone marrow mesenchymal stem cells regulate the dysfunction of NK cells via the T cell immunoglobulin and ITIM domain in patients with myelodysplastic syndromes. Cell Commun Signal 2022; 20:169. [PMID: 36303184 DOI: 10.1186/s12964-022-00985-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a clonal disease of hematopoietic cells, characterized by hematopoietic cell hematopoiesis and a high risk of transformation into acute myeloid leukemia (AML). Although the underlying mechanism is unclear, MDS is often associated with immune system disorders, especially cellular immune abnormalities. We analyzed the number of lymphocyte subsets by flow cytometry assay and explored the alteration of lymphocyte subsets in MDS. METHODS Healthy controls, inpatients with primary MDS and patients with AML diagnosed from January 2017 to July 2021 were included. Flow cytometry assays were used to study lymphocyte subsets obtained from the bone marrow of the participants as well as changes in natural killer (NK) cell function. One-way analysis of variance and Student's t-test were used to analyze the data. RESULTS We found a reduction in the number and function of NK cells in patients with MDS. By further measuring the activating and inhibitory receptors on the surface of NK cells, we found that the T cell immunoglobulin and ITIM domain (TIGIT) was the highest expressed marker on NK cells. Additionally, the expression of CD155, which is the ligand of TIGIT, was significantly higher than expressions of CD112 and CD113 on bone marrow mesenchymal stem cells (BMSCs). CONCLUSIONS The co-culture results of BMSCs and NK cells demonstrated that BMSCs regulate NK cells through the TIGIT/CD155 interaction, indicating that NK cells play a vital role in MDS progression. BMSCs regulate the function of NK cells via TIGIT/CD155. Video Abstract.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Lei Huang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yue Jia
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Lixiang Duan
- Yuncheng Central Hospital, Yuncheng, Shanxi, People's Republic of China
| | - Hongkai Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
157
|
Cronk JM, Dziewulska KH, Puchalski P, Crittenden RB, Hammarskjöld ML, Brown MG. Altered-Self MHC Class I Sensing via Functionally Disparate Paired NK Cell Receptors Counters Murine Cytomegalovirus gp34-Mediated Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1545-1554. [PMID: 36165178 PMCID: PMC9529956 DOI: 10.4049/jimmunol.2200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
The murine CMV (MCMV) immunoevasin m04/gp34 escorts MHC class I (MHC I) molecules to the surface of infected cells where these complexes bind Ly49 inhibitory receptors (IRs) and prevent NK cell attack. Nonetheless, certain self-MHC I-binding Ly49 activating and inhibitory receptors are able to promote robust NK cell expansion and antiviral immunity during MCMV infection. A basis for MHC I-dependent NK cell sensing of MCMV-infected targets and control of MCMV infection however remains unclear. In this study, we discovered that the Ly49R activation receptor is selectively triggered during MCMV infection on antiviral NK cells licensed by the Ly49G2 IR. Ly49R activating receptor recognition of MCMV-infected targets is dependent on MHC I Dk and MCMV gp34 expression. Remarkably, although Ly49R is critical for Ly49G2-dependent antiviral immunity, blockade of the activation receptor in Ly49G2-deficient mice has no impact on virus control, suggesting that paired Ly49G2 MCMV sensing might enable Ly49R+ NK cells to better engage viral targets. Indeed, MCMV gp34 facilitates Ly49G2 binding to infected cells, and the IR is required to counter gp34-mediated immune evasion. A specific requirement for Ly49G2 in antiviral immunity is further explained by its capacity to license cytokine receptor signaling pathways and enhance Ly49R+ NK cell proliferation during infection. These findings advance our understanding of the molecular basis for functionally disparate self-receptor enhancement of antiviral NK cell immunity.
Collapse
Affiliation(s)
- John M Cronk
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Karolina H Dziewulska
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Patryk Puchalski
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Rowena B Crittenden
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Marie-Louise Hammarskjöld
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
| | - Michael G Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA;
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
158
|
Jeong S, Kim YG, Kim S, Kim K. Enhanced anticancer efficacy of primed natural killer cells via coacervate-mediated exogenous interleukin-15 delivery. Biomater Sci 2022; 10:5968-5979. [PMID: 36048163 DOI: 10.1039/d2bm00876a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effective exogenous delivery of interleukin (IL)-15 to natural killer (NK) cells with subsequent anticancer efficacy could be a promising immune cell-based cancer immunotherapy. For the protection of encapsulated cargo IL-15 while maintaining its bioactivity under physiological conditions, we utilized a coacervate (Coa) consisting of a cationic methoxy polyethylene glycol-poly(ethylene arginyl aspartate diglyceride) (mPEG-PEAD) polymer, anionic counterpart heparin, and cargo IL-15. mPEGylation into the backbone cation effectively preserved the colloidal stability of Coa in harsh environments and enhanced the protection of cargo IL-15 than normal Coa without mPEGylation. Proliferation and anticancer efficacy of primed NK cells through co-culture with multiple cancer cell lines were enhanced in the mPEG-Coa group due to the maintained bioactivity of cargo IL-15 during the ex vivo expansion of NK cells. These facilitated functions of NK cells were also supported by the increased expression of mRNAs related to anticancer effects of NK cells, including cytotoxic granules, death ligands, anti-apoptotic proteins, and activation receptors. In summary, our Coa-mediated exogenous IL-15 delivery could be an effective ex vivo priming technique for NK cells with sustained immune activation that can effectively facilitate its usage for cancer immunotherapy.
Collapse
Affiliation(s)
- Sehwan Jeong
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Young Guk Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
159
|
Koh JY, Rha MS, Choi SJ, Lee HS, Han JW, Nam H, Kim DU, Lee JG, Kim MS, Park JY, Park SH, Joo DJ, Shin EC. Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner. J Hepatol 2022; 77:1059-1070. [PMID: 35644434 DOI: 10.1016/j.jhep.2022.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The liver provides a unique niche of lymphocytes enriched with a large proportion of innate-like T cells. However, the heterogeneity and functional characteristics of the hepatic T-cell population remain to be fully elucidated. METHODS We obtained liver sinusoidal mononuclear cells from the liver perfusate of healthy donors and recipients with HBV-associated chronic liver disease (CLD) during liver transplantation. We performed a CITE-seq analysis of liver sinusoidal CD45+ cells in combination with T cell receptor (TCR)-seq and flow cytometry to examine the phenotypes and functions of liver sinusoidal CD8+ T cells. RESULTS We identified a distinct CD56hiCD161-CD8+ T-cell population characterized by natural killer (NK)-related gene expression and a uniquely restricted TCR repertoire. The frequency of these cells among the liver sinusoidal CD8+ T-cell population was significantly increased in patients with HBV-associated CLD. Although CD56hiCD161-CD8+ T cells exhibit weak responsiveness to TCR stimulation, CD56hiCD161-CD8+ T cells highly expressed various NK receptors, including CD94, killer immunoglobulin-like receptors, and NKG2C, and exerted NKG2C-mediated NK-like effector functions even in the absence of TCR stimulation. In addition, CD56hiCD161-CD8+ T cells highly respond to innate cytokines, such as IL-12/18 and IL-15, in the absence of TCR stimulation. We validated the results from liver sinusoidal CD8+ T cells using intrahepatic CD8+ T cells obtained from liver tissues. CONCLUSIONS In summary, the current study found a distinct CD56hiCD161-CD8+ T-cell population characterized by NK-like activation via TCR-independent NKG2C ligation. Further studies are required to elucidate the roles of liver sinusoidal CD56hiCD161-CD8+ T cells in immune responses to microbial pathogens or liver immunopathology. LAY SUMMARY The role of different immune cell populations in the liver is becoming an area of increasing interest. Herein, we identified a distinct T-cell population that had features similar to those of natural killer (NK) cells - a type of innate immune cell. This distinct population was expanded in the livers of patients with chronic liver disease and could thus have pathogenic relevance.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Heejin Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
160
|
PD-1 expression on mouse intratumoral NK cells and its effects on NK cell phenotype. iScience 2022; 25:105137. [PMID: 36185379 PMCID: PMC9523278 DOI: 10.1016/j.isci.2022.105137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023] Open
Abstract
Although PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells and a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Tumor-infiltrating NK cells that express PD-1 were highly associated with the expression of CXCR6. Furthermore, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wild-type mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells. These data demonstrate that there may be a role for the PD-1/PD-L1 axis in tumor-infiltrating NK cells in vivo. NK cells from PD-1 deficient mice have a more mature phenotype Elimination of MHC-I-deficient cells is impaired in PD-1−/− mice PD-1 expression on NK cells is associated with surface expression of CXCR6 PD-1/PD-L1 interactions on NK cells may occur in cis
Collapse
|
161
|
Xu HR, Chen JJ, Shen JM, Ding WH, Chen J. TYRO protein tyrosine kinase-binding protein predicts favorable overall survival in osteosarcoma and correlates with antitumor immunity. Medicine (Baltimore) 2022; 101:e30878. [PMID: 36181123 PMCID: PMC9524921 DOI: 10.1097/md.0000000000030878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To explore the prognostic significance and underlying mechanism of TYRO protein tyrosine kinase-binding protein (TYROBP) in osteosarcoma. Firstly, the expression of TYROBP was analyzed using the t test. The Kaplan-Meier plotter analysis and a receiver operating characteristic curve were performed to evaluate the influence of TYROBP on overall survival (OS). Further, Cox regression analysis was conducted to predict the independent prognostic factors for OS of osteosarcoma patients, and a nomogram was constructed. Then, the relationship between TYROBP and clinicopathological characteristics was determined using statistical methods. Enrichment analyses were conducted to evaluate the biological functions of TYROBP. Finally, the ESTIMATE algorithm was used to assess the association of TYROBP with immune cell infiltration. TYROBP was significantly increased in osteosarcoma (all P < .001). However, the high expression of TYROBP was related to better OS in osteosarcoma patients. Cox regression analysis showed that TYROBP was an independent prognostic factor for predicting OS (P = .005), especially in patients of the male sex, age <18 years, metastasis, and tumor site leg/foot (all P < .05). Besides, TYROBP mRNA expression was significantly associated with the tumor site (P < .01) but had no remarkable relationship with age, gender, and metastasis status (all P > .05). Functional annotation and gene set enrichment analysis (GSEA) revealed that TYROBP was mainly involved in immune-related pathways. Importantly, TYROBP positively correlated with immune scores (P < .001, R = .87). TYROBP served as an independent prognostic biomarker for OS in osteosarcoma. High TYROBP expression might prolong the survival of osteosarcoma patients mainly through promoting antitumor immunity.
Collapse
Affiliation(s)
- Hai-Ru Xu
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun-Jie Chen
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin-Ming Shen
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei-Hang Ding
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Chen
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Jie Chen, Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou 310002, Zhejiang, China (e-mail: )
| |
Collapse
|
162
|
Alsulami K, Sadouni M, Tremblay-Sher D, Baril JG, Trottier B, Dupuy FP, Chartrand-Lefebvre C, Tremblay C, Durand M, Bernard NF. High frequencies of adaptive NK cells are associated with absence of coronary plaque in cytomegalovirus infected people living with HIV. Medicine (Baltimore) 2022; 101:e30794. [PMID: 36197157 PMCID: PMC9509172 DOI: 10.1097/md.0000000000030794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to evaluate whether adaptive NKG2C+CD57+ natural killer (adapNK) cell frequencies are associated with pre-clinical coronary atherosclerosis in participants of the Canadian HIV and Aging Cohort Study. This cross-sectional study included 194 Canadian HIV and Aging Cohort Study participants aged ≥ 40 years of which 128 were cytomegalovirus (CMV)+ people living with HIV (PLWH), 8 were CMV-PLWH, 37 were CMV mono-infected individuals, and 21 were neither human immunodeficiency virus nor CMV infected. Participants were evaluated for the frequency of their adapNK cells and total plaque volume (TPV). TPV was assessed using cardiac computed tomography. Participants were classified as free of, or having, coronary atherosclerosis if their TPV was "0" and ">0," respectively. The frequency of adapNK cells was categorized as low, intermediate or high if they constituted <4.6%, between ≥4.6% and 20% and >20%, respectively, of the total frequency of CD3-CD56dim NK cells. The association between adapNK cell frequency and TPV was assessed using an adjusted Poisson regression analysis. A greater proportion of CMV+PLWH with TPV = 0 had high adapNK cell frequencies than those with TPV > 0 (61.90% vs 39.53%, P = .03) with a similar non-significant trend for CMV mono-infected participants (46.15% vs 34.78%). The frequency of adapNK cells was negatively correlated with TPV. A high frequency of adapNK cells was associated with a relative risk of 0.75 (95% confidence intervals 0.58, 0.97, P = .03) for presence of coronary atherosclerosis. This observation suggests that adapNK cells play a protective role in the development of coronary atherosclerotic plaques.
Collapse
Affiliation(s)
- Khlood Alsulami
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Manel Sadouni
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Daniel Tremblay-Sher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Jean-Guy Baril
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Carl Chartrand-Lefebvre
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard, Research Institute of the McGill University Health Centre, Glen site, Bloc E, 1001 Decarie Blvd., Room EM3.3238, Montreal, QC H4A 3J1, Canada (e-mail: )
| |
Collapse
|
163
|
Studying the Anticancer Effects of Thymoquinone on Breast Cancer Cells through Natural Killer Cell Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9218640. [PMID: 36199754 PMCID: PMC9527111 DOI: 10.1155/2022/9218640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy is quickly growing and can now be viewed as the “fifth column” of cancer treatment. In addition, cancer immunotherapy has shown promising results with different kinds of cancers and may be used as a complementary therapy with various types of treatments. Thus, “immuno-oncology” is showing astounding advantages. However, one of the main challenges that face this type of therapy is that cancer cells can evade immune system elimination through different mechanisms. Many studies were done to overcome this issue including adding immune stimulants to generate synergistic effects or by genetically modifying NK cells themselves to be stronger and more resistant. Nigella sativa, also known as black cumin, is a well-known example of a widely applicable herbal medicine. It can effectively treat a variety of diseases, such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer qualities of Nigella sativa appear to be mediated by an immune-modulatory effect that stimulates human natural killer (NK) cells. These are a type of lymphocyte and first line of defense against pathogens. Objectives. In this study, we investigated the therapeutic effect of thymoquinone, a major component of Nigella sativa, on the cytotoxic pathways of NK cells. Methods. NK cells were cultured with breast cancer cell line Michigan Cancer Foundation-7 (MCF-7); and were treated with Thymoquinone. The cytotoxicity of NK cells on cancer cells was measured. The cultured media were then collected and measured via enzyme-linked immunosorbent assay (ELISA) for concentrations of perforin, granzyme B and interferon-α (IFN-α). Results. The cytotoxic effect of NK cells on tumor cells was increased in the presence of thymoquinone, with an increased release of perforin, granzyme B, and IFN-α. Conclusion. Thymoquinone promotes the cytotoxic activity of NK cells against breast cancer MCF-7 cells.
Collapse
|
164
|
The new progress in cancer immunotherapy. Clin Exp Med 2022:10.1007/s10238-022-00887-0. [DOI: 10.1007/s10238-022-00887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe cross talk between immune and non-immune cells in the tumor microenvironment leads to immunosuppression, which promotes tumor growth and survival. Immunotherapy is an advanced treatment that boosts humoral and cellular immunity rather than using chemotherapy or radiation-based strategy associated with non-specific targets and toxic effects on normal cells. Immune checkpoint inhibitors and T cell-based immunotherapy have already exhibited significant effects against solid tumors and leukemia. Tumor cells that escape immune surveillance create a major obstacle to acquiring an effective immune response in cancer patients. Tremendous progress had been made in recent years on a wide range of innate and adaptive immune checkpoints which play a significant role to prevent tumorigenesis, and might therefore be potential targets to suppress tumor cells growth. This review aimed to summarize the underlying molecular mechanisms of existing immunotherapy approaches including T cell and NK-derived immune checkpoint therapy, as well as other intrinsic and phagocytosis checkpoints. Together, these insights will pave the way for new innate and adaptive immunomodulatory targets for the development of highly effective new therapy in the future.
Collapse
|
165
|
Kuroshima S, Al‐Omari FA, Sasaki M, Sawase T. Medication‐related osteonecrosis of the jaw: A literature review and update. Genesis 2022; 60:e23500. [DOI: 10.1002/dvg.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Farah A. Al‐Omari
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| |
Collapse
|
166
|
Yu Y, Tang Z, Xie M, Li J, Hang CC, An L, Li C. Glucocorticoid receptor expression in patients with cardiac arrest in the early period after the return of spontaneous circulation: a prospective observational single-centre study. BMJ Open 2022; 12:e060246. [PMID: 36691201 PMCID: PMC9462114 DOI: 10.1136/bmjopen-2021-060246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Rapid changes in glucocorticoid (GC) levels and adrenal insufficiency are related to the development of post-cardiac arrest (CA) syndrome. However, GC receptor (GR) expression changes have not been studied. Hence, this study aimed to investigate the association of early changes in GR expression and prognosis and immune response in patients who experienced CA. DESIGN Prospective observational study. SETTING Emergency department. PARTICIPANTS Patients (85) in the early period of return of spontaneous circulation (ROSC) after CA were admitted between October 2018 and October 2019. After a physical examination, age-matched and sex-matched healthy individuals (40) were recruited for the control group. PRIMARY AND SECONDARY OUTCOME MEASURES GR expression and cell counts of circulatory T and B lymphocytes, natural killer cells and regulatory T (Treg) cells were assessed. Plasma total cortisol and adrenocorticotrophic hormone (ACTH) levels were also tested. RESULTS All cell counts were lower, and plasma total cortisol levels were higher (p<0.001) in patients who experienced CA than in the healthy control group. GR expression in Treg cells and CD3+CD4+ T lymphocytes were not significantly different, but the mean fluorescence intensity and GR expression in other cells were lower in patients who experienced CA (p<0.05) than in the healthy control group. ACTH levels were not different. There were no significant differences between survivors and non-survivors. CONCLUSIONS This study revealed that GR expression and cell counts rapidly decreased, whereas plasma total cortisol levels increased in the early period after ROSC among patients who experienced CA. Our findings provide important information about GR level and function, and immunosuppressive status in these patients. Assessing GR expression in patients who experienced CA may help screening for those who are more sensitive to GC therapy.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Miaorong Xie
- Department of Emergency Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Jiabao Li
- Department of Critical Care, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Chen-Chen Hang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Le An
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| |
Collapse
|
167
|
Li X, Wichai N, Wang J, Liu X, Yan H, Wang Y, Luo M, Zhou S, Wang K, Li L, Miao L. Regulation of innate and adaptive immunity using herbal medicine: benefits for the COVID-19 vaccination. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:196-206. [PMID: 37808346 PMCID: PMC9746255 DOI: 10.1097/hm9.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 08/18/2023]
Abstract
Vaccination is a major achievement that has become an effective prevention strategy against infectious diseases and active control of emerging pathogens worldwide. In response to the coronavirus disease 2019 (COVID-19) pandemic, several diverse vaccines against severe acute respiratory syndrome coronavirus 2 have been developed and deployed for use in a large number of individuals, and have been reported to protect against symptomatic COVID-19 cases and deaths. However, the application of vaccines has a series of limitations, including protective failure for variants of concern, unavailability of individuals due to immune deficiency, and the disappearance of immune protection for increasing infections in vaccinated individuals. These aspects raise the question of how to modulate the immune system that contributes to the COVID-19 vaccine protective effects. Herbal medicines are widely used for their immune regulatory abilities in clinics. More attractively, herbal medicines have been well accepted for their positive role in the COVID-19 prevention and suppression through regulation of the immune system. This review presents a brief overview of the strategy of COVID-19 vaccination and the response of the immune system to vaccines, the regulatory effects and mechanisms of herbal medicine in immune-related macrophages, natural killer cells, dendritic cells, and lymphocytes T and B cells, and how they help vaccines work. Later in the article, the potential role and application of herbal medicines in the most recent COVID-19 vaccination are discussed. This article provides new insights into herbal medicines as promising alternative supplements that may benefit from COVID-19 vaccination. Graphical abstract http://links.lww.com/AHM/A31.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nuttapong Wichai
- Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Jiabao Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuping Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huimin Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyuan Zhou
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kai Wang
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
168
|
Kaminski MF, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, Hinderlie P, Walker JT, Lenvik TR, Geller MA, Miller JS, Felices M. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer 2022; 10:e004725. [PMID: 36162918 PMCID: PMC9516302 DOI: 10.1136/jitc-2022-004725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.
Collapse
Affiliation(s)
- Michael F Kaminski
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Laura Bendzick
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Rachel Hopps
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Marissa Kauffman
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Behiye Kodal
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Yvette Soignier
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Peter Hinderlie
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Joshua T Walker
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Todd R Lenvik
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Melissa A Geller
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Martin Felices
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
169
|
Lopez KJ, Cross-Najafi AA, Farag K, Obando B, Thadasina D, Isidan A, Park Y, Zhang W, Ekser B, Li P. Strategies to induce natural killer cell tolerance in xenotransplantation. Front Immunol 2022; 13:941880. [PMID: 36072599 PMCID: PMC9441937 DOI: 10.3389/fimmu.2022.941880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Eliminating major xenoantigens in pig cells has drastically reduced human antibody-mediated hyperacute xenograft rejection (HXR). Despite these advancements, acute xenograft rejection (AXR) remains one of the major obstacles to clinical xenotransplantation, mediated by innate immune cells, including macrophages, neutrophils, and natural killer (NK) cells. NK cells play an 'effector' role by releasing cytotoxicity granules against xenogeneic cells and an 'affecter' role on other immune cells through cytokine secretion. We highlight the key receptor-ligand interactions that determine the NK cell response to target cells, focusing on the regulation of NK cell activating receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts from cytotoxicity. Recent successful approaches to reducing NK cell-mediated HXR and AXR are reviewed, including genetic modifications of porcine xenografts aimed at improving pig-to-human compatibility. Future directions to promote xenograft acceptance are discussed, including NK cell tolerance in pregnancy and NK cell evasion in viral infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Li
- *Correspondence: Ping Li, ; Burcin Ekser,
| |
Collapse
|
170
|
Wickström SL, Wagner AK, Fuchs S, Elemans M, Kritikou J, Mehr R, Kärre K, Johansson MH, Brauner H. MHC Class I–Dependent Shaping of the NK Cell Ly49 Receptor Repertoire Takes Place Early during Maturation in the Bone Marrow. THE JOURNAL OF IMMUNOLOGY 2022; 209:751-759. [DOI: 10.4049/jimmunol.2100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/27/2022] [Indexed: 01/04/2023]
Abstract
Abstract
MHC class I (MHC I) expression in the host influences NK cells in a process termed education. The result of this education is reflected in the responsiveness of NK cells at the level of individual cells as well as in the repertoire of inhibitory MHC I–specific receptors at the NK cell system level. The presence of MHC I molecules in the host environment gives rise to a skewed receptor repertoire in spleen NK cells where subsets expressing few (one or two) inhibitory receptors are expanded whereas subsets with many (three or more) receptors are contracted. It is not known whether this MHC I–dependent skewing is imposed during development or after maturation of NK cells. In this study, we tested the hypothesis that the NK cell receptor repertoire is shaped already early during NK cell development in the bone marrow. We used mice with a repertoire imposed by a single MHC I allele, as well as a C57BL/6 mutant strain with exaggerated repertoire skewing, to investigate Ly49 receptor repertoires at different stages of NK cell differentiation. Our results show that NK cell inhibitory receptor repertoire skewing can indeed be observed in the bone marrow, even during the earliest developmental steps where Ly49 receptors are expressed. This may partly be accounted for by selective proliferation of certain NK cell subsets, but other mechanisms must also be involved. We propose a model for how repertoire skewing is established during a developmental phase in the bone marrow, based on sequential receptor expression as well as selective proliferation.
Collapse
Affiliation(s)
- Stina L. Wickström
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- †Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K. Wagner
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ‡Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sina Fuchs
- §Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Marjet Elemans
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ¶Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joanna Kritikou
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ramit Mehr
- ‖Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel; and
| | - Klas Kärre
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria H. Johansson
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- *Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- §Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- #Dermatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
171
|
Warner K, Ghaedi M, Chung DC, Jacquelot N, Ohashi PS. Innate lymphoid cells in early tumor development. Front Immunol 2022; 13:948358. [PMID: 36032129 PMCID: PMC9411809 DOI: 10.3389/fimmu.2022.948358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immune cells monitor, recognize, and eliminate transformed cells. Innate lymphoid cells (ILCs) are innate counterparts of T cells that play a key role in many facets of the immune response and have a profound impact on disease states, including cancer. ILCs regulate immune responses by responding and integrating a wide range of signals within the local microenvironment. As primarily tissue-resident cells, ILCs are ideally suited to sense malignant transformation and initiate anti-tumor immunity. However, as ILCs have been associated with anti-tumor and pro-tumor activities in established tumors, they could potentially have dual functions during carcinogenesis by promoting or suppressing the malignant outgrowth of premalignant lesions. Here we discuss emerging evidence that shows that ILCs can impact early tumor development by regulating immune responses against transformed cells, as well as the environmental cues that potentially induce ILC activation in premalignant lesions.
Collapse
Affiliation(s)
- Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
172
|
Abstract
AIMS We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. METHODS Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell's concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature. RESULTS We identified three PMOP-related subtypes and four core modules. The muscle system process, muscle contraction, and actin filament-based movement were more active in the hub genes. We obtained five feature genes related to PMOP. Our analysis verified that the gene signature had good predictive power and applicability. The outcomes of the GSE56815 cohort were found to be consistent with the results of the earlier studies. qRT-PCR results showed that RAB2A and FYCO1 were amplified in clinical samples. CONCLUSION The PMOP-related gene signature we developed and verified can accurately predict the risk of PMOP in patients. These results can elucidate the molecular mechanism of RAB2A and FYCO1 underlying PMOP, and yield new and improved treatment strategies, ultimately helping PMOP monitoring.Cite this article: Bone Joint Res 2022;11(8):548-560.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
173
|
Kaur G, Porter CBM, Ashenberg O, Lee J, Riesenfeld SJ, Hofree M, Aggelakopoulou M, Subramanian A, Kuttikkatte SB, Attfield KE, Desel CAE, Davies JL, Evans HG, Avraham-Davidi I, Nguyen LT, Dionne DA, Neumann AE, Jensen LT, Barber TR, Soilleux E, Carrington M, McVean G, Rozenblatt-Rosen O, Regev A, Fugger L. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat Commun 2022; 13:4398. [PMID: 35906236 PMCID: PMC9338297 DOI: 10.1038/s41467-022-32171-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Aggelakopoulou
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Subita Balaram Kuttikkatte
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christiane A E Desel
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- University Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jessica L Davies
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hayley G Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inbal Avraham-Davidi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle A Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R Barber
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Elizabeth Soilleux
- Department of Pathology, Tennis Court Rd, University of Cambridge, Cambridge, England
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Lars Fugger
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
174
|
Babaie F, Omraninava M, Gorabi AM, Khosrojerdi A, Aslani S, Yazdchi A, Torkamandi S, Mikaeili H, Sathyapalan T, Sahebkar A. Etiopathogenesis of Psoriasis from Genetic Perspective: An updated Review. Curr Genomics 2022; 23:163-174. [PMID: 36777004 PMCID: PMC9878828 DOI: 10.2174/1389202923666220527111037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
Psoriasis is an organ-specific autoimmune disease characterized by the aberrant proliferation and differentiation of keratinocytes, leading to skin lesions. Abnormal immune responses mediated by T cells and dendritic cells and increased production of inflammatory cytokines have been suggested as underlying mechanisms in the pathogenesis of psoriasis. Emerging evidence suggests that there is a heritable basis for psoriatic disorders. Moreover, numerous gene variations have been associated with the disease risk, particularly those in innate and adaptive immune responses and antigen presentation pathways. Herein, this article discusses the genetic implications of psoriatic diseases' etiopathogenesis to develop novel investigative and management options.
Collapse
Affiliation(s)
- Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran;,Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Melodi Omraninava
- Department of Infectious Diseases, Faculty of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arsalan Yazdchi
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran;,Address correspondence to these authors at the Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; E-mail: ; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; E-mail: and Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; E-mail:
| | - Haleh Mikaeili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;,Address correspondence to these authors at the Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; E-mail: ; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; E-mail: and Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; E-mail:
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran;,Department of Biotechnology, School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran,Address correspondence to these authors at the Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran; E-mail: ; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; E-mail: and Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; E-mail:
| |
Collapse
|
175
|
Wei Y, Bingyu W, Lei Y, Xingxing Y. The antifibrotic role of natural killer cells in liver fibrosis. Exp Biol Med (Maywood) 2022; 247:1235-1243. [PMID: 35475367 PMCID: PMC9379607 DOI: 10.1177/15353702221092672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Liver fibrosis is the common pathological change of chronic liver diseases characterized by increased deposition of extracellular matrix and reduced matrix degradation. In response to liver injury caused by a variety of pathogenic agents, such as virus and alcohol, hepatic stellate cells (HSCs) are differentiated into myofibroblast-like cells and produce excessive collagens, thus resulting in fibrogenesis. Natural killer (NK) cells are the essential innate immune cells in the liver and generally control fibrosis by killing activated HSCs. This review briefly describes the fibrogenesis process and the phenotypic features of hepatic NK cells. Besides, it focuses on the antifibrotic mechanisms of NK cells and explores the potential of activating NK cells as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Hepatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410000, China
| | - Wang Bingyu
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, China
| | - Yang Lei
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, China
| | - Yuan Xingxing
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, China,Yuan Xingxing.
| |
Collapse
|
176
|
Calvi M, Di Vito C, Frigo A, Trabanelli S, Jandus C, Mavilio D. Development of Human ILCs and Impact of Unconventional Cytotoxic Subsets in the Pathophysiology of Inflammatory Diseases and Cancer. Front Immunol 2022; 13:914266. [PMID: 35720280 PMCID: PMC9204637 DOI: 10.3389/fimmu.2022.914266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) were firstly described by different independent laboratories in 2008 as tissue-resident innate lymphocytes mirroring the phenotype and function of T helper cells. ILCs have been subdivided into three distinct subgroups, ILC1, ILC2 and ILC3, according to their cytokine and transcriptional profiles. Subsequently, also Natural Killer (NK) cells, that are considered the innate counterpart of cytotoxic CD8 T cells, were attributed to ILC1 subfamily, while lymphoid tissue inducer (LTi) cells were attributed to ILC3 subgroup. Starting from their discovery, significant advances have been made in our understanding of ILC impact in the maintenance of tissue homeostasis, in the protection against pathogens and in tumor immune-surveillance. However, there is still much to learn about ILC ontogenesis especially in humans. In this regard, NK cell developmental intermediates which have been well studied and characterized prior to the discovery of helper ILCs, have been used to shape a model of ILC ontogenesis. Herein, we will provide an overview of the current knowledge about NK cells and helper ILC ontogenesis in humans. We will also focus on the newly disclosed circulating ILC subsets with killing properties, namely unconventional CD56dim NK cells and cytotoxic helper ILCs, by discussing their possible role in ILC ontogenesis and their contribution in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Michela Calvi
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
177
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
178
|
Beaudoin-Bussières G, Arduini A, Bourassa C, Medjahed H, Gendron-Lepage G, Richard J, Pan Q, Wang Z, Liang C, Finzi A. SARS-CoV-2 Accessory Protein ORF8 Decreases Antibody-Dependent Cellular Cytotoxicity. Viruses 2022; 14:v14061237. [PMID: 35746708 PMCID: PMC9230529 DOI: 10.3390/v14061237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses use many different strategies to evade host immune responses. In the case of SARS-CoV-2, its Spike mutates rapidly to escape from neutralizing antibodies. In addition to this strategy, ORF8, a small accessory protein encoded by SARS-CoV-2, helps immune evasion by reducing the susceptibility of SARS-CoV-2-infected cells to the cytotoxic CD8+ T cell response. Interestingly, among all accessory proteins, ORF8 is rapidly evolving and a deletion in this protein has been linked to milder disease. Here, we studied the effect of ORF8 on peripheral blood mononuclear cells (PBMC). Specifically, we found that ORF8 can bind monocytes as well as NK cells. Strikingly, ORF8 binds CD16a (FcγRIIIA) with nanomolar affinity and decreases the overall level of CD16 at the surface of monocytes and, to a lesser extent, NK cells. This decrease significantly reduces the capacity of PBMCs and particularly monocytes to mediate antibody-dependent cellular cytotoxicity (ADCC). Overall, our data identifies a new immune-evasion activity used by SARS-CoV-2 to escape humoral responses.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: (C.L.); (A.F.)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: (C.L.); (A.F.)
| |
Collapse
|
179
|
Gómez-Luque JM, Urrutia-Maldonado E, Rueda PMD, Abril-Molina A, Ocete-Hita E. Killer immunoglobulin-like receptor and cancer. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2022; 96:410-415. [DOI: 10.1016/j.anpede.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
|
180
|
Sajid M, Liu L, Sun C. The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Front Immunol 2022; 13:887186. [PMID: 35669776 PMCID: PMC9165341 DOI: 10.3389/fimmu.2022.887186] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an important complication of chronic liver disease, especially when cirrhosis occurs. Existing treatment strategies include surgery, loco-regional techniques, and chemotherapy. Natural killer cells are distinctive cytotoxic lymphocytes that play a vital role in fighting tumors and infections. As an important constituent of the innate immune system against cancer, phenotypic and functional deviations of NK cells have been demonstrated in HCC patients who also exhibit perturbation of the NK-activating receptor/ligand axis. The rate of recurrence of tumor-infiltrating and circulating NK cells are positively associated with survival benefits in HCC and have prognostic significance, suggesting that NK cell dysfunction is closely related to HCC progression. NK cells are the first-line effector cells of viral hepatitis and play a significant role by directly clearing virus-infected cells or by activating antigen-specific T cells by producing IFN-γ. In addition, chimeric antigen receptor (CAR) engineered NK cells suggest an exclusive opportunity to produce CAR-NKs with several specificities with fewer side effects. In the present review, we comprehensively discuss the innate immune landscape of the liver, particularly NK cells, and the impact of tumor immune microenvironment (TIME) on the function of NK cells and the biological function of HCC. Furthermore, the role of NK cells in HCC and HBV-induced HCC has also been comprehensively elaborated. We also elaborate on available NK cell-based immunotherapeutic approaches in HCC treatment and summarize current advancements in the treatment of HCC. This review will facilitate researchers to understand the importance of the innate immune landscape of NK cells and lead to devising innovative immunotherapeutic strategies for the systematic treatment of HCC.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
181
|
Perna F, Espinoza-Gutarra MR, Bombaci G, Farag SS, Schwartz JE. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treat Res 2022; 183:225-254. [PMID: 35551662 DOI: 10.1007/978-3-030-96376-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3-5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody-Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC's potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | - Manuel R Espinoza-Gutarra
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Giuseppe Bombaci
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Jennifer E Schwartz
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
182
|
Abstract
Identification of regulatory CD8+ T cells that suppress pathological immune responses is an importunate pursuit. In a recent issue of Science, Li et al. demonstrated that human KIR+CD8+ T cells suppress autoimmunity by eliminating pathogenic CD4+ T cells.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
183
|
Inability of ovarian cancers to upregulate their MHC-class I surface expression marks their aggressiveness and increased susceptibility to NK cell-mediated cytotoxicity. Cancer Immunol Immunother 2022; 71:2929-2941. [DOI: 10.1007/s00262-022-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
184
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
185
|
Aguilar OA, Fong LK, Ishiyama K, DeGrado WF, Lanier LL. The CD3ζ adaptor structure determines functional differences between human and mouse CD16 Fc receptor signaling. J Exp Med 2022; 219:e20220022. [PMID: 35320345 PMCID: PMC8953085 DOI: 10.1084/jem.20220022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells can detect antibody-coated cells through recognition by the CD16 Fc receptor. The importance of CD16 in human NK cell biology has long been appreciated, but how CD16 functions in mouse NK cells remains poorly understood. Here, we report drastic differences between human and mouse CD16 functions in NK cells. We demonstrate that one of the adaptor molecules that CD16 associates with and signals through, CD3ζ, plays a critical role in these functional differences. Using a systematic approach, we demonstrate that residues in the transmembrane domain of the mouse CD3ζ molecule prevent efficient complex formation with mouse CD16, thereby dampening receptor function. Mutating these residues in mouse CD3ζ to those encoded by human CD3ζ resulted in rescue of CD16 receptor function. We reveal that the mouse CD3ζ transmembrane domain adopts a tightly packed confirmation, preventing association with CD16, whereas human CD3ζ adopts a versatile configuration that accommodates receptor assembly.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Lam-Kiu Fong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
186
|
Abstract
Delayed drug hypersensitivity continues to contribute to major clinical problems worldwide. The clinical presentations of delayed drug hypersensitivity are diverse, ranging from mild skin rashes to life-threatening systemic reactions. The pathomechanism of delayed drug hypersensitivity involves human leukocyte antigens (HLA) presentation of drugs/metabolites to T cell receptors (TCR), resulting in T-cell activation. The pathogenesis of delayed drug hypersensitivity also has reactivation of the virus, and activation of many immune mediators. In this review, we discuss the immune pathogenesis, molecular interactions of HLA/drugs/TCR, and downstream signaling of cytotoxic proteins/cytokines/chemokines, as well as disease prevention and management for delayed drug hypersensitivity.
Collapse
|
187
|
Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in the Era of Systems Medicine. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:37-54. [PMID: 35437717 DOI: 10.1007/978-1-0716-2265-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe mucocutaneous bullous disorders characterized by widespread skin and mucosal necrosis and detachment, which are most commonly triggered by medications. Despite their rarity, these severe cutaneous adverse drug reactions will result in high mortality and morbidity as well as long-term sequela. The immunopathologic mechanisms is mainly cell-mediated cytotoxic reaction against keratinocytes leading to massive skin necrolysis. Subsequent studies have demonstrated that immune synapse composed of cytotoxic T cells with drug-specific human leukocyte antigen (HLA) class I restriction and T cell receptors (TCR) repertoire is the key pathogenic for SJS/TEN. Various cytotoxic proteins and cytokines such as soluble granulysin, perforin, granzyme B, interleukin-15, Fas ligand, interferon-γ, tumor necrosis factor-α have been as mediators involved in the pathogenesis of SJS/TEN. Early recognition and immediate withdrawal of causative agents, and critical multidisciplinary supportive care are key management of SJS/TEN. To date, there is yet to be a sufficient consensus or recommendation for the immunomodulants of the treatment in SJS/TEN. Systemic corticosteroids remain one of the most common treatment options for SJS/TEN, though the efficacy remain uncertain. Currently, there is increasing evidence showing that cyclosporine and TNF-α inhibitors decrease the mortality of SJS/TEN. Further multicenter double-blinded, randomized, placebo-controlled trials are required to confirm the efficacy and safety.
Collapse
|
188
|
Kaur K, Kanayama K, Wu QQ, Gumrukcu S, Nishimura I, Jewett A. Zoledronic acid mediated differential activation of NK cells in different organs of WT and Rag2 mice; stark differences between the bone marrow and gingivae. Cell Immunol 2022; 375:104526. [DOI: 10.1016/j.cellimm.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
|
189
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
190
|
Kim YJ, Yeon Y, Lee WJ, Shin YU, Cho H, Lim HW, Kang MH. Analysis of MicroRNA Expression in Tears of Patients with Herpes Epithelial Keratitis: A Preliminary Study. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35475887 PMCID: PMC9055549 DOI: 10.1167/iovs.63.4.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Herpes epithelial keratitis (HEK) is the most common form of herpes simplex virus (HSV) eye involvement, and understanding the molecular mechanisms underlying HEK is important. We investigated the expression of microRNAs (miRNAs) in the tears of patients with HEK. Methods Tear samples from eight patients with HEK and seven age-matched controls were evaluated. Clinical ophthalmologic evaluation was performed, and an anterior segment photograph was obtained after fluorescence staining. Dendritic or geographic ulcer areas were measured using ImageJ software. The expression of 43 different miRNAs in tears was measured using real-time polymerase chain reaction and compared between patients with HEK and controls. Differences in miRNA expression between the dendritic and geographic ulcer groups and correlations involving miRNA expression and ulcer area were evaluated. Results Of the 43 miRNAs, 23 were upregulated in patients with HEK compared to normal controls. MiR-15b-5p, miR-16-5p, miR-20b-5p, miR-21-5p, miR-23b-3p, miR-25-3p, miR-29a-3p, miR-30a-3p, miR-30d-5p, miR-92a-3p, miR-124-3p, miR-127-3p, miR-132-3p, miR-142-3p, miR-145-5p, miR-146a-5p, miR-146b-5p, miR-155-5p, miR-182-5p, miR-183-5p, miR-221-3p, miR-223-3p, and miR-338-5p were significantly upregulated in patients with HEK. MiR-29a-3p exhibited significant differences between the dendritic and geographic ulcer groups. All 23 miRNAs with significant differences between patients with HEK and the control group were not significantly correlated with ulcer area. Conclusions Twenty-three miRNAs were significantly upregulated in the tears of patients with HEK, and the expression of miRNAs may play important roles in herpes infection in relation to host immunity.
Collapse
Affiliation(s)
- Yu Jeong Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeji Yeon
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Han Woong Lim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
191
|
The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes 2022; 63:101817. [DOI: 10.1016/j.mcp.2022.101817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
|
192
|
He X, Zeng XX. Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19? Drug Des Devel Ther 2022; 16:951-972. [PMID: 35386853 PMCID: PMC8979261 DOI: 10.2147/dddt.s347297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 has plunged the world into a pandemic that affected millions. The continually emerging new variants of concern raise the question as to whether the existing vaccines will continue to provide sufficient protection for individuals from SARS-CoV-2 during natural infection. This narrative review aims to briefly outline various immunotherapeutic options and discuss the potential of clustered regularly interspaced short palindromic repeat (CRISPR Cas system technology against COVID-19 treatment as specific cure. As the development of vaccine, convalescent plasma, neutralizing antibodies are based on the understanding of human immune responses against SARS-CoV-2, boosting human body immune responses in case of SARS-CoV-2 infection, immunotherapeutics seem feasible as specific cure against COVID-19 if the present challenges are overcome. In cell based therapeutics, apart from the high costs, risks and side effects, there are technical problems such as the production of sufficient potent immune cells and antibodies under limited time to treat the COVID-19 patients in mild conditions prior to progression into a more severe case. The CRISPR Cas technology could be utilized to refine the specificity and safety of CAR-T cells, CAR-NK cells and neutralizing antibodies against SARS-CoV-2 during various stages of the COVID-19 disease progression in infected individuals. Moreover, CRISPR Cas technology are proposed in hypotheses to degrade the viral RNA in order to terminate the infection caused by SARS-CoV-2. Thus personalized cocktails of immunotherapeutics and CRISPR Cas systems against COVID-19 as a strategy might prevent further disease progression and circumvent immunity escape.
Collapse
Affiliation(s)
- Xuesong He
- Department of Cardiology, Changzhou Jintan First People’s Hospital, Changzhou City, Jiangsu Province, 213200, People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan City, Guangdong Province, 528000, People’s Republic of China
| |
Collapse
|
193
|
Nicholas RE, Sandstrom K, Anderson JL, Smith WR, Wetzel M, Banerjee P, Janaka SK, Evans DT. KIR3DL05 and KIR3DS02 Recognition of a Nonclassical MHC Class I Molecule in the Rhesus Macaque Implicated in Pregnancy Success. Front Immunol 2022; 13:841136. [PMID: 35401580 PMCID: PMC8984097 DOI: 10.3389/fimmu.2022.841136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the MHC class I ligands of rhesus macaque killer-cell Ig-like receptors (KIRs) is fundamental to understanding the role of natural killer (NK) cells in this species as a nonhuman primate model for infectious diseases, transplantation and reproductive biology. We previously identified Mamu-AG as a ligand for KIR3DL05. Mamu-AG is a nonclassical MHC class I molecule that is expressed at the maternal-fetal interface of the placenta in rhesus macaques similar to HLA-G in humans. Although Mamu-AG and HLA-G share similar molecular features, including limited polymorphism and a short cytoplasmic tail, Mamu-AG is considerably more polymorphic. To determine which allotypes of Mamu-AG serve as ligands for KIR3DL05, we tested reporter cell lines expressing five different alleles of KIR3DL05 (KIR3DL05*001, KIR3DL05*004, KIR3DL05*005, KIR3DL05*008 and KIR3DL05*X) for responses to target cells expressing eight different alleles of Mamu-AG. All five allotypes of KIR3DL05 responded to Mamu-AG2*01:01, two exhibited dominant responses to Mamu-AG1*05:01, and three had low but detectable responses to Mamu-AG3*03:01, -AG3*03:02, -AG3*03:03 and -AG3*03:04. Since KIR3DL05*X is the product of recombination between KIR3DL05 and KIR3DS02, we also tested an allotype of KIR3DS02 (KIR3DS02*004) and found that this activating KIR also recognizes Mamu-AG2*01:01. Additional analysis of Mamu-AG variants with single amino acid substitutions identified residues in the α1-domain essential for recognition by KIR3DL05. These results reveal variation in KIR3DL05 and KIR3DS02 responses to Mamu-AG and define Mamu-AG polymorphisms that differentially affect KIR recognition.
Collapse
Affiliation(s)
- Rachel E. Nicholas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Priyankana Banerjee
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
194
|
Bunting MD, Vyas M, Requesens M, Langenbucher A, Schiferle EB, Manguso RT, Lawrence MS, Demehri S. Extracellular matrix proteins regulate NK cell function in peripheral tissues. SCIENCE ADVANCES 2022; 8:eabk3327. [PMID: 35294229 PMCID: PMC8926340 DOI: 10.1126/sciadv.abk3327] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural killer (NK) cells reject major histocompatibility complex class I (MHC-I)-deficient bone marrow through direct cytotoxicity but not solid organ transplants devoid of MHC-I. Here, we demonstrate an immediate switch in NK cell function upon exit from the circulation, characterized by a shift from direct cytotoxicity to chemokine/cytokine production. In the skin transplant paradigm, combining an NK cell-specific activating ligand, m157, with missing self MHC-I resulted in complete graft rejection, which was dependent on NK cells as potential helpers and T cells as effectors. Extracellular matrix proteins, collagen I, collagen III, and elastin, blocked NK cell cytotoxicity and promoted their chemokine/cytokine production. NK cell cytotoxicity against MHC-I-deficient melanoma in the skin was markedly increased by blocking tumor collagen deposition. MHC-I down-regulation occurred in solid human cancers but not leukemias, which could be directly targeted by circulating cytotoxic NK cells. Our findings uncover a fundamental mechanism that restricts direct NK cell cytotoxicity in peripheral tissues.
Collapse
Affiliation(s)
- Mark D. Bunting
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maulik Vyas
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marta Requesens
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Adam Langenbucher
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Erik B. Schiferle
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Robert T. Manguso
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael S. Lawrence
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
195
|
Cubitt CC, McClain E, Becker-Hapak M, Foltz JA, Wong P, Wagner JA, Neal CC, Marin ND, Marsala L, Foster M, Schappe T, Soon-Shiong P, Lee J, Berrien-Elliott MM, Fehniger TA. A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells. Mol Ther Oncolytics 2022; 24:585-596. [PMID: 35284622 PMCID: PMC8889352 DOI: 10.1016/j.omto.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.
Collapse
Affiliation(s)
- Celia C. Cubitt
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Ethan McClain
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Michelle Becker-Hapak
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Jennifer A. Foltz
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Pamela Wong
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Julia A. Wagner
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Carly C. Neal
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Nancy D. Marin
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Lynne Marsala
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Mark Foster
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Timothy Schappe
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | | | - John Lee
- ImmunityBio, Culver City, CA 90232, USA
| | - Melissa M. Berrien-Elliott
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| | - Todd A. Fehniger
- Washington University School of Medicine, 425 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA
| |
Collapse
|
196
|
Li DD, Ji WH, Wei DP, Gu AQ, Song ZH, Fang WN, Meng CY, Yang Y, Peng JP. Cytochrome P450 26A1 regulates the clusters and killing activity of NK cells during the peri-implantation period. J Cell Mol Med 2022; 26:2438-2450. [PMID: 35297206 PMCID: PMC8995454 DOI: 10.1111/jcmm.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022] Open
Abstract
Cytochrome P450 26A1 (CYP26A1) plays a vital role in early pregnancy in mice. Our previous studies have found that CYP26A1 affects embryo implantation by modulating natural killer (NK) cells, and that there is a novel population of CYP26A1+ NK cells in the uteri of pregnant mice. The aim of this study was to investigate the effects of CYP26A1 on the subsets and killing activity of NK cells. Through single-cell RNA sequencing (scRNA-seq), we identified four NK cell subsets in the uterus, namely, conventional NK (cNK), tissue-resident NK (trNK) 1 and 2, and proliferating trNK (trNKp). The two most variable subpopulations after uterine knockdown of CYP26A1 were trNKp and trNK2 cells. CYP26A1 knockdown significantly downregulated the expression of the NK cell function-related genes Cd44, Cd160, Vegfc, and Slamf6 in trNK2 cells, and Klra17 and Ogn in trNKp cells. Both RNA-seq and cytotoxicity assays confirmed that CYP26A1+ NK cells had low cytotoxicity. These results indicate that CYP26A1 may affect the immune microenvironment at the maternal-foetal interface by regulating the activity of NK cells.
Collapse
Affiliation(s)
- Dan-Dan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Heng Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Ping Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ai-Qin Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Ning Fang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Yang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing-Pian Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
197
|
Bruijnesteijn J, de Groot N, de Vos-Rouweler AJM, de Groot NG, Bontrop RE. Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics 2022; 74:313-326. [PMID: 35291021 DOI: 10.1007/s00251-022-01259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
The role of natural killer (NK) cells is tightly modulated by interactions of killer cell immunoglobulin-like receptors (KIR) with their ligands of the MHC class I family. Several characteristics of the KIR gene products are conserved in primate evolution, like the receptor structures and the variegated expression pattern. At the genomic level, however, the clusters encoding the KIR family display species-specific diversity, reflected by differential gene expansions and haplotype architecture. The human KIR cluster is extensively studied in large cohorts from various populations, which revealed two KIR haplotype groups, A and B, that represent more inhibitory and more activating functional profiles, respectively. So far, genomic KIR analyses in large outbred populations of non-human primate species are lacking. In this study, we roughly quadrupled the number of rhesus macaques studied for their KIR transcriptome (n = 298). Using segregation analysis, we defined 112 unique KIR region configurations, half of which display a more inhibitory profile, whereas the other half has a more activating potential. The frequencies and functional potential of these profiles might mirror the human KIR haplotype groups. However, whereas the human group A and B KIR haplotypes are confined to largely fixed organizations, the haplotypes in macaques feature highly variable gene content. Moreover, KIR homozygosity was hardly encountered in this panel of macaques. This study exhibits highly diverse haplotype architectures in humans and macaques, which nevertheless might have an equivalent effect on the modulation of NK cell activity.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands.
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
- Theoretical Biology and Bioinformatics Group, Utrecht University, 3527, Utrecht, the Netherlands
| |
Collapse
|
198
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
199
|
Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. eLife 2022; 11:73282. [PMID: 35258455 PMCID: PMC8903836 DOI: 10.7554/elife.73282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 ‘folded’ state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roshan Kumar Roy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
200
|
Hammer Q, Dunst J, Christ W, Picarazzi F, Wendorff M, Momayyezi P, Huhn O, Netskar HK, Maleki KT, García M, Sekine T, Sohlberg E, Azzimato V, Aouadi M, Degenhardt F, Franke A, Spallotta F, Mori M, Michaëlsson J, Björkström NK, Rückert T, Romagnani C, Horowitz A, Klingström J, Ljunggren HG, Malmberg KJ. SARS-CoV-2 Nsp13 encodes for an HLA-E-stabilizing peptide that abrogates inhibition of NKG2A-expressing NK cells. Cell Rep 2022; 38:110503. [PMID: 35235832 PMCID: PMC8858686 DOI: 10.1016/j.celrep.2022.110503] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | - Josefine Dunst
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Oisín Huhn
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Herman K Netskar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Valerio Azzimato
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Francesco Spallotta
- Institute for Systems Analysis and Computer Science "A. Ruberti," National Research Council (IASI-CNR), Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Rückert
- Innate Immunity, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany; Division of Gastroenterology, Infectiology and Rheumatology, Medical Department I, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|