151
|
Dhall S, Wijesinghe DS, Karim ZA, Castro A, Vemana HP, Khasawneh FT, Chalfant CE, Martins-Green M. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair Regen 2015; 23:644-56. [PMID: 26135854 DOI: 10.1111/wrr.12337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022]
Abstract
Very little is known about lipid function during wound healing, and much less during impaired healing. Such understanding will help identify what roles lipid signaling plays in the development of impaired/chronic wounds. We took a lipidomics approach to study the alterations in lipid profile in the LIGHT(-/-) mouse model of impaired healing which has characteristics that resemble those of impaired/chronic wounds in humans, including high levels of oxidative stress, excess inflammation, increased extracellular matrix degradation and blood vessels with fibrin cuffs. The latter suggests excess coagulation and potentially increased platelet aggregation. We show here that in these impaired wounds there is an imbalance in the arachidonic acid (AA) derived eicosonoids that mediate or modulate inflammatory reactions and platelet aggregation. In the LIGHT(-/-) impaired wounds there is a significant increase in enzymatically derived breakdown products of AA. We found that early after injury there was a significant increase in the eicosanoids 11-, 12-, and 15-hydroxyeicosa-tetranoic acid, and the proinflammatory leukotrienes (LTD4 and LTE) and prostaglandins (PGE2 and PGF2α ). Some of these eicosanoids also promote platelet aggregation. This led us to examine the levels of other eicosanoids known to be involved in the latter process. We found that thromboxane (TXA2 /B2 ), and prostacyclins 6kPGF1α are elevated shortly after wounding and in some cases during healing. To determine whether they have an impact in platelet aggregation and hemostasis, we tested LIGHT(-/-) mouse wounds for these two parameters and found that, indeed, platelet aggregation and hemostasis are enhanced in these mice when compared with the control C57BL/6 mice. Understanding lipid signaling in impaired wounds can potentially lead to development of new therapeutics or in using existing nonsteroidal anti-inflammatory agents to help correct the course of healing.
Collapse
Affiliation(s)
- Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California, Riverside, California.,Department of Bioengineering Interdepartmental Graduate Program, University of California, Riverside, California
| | - Dayanjan Shanaka Wijesinghe
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia.,Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia.,The Massey Cancer Center, Richmond, VA, Virginia Commonwealth University, Richmond, Virginia.,Virginia Commonwealth University Reanimation Engineering Science Center (VCURES)
| | - Zubair A Karim
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Anthony Castro
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Fadi T Khasawneh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Charles E Chalfant
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia.,The Massey Cancer Center, Richmond, VA, Virginia Commonwealth University, Richmond, Virginia.,Virginia Commonwealth University Reanimation Engineering Science Center (VCURES).,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California.,Department of Bioengineering Interdepartmental Graduate Program, University of California, Riverside, California
| |
Collapse
|
152
|
Bahl CD, Hvorecny KL, Bomberger JM, Stanton BA, Hammock BD, Morisseau C, Madden DR. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosaProtects CFTR. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
153
|
Holt RR, Yim SJ, Shearer GC, Hackman RM, Djurica D, Newman JW, Shindel AW, Keen CL. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. J Nutr Biochem 2015; 26:1458-66. [PMID: 26396054 DOI: 10.1016/j.jnutbio.2015.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/12/2015] [Accepted: 07/18/2015] [Indexed: 12/21/2022]
Abstract
Improved vascular function after the incorporation of walnuts into controlled or high-fat diets has been reported; however, the mechanism(s) underlying this effect of walnuts is(are) poorly defined. The objective of the current study was to evaluate the acute and short-term effects of walnut intake on changes in microvascular function and the relationship of these effects to plasma epoxides, the cytochrome-P450-derived metabolites of fatty acids. Thirty-eight hypercholesterolemic postmenopausal women were randomized to 4 weeks of 5 g or 40 g of daily walnut intake. All outcomes were measured after an overnight fast and 4 h after walnut intake. Microvascular function, assessed as the reactive hyperemia index (RHI), was the primary outcome measure, with serum lipids and plasma epoxides as secondary measures. Compared to 5 g of daily walnut intake, consuming 40 g/d of walnuts for 4 weeks increased the RHI and Framingham RHI. Total cholesterol and low- and high-density cholesterol did not significantly change after walnut intake. The change in RHI after 4 weeks of walnut intake was associated with the change in the sum of plasma epoxides (r=0.65, P=.002) but not with the change in the sum of plasma hydroxyeicosatetraenoic acids. Of the individual plasma epoxides, arachidonic-acid-derived 14(15)-epoxyeicosatrienoic acid was most strongly associated with the change in microvascular function (r=0.72, P<.001). These data support the concept that the intake of walnut-derived fatty acids can favorably affect plasma epoxide production, resulting in improved microvascular function.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA.
| | - Sun J Yim
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - Gregory C Shearer
- Cardiovascular Health Research Center, Sanford Research/USD 2301 E 60th St N, Sioux Falls SD 57104; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 West 22nd Street, Sioux Falls, SD 57105; Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park PA, 16802, USA
| | - Robert M Hackman
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - Dragana Djurica
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA
| | - John W Newman
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA; United States Department of Agriculture, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis CA, 95616, USA
| | - Alan W Shindel
- Department of Urology, University of California, Davis Medical Center, 4860 Y. Street, Suite 3500, Sacramento CA, 95817, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis CA, 95616, USA; Department of Internal Medicine, University of California, Davis Medical Center, 4150 V. Street, Suite 3100, Sacramento CA, 95817, USA
| |
Collapse
|
154
|
Soluble epoxide hydrolase inhibition ameliorates proteinuria-induced epithelial-mesenchymal transition by regulating the PI3K-Akt-GSK-3β signaling pathway. Biochem Biophys Res Commun 2015; 463:70-5. [DOI: 10.1016/j.bbrc.2015.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
155
|
Bahl CD, Hvorecny KL, Bomberger JM, Stanton BA, Hammock BD, Morisseau C, Madden DR. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa Protects CFTR. Angew Chem Int Ed Engl 2015; 54:9881-5. [PMID: 26136396 DOI: 10.1002/anie.201503983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/29/2015] [Indexed: 01/16/2023]
Abstract
Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small-molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking.
Collapse
Affiliation(s)
- Christopher D Bahl
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755 (USA) http://www.dartmouth.edu/∼madden
| | - Kelli L Hvorecny
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755 (USA) http://www.dartmouth.edu/∼madden
| | - Jennifer M Bomberger
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 7560 Vail Building, Hanover, NH 03755 (USA)
| | - Bruce A Stanton
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 7560 Vail Building, Hanover, NH 03755 (USA)
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Ave., Davis, CA 95616 (USA)
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Ave., Davis, CA 95616 (USA)
| | - Dean R Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755 (USA) http://www.dartmouth.edu/∼madden.
| |
Collapse
|
156
|
Davis CM, Ammi AY, Alkayed NJ, Kaul S. Ultrasound stimulates formation and release of vasoactive compounds in brain endothelial cells. Am J Physiol Heart Circ Physiol 2015; 309:H583-91. [PMID: 26092990 DOI: 10.1152/ajpheart.00690.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
Abstract
Stroke outcome is improved by therapeutic ultrasound. This benefit is presumed to be principally from ultrasound-mediated thrombolysis. We hypothesized that the therapeutic benefit of ultrasound in stroke may, in part, be mediated by the release of beneficial vasoactive substances. Accordingly, we investigated the effect of ultrasound on levels of cytochrome P-450, lipoxygenase, and cyclooxygenase metabolites of arachidonic acid as well as adenosine release and endothelial nitric oxide synthase (eNOS) phosphorylation in primary brain endothelial cells in vitro. Brain endothelial cells were exposed to 1.05-MHz ultrasound at peak rarefactional acoustic pressure amplitudes of 0.35, 0.55, 0.90, and 1.30 MPa. Epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs), PGE2, adenosine, nitrate/nitrite, and eNOS phosphorylation were measured after ultrasound exposure. Levels of 8,9-EET, 11,12-EET, and 14,15-EET increased by 230 ± 28%, 240 ± 30%, and 246 ± 31% (P < 0.05), respectively, whereas 5-HETE and 15-HETE levels were reduced to 24 ± 14% and 10 ± 3% (P < 0.05), respectively, compared with cells not exposed to ultrasound. PGE2 levels were reduced to 56 ± 14% of control. Adenosine increased more than sixfold after ultrasound exposure compared with unstimulated cells (1.36 ± 0.22 vs. 0.37 ± 0.10 ng/ml, P < 0.05), nitrate/nitrite was below levels of quantification, and eNOS phosphorylation was not altered significantly. Our results suggest that ultrasound may enhance tissue perfusion during stroke by augmenting the generation of vasodilator compounds and inhibiting that of vasoconstrictors. Such regulation supports a beneficial role for therapeutic ultrasound in stroke independent of its effect on the occlusive thrombus.
Collapse
Affiliation(s)
- Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Azzdine Y Ammi
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|
157
|
Schäfer A, Neschen S, Kahle M, Sarioglu H, Gaisbauer T, Imhof A, Adamski J, Hauck SM, Ueffing M. The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and is Repressed in Insulin-Resistant Mouse Liver. Mol Cell Proteomics 2015; 14:2764-74. [PMID: 26070664 PMCID: PMC4597150 DOI: 10.1074/mcp.m115.049064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized. Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation.
Collapse
Affiliation(s)
- Alexander Schäfer
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanne Neschen
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg
| | - Melanie Kahle
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg
| | - Hakan Sarioglu
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tobias Gaisbauer
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg
| | - Axel Imhof
- ‖Munich Center of Integrated Protein Science, Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, Germany, Schillerstraβe 44, 80336 Munich
| | - Jerzy Adamski
- §German Center for Diabetes Research (DZD), Neuherberg, Germany; ¶Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; **Institute of Experimental Genetics, Technical University Munich, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany;
| | - Marius Ueffing
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany, Ingolstädter Landstr.1 8674 Neuherberg; §German Center for Diabetes Research (DZD), Neuherberg, Germany; ‡‡Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany, Röntgenweg 11,72076 Tübingen
| |
Collapse
|
158
|
Bettaieb A, Chahed S, Bachaalany S, Griffey S, Hammock BD, Haj FG. Soluble Epoxide Hydrolase Pharmacological Inhibition Ameliorates Experimental Acute Pancreatitis in Mice. Mol Pharmacol 2015; 88:281-90. [PMID: 25993999 DOI: 10.1124/mol.114.097501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/20/2015] [Indexed: 01/15/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease, and is one of the most common gastrointestinal disorders worldwide. Soluble epoxide hydrolase (sEH; encoded by Ephx2) deficiency and pharmacological inhibition have beneficial effects in inflammatory diseases. Ephx2 whole-body deficiency mitigates experimental AP in mice, but the suitability of sEH pharmacological inhibition for treating AP remains to be determined. We investigated the effects of sEH pharmacological inhibition on cerulein- and arginine-induced AP using the selective sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered before and after induction of pancreatitis. Serum amylase and lipase levels were lower in TPPU-treated mice compared with controls. In addition, circulating levels and pancreatic mRNA of the inflammatory cytokines tumor necrosis factor-α, interleukin Il-1β, and Il-6 were reduced in TPPU-treated mice. Moreover, sEH pharmacological inhibition before and after induction of pancreatitis was associated with decreased cerulein- and arginine-induced nuclear factor-κB inflammatory response, endoplasmic reticulum stress, and cell death. sEH pharmacological inhibition before and after induction of pancreatitis mitigated cerulein- and arginine-induced AP. This work suggests that sEH pharmacological inhibition may be of therapeutic value in acute pancreatitis.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Departments of Nutrition (A.B., S.C., S.B., F.G.H.) and Entomology and Nematology (B.D.H.), and Comparative Pathology Laboratory (S.G.), University of California Davis, Davis, California; and Department of Internal Medicine (F.G.H.) and Comprehensive Cancer Center (B.D.H., F.G.H.), University of California Davis, Sacramento, California
| | - Samah Chahed
- Departments of Nutrition (A.B., S.C., S.B., F.G.H.) and Entomology and Nematology (B.D.H.), and Comparative Pathology Laboratory (S.G.), University of California Davis, Davis, California; and Department of Internal Medicine (F.G.H.) and Comprehensive Cancer Center (B.D.H., F.G.H.), University of California Davis, Sacramento, California
| | - Santana Bachaalany
- Departments of Nutrition (A.B., S.C., S.B., F.G.H.) and Entomology and Nematology (B.D.H.), and Comparative Pathology Laboratory (S.G.), University of California Davis, Davis, California; and Department of Internal Medicine (F.G.H.) and Comprehensive Cancer Center (B.D.H., F.G.H.), University of California Davis, Sacramento, California
| | - Stephen Griffey
- Departments of Nutrition (A.B., S.C., S.B., F.G.H.) and Entomology and Nematology (B.D.H.), and Comparative Pathology Laboratory (S.G.), University of California Davis, Davis, California; and Department of Internal Medicine (F.G.H.) and Comprehensive Cancer Center (B.D.H., F.G.H.), University of California Davis, Sacramento, California
| | - Bruce D Hammock
- Departments of Nutrition (A.B., S.C., S.B., F.G.H.) and Entomology and Nematology (B.D.H.), and Comparative Pathology Laboratory (S.G.), University of California Davis, Davis, California; and Department of Internal Medicine (F.G.H.) and Comprehensive Cancer Center (B.D.H., F.G.H.), University of California Davis, Sacramento, California
| | - Fawaz G Haj
- Departments of Nutrition (A.B., S.C., S.B., F.G.H.) and Entomology and Nematology (B.D.H.), and Comparative Pathology Laboratory (S.G.), University of California Davis, Davis, California; and Department of Internal Medicine (F.G.H.) and Comprehensive Cancer Center (B.D.H., F.G.H.), University of California Davis, Sacramento, California
| |
Collapse
|
159
|
Structure-activity relationships of the plasminogen modulator SMTP with respect to the inhibition of soluble epoxide hydrolase. J Antibiot (Tokyo) 2015; 68:685-90. [PMID: 25966853 DOI: 10.1038/ja.2015.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/07/2023]
Abstract
A family of fungal metabolites, SMTP, is a small-molecule plasminogen modulator that enhances plasminogen activation, leading to thrombolysis. We recently demonstrated that SMTP-7 effectively treats ischemic stroke due to its thrombolytic activity as well as anti-inflammatory action, which is attributable to soluble epoxide hydrolase (sEH) inhibition. In this paper, we studied detailed structure-activity relationships of plasminogen modulation and sEH inhibition using 25 SMTP congeners including six newly synthesized ones. The results clearly demonstrate that the structure of the N-linked side chain of SMTP congeners markedly affect their activities toward plasminogen modulation and inhibitions of the two activities of sEH (C-terminal epoxide hydrolase and N-terminal phosphatase). A slight change in the N-linked side chain results in affording selectivity of SMTP congeners. Many congeners, which lacked plasminogen modulation activity, differently inhibited the two sEH activities depending on the structures of the N-linked side chain. Some congeners were active in plasminogen modulation and inhibition of both activities of sEH. These results help comprehensive understanding of ideal design of a drug useful for ischemic diseases that are associated with inflammation, such as stroke.
Collapse
|
160
|
Frömel T, Fleming I. Whatever happened to the epoxyeicosatrienoic Acid-like endothelium-derived hyperpolarizing factor? The identification of novel classes of lipid mediators and their role in vascular homeostasis. Antioxid Redox Signal 2015; 22:1273-92. [PMID: 25330284 DOI: 10.1089/ars.2014.6150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) to generate epoxyeicosatrienoic acids (EETs). The latter are biologically active and reported to act as an endothelium-derived hyperpolarizing factor as well as to affect angiogenic and inflammatory signaling pathways. RECENT ADVANCES In addition to AA, the CYP enzymes also metabolize the ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid to generate bioactive lipid epoxide mediators. The latter can be more potent than the EETs, but their actions are under investigated. The ω3-epoxides, like the EETs, are metabolized by the soluble epoxide hydrolase (sEH) to corresponding diols, and epoxide hydrolase inhibition increases epoxide levels and demonstrates anti-hypertensive as well as anti-inflammatory effects. CRITICAL ISSUES It seems that the overall consequences of CYP activation largely depend on enzyme substrate preference and the endogenous ω-3/ω-6 PUFA ratio. FUTURE DIRECTIONS More studies combining PUFA profiling with cell signaling and disease studies are required to determine the spectrum of molecular pathways affected by the different ω-6 and ω-3 PUFA epoxides and diols. Such information may help improve dietary studies aimed at promoting health via ω-3 PUFA supplementation and/or sEH inhibition.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Frankfurt, Germany
| | | |
Collapse
|
161
|
Abdelhamid G, El-Kadi AOS. Buthionine sulfoximine, an inhibitor of glutathione biosynthesis, induces expression of soluble epoxide hydrolase and markers of cellular hypertrophy in a rat cardiomyoblast cell line: roles of the NF-κB and MAPK signaling pathways. Free Radic Biol Med 2015; 82:1-12. [PMID: 25614461 DOI: 10.1016/j.freeradbiomed.2015.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/04/2023]
Abstract
Evidence suggests that upregulation of soluble epoxide hydrolase (sEH) is associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac hypertrophy, and heart failure. However, the upregulation mechanism is still unknown. In this study, we treated H9C2 cells with buthionine sulfoximine (BSO) to explore whether oxidative stress upregulates sEH gene expression and to identify the molecular and cellular mechanisms behind this upregulatory response. Real-time PCR and Western blot analyses were used to measure mRNA and protein expression, respectively. We demonstrated that BSO significantly upregulated sEH at mRNA levels in a concentration- and time-dependent manner, leading to a significant increase in the cellular hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Furthermore, BSO significantly increased the cytosolic phosphorylated IκB-α and translocation of NF-κB p50 subunits, as measured by Western blot analysis. This level of translocation was paralleled by an increase in the DNA-binding activity of NF-κB P50 subunits. Moreover, our results demonstrated that pretreatment with the NF-κB inhibitor PDTC significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression in a dose-dependent manner. Additionally, mitogen-activated protein kinases (MAPKs) were transiently phosphorylated by BSO treatment. To understand further the role of MAPKs pathway in BSO-mediated induction of sEH mRNA, we examined the role of extracellular signal-regulated kinase (ERK), c-JunN-terminal kinase (JNK), and p38 MAPK. Indeed, treatment with the MEK/ERK signal transduction inhibitor, PD98059, partially blocked the activation of IκB-α and translocation of NF-κB p50 subunits induced by BSO. Moreover, pretreatment with MEK/ERK signal transduction inhibitors, PD98059 and U0126, significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression. These results clearly demonstrated that the NF-κB signaling pathway is involved in BSO-mediated induction of sEH gene expression, and appears to be associated with the activation of the MAPK pathway. Furthermore, our findings provide a strong link between sEH-induced cardiac dysfunction and involvement of NF-κB in the development of cellular hypertrophy.
Collapse
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8.
| |
Collapse
|
162
|
Kodani SD, Hammock BD. The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 2015; 43:788-802. [PMID: 25762541 PMCID: PMC4407705 DOI: 10.1124/dmd.115.063339] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Dr. Bernard Brodie's legacy is built on fundamental discoveries in pharmacology and drug metabolism that were then translated to the clinic to improve patient care. Similarly, the development of a novel class of therapeutics termed the soluble epoxide hydrolase (sEH) inhibitors was originally spurred by fundamental research exploring the biochemistry and physiology of the sEH. Here, we present an overview of the history and current state of research on epoxide hydrolases, specifically focusing on sEHs. In doing so, we start with the translational project studying the metabolism of the insect juvenile hormone mimic R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene], which led to the identification of the mammalian sEH. Further investigation of this enzyme and its substrates, including the epoxyeicosatrienoic acids, led to insight into mechanisms of inflammation, chronic and neuropathic pain, angiogenesis, and other physiologic processes. This basic knowledge in turn led to the development of potent inhibitors of the sEH that are promising therapeutics for pain, hypertension, chronic obstructive pulmonary disorder, arthritis, and other disorders.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| |
Collapse
|
163
|
Shen L, Peng H, Peng R, Fan Q, Zhao S, Xu D, Morisseau C, Chiamvimonvat N, Hammock BD. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis. Atherosclerosis 2015; 239:557-65. [PMID: 25733327 PMCID: PMC4527317 DOI: 10.1016/j.atherosclerosis.2015.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 01/07/2023]
Abstract
Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li Shen
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China
| | - Hongchun Peng
- Department of Orthopaedics and Emergency, Changsha Central Hospital, Changsha, 410011, PR China
| | - Ran Peng
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China
| | - Qingsong Fan
- Department of Pathology, Xiangya Second Hospital, Central South University, Changsha, Hunan Province, 410001, PR China
| | - Shuiping Zhao
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China
| | - Danyan Xu
- Department of Cardiology, Internal Medicine, Xiangya Second Hospital, Central South University, Changsha, 410011, PR China.
| | - Christophe Morisseau
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
164
|
Three-dimensional rational approach to the discovery of potent substituted cyclopropyl urea soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 2015; 25:1705-1708. [PMID: 25800114 DOI: 10.1016/j.bmcl.2015.02.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 12/17/2022]
Abstract
We have previously reported a series of cyclopropyl urea derivatives as potent orally available soluble epoxide hydrolase (sEH) inhibitors. Here, we designed and synthesized three substituted cyclopropane derivatives that occupy all available pockets of sEH catalytic domain. Compound 14 with a diphenyl substituted cyclopropyl moiety showed good sEH inhibitory activity. Co-crystal structure of this compound and human sEH hydrolase catalytic domain revealed enzyme pockets occupied by the phenoxypiperidine part and the diphenyl cyclopropyl moiety. Furthermore, investigation of the phenoxypiperidine part of compound 14 resulted in the discovery of compound 19, which showed potent sEH inhibitory activity (sub-nM sEH IC50 values).
Collapse
|
165
|
Pradhan I, Ledent C, Mustafa SJ, Morisseau C, Nayeem MA. High salt diet modulates vascular response in A2AAR (+/+) and A 2AAR (-/-) mice: role of sEH, PPARγ, and K ATP channels. Mol Cell Biochem 2015; 404:87-96. [PMID: 25739357 DOI: 10.1007/s11010-015-2368-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
This study aims to investigate the signaling mechanism involved in HS-induced modulation of adenosine-mediated vascular tone in the presence or absence of adenosine A2A receptor (A2AAR). We hypothesized that HS-induced enhanced vascular relaxation through A2AAR and epoxyeicosatrienoic acid (EETs) is dependent on peroxisome proliferator-activated receptor gamma (PPARγ) and ATP-sensitive potassium channels (KATP channels) in A2AAR(+/+) mice, while HS-induced vascular contraction to adenosine is dependent on soluble epoxide hydrolase (sEH) that degrades EETs in A2AAR(-/-) mice. Organ bath and Western blot techniques were conducted in HS (4 % NaCl) and normal salt (NS, 0.45 % NaCl)-fed A2AAR(+/+) and A2AAR(-/-) mouse aorta. We found that enhanced vasodilation to A2AAR agonist, CGS 21680, in HS-fed A2AAR(+/+) mice was blocked by PPARγ antagonist (T0070907) and KATP channel blocker (Glibenclamide). Also, sEH inhibitor (AUDA)-dependent vascular relaxation was mitigated by PPARγ antagonist. PPARγ agonist (Rosiglitazone)-induced relaxation in HS-A2AAR(+/+) mice was attenuated by KATP channel blocker. Conversely, HS-induced contraction in A2AAR(-/-) mice was attenuated by sEH inhibitor. Overall, findings from this study that implicates the contribution of EETs, PPARγ and KATP channels downstream of A2AAR to mediate enhanced vascular relaxation in response to HS diet while, role of sEH in mediating vascular contraction in HS-fed A2AAR(-/-) mice.
Collapse
Affiliation(s)
- Isha Pradhan
- Department of Physiology & Pharmacology/Department of Basic Pharmaceutical Sciences, Center for Cardiovascular and Respiratory Sciences, School of Medicine/School of Pharmacy, West Virginia University, Biomedical Research Building, 2nd Floor, Room # 220, 3051 Health Science Center - North 1 Medical Center Drive, P. O. Box 9229, Morgantown, WV, 26506-9229, USA
| | | | | | | | | |
Collapse
|
166
|
Genetic deletion of soluble epoxide hydrolase attenuates inflammation and fibrosis in experimental obstructive nephropathy. Mediators Inflamm 2015; 2015:693260. [PMID: 25688176 PMCID: PMC4320902 DOI: 10.1155/2015/693260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 02/07/2023] Open
Abstract
Soluble epoxide hydrolase (sEH) is abundantly expressed in kidney and plays a potent role in regulating inflammatory response in inflammatory diseases. However, the role of sEH in progression of chronic kidney diseases such as obstructive nephropathy is still elusive. In current study, wild-type (WT) and sEH deficient (sEH (-/-)) mice were subjected to the unilateral ureteral obstruction (UUO) surgery and the kidney injury was evaluated by histological examination, western blotting, and ELISA. The protein level of sEH in kidney was increased in UUO-treated mice group compared to nonobstructed group. Additionally, UUO-induced hydronephrosis, renal tubular injury, inflammation, and fibrosis were ameliorated in sEH (-/-) mice with the exception of glomerulosclerosis. Moreover, sEH (-/-) mice with UUO showed lower levels of inflammation-related and fibrosis-related protein such as monocyte chemoattractant protein-1, macrophage inflammatory protein-2, interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase, collagen 1A1, and α-actin. The levels of superoxide anion radical and hydrogen peroxide as well as NADPH oxidase activity were also decreased in UUO kidneys of sEH (-/-) mice compared to that observed in WT mice. Collectively, our findings suggest that sEH plays an important role in the pathogenesis of experimental obstructive nephropathy and may be a therapeutic target for the treatment of obstructive nephropathy-related diseases.
Collapse
|
167
|
Zuloaga KL, Zhang W, Roese NE, Alkayed NJ. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice. Front Pharmacol 2015; 5:290. [PMID: 25642188 PMCID: PMC4295540 DOI: 10.3389/fphar.2014.00290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/12/2014] [Indexed: 12/27/2022] Open
Abstract
Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs), is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS) female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15–18 month old) and young (3–4 month old) female sEH knockout (sEHKO) mice and wild type (WT) mice were subjected to 45 min middle cerebral artery occlusion (MCAO) with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24 h thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography (OMAG). Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24 h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24 h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice.
Collapse
Affiliation(s)
- Kristen L Zuloaga
- Department of Anesthesiology and Perioperative Medicine, The Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Wenri Zhang
- Department of Anesthesiology and Perioperative Medicine, The Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Natalie E Roese
- Department of Anesthesiology and Perioperative Medicine, The Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, The Knight Cardiovascular Institute, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
168
|
Mukai Y, Toda T, Takeuchi S, Senda A, Yamashita M, Eliasson E, Rane A, Inotsume N. Simultaneous Determination Method of Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids by LC-MS/MS System. Biol Pharm Bull 2015; 38:1673-9. [DOI: 10.1248/bpb.b15-00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mukai
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Takaki Toda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Satoya Takeuchi
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Asuna Senda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Miki Yamashita
- Division of Clinical Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy
| | - Erik Eliasson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Nobuo Inotsume
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
169
|
Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides. Proc Natl Acad Sci U S A 2014; 112:536-41. [PMID: 25550510 DOI: 10.1073/pnas.1422590112] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is an emerging therapeutic target in a number of diseases that have inflammation as a common underlying cause. sEH limits tissue levels of cytochrome P450 (CYP) epoxides derived from omega-6 and omega-3 polyunsaturated fatty acids (PUFA) by converting these antiinflammatory mediators into their less active diols. Here, we explored the metabolic effects of a sEH inhibitor (t-TUCB) in fat-1 mice with transgenic expression of an omega-3 desaturase capable of enriching tissues with endogenous omega-3 PUFA. These mice exhibited increased CYP1A1, CYP2E1, and CYP2U1 expression and abundant levels of the omega-3-derived epoxides 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic (19,20-EDP) in insulin-sensitive tissues, especially liver, as determined by LC-ESI-MS/MS. In obese fat-1 mice, t-TUCB raised hepatic 17,18-EEQ and 19,20-EDP levels and reinforced the omega-3-dependent reduction observed in tissue inflammation and lipid peroxidation. t-TUCB also produced a more intense antisteatotic action in obese fat-1 mice, as revealed by magnetic resonance spectroscopy. Notably, t-TUCB skewed macrophage polarization toward an antiinflammatory M2 phenotype and expanded the interscapular brown adipose tissue volume. Moreover, t-TUCB restored hepatic levels of Atg12-Atg5 and LC3-II conjugates and reduced p62 expression, indicating up-regulation of hepatic autophagy. t-TUCB consistently reduced endoplasmic reticulum stress demonstrated by the attenuation of IRE-1α and eIF2α phosphorylation. These actions were recapitulated in vitro in palmitate-primed hepatocytes and adipocytes incubated with 19,20-EDP or 17,18-EEQ. Relatively similar but less pronounced actions were observed with the omega-6 epoxide, 14,15-EET, and nonoxidized DHA. Together, these findings identify omega-3 epoxides as important regulators of inflammation and autophagy in insulin-sensitive tissues and postulate sEH as a druggable target in metabolic diseases.
Collapse
|
170
|
Bettaieb A, Chahed S, Tabet G, Yang J, Morisseau C, Griffey S, Hammock BD, Haj FG. Effects of soluble epoxide hydrolase deficiency on acute pancreatitis in mice. PLoS One 2014; 9:e113019. [PMID: 25402489 PMCID: PMC4234494 DOI: 10.1371/journal.pone.0113019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/19/2014] [Indexed: 12/24/2022] Open
Abstract
Background Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity, and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored. Methodology/Principal Findings To investigate whether sEH may have a causal role in AP we utilized Ephx2 knockout (KO) mice to determine the effects of sEH deficiency on cerulein- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as enzymatic activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated Ephx2 KO mice compared with controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B and IL-6 were lower in cerulein-treated Ephx2 KO mice compared with controls. Further, Ephx2 KO mice exhibited decreased cerulein- and arginine-induced NF-κB inflammatory response, MAPKs activation and decreased cell death. Conclusions -These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Samah Chahed
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - George Tabet
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Jun Yang
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Stephen Griffey
- Comparative Pathology Laboratory, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Fawaz G. Haj
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
171
|
Samokhvalov V, Vriend J, Jamieson KL, Akhnokh MK, Manne R, Falck JR, Seubert JM. PPARγ signaling is required for mediating EETs protective effects in neonatal cardiomyocytes exposed to LPS. Front Pharmacol 2014; 5:242. [PMID: 25426073 PMCID: PMC4227494 DOI: 10.3389/fphar.2014.00242] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022] Open
Abstract
Lipopolysaccharide (LPS) is a bacterial wall endotoxin producing many pathophysiological conditions including myocardial inflammation leading to cardiotoxicity. Epoxyeicosatrienoic acids (EETs) are biologically active metabolites of arachidonic acids capable of activating protective cellular pathways in response to stress stimuli. EETs evoke a plethora of pathways limiting impairments of cellular structures, reducing cell death, and promoting anti-inflammatory reactions in various cell types. Considering EETs are capable of producing various biological protective effects, we hypothesized that EETs would protect rat neonatal cardiomyocytes (NCM) against LPS-induced cytotoxicity. In this study, we used a dual-acting, synthetic analog of EETs, UA-8 [13-(3-propylureido)tridec-8-enoic acid], possessing both EET-mimetic and soluble epoxide hydrolase selective inhibitory properties and 14,15-EET as a model of canonical EET molecules. We found that both UA-8 and 14,15-EET significantly improved cell viability and mitochondrial function of cardiomyocytes exposed to LPS. Furthermore, treatment with UA-8 or 14,15-EET resulted in significant attenuation of LPS-triggered pro-inflammatory response, caspase-3 activation and reduction in the total antioxidant capacity in cardiomyocytes. Importantly, EET-mediated effects were significantly reduced by pharmacological inhibition of peroxisome proliferator-activated receptors γ (PPARγ) suggesting that PPARγ signaling was required for EETs exerted protective effects. Data presented in the current study demonstrate that activation of PPARγ signaling plays a crucial role in EET-mediated protection against LPS-cytotoxicity in cardiomyocytes.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton, AB, Canada
| | - Jelle Vriend
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton, AB, Canada ; Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Netherlands
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton, AB, Canada
| | - Maria K Akhnokh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton, AB, Canada
| | - Rajkumar Manne
- Department of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - John R Falck
- Department of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton, AB, Canada ; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
172
|
The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/reperfusion injury is associated with PI3K/Akt pathway and ATP-sensitive potassium channels. Neurochem Res 2014; 40:1-14. [PMID: 25366463 DOI: 10.1007/s11064-014-1456-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/11/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolite of arachidonic acid, have been demonstrated to have neuroprotective effect. Phosphatidylinositol 3-kinase (PI3K)/Akt and ATP-sensitive potassium (KATP) channels are thought to be important factors that mediate neuroprotection. However, little is known about the role of PI3K/Akt and KATP channels in brain after EETs administration. In vitro experiment, oxygen-glucose deprivation (OGD) was performed in cultured rat cerebral microvascular smooth muscle cells (SMCs) for 4 h. The effect of 14,15-EET on OGD induced cell apoptosis was examined after reoxygenation. Western blot and real-time PCR were used to analyze the expression of Kir6.1, SUR2B (two subunits of KATP channels) and p-Akt on cerebral microvascular SMCs. In vivo experiments, we use 12-(3-adamantan-1-yl-ureido)-dodecanoic acid [AUDA, a specific soluble epoxide hydrolase (sEH) inhibitor] to confirm the effect of EETs indirectly. Rats were injected intraperitoneally with AUDA before being subjected to middle cerebral artery occlusion (MCAO). We detected the apoptosis and the expression of p-Akt, Kir6.1 and SUR2B in ischemic penumbra. The results showed that EETs protect against cerebral ischemia/reperfusion (I/R) injury and upregulated the expression of p-Akt and Kir6.1 in both of ischemic penumbra and OGD induced cerebral microvascular SMCs. The protective effect was inhibited by Wortmannin (a specific PI3K inhibitor) and Glib (a specific KATP inhibitor) respectively in vitro experiment. In conclusion, these results suggested that the protective effect of EETs on cerebral I/R injury is associated with PI3K/Akt pathway and KATP channels. Furthermore, the PI3K pathway may contribute to mediating KATP channels on cerebral microvascular SMCs.
Collapse
|
173
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
174
|
Matsumoto N, Suzuki E, Ishikawa M, Shirafuji T, Hasumi K. Soluble epoxide hydrolase as an anti-inflammatory target of the thrombolytic stroke drug SMTP-7. J Biol Chem 2014; 289:35826-38. [PMID: 25361765 DOI: 10.1074/jbc.m114.588087] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although ischemic stroke is a major cause of death and disability worldwide, only a small fraction of patients benefit from the current thrombolytic therapy due to a risk of cerebral hemorrhage caused by inflammation. Thus, the development of a new strategy to combat inflammation during thrombolysis is an urgent demand. The small molecule thrombolytic SMTP-7 effectively treats ischemic stroke in several animal models with reducing cerebral hemorrhage. Here we revealed that SMTP-7 targeted soluble epoxide hydrolase (sEH) to suppress inflammation. SMTP-7 inhibited both of the two sEH enzyme activities: epoxide hydrolase (which inactivates anti-inflammatory epoxy-fatty acids) and lipid phosphate phosphatase. SMTP-7 suppressed epoxy-fatty acid hydrolysis in HepG2 cells in culture, implicating the sEH inhibition in the anti-inflammatory mechanism. The sEH inhibition by SMTP-7 was independent of its thrombolytic activity. The simultaneous targeting of thrombolysis and sEH by a single molecule is a promising strategy to revolutionize the current stroke therapy.
Collapse
Affiliation(s)
- Naoki Matsumoto
- From the Department of Applied Biological Science, Tokyo Noko University, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Eriko Suzuki
- From the Department of Applied Biological Science, Tokyo Noko University, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Ishikawa
- Pharmaceutical Research Laboratory, Nihon Pharmaceutical, 34 Shin-izumi, Narita, Chiba 286-0825, Japan, and
| | - Takumi Shirafuji
- Pharmaceutical Research Laboratory, Nihon Pharmaceutical, 34 Shin-izumi, Narita, Chiba 286-0825, Japan, and
| | - Keiji Hasumi
- From the Department of Applied Biological Science, Tokyo Noko University, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan, TMS Co., Ltd., 1-32-1-102 Fuchucho, Fuchu, Tokyo 183-0055, Japan
| |
Collapse
|
175
|
CYP-13A12 of the nematode Caenorhabditis elegans is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochem J 2014; 464:61-71. [DOI: 10.1042/bj20140848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CYP-13A12 of the nematode Caenorhabditis elegans was characterized after heterologous expression in insect cells as a PUFA epoxygenase producing eicosanoids. These metabolites function as signalling molecules in the regulation of the O2-ON response, a rapid increase of locomotion in response to anoxia/reoxygenation.
Collapse
|
176
|
Vito ST, Austin AT, Banks CN, Inceoglu B, Bruun DA, Zolkowska D, Tancredi DJ, Rogawski MA, Hammock BD, Lein PJ. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication. Toxicol Appl Pharmacol 2014; 281:185-94. [PMID: 25448683 DOI: 10.1016/j.taap.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/19/2014] [Accepted: 10/02/2014] [Indexed: 01/06/2023]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABAAR) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABAAR positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15mg/kg, ip). Administration of a high dose of diazepam (5mg/kg, ip) immediately following the second clonic seizure (approximately 20min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABAAR antagonists. The sEH inhibitor TUPS (1mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5mg/kg, ip) and TUPS (1mg/kg, ip, starting 1h after diazepam and repeated every 24h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication.
Collapse
Affiliation(s)
- Stephen T Vito
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616, United States.
| | - Adam T Austin
- Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817, United States.
| | - Christopher N Banks
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, United States.
| | - Bora Inceoglu
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616, United States.
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, United States.
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817, United States.
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817, United States.
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817, United States.
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, United States.
| |
Collapse
|
177
|
Fleming I. The Pharmacology of the Cytochrome P450 Epoxygenase/Soluble Epoxide Hydrolase Axis in the Vasculature and Cardiovascular Disease. Pharmacol Rev 2014; 66:1106-40. [DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
178
|
Terry CM, Carlson ML, He Y, Ulu A, Morisseau C, Blumenthal DK, Hammock BD, Cheung AK. Aberrant soluble epoxide hydrolase and oxylipin levels in a porcine arteriovenous graft stenosis model. J Vasc Res 2014; 51:269-82. [PMID: 25196102 DOI: 10.1159/000365251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
Synthetic arteriovenous grafts (AVGs) used for hemodialysis frequently fail due to the development of neointimal hyperplasia (NH) at the vein-graft anastomosis. Inflammation and smooth-muscle cell (SMC) and myofibroblast proliferation and migration likely play an important role in the pathogenesis of NH. Epoxyeicosatrienoic acids (EETs), the products of the catabolism of arachidonic acid by cytochrome P450 enzymes, possess anti-inflammatory, antiproliferative, antimigratory and vasodilatory properties that should reduce NH. The degradation of vasculoprotective EETs is catalyzed by the enzyme, soluble epoxide hydrolase (sEH). sEH upregulation may thus contribute to NH development by the enhanced removal of vasculoprotective EETs. In this study, sEH, cytochrome P450 and EETs were examined after AVG placement in a porcine model to explore their potential roles in AVG stenosis. Increased sEH protein expression, decreased P450 epoxygenase activity and dysregulation of 5 oxylipin mediators were observed in the graft-venous anastomotic tissues when compared to control veins. Pharmacological inhibitors of sEH decreased the growth factor-induced migration of SMCs and fibroblasts, although they had no significant effect on the proliferation of these cells. These results provide insights on epoxide biology in vascular disorders and a rationale for the development of novel pharmacotherapeutic strategies to prevent AVG failure due to NH and stenosis.
Collapse
Affiliation(s)
- Christi M Terry
- Division of Nephrology and Hypertension, University of Utah, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Su KH, Lee KI, Shyue SK, Chen HY, Wei J, Lee TS. Implication of transient receptor potential vanilloid type 1 in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. Int J Biol Sci 2014; 10:990-6. [PMID: 25210497 PMCID: PMC4159690 DOI: 10.7150/ijbs.9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022] Open
Abstract
14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca2+ influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca2+. Removal of extracellular Ca2+, pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca2+ level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca2+ or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca2+ influx, NO production and angiogenesis.
Collapse
Affiliation(s)
- Kuo-Hui Su
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Kuan-I Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Song-Kun Shyue
- 2. Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Hsiang-Ying Chen
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Jeng Wei
- 3. Heart Center, Cheng-Hsin General Hospital, Taipei, 11221 Taiwan
| | - Tzong-Shyuan Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| |
Collapse
|
180
|
Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:356-65. [PMID: 25093613 DOI: 10.1016/j.bbalip.2014.07.020] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Arthur A Spector
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
181
|
Carver KA, Lourim D, Tryba AK, Harder DR. Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature. Am J Physiol Cell Physiol 2014; 307:C989-98. [PMID: 25055826 DOI: 10.1152/ajpcell.00401.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mammals have circadian variation in blood pressure, heart rate, vascular tone, thrombotic tendency, and cerebral blood flow (CBF). These changes may be in part orchestrated by circadian variation in clock gene expression within cells comprising the vasculature that modulate blood flow (e.g., fibroblasts, cerebral vascular smooth muscle cells, astrocytes, and endothelial cells). However, the downstream mechanisms that underlie circadian changes in blood flow are unknown. Cytochrome P450 epoxygenases (Cyp4x1 and Cyp2c11) are expressed in the brain and vasculature and metabolize arachidonic acid (AA) to form epoxyeicosatrienoic acids (EETs). EETs are released from astrocytes, neurons, and vascular endothelial cells and act as potent vasodilators, increasing blood flow. EETs released in response to increases in neural activity evoke a corresponding increase in blood flow known as the functional hyperemic response. We examine the hypothesis that Cyp2c11 and Cyp4x1 expression and EETs production vary in a circadian manner in the rat brain and cerebral vasculature. RT-PCR revealed circadian/diurnal expression of clock and clock-controlled genes as well as Cyp4x1 and Cyp2c11, within the rat hippocampus, middle cerebral artery, inferior vena cava, hippocampal astrocytes and rat brain microvascular endothelial cells. Astrocyte and endothelial cell culture experiments revealed rhythmic variation in Cyp4x1 and Cyp2c11 gene and protein expression with a 12-h period and parallel rhythmic production of EETs. Our data suggest there is circadian regulation of Cyp4x1 and Cyp2c11 gene expression. Such rhythmic EETs production may contribute to circadian changes in blood flow and alter risk of adverse cardiovascular events throughout the day.
Collapse
Affiliation(s)
- Koryn A Carver
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - David Lourim
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Andrew K Tryba
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - David R Harder
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
182
|
Zuloaga KL, Krasnow SM, Zhu X, Zhang W, Jouihan SA, Shangraw RE, Alkayed NJ, Marks DL. Mechanism of protection by soluble epoxide hydrolase inhibition in type 2 diabetic stroke. PLoS One 2014; 9:e97529. [PMID: 24824753 PMCID: PMC4019567 DOI: 10.1371/journal.pone.0097529] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022] Open
Abstract
Inhibition of soluble epoxide hydrolase (sEH) is a potential target of therapy for ischemic injury. sEH metabolizes neuroprotective epoxyeicosatrienoic acids (EETs). We recently demonstrated that sEH inhibition reduces infarct size after middle cerebral artery occlusion (MCAO) in type 1 diabetic mice. We hypothesized that inhibition of sEH would protect against ischemic injury in type 2 diabetic mice. Type 2 diabetes was produced by combined high-fat diet, nicotinamide and streptozotocin in male mice. Diabetic and control mice were treated with vehicle or the sEH inhibitor t-AUCB then subjected to 60-min MCAO. Compared to chow-fed mice, high fat diet-fed mice exhibited an upregulation of sEH mRNA and protein in brain, but no differences in brain EETs levels were observed between groups. Type 2 diabetic mice had increased blood glucose levels at baseline and throughout ischemia, decreased laser-Doppler perfusion of the MCA territory after reperfusion, and sustained larger cortical infarcts compared to control mice. t-AUCB decreased fasting glucose levels at baseline and throughout ischemia, improved cortical perfusion after MCAO and significantly reduced infarct size in diabetic mice. We conclude that sEH inhibition, as a preventative treatment, improves glycemic status, post-ischemic reperfusion in the ischemic territory, and stroke outcome in type 2 diabetic mice.
Collapse
Affiliation(s)
- Kristen L. Zuloaga
- The Knight Cardiovascular Institute, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Stephanie M. Krasnow
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Wenri Zhang
- The Knight Cardiovascular Institute, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Sari A. Jouihan
- The Knight Cardiovascular Institute, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert E. Shangraw
- The Knight Cardiovascular Institute, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nabil J. Alkayed
- The Knight Cardiovascular Institute, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
183
|
Anti-inflammatory effects of ω-3 polyunsaturated fatty acids and soluble epoxide hydrolase inhibitors in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol 2014; 62:285-97. [PMID: 23676336 DOI: 10.1097/fjc.0b013e318298e460] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanisms underlying the anti-inflammatory and antihypertensive effects of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid epoxyeicosatrienoic acids also exhibit antihypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may lower the blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for 3 weeks in a murine model of angiotensin-II-dependent hypertension. Also, because EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of an sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II, increased the blood pressure, further increased the renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (ie, prostaglandins and MCP-1), downregulated an epithelial sodium channel, and upregulated angiotensin-converting enzyme-2 message and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering systolic blood pressure and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by upregulation of angiotensin-converting enzyme-2 in angiotensin-II-dependent hypertension.
Collapse
|
184
|
Davies SS, Guo L. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids 2014; 181:1-33. [PMID: 24704586 DOI: 10.1016/j.chemphyslip.2014.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States.
| | - Lilu Guo
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States
| |
Collapse
|
185
|
Purba ER, Oguro A, Imaoka S. Isolation and characterization of Xenopus soluble epoxide hydrolase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:954-62. [PMID: 24681163 DOI: 10.1016/j.bbalip.2014.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 01/14/2023]
Abstract
Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes.
Collapse
Affiliation(s)
- Endang R Purba
- Research Center for Environmental Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan; Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Research Center for Environmental Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan; Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Susumu Imaoka
- Research Center for Environmental Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan; Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| |
Collapse
|
186
|
Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K, Schunck WH. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res 2014; 55:1150-64. [PMID: 24634501 DOI: 10.1194/jlr.m047357] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation.
Collapse
Affiliation(s)
- Robert Fischer
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Anne Konkel
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Heidrun Mehling
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Katrin Blossey
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), Berlin, Germany HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Dominik N Muller
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Karsten Weylandt
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | | |
Collapse
|
187
|
Luyen BTT, Tai BH, Thao NP, Eun KJ, Cha JY, Xin MJ, Lee YM, Kim YH. Anti-inflammatory components of Euphorbia humifusa Willd. Bioorg Med Chem Lett 2014; 24:1895-900. [PMID: 24679441 DOI: 10.1016/j.bmcl.2014.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
Abstract
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (3-26) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (10-21) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05±1.17, 18.64±1.83, and 17.23±0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 3-6, 8, 18, 20-23, and 25-26 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1±0.9 to 45.3±1.6 μM and 14.4±0.5 to 44.5±1.2 μM, respectively.
Collapse
Affiliation(s)
- Bui Thi Thuy Luyen
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Bui Huu Tai
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Nguyen Phuong Thao
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Kim Ji Eun
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Ji Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Ming Jie Xin
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Young Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Wonkwang Oriental Medicines Research Institute, Iksan, Jeonbuk 570-749, Republic of Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
188
|
Structure-based optimization of cyclopropyl urea derivatives as potent soluble epoxide hydrolase inhibitors for potential decrease of renal injury without hypotensive action. Bioorg Med Chem 2014; 22:1548-57. [DOI: 10.1016/j.bmc.2014.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
|
189
|
Hu J, Popp R, Frömel T, Ehling M, Awwad K, Adams RH, Hammes HP, Fleming I. Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. ACTA ACUST UNITED AC 2014; 211:281-95. [PMID: 24446488 PMCID: PMC3920554 DOI: 10.1084/jem.20131494] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases generate bioactive lipid epoxides which can be further metabolized to supposedly less active diols by the soluble epoxide hydrolase (sEH). As the role of epoxides and diols in angiogenesis is unclear, we compared retinal vasculature development in wild-type and sEH(-/-) mice. Deletion of the sEH significantly delayed angiogenesis, tip cell, and filopodia formation, a phenomenon associated with activation of the Notch signaling pathway. In the retina, sEH was localized in Müller glia cells, and Müller cell-specific sEH deletion reproduced the sEH(-/-) retinal phenotype. Lipid profiling revealed that sEH deletion decreased retinal and Müller cell levels of 19,20-dihydroxydocosapentaenoic acid (DHDP), a diol of docosahexenoic acid (DHA). 19,20-DHDP suppressed endothelial Notch signaling in vitro via inhibition of the γ-secretase and the redistribution of presenilin 1 from lipid rafts. Moreover, 19,20-DHDP, but not the parent epoxide, was able to rescue the defective angiogenesis in sEH(-/-) mice as well as in animals lacking the Fbxw7 ubiquitin ligase, which demonstrate strong basal activity of the Notch signaling cascade. These studies demonstrate that retinal angiogenesis is regulated by a novel form of neuroretina-vascular interaction involving the sEH-dependent generation of a diol of DHA in Müller cells.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signaling, Centre for Molecular Medicine, Johann Wolfgang Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Pinocembrin protects rats against cerebral ischemic damage through soluble epoxide hydrolase and epoxyeicosatrienoic acids. Chin J Nat Med 2013; 11:207-13. [PMID: 23725831 DOI: 10.1016/s1875-5364(13)60018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 11/21/2022]
Abstract
AIM To investigate the relationship between cerebroprotection of pinocembrin and epoxyeicosatrienoic acids (EETs) and their regulating enzyme soluble epoxide hydrolase (sEH). METHODS Rats underwent middle cerebral artery occlusion (MCAO) to mimic permanent focal ischemia, and pinocembrin was administrated via tail vein injection at 10 min, 4 h, 8 h and 23 h after MCAO. After 24 MCAO, rats were re-anesthetized, and the blood and brain were harvested and analyzed. RESULTS Pinocembrin displayed significant protective effects on MCAO rats indicated by reduced neurological deficits and infarct volume. Importantly, co-administration of 0.2 mg·kg(-1) 14, 15-EEZE, a putative selective EET antagonist, weakened the beneficial effects of pinocembrin. 14, 15-EET levels in the blood and brain of rats after 24 h MCAO were elevated in the presence of pinocembrin. In an assay for hydrolase activity, pinocembrin significantly lowered brain sEH activity of MCAO rats and inhibited recombinant human sEH activity in a concentration-dependent manner (IC50, 2.58 μmol·L(-1)). In addition, Western blot and immunohistochemistry analysis showed that pinocembrin at doses of 10 mg·kg(-1) and 30 mg·kg(-1) significantly down-regulated sEH protein in rat brain, especially the hippocampus CA1 region of MCAO rats. CONCLUSION Inhibiting sEH and then increasing the potency of EETs may be one of the mechanisms through which pinocembrin provides cerebral protection.
Collapse
|
191
|
Inceoglu B, Zolkowska D, Yoo HJ, Wagner KM, Yang J, Hackett E, Hwang SH, Lee KSS, Rogawski MA, Morisseau C, Hammock BD. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures. PLoS One 2013; 8:e80922. [PMID: 24349022 PMCID: PMC3862847 DOI: 10.1371/journal.pone.0080922] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA). ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs). The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH), the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.
Collapse
Affiliation(s)
- Bora Inceoglu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Hyun Ju Yoo
- Metabolomics Core Laboratory, Biomedical Research Center, Asan Institute of Life Sciences, Seoul, Korea
| | - Karen M. Wagner
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Edward Hackett
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Sung Hee Hwang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Kin Sing Stephen Lee
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
192
|
Corriveau S, Berthiaume M, Girard I, Nolin MA, Rousseau E, Pasquier JC. Effect of cytochrome P-450 epoxygenase and hydroxylase metabolites on rat myometrium contractility in non-pregnancy, late pregnancy and late pregnancy under inflammatory conditions. J Obstet Gynaecol Res 2013; 40:661-9. [PMID: 24321039 DOI: 10.1111/jog.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
Abstract
AIM The aim of the present experimental study was to assess the tocolytic effect of eicosanoids on myometrium from non-pregnant and pregnant rats with or without an induced inflammatory condition. METHODS Three hundred myometrial rings were obtained by median laparotomy from 50 Sprague-Dawley rats divided into three groups: (i) non-pregnant (n = 15); (ii) pregnant in absence (n = 20); or (iii) pregnant in presence (n = 15) of lipopolysaccharide treatment, timed at 22 days of pregnancy. Spontaneous contractile activities were compared by isometric tension measurements. The effects of epoxy- and hydroxyeicosanoids derived from arachidonic acid as well as specific enzyme inhibitors were assessed. Changes were expressed as percentage of basal activity by calculating the area under the curve as a function of drug concentration and compared to the effect of the vehicle. RESULTS A decrease in contractile activity ranging 10-25% was observed upon addition of epoxy- and hydroxyeicosanoids. Increasing epoxyeicosanoid bioavailability by inhibiting their degradation induced a tocolytic effect in the non-pregnant group (20%) and in inflammation-induced condition (40%). There was a significant difference in reactivity between groups and pregnancy condition. Semiquantification of metabolic enzymes that produce (cytochrome P-450 epoxygenase) and degrade (soluble epoxide hydrolase) epoxyeicosanoids by western blot analysis revealed that these enzymes were mainly detected in the non-pregnant group. CONCLUSION Eicosanoids can modify myometrial reactivity and their presence and effects are amplified in non-pregnant and in inflammation-induced condition. Our data suggest that in contrast to prostaglandins, epoxyeicosatrienoic acids are likely involved in the quiescence phase of parturition because they reduce the rhythmic contractile activity of uterine tissues in pregnant rats.
Collapse
Affiliation(s)
- Stéphanie Corriveau
- Obstetrics and Gynecology, CRC E-Lebel - CHUS, Sherbrooke, Quebec, Canada; Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
193
|
Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice. PLoS One 2013; 8:e81228. [PMID: 24349046 PMCID: PMC3857181 DOI: 10.1371/journal.pone.0081228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/09/2013] [Indexed: 01/05/2023] Open
Abstract
Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs). However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs) as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP) genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.
Collapse
|
194
|
Sisignano M, Bennett DLH, Geisslinger G, Scholich K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog Lipid Res 2013; 53:93-107. [PMID: 24287369 DOI: 10.1016/j.plipres.2013.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/22/2022]
Abstract
TRP-channels are the most prominent family of ligand-gated ion channels for pain perception. In sensory neurons, TRPV1-V4, TRPA1 and TRPM8 are expressed and are responsible for the conversion of external stimuli to painful sensations. Under pathophysiological conditions, excessive activity of TRP-channels leads to mechanical allodynia and thermal hyperalgesia. Among the endogenous TRP-channel sensitizers, activators and inhibitors, more than 50 arachidonic acid- and linoleic acid-metabolites from the COX-, LOX- and CYP-pathways, as well as lysophospholipids and isoprenoids can be found. As a consequence, these lipids represent the vast majority of endogenous TRP-channel modulators in sensory neurons. Although the precise mechanisms of TRP-channel modulation by most lipids are still unknown, it became clear that lipids can either bind directly to the target TRP-channel or modulate TRP-channels indirectly by activating G-protein coupled receptors. Thus, TRP-channels seem to be key sensors for lipids, integrating and interpreting incoming signals from the different metabolic lipid pathways. Here, we discuss the specific properties of the currently known endogenous lipid-derived TRP-channel modulators concerning their ability to activate or inhibit TRP-channels, the molecular mechanisms of lipid/TRP-channel interactions and specific TRP-regulatory characteristics of the individual lipid families.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of the Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
195
|
Markworth JF, Vella L, Lingard BS, Tull DL, Rupasinghe TW, Sinclair AJ, Maddipati KR, Cameron-Smith D. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1281-96. [PMID: 24089379 DOI: 10.1152/ajpregu.00128.2013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0-3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Jouihan SA, Zuloaga KL, Zhang W, Shangraw RE, Krasnow SM, Marks DL, Alkayed NJ. Role of soluble epoxide hydrolase in exacerbation of stroke by streptozotocin-induced type 1 diabetes mellitus. J Cereb Blood Flow Metab 2013; 33:1650-6. [PMID: 23899929 PMCID: PMC3790937 DOI: 10.1038/jcbfm.2013.130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/18/2022]
Abstract
Hyperglycemia worsens stroke, yet rigorous glycemic control does not improve neurologic outcome. An alternative is to target downstream molecular mediator(s) triggered by hyperglycemia but independent of prevailing glycemia. Soluble epoxide hydrolase (sEH) is a potential mediator of injury via its metabolism of neuroprotective epoxyeicosatrienoic acids (EETs). We tested whether hyperglycemia exacerbates cerebral injury by upregulating sEH and decreasing brain EET levels. Type 1 diabetes mellitus was modeled by streptozotocin (STZ; 50 mg/kg per day intraperitoneally, 5 days) in male mice. At 4 weeks, STZ-treated and control mice underwent 45-minute middle cerebral artery occlusion (MCAO) with or without sEH blockade by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB; 1 mg/kg intraperitoneally daily for 6 days before MCAO). The STZ-treated mice had increased sEH mRNA expression in cerebral vessels and decreased EET concentrations in brain. There was no difference in cortical perfusion between groups. The STZ-treated mice sustained larger brain infarct than controls. Pretreatment with t-AUCB eliminated the difference in infarct size and EETs concentration between STZ-treated mice and controls, without altering glycemia. We conclude that type 1 diabetes mellitus upregulates sEH mRNA and decreases concentrations of neuroprotective EETs within the brain, leading to worse stroke outcome. The data indicate that sEH antagonism may be beneficial in the setting of hyperglycemic stroke.
Collapse
Affiliation(s)
- Sari A Jouihan
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Shaik JSB, Ahmad M, Li W, Rose ME, Foley LM, Hitchens TK, Graham SH, Hwang SH, Hammock BD, Poloyac SM. Soluble epoxide hydrolase inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is neuroprotective in rat model of ischemic stroke. Am J Physiol Heart Circ Physiol 2013; 305:H1605-13. [PMID: 24043255 DOI: 10.1152/ajpheart.00471.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Soluble epoxide hydrolase (sEH) diminishes vasodilatory and neuroprotective effects of epoxyeicosatrienoic acids by hydrolyzing them to inactive dihydroxy metabolites. The primary goals of this study were to investigate the effects of acute sEH inhibition by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) on infarct volume, functional outcome, and changes in cerebral blood flow (CBF) in a rat model of ischemic stroke. Focal cerebral ischemia was induced in rats for 90 min followed by reperfusion. At the end of 24 h after reperfusion rats were euthanized for infarct volume assessment by triphenyltetrazolium chloride staining. Brain cortical sEH activity was assessed by ultra performance liquid chromatography-tandem mass spectrometry. Functional outcome at 24 and 48 h after reperfusion was evaluated by arm flexion and sticky-tape tests. Changes in CBF were assessed by arterial spin-labeled-MRI at baseline, during ischemia, and at 180 min after reperfusion. Neuroprotective effects of t-AUCB were evaluated in primary rat neuronal cultures by Cytotox-Flour kit and propidium iodide staining. t-AUCB significantly reduced cortical infarct volume by 35% (14.5 ± 2.7% vs. 41.5 ± 4.5%), elevated cumulative epoxyeicosatrienoic acids-to-dihydroxyeicosatrienoic acids ratio in brain cortex by twofold (4.40 ± 1.89 vs. 1.97 ± 0.85), and improved functional outcome in arm-flexion test (day 1: 3.28 ± 0.5 s vs. 7.50 ± 0.9 s; day 2: 1.71 ± 0.4 s vs. 5.28 ± 0.5 s) when compared with that of the vehicle-treated group. t-AUCB significantly reduced neuronal cell death in a dose-dependent manner (vehicle: 70.9 ± 7.1% vs. t-AUCB0.1μM: 58 ± 5.11% vs. t-AUCB0.5μM: 39.9 ± 5.8%). These findings suggest that t-AUCB may exert its neuroprotective effects by affecting multiple components of neurovascular unit including neurons, astrocytes, and microvascular flow.
Collapse
Affiliation(s)
- Jafar Sadik B Shaik
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
199
|
Evangelista EA, Kaspera R, Mokadam NA, Jones JP, Totah RA. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos 2013; 41:2087-94. [PMID: 24021950 DOI: 10.1124/dmd.113.053389] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 2J2 plays a significant role in the epoxidation of arachidonic acid to signaling molecules important in cardiovascular events. CYP2J2 also contributes to drug metabolism and is responsible for the intestinal clearance of ebastine. However, the interaction between arachidonic acid metabolism and drug metabolism in cardiac tissue, the main expression site of CYP2J2, has not been examined. Here we investigate an adult-derived human primary cardiac cell line as a suitable model to study metabolic drug interactions (inhibition and induction) of CYP2J2 in cardiac tissue. The primary human cardiomyocyte cell line demonstrated similar mRNA-expression profiles of P450 enzymes to adult human ventricular tissue. CYP2J2 was the dominant isozyme with minor contributions from CYP2D6 and CYP2E1. Both terfenadine and astemizole oxidation were observed in this cell line, whereas midazolam was not metabolized suggesting lack of CYP3A activity. Compared with recombinant CYP2J2, terfenadine was hydroxylated in cardiomyocytes at a similar K(m) value of 1.5 μM. The V(max) of terfenadine hydroxylation in recombinant enzyme was found to be 29.4 pmol/pmol P450 per minute and in the cells 6.0 pmol/pmol P450 per minute. CYP2J2 activity in the cell line was inhibited by danazol, astemizole, and ketoconazole in submicromolar range, but also by xenobiotics known to cause cardiac adverse effects. Of the 14 compounds tested for CYP2J2 induction, only rosiglitazone increased mRNA expression, by 1.8-fold. This cell model can be a useful in vitro model to investigate the role of CYP2J2-mediated drug metabolism, arachidonic acid metabolism, and their association to drug induced cardiotoxicity.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Medicinal Chemistry (E.A.E., R.K., J.P.J., R.A.T.) and Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington (N.A.M.)
| | | | | | | | | |
Collapse
|
200
|
Kompa AR, Wang BH, Xu G, Zhang Y, Ho PY, Eisennagel S, Thalji RK, Marino JP, Kelly DJ, Behm DJ, Krum H. Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction. Int J Cardiol 2013; 167:210-9. [DOI: 10.1016/j.ijcard.2011.12.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/11/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
|