151
|
Hoen E, Goossens FM, Falize K, Mayerl S, van der Spek AH, Boelen A. The Differential Effect of a Shortage of Thyroid Hormone Compared with Knockout of Thyroid Hormone Transporters Mct8 and Mct10 on Murine Macrophage Polarization. Int J Mol Sci 2024; 25:2111. [PMID: 38396788 PMCID: PMC10889717 DOI: 10.3390/ijms25042111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.
Collapse
Affiliation(s)
- Esmée Hoen
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| | - Franka M. Goossens
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| | - Kim Falize
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes & Metabolism, University Duisburg-Essen, 47057 Essen, Germany
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.H.); (K.F.)
| |
Collapse
|
152
|
Zhou W, Lew B, Choi H, Kim K, Anakk S. Chenodeoxycholic Acid-Loaded Nanoparticles Are Sufficient to Decrease Adipocyte Size by Inducing Mitochondrial Function. NANO LETTERS 2024; 24:1642-1649. [PMID: 38278518 PMCID: PMC10854752 DOI: 10.1021/acs.nanolett.3c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
Excess fat accumulation is not only associated with metabolic diseases but also negatively impacts physical appearance and emotional well-being. Bile acid, the body's natural emulsifier, is one of the few FDA-approved noninvasive therapeutic options for double chin (submental fat) reduction. Synthetic sodium deoxycholic acid (NaDCA) causes adipose cell lysis; however, its side effects include inflammation, bruising, and necrosis. Therefore, we investigated if an endogenous bile acid, chenodeoxycholic acid (CDCA), a well-known signaling molecule, can be beneficial without many of the untoward effects. We first generated CDCA-loaded nanoparticles to achieve sustained and localized delivery. Then, we injected them into the subcutaneous fat depot and monitored adipocyte size and mitochondrial function. Unlike NaDCA, CDCA did not cause cytolysis. Instead, we demonstrate that a single injection of CDCA-loaded nanoparticles into the subcutaneous fat reduced the adipocyte size by promoting fat burning and mitochondrial respiration, highlighting their potential for submental fat reduction.
Collapse
Affiliation(s)
- Weinan Zhou
- Department
of Molecular and Integrative Physiology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Benjamin Lew
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hyungsoo Choi
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kyekyoon Kim
- Department
of Electrical and Computer Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department
of Molecular and Integrative Physiology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Division
of Nutritional Sciences, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
153
|
Davidsen N, Ramhøj L, Ballegaard ASR, Rosenmai AK, Henriksen CS, Svingen T. Perfluorooctanesulfonic acid (PFOS) disrupts cadherin-16 in the developing rat thyroid gland. Curr Res Toxicol 2024; 6:100154. [PMID: 38352163 PMCID: PMC10861841 DOI: 10.1016/j.crtox.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Perfluorooctanesulfonic acid (PFOS) can disrupt the thyroid hormone (TH) system in rodents, potentially affecting perinatal growth and neurodevelopment. Some studies also suggest that gestational exposure to PFOS can lead to lower TH levels throughout life, indicating that PFOS may compromise thyroid gland development. To address this question, we utilized a rat thyroid gland ex vivo culture system to study direct effects of PFOS on the developing thyroid. No significant changes to follicular structure or size were observed with 1 µM or 10 µM PFOS exposure. However, the transcription factor Foxe1, together with Tpo and Lrp2, were upregulated, whereas the key transcription factor Pax8 and its downstream target gene Cdh16 were significantly downregulated at the transcript level, observed with both RT-qPCR and RNAscope. Notably, Cdh16 expression was not uniformly downregulated across Cdh16-postive cells, but instead displayed a patchy expression pattern across the thyroid gland. This is a significant change in expression pattern compared to control thyroids where Cdh16 is expressed relatively uniformly. The disrupted expression pattern was also seen at the protein level. This suggests that PFOS exposure can impact follicular growth and structure. Compromised follicle integrity, if irreversible, could help explain reduced TH synthesis postnatally. This view is supported by observed changes to Tpo and Lrp2 expression, two factors that play a role in TH synthesis.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
154
|
Henning Y, Adam K, Gerhardt P, Begall S. Hypoxic and hypercapnic burrow conditions lead to downregulation of free triiodothyronine and hematocrit in Ansell's mole-rats (Fukomys anselli). J Comp Physiol B 2024; 194:33-40. [PMID: 38059996 PMCID: PMC10940439 DOI: 10.1007/s00360-023-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
African mole-rats live in self-dug burrow systems under hypoxic and hypercapnic conditions. Adaptations to hypoxia include suppression of resting metabolic rate (RMR) and core body temperature (Tb). Because the thyroid hormones (THs) thyroxine (T4) and triiodothyronine (T3) are positive regulators of RMR and Tb, we hypothesized that serum TH concentrations would also be downregulated under hypoxic conditions. To test this hypothesis, we kept Ansell's mole-rats (Fukomys anselli) in terraria filled with soil in which they were allowed to construct underground burrows to achieve chronic intermittent hypoxia and hypercapnia. The animals stayed in these hypoxic and hypercapnic burrows voluntarily, although given the choice to stay aboveground. We collected blood samples before and after treatment to measure serum T4 and T3 concentrations as well as hematological parameters. The free fraction of the transcriptionally-active T3 was significantly decreased after treatment, indicating that cellular TH signaling was downregulated via peripheral mechanisms, consistent with the assumption that aerobic metabolism is downregulated under hypoxic conditions. Furthermore, we found that hematocrit and hemoglobin concentrations were also downregulated after treatment, suggesting that oxygen demand decreases under hypoxia, presumably due to the metabolic shift towards anaerobic metabolism. Taken together, we have identified a potential upstream regulator of physiological adaptations to hypoxia in these highly hypoxia-tolerant animals.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Kamilla Adam
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Patricia Gerhardt
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
155
|
Takei Y. Metabolic Water As a Route for Water Acquisition in Vertebrates Inhabiting Dehydrating Environments. Zoolog Sci 2024; 41:132-139. [PMID: 38587526 DOI: 10.2108/zs230085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Vertebrates have expanded their habitats during evolution, which accompanies diversified routes for water acquisition. Water is acquired by oral intake and subsequent absorption by the intestine in terrestrial and marine animals which are subjected to constant dehydration, whereas most water is gained osmotically across body surfaces in freshwater animals. In addition, a significant amount of water, called metabolic water, is produced within the body by the oxidation of hydrogen in organic substrates. The importance of metabolic water production as a strategy for water acquisition has been well documented in desert animals, but its role has attracted little attention in marine animals which also live in a dehydrating environment. In this article, the author has attempted to reevaluate the role of metabolic water production in body fluid regulation in animals inhabiting desiccating environments. Because of the exceptional ability of their kidney, marine mammals are thought to typically gain water by drinking environmental seawater and excreting excess NaCl in the urine. On the other hand, it is established that marine teleosts drink seawater to enable intestinal water and ion absorption, and the excess NaCl is excreted by branchial ionocytes. In addition to the oral route, we suggest through experiments using eels that water production by lipid metabolism is an additional route for water acquisition when they encounter seawater. It seems that metabolic water production contributes to counteract dehydration before mechanisms for water regulation are reversed from excretion in freshwater to acquisition in seawater.
Collapse
Affiliation(s)
- Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan,
| |
Collapse
|
156
|
Radhakrishna U, Ratnamala U, Jhala DD, Uppala LV, Vedangi A, Saiyed N, Patel M, Vadsaria N, Shah SR, Rawal RM, Mercuri SR, McGonagle D, Jemec GBE, Damiani G. Hidradenitis suppurativa associated telomere-methylome dysregulations in blood. J Eur Acad Dermatol Venereol 2024; 38:393-403. [PMID: 37872100 DOI: 10.1111/jdv.19586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic debilitating disease with a significant burden of both organic and psychological comorbidities. It has been shown that certain telomere-related genes (TRGs) affect a wide range of diseases, including HS and its associated comorbidities, but their exact role in HS pathogenesis is still unknown. OBJECTIVES To determine whether TRG methylomes can be used as biomarkers in HS. METHODS Using the Illumina HumanMethylation450 BeadChip array, we examined methylation variations associated with TRGs in HS cases and age-, sex- and ethnicity-matched healthy controls. The study utilized integrated bioinformatics statistical methods, such as a false discovery rate (FDR), the area under the receiver operating characteristic curve (AUC) and principal component analysis. RESULTS There were a total of 585 different differentially methylated CpG sites identified in 585 TRGs associated with HS (474 hypomethylated and 111 hypermethylated) (FDR p-value < 0.05). A number of these CpGs have been identified as being involved in increased pain sensitivity including EPAS1, AHR, CSNK1D, DNMT1, IKBKAP, NOS3, PLCB1 and PRDM16 genes; GABRB3 as a potential alcohol addiction marker; DDB1, NSMCE2 and HNRNPA2B1 associated with cancers. Pathway analysis identified 67 statistically significant pathways, including DNA repair, telomere maintenance, mismatch repair and cell cycle control (p < 0.001). CONCLUSION The disruption of TRGs leads to the shortening of telomeres, which is associated with HS progression, ageing, cellular senescence and an increased risk of various diseases, including cancer and associated comorbidities, such as metabolic syndrome, cardiovascular disease and inflammatory disorders. Further research is necessary to better understand the underlying mechanisms and establish causal links between TRGs and HS. The present study is the first effort to comprehend potential pathomechanisms of sporadic HS cases concentrating on PBMC methylome since ours.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Lavanya V Uppala
- College of Information Science & Technology, Peter Kiewit Institute, the University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Aaren Vedangi
- Department of Clinical Research, KIMS ICON Hospital, A Unit of ICON Krishi Institute Medical Sciences, Visakhapatnam, India
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | | | | | - Sushma R Shah
- Department of Obstetrics and Gynecology, BJ Medical College Institute of Medical Post-Graduate Studies and Research, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Santo R Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Giovanni Damiani
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Center of Precision Medicine and Chronic Inflammation, University of Milan, Milan, Italy
| |
Collapse
|
157
|
Carter WA, DeMoranville KJ, Trost L, Bryła A, Działo M, Sadowska ET, Bauchinger U, Pierce B, McWilliams SR. Dietary fatty acids and flight-training influence the expression of the eicosanoid hormone prostacyclin in songbirds. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111561. [PMID: 38056555 DOI: 10.1016/j.cbpa.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Diet shifts can alter tissue fatty acid composition in birds, which is subsequently related to metabolic patterns. Eicosanoids, short-lived fatty acid-derived hormones, have been proposed to mediate these relationships but neither baseline concentrations nor the responses to diet and exercise have been measured in songbirds. We quantified a stable derivative of the vasodilatory eicosanoid prostacyclin in the plasma of male European Starlings (Sturnus vulgaris, N = 25) fed semisynthetic diets with either high (PUFA) or low (MUFA) amounts of n6 fatty acid precursors to prostacyclin. Plasma samples were taken from each bird before, immediately after, and two days following a 15-day flight-training regimen that a subset of birds (N = 17) underwent. We found elevated prostacyclin levels in flight-trained birds fed the PUFA diet compared to those fed the MUFA diet and a positive relationship between prostacyclin and body condition, indexed by fat score. Prostacyclin concentrations also significantly decreased at the final time point. These results are consistent with the proposed influences of precursor availability (i.e., dietary fatty acids) and regulatory feedback associated with exercise (i.e., fuel supply and inflammation), and suggest that prostacyclin may be an important mediator of dietary influence on songbird physiology.
Collapse
Affiliation(s)
- Wales A Carter
- Department of Resources Science, University of Rhode Island, Kingston, RI, USA.
| | | | - Lisa Trost
- Department for Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Maciej Działo
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Barbara Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Scott R McWilliams
- Department of Resources Science, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
158
|
Seo YH, Baik S, Lee J. Nanopore surface engineering of molecular imprinted mesoporous organosilica for rapid and selective detection of L-thyroxine. Colloids Surf B Biointerfaces 2024; 234:113711. [PMID: 38128361 DOI: 10.1016/j.colsurfb.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
To develop a biosensing platform for precise diagnosis and management of thyroid-related diseases, the sensitive and selective recognition and identification of L-thyroxine (T4), a thyroid hormone, remains challenging. We herein introduce T4-imprinted mesoporous organosilica (T4-IMO) for sensitive and specific detection of T4 via the sophisticated engineering of pore surfaces using additives with different polarities. The pore surface of T4-IMO emitting a stable fluorescence signal is simply modified by fixed additives. Additives embedded in the pore surface promote the rebinding response of T4 into the recognized cavities, subsequently sensitizing T4 detection. Notably, T4-IMO containing abundant fluorine elements on the pore surface shows a high affinity toward T4, remarkably boosting the rebinding capacity. In addition to good selectivity to T4, the "turn-off" fluorescent signal exhibits a linear relationship with the logarithm of T4 concentration in a range of 0-500 nM with a detection limit of 0.47 nM in synthetic urine samples. Our findings can establish an insightful strategy for the rational design of molecular-recognition-based sensor systems for the selective and sensitive detection of target analytes.
Collapse
Affiliation(s)
- Young Hun Seo
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, Germany.
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, Germany
| | - Jaeho Lee
- Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, Germany
| |
Collapse
|
159
|
Xing Y, Li Z, Wang J, Qu Y, Hu Q, Ji S, Chang X, Zhao F, Lv Y, Pan Y, Shi X, Dai J. Associations between serum per- and polyfluoroalkyl substances and thyroid hormones in Chinese adults: A nationally representative cross-sectional study. ENVIRONMENT INTERNATIONAL 2024; 184:108459. [PMID: 38320373 DOI: 10.1016/j.envint.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Disruption of thyroid homeostasis has been indicated in human studies on the effects of per- and polyfluoroalkyl substances (PFASs). However, limited research exists on this topic within the general Chinese population. Based on a substantial and representative sample of the Chinese adult population, our study provides insight into how PFASs specifically affect thyroid homeostasis. The study included 10 853 participants, aged 18 years and above, sampled from nationally representative data provided by the China National Human Biomonitoring (CNHBM). Weighted multiple linear regression and restricted cubic spline (RCS) models were used to explore the associations between eight individual PFAS concentrations and total thyroxine (T4), total triiodothyronine (T3), and the T4/T3 ratio. Bayesian kernel machine regression (BKMR) and quantile-based g-computation (qgcomp) were employed to explore the joint and independent effects of PFASs on thyroid homeostasis. Both individual PFASs and PFAS mixtures exhibited a significant inverse association with serum T3 and T4 levels, and displayed a positive association with the T4/T3 ratio. Perfluoroundecanoic acid (PFUnDA) [-0.07 (95 % confidence interval (CI): -0.08, -0.05)] exhibited the largest change in T3 level. PFUnDA also exhibited a higher weight compared to other PFAS compounds in qgcomp models. Additionally, a critical exposure threshold for each PFAS was identified based on nonlinear dose-response associations; beyond these thresholds, the decreases in T3 and T4 levels plateaued. Specifically, for perfluoroheptane sulfonic acid (PFHpS) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an initial decline in hormone levels was observed, followed by a slight increase when concentrations surpassed 0.7 ng/mL and 2.5 ng/mL, respectively. Sex-specific effects were more pronounced in females, and significant associations were observed predominantly in younger age groups. These insights contribute to our understanding of how PFAS compounds impact thyroid health and emphasize the need for further research and environmental management measures to address these complexities.
Collapse
Affiliation(s)
- Yanan Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiongpu Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaochen Chang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
160
|
Milanesi A, Brent GA. Weighing in on Thyroid Signaling in the Hypothalamus: Mechanisms and Interface with Metabolic Regulators. Thyroid 2024; 34:141-143. [PMID: 38269429 DOI: 10.1089/thy.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Anna Milanesi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Gregory A Brent
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
161
|
Kawara RS, Moawed FS, Elsenosi Y, Elmaksoud HA, Ahmed ESA, Abo-Zaid OA. Melissa officinalis extract palliates redox imbalance and inflammation associated with hyperthyroidism-induced liver damage by regulating Nrf-2/ Keap-1 gene expression in γ-irradiated rats. BMC Complement Med Ther 2024; 24:71. [PMID: 38303002 PMCID: PMC10832092 DOI: 10.1186/s12906-024-04370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-β1) were determined. RESULTS MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-β1/Smad pathway. CONCLUSION Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.
Collapse
Affiliation(s)
- Ragaa Sm Kawara
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Fatma Sm Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt
| | - Yakout Elsenosi
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Hussein Abd Elmaksoud
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt.
| | - Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| |
Collapse
|
162
|
Shao L, Yang M, Sun T, Xia H, Du D, Li X, Jie Z. Role of solute carrier transporters in regulating dendritic cell maturation and function. Eur J Immunol 2024; 54:e2350385. [PMID: 38073515 DOI: 10.1002/eji.202350385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that initiate and regulate innate and adaptive immune responses. Solute carrier (SLC) transporters mediate diverse physiological functions and maintain cellular metabolite homeostasis. Recent studies have highlighted the significance of SLCs in immune processes. Notably, upon activation, immune cells undergo rapid and robust metabolic reprogramming, largely dependent on SLCs to modulate diverse immunological responses. In this review, we explore the central roles of SLC proteins and their transported substrates in shaping DC functions. We provide a comprehensive overview of recent studies on amino acid transporters, metal ion transporters, and glucose transporters, emphasizing their essential contributions to DC homeostasis under varying pathological conditions. Finally, we propose potential strategies for targeting SLCs in DCs to bolster immunotherapy for a spectrum of human diseases.
Collapse
Affiliation(s)
- Lin Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Mengxin Yang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Tao Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haotang Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
163
|
Bayyigit A, Gokden Y, Onol S, Ozek FZ, Saglam S, Adas M. Hypothyroidism and subclinical hypothyroidism are associated with fatty pancreas (Non-Alcoholic Fatty Pancreas Disease). Diabetes Metab Res Rev 2024; 40:e3720. [PMID: 37691570 DOI: 10.1002/dmrr.3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Increasing visceral fat deposition with raised prevalence of obesity and metabolic syndrome is associated with many adverse conditions, especially cardiovascular diseases and diabetes. Although there are many studies that investigate hepatic steatosis in hypothyroidism and subclinical hypothyroidism, to the best of our knowledge, there is no study investigating its relationship with pancreatic steatosis. In the present study, the purpose was to investigate this relationship. METHODS Physical and biochemical characteristics of 30 hypothyroid, 30 subclinical hypothyroid, and 30 euthyroid volunteers were recorded in this cross-sectional study. Liver and pancreatic steatosis were evaluated with ultrasonography. RESULTS It was found that pancreatic steatosis was increased in hypothyroid and subclinical groups when compared to the control group, and hepatic steatosis was increased in the subclinical group when compared to the control group (steatosis; p = 0.002, p = 0.004, p = 0.001, p = 0.002, p = 0.002, p = 0.004). Pancreatic steatosis was positively correlated with age, hepatic steatosis, height, weight, BMI, waist circumference, hip circumference, hemoglobin, Insulin, alanine aminotransferase, Triglyceride, Creatinine, and gamma-glutamyltransferase and was negatively correlated with total cholesterol, high-density lipoproteins. CONCLUSIONS The prevalence of pancreatic steatosis was found to be increased in hypothyroidism and subclinical hypothyroidism when compared with the euthyroid control group.
Collapse
Affiliation(s)
- Akif Bayyigit
- Department of Internal Medicine, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Yasemin Gokden
- Department of Internal Medicine, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Suzan Onol
- Department of Radiology, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Fatma Z Ozek
- Department of Internal Medicine, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Selin Saglam
- Department of Internal Medicine, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Mine Adas
- Department of Internal Medicine, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| |
Collapse
|
164
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
165
|
Sciacchitano S, Carola V, Nicolais G, Sciacchitano S, Napoli C, Mancini R, Rocco M, Coluzzi F. To Be Frail or Not to Be Frail: This Is the Question-A Critical Narrative Review of Frailty. J Clin Med 2024; 13:721. [PMID: 38337415 PMCID: PMC10856357 DOI: 10.3390/jcm13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Many factors have contributed to rendering frailty an emerging, relevant, and very popular concept. First, many pandemics that have affected humanity in history, including COVID-19, most recently, have had more severe effects on frail people compared to non-frail ones. Second, the increase in human life expectancy observed in many developed countries, including Italy has led to a rise in the percentage of the older population that is more likely to be frail, which is why frailty is much a more common concern among geriatricians compared to other the various health-care professionals. Third, the stratification of people according to the occurrence and the degree of frailty allows healthcare decision makers to adequately plan for the allocation of available human professional and economic resources. Since frailty is considered to be fully preventable, there are relevant consequences in terms of potential benefits both in terms of the clinical outcome and healthcare costs. Frailty is becoming a popular, pervasive, and almost omnipresent concept in many different contexts, including clinical medicine, physical health, lifestyle behavior, mental health, health policy, and socio-economic planning sciences. The emergence of the new "science of frailty" has been recently acknowledged. However, there is still debate on the exact definition of frailty, the pathogenic mechanisms involved, the most appropriate method to assess frailty, and consequently, who should be considered frail. This narrative review aims to analyze frailty from many different aspects and points of view, with a special focus on the proposed pathogenic mechanisms, the various factors that have been considered in the assessment of frailty, and the emerging role of biomarkers in the early recognition of frailty, particularly on the role of mitochondria. According to the extensive literature on this topic, it is clear that frailty is a very complex syndrome, involving many different domains and affecting multiple physiological systems. Therefore, its management should be directed towards a comprehensive and multifaceted holistic approach and a personalized intervention strategy to slow down its progression or even to completely reverse the course of this condition.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Giampaolo Nicolais
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Simona Sciacchitano
- Department of Psychiatry, La Princesa University Hospital, 28006 Madrid, Spain;
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Flaminia Coluzzi
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| |
Collapse
|
166
|
Yi K, Tian M, Li X. The Influence of Autoimmune Thyroid Diseases on Viral Pneumonia Development, Including COVID-19: A Two-Sample Mendelian Randomization Study. Pathogens 2024; 13:101. [PMID: 38392839 PMCID: PMC10893279 DOI: 10.3390/pathogens13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The association between thyroid function and viral pneumonia has undergone extensive examination, yet the presence of a causal link remains uncertain. The objective of this paper was to employ Two-Sample Mendelian Randomization (MR) analysis to investigate the connections between three thyroid diseases and thyroid hormone indicators with viral pneumonia and COVID-19. We obtained summary statistics datasets from seven genome-wide association studies (GWASs). The primary method used for estimating relationships was inverse-variance weighting (IVW). In addition, we employed weighted median, weighted mode, MR-Egger, and MR-PRESSO as supplementary analytical tools. Sensitivity analyses encompassed Cochran's Q test, MR-Egger intercept test, and MR-PRESSO. Our study revealed significant causal relationships between having a genetic predisposition to autoimmune thyroid disease (AITD) and an increased susceptibility to viral pneumonia (odds ratio [OR]: 1.096; 95% confidence interval [CI]: 1.022-1.176). Moreover, it demonstrated a heightened susceptibility and severity of COVID-19 (OR for COVID-19 susceptibility, COVID-19 hospitalization, and COVID-19 critical illness, with 95% CIs of 1.016, 1.001-1.032; 1.058, 1.003-1.116; 1.045, 1.010-1.081). However, no statistically significant associations were found between TSH, FT4, subclinical hypo- or hyperthyroidism, and the risk of viral pneumonia incidence, or the susceptibility and severity of COVID-19 (all p > 0.05). This study establishes a cause-and-effect relationship between AITD and the development of viral pneumonia, as well as the susceptibility and severity of COVID-19.
Collapse
Affiliation(s)
- Kexin Yi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Mingjie Tian
- Shanghai Deji Hospital, Qingdao University, Shanghai 200331, China;
| | - Xue Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
167
|
Fame RM, Ali I, Lehtinen MK, Kanarek N, Petrova B. Optimized Mass Spectrometry Detection of Thyroid Hormones and Polar Metabolites in Rodent Cerebrospinal Fluid. Metabolites 2024; 14:79. [PMID: 38392972 PMCID: PMC10890085 DOI: 10.3390/metabo14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Thyroid hormones (TH) are required for brain development and function. Cerebrospinal fluid (CSF), which bathes the brain and spinal cord, contains TH as free hormones or as bound to transthyretin (TTR). Tight TH level regulation in the central nervous system is essential for developmental gene expression, which governs neurogenesis, myelination, and synaptogenesis. This integrated function of TH highlights the importance of developing precise and reliable methods for assessing TH levels in CSF. We report an optimized liquid chromatography-mass spectrometry (LC-MS)-based method to measure TH in rodent CSF and serum, applicable to both fresh and frozen samples. Using this new method, we find distinct differences in CSF TH in pregnant dams vs. non-pregnant adults and in embryonic vs. adult CSF. Further, targeted LC-MS metabolic profiling uncovers distinct central carbon metabolism in the CSF of these populations. TH detection and metabolite profiling of related metabolic pathways open new avenues of rigorous research into CSF TH and will inform future studies on metabolic alterations in CSF during normal development.
Collapse
Affiliation(s)
- Ryann M. Fame
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Ilhan Ali
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Maria K. Lehtinen
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
168
|
Li Z, Wu X, Chen Z, Wei X, Chen W. Association between low-normal thyroid function and advanced liver fibrosis in metabolic dysfunction-associated fatty liver disease patients: a retrospective cohort study. Gastroenterol Rep (Oxf) 2024; 12:goad076. [PMID: 38264763 PMCID: PMC10805339 DOI: 10.1093/gastro/goad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 01/25/2024] Open
Abstract
Background Recent studies have found that thyroid function may be associated with the occurrence and development of advanced liver fibrosis in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). However, the majority of such research has consisted of cross-sectional studies. This retrospective cohort study aimed to investigate the effect of low-normal thyroid function on advanced liver fibrosis in MAFLD patients over a 5-year period. Methods This retrospective cohort study enrolled 825 outpatients and inpatients with MAFLD who attended the Third Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) between January 2011 and December 2018. Based on plasma thyroid hormone and thyroid-stimulating hormone levels, these patients were divided into two groups, namely a low-normal thyroid function group and a strict-normal thyroid function group. The fibrosis-4 score was used to assess advanced liver fibrosis. A chi-square test was conducted to compare the occurrence of advanced fibrosis between the groups. Results Among the 825 MAFLD patients, 117 and 708 were defined as having low-normal thyroid function and strict-normal thyroid function, respectively. Follow-up data were available for 767 patients (93.0%) during a 5-year period. Eight (7.5%) MAFLD patients with low-normal thyroid function and 26 (3.9%) with strict-normal thyroid function developed advanced liver fibrosis and the cumulative incidence was not significantly different (P = 0.163). Stratification analysis showed that the lean MAFLD patients (body mass index ≤ 23 kg/m2) with low-normal thyroid function had a higher risk of advanced liver fibrosis than the lean MAFLD patients with strict-normal thyroid function (P < 0.05). Conclusion Low-normal thyroid function is associated with advanced liver fibrosis among lean MAFLD patients.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zebin Chen
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiuqing Wei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
169
|
Hindrichs C, Walk T, Melching-Kollmuss S, Landsiedel R, Kamp H, Funk-Weyer D. A Novel and Fast Online-SPE-LC-MS/MS Method to Quantify Thyroid Hormone Metabolites in Rat Plasma. Chem Res Toxicol 2024; 37:33-41. [PMID: 38078760 DOI: 10.1021/acs.chemrestox.3c00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Since the focus in regulatory toxicology has drifted toward the identification of endocrine disruptors, the improvement in determination of alterations in the thyroid hormone system has become more important. THs are involved in several molecular processes important for a proper pre- and postnatal development so that disturbances can inter alia lead to incorrect brain maturation and/or disturbed metabolic processes (thermogenesis or lipolysis). In this publication, a new automated online solid-phase extraction (SPE)-liquid chromatography (LC)-tandem mass spectrometry (MS/MS, xLC-MS/MS) is introduced which simultaneously analyzes total T4, T3, rT3, T2, and T1. Method validation parameters are presented, and the method was positively verified by analyzing control and PTU-treated rat plasma samples (time points day 7, 14, and 28) for their total TH content. The obtained results were compared to published results by using a radioimmunoassay method. The automated SPE system ensures a consistent unified sample preparation, and this method overall showed sufficient specificity and accuracy to detect the given analytes in rat plasma. For the preparation of 50 μL of rat plasma, the following LOQs were established: 0.020 nM for T1, 0.029 nM for T2, 0.023 nM for rT3 and T3, and 3.22 nM for T4. This method is suitable to assess the identification of mechanisms leading to adverse effects, such as disturbed TH metabolism and regulation.
Collapse
Affiliation(s)
- Christiane Hindrichs
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
- Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Tilmann Walk
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | | | - Robert Landsiedel
- Experimental Toxicology and Ecology 10, BASF SE, 67056 Ludwigshafen am Rhein, Germany
- Free University of Berlin, Pharmacy, Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589 Berlin, Germany
| | - Dorothee Funk-Weyer
- Experimental Toxicology and Ecology 10, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| |
Collapse
|
170
|
Khosravipour M, Gharagozlou F, Kakavandi MG, Nadri F, Barzegar A, Emami K, Athar HV. Association of prolonged occupational co-exposures to electromagnetic fields, noise, and rotating shift work with thyroid hormone levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115837. [PMID: 38104436 DOI: 10.1016/j.ecoenv.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The purpose of this study was to determine the association of prolonged occupational co-exposure to extremely low-frequency electromagnetic fields (ELF-EMFs), noise, and rotating shift work with the levels of thyroid hormones (triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH). From 2016 to 2017, we enrolled all male workers without a history of thyroid disorders and followed them until 2020. To measure ELF-EMFs and noise exposures, we calculated the 8-hour equivalent sound pressure levels (Leq) and the 8-hour average of ELF-EMFs, respectively. Shift work schedules involved 8-hr fixed day and 8-hr clockwise 3-rotating night schedules. The participant's thyroid hormone levels were obtained from blood test results in their medical records. The percentage change in the levels of T3, T4, and TSH was estimated by using different mixed-effects linear regression models. The TSH levels were significantly elevated per a 10-dB increment of noise. The levels of T4 hormone were significantly changed per a unit increase in the levels of ELF-EMFs. Compared to the fixed-day workers, we observed workers exposed to shift work had a significantly lower T4 level. For T4 and TSH hormones, we found significant interactions among noise, ELF-EMFs, and shift work variables. In summary, this study warranted that prolonged exposure to ELF-EMFs, noise, and rotating shift work might be associated with thyroid dysfunction.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran.
| | - Faramarz Gharagozlou
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for environmental determinant of health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Ghanbari Kakavandi
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for environmental determinant of health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Nadri
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for environmental determinant of health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akbar Barzegar
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for environmental determinant of health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khosro Emami
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Valadi Athar
- Department of Occupational Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
171
|
Qiu Y, Liu Q, Luo Y, Chen J, Zheng Q, Xie Y, Cao Y. Causal association between obesity and hypothyroidism: a two-sample bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 14:1287463. [PMID: 38260160 PMCID: PMC10801094 DOI: 10.3389/fendo.2023.1287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Previous observational studies have reported a positive correlation between obesity and susceptibility to hypothyroidism; however, there is limited evidence from alternative methodologies to establish a causal link. Methods We investigated the causal relationship between obesity and hypothyroidism using a two-sample bidirectional Mendelian randomization (MR) analysis. Single-nucleotide polymorphisms (SNPs) associated with obesity-related traits were extracted from a published genome-wide association study (GWAS) of European individuals. Summarized diagnostic data of hypothyroidism were obtained from the UK Biobank. Primary analyses were conducted using the inverse variance-weighted (IVW) method with a random-effects model as well as three complementary approaches. Sensitivity analyses were performed to ascertain the correlation between obesity and hypothyroidism. Results MR analyses of the IVW method and the analyses of hypothyroidism/myxedema indicated that body mass index (BMI) and waist circumference (WC) were significantly associated with higher odds and risk of hypothyroidism. Reverse MR analysis demonstrated that a genetic predisposition to hypothyroidism was associated with an increased risk of elevated BMI and WC, which was not observed between WC adjusted for BMI (WCadjBMI) and hypothyroidism. Discussion Our current study indicates that obesity is a risk factor for hypothyroidism, suggesting that individuals with higher BMI/WC have an increased risk of developing hypothyroidism and indicating the importance of weight loss in reducing the risk of hypothyroidism.
Collapse
Affiliation(s)
- Yingkun Qiu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinyu Liu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yinghua Luo
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuping Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
172
|
de Assis LVM, Harder L, Lacerda JT, Parsons R, Kaehler M, Cascorbi I, Nagel I, Rawashdeh O, Mittag J, Oster H. Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice. Sci Rep 2024; 14:640. [PMID: 38182610 PMCID: PMC10770409 DOI: 10.1038/s41598-023-50374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Thyroid hormones (THs) are important regulators of systemic energy metabolism. In the liver, they stimulate lipid and cholesterol turnover and increase systemic energy bioavailability. It is still unknown how the TH state interacts with the circadian clock, another important regulator of energy metabolism. We addressed this question using a mouse model of hypothyroidism and performed circadian analyses. Low TH levels decreased locomotor activity, food intake, and body temperature mostly in the active phase. Concurrently, liver transcriptome profiling showed only subtle effects compared to elevated TH conditions. Comparative circadian transcriptome profiling revealed alterations in mesor, amplitude, and phase of transcript levels in the livers of low-TH mice. Genes associated with cholesterol uptake, biosynthesis, and bile acid secretion showed reduced mesor. Increased and decreased cholesterol levels in the serum and liver were identified, respectively. Combining data from low- and high-TH conditions allowed the identification of 516 genes with mesor changes as molecular markers of the liver TH state. We explored these genes and created an expression panel that assesses liver TH state in a time-of-day dependent manner. Our findings suggest that the liver has a low TH action under physiological conditions. Circadian profiling reveals genes as potential markers of liver TH state.
Collapse
Affiliation(s)
- Leonardo Vinicius Monteiro de Assis
- Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany.
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Lisbeth Harder
- Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José Thalles Lacerda
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Rex Parsons
- Faculty of Health, School of Public Health and Social Work, Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, Queensland University of Technology, Kelvin Grove, Australia
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver Rawashdeh
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Jens Mittag
- Center of Brain Behavior and Metabolism, Institute for Endocrinology and Diabetes - Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany.
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| |
Collapse
|
173
|
Bin Dayel S, Hussein RS, Atia T, Abahussein O, Al Yahya RS, Elsayed SH. Is thyroid dysfunction a common cause of telogen effluvium?: A retrospective study. Medicine (Baltimore) 2024; 103:e36803. [PMID: 38181279 PMCID: PMC10766245 DOI: 10.1097/md.0000000000036803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Telogen effluvium (TE) is a common cause of hair loss characterized by excessive resting hair shedding. Thyroid dysfunction is one of the possible causes of TE. On the other hand, the link between thyroid disorder and TE is still being debated. The aim of this retrospective is to investigate the link between thyroid dysfunction and TE. This retrospective study included 500 female patients with TE who had thyroid function testing between January 2012 and December 2022. Patients were eligible if they had a confirmed TE diagnosis and thyroid function tests within 3 months of being diagnosed with TE. The thyroid function of the participants was classified as euthyroid, hypothyroidism, or hyperthyroidism. The severity of hair loss was determined using the severity of alopecia tool (SALT) score. The study included 500 TE females, 248 of whom were euthyroid, 150 had hypothyroidism, and 102 had hyperthyroidism. The hypothyroid group had a significantly higher mean SALT score than the other 2 groups. Furthermore, patients in the hypothyroid group had a higher proportion of severe hair loss. The mean SALT score did not differ significantly between groups with normal thyroid function and those with hyperthyroidism. A common cause of TE is thyroid dysfunction, particularly hypothyroidism. Patients with hypothyroidism have more severe hair loss than those with normal thyroid function or hyperthyroidism. To effectively identify and manage such cases, thyroid function testing should be included in the diagnostic workup of patients with TE.
Collapse
Affiliation(s)
- Salman Bin Dayel
- Dermatology Unit, Department of Internal Medicine, College of Medicine. Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Ramadan S. Hussein
- Dermatology Unit, Department of Internal Medicine, College of Medicine. Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Othman Abahussein
- Dermatology Unit, Department of Internal Medicine, College of Medicine. Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Rand S. Al Yahya
- Dermatology Unit, Department of Internal Medicine, College of Medicine. Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Shereen H. Elsayed
- Department of Rehabilitation Sciences, Faculty of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
174
|
Rudolph TE, Roths M, Freestone AD, White-Springer SH, Rhoads RP, Baumgard LH, Selsby JT. Heat stress alters hematological parameters in barrows and gilts. J Anim Sci 2024; 102:skae123. [PMID: 38706303 PMCID: PMC11141298 DOI: 10.1093/jas/skae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
The purpose of this investigation was to establish the role biological sex plays in circulating factors following heat stress (HS). Barrows and gilts (36.8 ± 3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ± 1.6 °C; 62.0% ± 4.7% relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ± 0.6 °C; 33.7% ± 6.3% relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) d. Circulating glucose decreased as a main effect of the environment (P = 0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P < 0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P = 0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P = 0.02) and HS7 barrows (P = 0.04). Cortisol, insulin, glucagon, T3, and T4 were reduced as a main effect of environment (P ≤ 0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P ≤ 0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P ≤ 0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P ≤ 0.01) and HS7 barrows had less neutrophils compared to TN barrows (P = 0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte numbers were similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P ≤ 0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, 77843, USA
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
175
|
Poulsen R, Zekri Y, Guyot R, Flamant F, Hansen M. Effect of in utero and lactational exposure to a thyroid hormone system disrupting chemical on mouse metabolome and brain transcriptome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122783. [PMID: 37866749 DOI: 10.1016/j.envpol.2023.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Mice were exposed to a low dose of the model thyroid hormone disruptor, propylthiouracil. Although this had only a modest effect on maternal thyroid hormones production, postnatal analysis of the pups' plasma by mass spectrometry and the brain striatum by RNA sequencing gave evidence of low lasting changes that could reflect an adverse effect on neurodevelopment. Overall, these methods proved to be sensitive enough to detect minor disruptions of thyroid hormone signalling in vivo.
Collapse
Affiliation(s)
- Rikke Poulsen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS, UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS, UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364, Lyon, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS, UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364, Lyon, France
| | - Martin Hansen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
176
|
Ruiz-Sobremazas D, Ruiz Coca M, Morales-Navas M, Rodulfo-Cárdenas R, López-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. Neurodevelopmental consequences of gestational exposure to particulate matter 10: Ultrasonic vocalizations and gene expression analysis using a bayesian approach. ENVIRONMENTAL RESEARCH 2024; 240:117487. [PMID: 37918762 DOI: 10.1016/j.envres.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Air pollution has been associated with a wide range of health issues, particularly regarding cardio-respiratory diseases. Increasing evidence suggests a potential link between gestational exposure to environmental pollutants and neurodevelopmental disorders such as autism spectrum disorder. The respiratory pathway is the most commonly used exposure model regarding PM due to valid and logical reasons. However, PM deposition on food (vegetables, fruits, cereals, etc.) and water has been previously described. Although this justifies the need of unforced, oral models of exposure, preclinical studies using oral exposure are uncommon. Specifically, air pollution can modify normal brain development at genetic, cellular, and structural levels. The present work aimed to investigate the effects of oral gestational exposure to particulate matter (PM) on ultrasonic vocalizations (USV). To this end, pregnant rats were exposed to particulate matter during gestation. The body weight of the pups was monitored until the day of recording the USVs. The results revealed that the exposed group emitted more USV calls when compared to the control group. Furthermore, the calls from the exposed group were longer in duration and started earlier than those from the non-exposed group. Gene expression analyses showed that PM exposure down-regulates the expression of Gabrg2 and Maoa genes in the brain, but no effect was detected on glutamate or other neurotransmission systems. These findings suggest that gestational exposure to PM10 may be related to social deficits or other phenomena that can be analyzed with USV. In addition, we were able to detect abnormalities in the expression of genes related to different neurotransmitter systems, such as the GABAergic and monoaminergic systems. Further research is needed to fully understand the possible effects of air pollutant exposure on neurodevelopmental disorders as well as the way in which these effects are linked to differences in neurotransmission systems.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain; University of Zaragoza, Department of Psychology and Sociology, Teruel, Spain
| | - Mario Ruiz Coca
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | | | - Maria Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain.
| |
Collapse
|
177
|
Zhao D, Zhuang W, Wang Y, Xu X, Qiao L. In-depth mass spectrometry analysis of rhGH administration altered energy metabolism and steroidogenesis. Talanta 2024; 266:125069. [PMID: 37574608 DOI: 10.1016/j.talanta.2023.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Growth hormone, as a proteohormone, is primarily known of its dramatic effect on longitudinal growth. Recombinant DNA technology has provided a safe, abundant and comparatively cheap supply of human GH for growth hormone-deficient individuals. However, many healthy subjects, especially athletics, administrate GH for enhanced athletic performance or strength. A better and more comprehensive understanding of rhGH effect in healthy individuals is urgent and essential. In this study, we recruited 14 healthy young male and injected rhGH once. Untargeted LC-MS metabolomics profiling of serum and urine was performed before and after the rhGH injection. The GH-induced dysregulation of energy related pathways, such as amino acid metabolism, nucleotide metabolism, glycolysis and TCA cycle, was revealed. Moreover, individuals supplemented with micro-doses of rhGH exhibited significantly changed urinary steroidal profiles, suggesting a role of rhGH in both energy metabolism and steroidogenesis. We expect that our results will be helpful to provide new evidence on the effects of rhGH injection and provide potential biomarkers for rhGH administration.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Wenqian Zhuang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China
| | - Yang Wang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China
| | - Xin Xu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
178
|
Lee J, Park JW, Kim HI, Park CB, Cho SH. Thyroid-gonadal hormonal interplay in zebrafish exposed to sodium perchlorate: Implications for reproductive health. CHEMOSPHERE 2024; 346:140662. [PMID: 37949182 DOI: 10.1016/j.chemosphere.2023.140662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.
Collapse
Affiliation(s)
- Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
179
|
Ji C, Ou Y, Yu W, Lv J, Zhang F, Li H, Gu Z, Li J, Zhong Z, Wang H. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. J Genet Genomics 2024; 51:61-74. [PMID: 37328030 DOI: 10.1016/j.jgg.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Thyroid-stimulating hormone (TSH) is important for the thyroid gland, development, growth, and metabolism. Defects in TSH production or the thyrotrope cells within the pituitary gland cause congenital hypothyroidism (CH), resulting in growth retardation and neurocognitive impairment. While human TSH is known to display rhythmicity, the molecular mechanisms underlying the circadian regulation of TSH and the effects of TSH-thyroid hormone (TH) signaling on the circadian clock remain elusive. Here we show that TSH, thyroxine (T4), triiodothyronine (T3), and tshba display rhythmicity in both larval and adult zebrafish and tshba is regulated directly by the circadian clock via both E'-box and D-box. Zebrafish tshba-/- mutants manifest congenital hypothyroidism, with the characteristics of low levels of T4 and T3 and growth retardation. Loss or overexpression of tshba alters the rhythmicity of locomotor activities and expression of core circadian clock genes and hypothalamic-pituitary-thyroid (HPT) axis-related genes. Furthermore, TSH-TH signaling regulates clock2/npas2 via the thyroid response element (TRE) in its promoter, and transcriptome analysis reveals extensive functions of Tshba in zebrafish. Together, our results demonstrate that zebrafish tshba is a direct target of the circadian clock and in turn plays critical roles in circadian regulation along with other functions.
Collapse
Affiliation(s)
- Cheng Ji
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Ou
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangjianfei Yu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxin Lv
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fanmiao Zhang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huashan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zeyun Gu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayuan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
180
|
Singha PS, Ghosh S, Ghosh D. Levothyroxine and Non-alcoholic Fatty Liver Disease: A Mini Review. Mini Rev Med Chem 2024; 24:128-138. [PMID: 36918791 DOI: 10.2174/1389557523666230314113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 03/16/2023]
Abstract
Levothyroxine or l-thyroxine is artificially manufactured thyroxine, which is used as a drug to treat underactive thyroid conditions in humans. The drug, levothyroxine, is consumed daily in a prescribed dose to replace the missing thyroid hormone thyroxine in an individual with an underactive thyroid, and it helps to maintain normal physiological conditions. Though it is a life-maintaining drug, it replaces the missing thyroid hormone and performs the necessary daily metabolic functions in our body. Like all other allopathic drugs, it comes with certain side effects, which include joint pain, cramps in muscle, weight gain/loss, hair loss, etc. The thyroid hormone, thyroxine, is known to mobilize fat in our body, including the ones from the hepatic system. An underactive thyroid may cause an accumulation of fat in the liver, leading to a fatty liver, which is clinically termed Non-Alcoholic Fatty Liver Disease (NAFLD). The correlation between hypothyroidism and NAFLD is now well-studied and recognized. As levothyroxine performs the functions of the missing thyroxine, it is anticipated, based on certain preliminary studies, that the drug helps to mobilize hepatic fat and thus may have a crucial role in mitigating the condition of NAFDL.
Collapse
Affiliation(s)
| | - Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly, 712 101, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, West Bengal, India
| |
Collapse
|
181
|
Zhou L, Raza SHA, Gao Z, Hou S, Alwutayd KM, Aljohani ASM, Abdulmonem WA, Alghsham RS, Aloufi BH, Wang Z, Gui L. Fat deposition, fatty acid profiles, antioxidant capacity and differentially expressed genes in subcutaneous fat of Tibetan sheep fed wheat-based diets with and without xylanase supplementation. J Anim Physiol Anim Nutr (Berl) 2024; 108:252-263. [PMID: 37773023 DOI: 10.1111/jpn.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Xylanase, an exogenous enzyme that plays an essential role in energy metabolism by hydrolysing xylan into xylose, has been shown to positively influence nutrient digestion and utilisation in ruminants. The objective of this study was to evaluate the effects of xylanase supplementation on the back-fat thickness, fatty acid profiles, antioxidant capacity, and differentially expressed genes (DEGs) in the subcutaneous fat of Tibetan sheep. Sixty three-month-old rams with an average weight of 19.35 ± 2.18 kg were randomly assigned to control (no enzyme added, WH group) and xylanase (0.2% of diet on a dry matter basis, WE group) treatments. The experiment was conducted over 97 d, including 7 d of adaption to the diets. The results showed that xylanase supplementation in the diet increased adipocyte volume of subcutaneous fat (p < 0.05), shown by hematoxylin and eosin (H&E) staining. Gas chromatography showed greater concentrations of C14:0 and C16:0 in the subcutaneous fat of controls compared with the enzyme-treated group (p < 0.05), while opposite trend was seen for the absolute contents of C18:1n9t, C20:1, C18:2n6c, C18:3, and C18:3n3 (p < 0.05). Compared with controls, supplementation with xylanase increased the activity of T-AOC significantly (p < 0.05). Transcriptomic analysis showed the presence of 1630 DEGs between the two groups, of which 1023 were up-regulated and 607 were down-regulated, with enrichment in 4833 Gene Ontology terms, and significant enrichment in 31 terms (p < 0.05). The common DEGs were enriched in 295 pathways and significantly enriched in 26 pathways. Additionally, the expression of lipid-related genes, including fatty acid synthase, superoxide dismutase, fatty acid binding protein 5, carnitine palmytoyltransferase 1 A, and peroxisome proliferator-activated receptor A were verified via quantitative reverse-transcription polymerase chain reaction. In conclusion, dietary xylanase supplementation was found to reduce subcutaneous fat deposition in Tibetan sheep, likely through modulating the expression of lipid-related genes.
Collapse
Affiliation(s)
- Li Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Khairiah Mubarak Alwutayd
- Department of Biology College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| |
Collapse
|
182
|
Yuan Y, Zhuang Y, Cui Y, Liu Y, Zhang Q, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. IL-10-TG/TPO-T4 axis, the target of bis (2-ethylhexyl) tetrabromophthalate on thyroid function imbalance. Toxicology 2024; 501:153713. [PMID: 38135142 DOI: 10.1016/j.tox.2023.153713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Bis (2-ethylhexyl) tetrabromophthalate (TBPH) is a new type of brominated flame retardant. Some studies suggest that TBPH exposure may be associated with thyroid damage. However, there is a paucity of research on the authentic exposure-related effects and molecular mechanisms in animals or cells. In this study, we used male Sprague-Dawley (SD) rats and the Nthy ori3-1 cell line (the human thyroid follicular epithelial cell) to explore the potential effects of TBPH (5, 50, 500 mg/kg and 1, 10, 100 nM) on the thyroid. The genes and their proteins of cytokines and thyroid-specific proteins, thyroglobulin (TG), thyroid peroxidase (TPO), and sodium iodide cotransporter (NIS) were examined to investigate the possible mechanisms. At the end of the experiment, it was found that 50 and 500 mg/kg TBPH could increase the levels of total thyroxine (TT4) and free thyroxine (FT4) significantly. The messenger RNAs (mRNAs) of Tg, Tpo, Interleukin-6 (Il6), and Interleukin-10 (Il10) in the thyroid tissues from the rats treated with 500 mg/kg were enhanced clearly. Meanwhile, the mRNAs of TG, TPO, IL6, and IL10 were elevated in Nthy ori3-1 cells treated with 100 nM TBPH as well. The mRNAs of TG and TPO were elevated after the knockdown of IL6. To our surprise, after the knockdown of IL10 or the treatment of anti-IL-10-receptor (anti-IL-10-R) antibody, the mRNAs of TG and TPO were significantly reduced, and the effects of TBPH were diminished. In conclusion, our results suggested that the IL-10-IL-10R-TG/TPO-T4 axis is one important target of TBPH in the thyroid.
Collapse
Affiliation(s)
- Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
183
|
Kabak B, Kendüzler E. Europium metal-organic frameworks: Synthesis, characterization, and application as fluorescence sensors for the detection of Cu 2+, Ni 2+ cations and T3, T4 hormones. Talanta 2024; 266:124944. [PMID: 37454515 DOI: 10.1016/j.talanta.2023.124944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The solvothermal approach was used to create a novel Eu metal-organic framework (Eu-MOF) based on 1,4-benzendicarboxylic acid (TPA), 1,10-phenanthroline, and N,N-dimethylformamide (DMF)/H2O. Structural analysis of Eu-MOF, Fluorescence spectrometry, Fourier Transform Infrared Spectrometer (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX) mapping, Thermo-gravimetric analysis (TGA), and Single Crystal X-Ray Diffraction (PXRD) methods. Using the fluorescence properties of the synthesized Eu-MOF, its use as a fluorescence sensor in the determination of different analytes, such as organic molecules (T3-T4 hormone, ascorbic acid, and glucose) and metal ions (Na+, K+, Ca2+, Mg2+, Cu2+, Mn2+, Hg2+, Pb2+, Ni2+, Cr3+, Al3+, Fe3+), was investigated. Fluorescence experiments revealed that Cu2+, Ni2+ cations, as well as T3 and T4 hormones, quenched the fluorescence of Eu-MOF. Turn-off luminescence can be induced by 10 μM Cu2+, 30 μM Ni2+ cations, 500 nM T3, and 800 nM T4 hormones. Fluorescence quenching efficiencies were calculated for Cu2+, Ni2+, T3, and T4 99.7%, 99.6%, 98.7%, and 98.2%, respectively.
Collapse
Affiliation(s)
- Burcu Kabak
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, 15100, Burdur, Turkey.
| | - Erdal Kendüzler
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, 15100, Burdur, Turkey.
| |
Collapse
|
184
|
Rubin AM, Seebacher F. Feeding frequency does not interact with BPA exposure to influence metabolism or behaviour in zebrafish (Danio rerio). Physiol Behav 2024; 273:114403. [PMID: 37939830 DOI: 10.1016/j.physbeh.2023.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Resource limitation can constrain energy (ATP) production, and thereby affect locomotion and behaviour such as exploration of novel environments and boldness. Consequently, ecological processes such as dispersal and interactions within and between species may be influenced by food availability. Energy metabolism, and behaviour are regulated by endocrine signalling, and may therefore be impacted by endocrine disrupting compounds (EDCs) including bisphenol A (BPA) derived from plastic manufacture and pollution. It is important to determine the impacts of these novel environmental contexts to understand how human activity alters individual physiology and behaviour and thereby populations. Our aim was to determine whether BPA exposure interacts with feeding frequency to alter metabolism and behaviour. In a fully factorial experiment, we show that low feeding frequency reduced zebrafish (Danio rerio) mass, condition, resting metabolic rates, total distance moved and speed in a novel arena, as well as anxiety indicated by the number of times fish returned to a dark shelter. However, feeding frequency did not significantly affect maximal metabolic rates, aerobic scope, swimming performance, latency to leave a shelter, or metabolic enzyme activities (citrate synthase and lactate dehydrogenase). Natural or anthropogenic fluctuation in food resources can therefore impact energetics and movement of animals with repercussions for ecological processes such as dispersal. BPA exposure reduced LDH activity and body mass, but did not interact with feeding frequency. Hence, behaviour of adult fish is relatively insensitive to disruption by BPA. However, alteration of LDH activity by BPA could disrupt lactate metabolism and signalling and together with reduction in body mass could affect size-dependent reproductive output. BPA released by plastic manufacture and pollution can thereby impact conservation and management of natural resources.
Collapse
Affiliation(s)
- Alexander M Rubin
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW 2006, Australia.
| |
Collapse
|
185
|
Najjar A, Wilm A, Meinhardt J, Mueller N, Boettcher M, Ebmeyer J, Schepky A, Lange D. Evaluation of new alternative methods for the identification of estrogenic, androgenic and steroidogenic effects: a comparative in vitro/in silico study. Arch Toxicol 2024; 98:251-266. [PMID: 37819454 PMCID: PMC10761396 DOI: 10.1007/s00204-023-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
A suite of in vitro assays and in silico models were evaluated to identify which best detected the endocrine-disrupting (ED) potential of 10 test chemicals according to their estrogenic, androgenic and steroidogenic (EAS) potential compared to the outcomes from ToxCast. In vitro methods included receptor-binding, CALUX transactivation, H295R steroidogenesis, aromatase activity inhibition and the Yeast oestrogen (YES) and Yeast androgen screen (YAS) assays. The impact of metabolism was also evaluated. The YES/YAS assays exhibited a high sensitivity for ER effects and, despite some challenges in predicting AR effects, is a good initial screening assay. Results from receptor-binding and CALUX assays generally correlated and were in accordance with classifications based on ToxCast assays. ER agonism and AR antagonism of benzyl butyl phthalate were abolished when CALUX assays included liver S9. In silico final calls were mostly in agreement with the in vitro assays, and predicted ER and AR effects well. The efficiency of the in silico models (reflecting applicability domains or inconclusive results) was 43-100%. The percentage of correct calls for ER (50-100%), AR (57-100%) and aromatase (33-100%) effects when compared to the final ToxCast call covered a wide range from highly reliable to less reliable models. In conclusion, Danish (Q)SAR, Opera, ADMET Lab LBD and ProToxII models demonstrated the best overall performance for ER and AR effects. These can be combined with the YES/YAS assays in an initial screen of chemicals in the early tiers of an NGRA to inform on the MoA and the design of mechanistic in vitro assays used later in the assessment. Inhibition of aromatase was best predicted by the Vega, AdmetLab and ProToxII models. Other mechanisms and exposure should be considered when making a conclusion with respect to ED effects.
Collapse
Affiliation(s)
- A Najjar
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany.
| | - A Wilm
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| | - J Meinhardt
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| | - N Mueller
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| | - M Boettcher
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| | - J Ebmeyer
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| | - A Schepky
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| | - D Lange
- Beiersdorf AG, Beiersdorfstr. 1-9, 20245, Hamburg, Germany
| |
Collapse
|
186
|
Çomaklı V, Aygül İ, Sağlamtaş R, Kuzu M, Demirdağ R, Akincioğlu H, Adem Ş, Gülçin İ. Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach. Curr Comput Aided Drug Des 2024; 20:441-451. [PMID: 37202895 DOI: 10.2174/1573409919666230518151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important. OBJECTIVES This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world. METHODS In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated. RESULTS All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively. CONCLUSION According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
Collapse
Affiliation(s)
- Veysel Çomaklı
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - İmdat Aygül
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabük University, Karabük, Türkiye
| | - Ramazan Demirdağ
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Hülya Akincioğlu
- Department of Chemistry, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Şevki Adem
- Department of Chemistry, Çankırı Karatekin University, Çankırı, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
187
|
Yilmaz U, Tanbek K. Spexin may induce mitochondrial biogenesis in white and brown adipocytes via the hypothalamus-pituitary-thyroid (HPT) axis. Physiol Behav 2024; 273:114401. [PMID: 37939828 DOI: 10.1016/j.physbeh.2023.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIM The present study aimed to investigate the effect of the intracerebroventricular (icv) administration of spexin on the hypothalamus-pituitary-thyroid (HPT) axis (TRH, TSH, T4 and T3 hormones) and energy expenditure (PGC-1α and UCP1 genes) in white adipose (WAT) and brown adipose tissues (BAT) in rats. Furthermore, the study aimed to determine the effects of spexin on food-water consumption and body weight of rats. MATERIAL AND METHOD The study was conducted with 40 male rats that were divided into 4 groups: Control, Sham, Spexin 30 and Spexin 100 (n = 10). Spexin (1 μl/hour) was administered to rats other than those in the control group for 7 days with osmotic minipumps intracerebroventricularly, artificial cerebrospinal fluid (vehicle) was administered to the Sham group, and 30 nMol and 100 nMol spexin was infused to the Spexin 30 and Spexin 100 groups, respectively. Food-water consumption and body weight of the rats were monitored during the experiments. After the seven-day infusion, the rats were decapitated and serum TSH, fT4 and fT3 levels were determined with ELISA on rat blood samples. Also, TRH gene expression levels from the hypothalamus tissues and PGC-1α and UCP1 expression levels from WAT and BAT were determined by real-time PCR. FINDINGS It was determined that icv spexin infusion reduced daily food consumption and body weight without leading to a significant change in water consumption (p < 0.05). Icv spexin infusion significantly decreased serum TSH, and increased fT4 and fT3 levels when compared to control and sham groups (p < 0.05). Moreover, icv spexin infusion increased the TRH expressions in the hypothalamus tissues and PGC-1α UCP1 in the WAT and BAT (p < 0.05). CONCLUSION Icv Spexin infusion may have effects on food consumption and body weight as well as, thyroid hormones and energy metabolism.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Kevser Tanbek
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
188
|
de Souza JS. Thyroid hormone biosynthesis and its role in brain development and maintenance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 142:329-365. [PMID: 39059990 DOI: 10.1016/bs.apcsb.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Thyroid hormones are critical modulators in the physiological processes necessary to virtually all tissues, with exceptionally fundamental roles in brain development and maintenance. These hormones regulate essential neurodevelopment events, including neuronal migration, synaptogenesis, and myelination. Additionally, thyroid hormones are crucial for maintaining brain homeostasis and cognitive function in adulthood. This chapter aims to offer a comprehensive understanding of thyroid hormone biosynthesis and its intricate role in brain physiology. Here, we described the mechanisms underlying the biosynthesis of thyroid hormones, their influence on various aspects of brain development and ongoing maintenance, and the proteins in the brain that are responsive to these hormones. This chapter was geared towards broadening our understanding of thyroid hormone action in the brain, shedding light on potential therapeutic targets for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Janaina Sena de Souza
- Department of Pediatrics and Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
189
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
190
|
Takahashi N, Nakashima R, Nasu A, Hayashi M, Fujikawa H, Kawakami T, Eto Y, Kishimoto T, Fukuyama A, Ogasawara C, Kawano K, Fujiwara Y, Suico MA, Kai H, Shuto T. T 3 Intratracheal Therapy Alleviates Pulmonary Pathology in an Elastase-Induced Emphysema-Dominant COPD Mouse Model. Antioxidants (Basel) 2023; 13:30. [PMID: 38247455 PMCID: PMC10812479 DOI: 10.3390/antiox13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex pulmonary condition characterized by bronchitis, emphysema, and mucus stasis. Due to the variability in symptoms among patients, traditional approaches to treating COPD as a singular disease are limited. This led us to focus on phenotype/endotype classifications. In this study, we explore the potential therapeutic role of thyroid hormone (T3) by using mouse models: emphysema-dominant elastase-induced COPD and airway-dominant C57BL/6-βENaC-Tg to represent different types of the disease. Here, we showed that intratracheal T3 treatment (40, 80 μg/kg, i.t., every other day) resulted in significant improvements regarding emphysema and the enhancement of respiratory function in the elastase-induced COPD model. T3-dependent improvement is likely linked to the up-regulation of Ppargc1a, a master regulator of mitochondrial biogenesis, and Gclm, a factor associated with oxidative stress. Conversely, neither short- nor long-term T3 treatments improved COPD pathology in the C57BL/6-βENaC-Tg mice. Because the up-regulation of extrathyroidal T3-producing enzyme Dio2, which is also considered a marker of T3 requirement, was specifically observed in elastase-induced COPD lungs, these results demonstrate that exogenous T3 supplementation may have therapeutic potential for acute but not chronic COPD exacerbation. Moreover, this study highlights the relevance of considering not only COPD phenotypes but also COPD endotypes (expression levels of Ppargc1a and/or Dio2) in the research and development of better treatment approaches for COPD.
Collapse
Affiliation(s)
- Noriki Takahashi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
- Program for Leading Graduate Schools “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program”, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Aoi Nasu
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
- Program for Leading Graduate Schools “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program”, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Megumi Hayashi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
- Program for Leading Graduate Schools “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program”, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taisei Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Yuka Eto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Tomoki Kishimoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Ayami Fukuyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Choyo Ogasawara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Keisuke Kawano
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto 860-8556, Japan;
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (N.T.); (A.N.); (M.H.); (H.F.); (T.K.); (T.K.); (A.F.); (C.O.); (K.K.); (M.A.S.); (H.K.)
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
191
|
van Geest FS, Groeneweg S, Popa VM, Stals MAM, Visser WE. Parent Perspectives on Complex Needs in Patients With MCT8 Deficiency: An International, Prospective, Registry Study. J Clin Endocrinol Metab 2023; 109:e330-e335. [PMID: 37450560 PMCID: PMC10735299 DOI: 10.1210/clinem/dgad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT Monocarboxylate transporter 8 (MCT8) deficiency is a rare neurodevelopmental and metabolic disorder, with daily care posing a heavy burden on caregivers. A comprehensive overview of these complex needs and daily care challenges is lacking. DESIGN We established an international prospective registry to systemically capture data from parents and physicians caring for patients with MCT8 deficiency. Parent-reported data on complex needs and daily care challenges were extracted. RESULTS Between July 17, 2018, and May 16, 2022, 51 patients were registered. Difficulties in daily life care were mostly related to feeding and nutritional status (17/33 patients), limited motor skills (12/33 patients), and sleeping (11/33 patients). Dietary advice was provided for 11/36 patients. Two of 32 patients were under care of a cardiologist. Common difficulties in the diagnostic trajectory included late diagnosis (20/35 patients) and visiting a multitude of specialists (15/35 patients). Median diagnostic delay was significantly shorter in patients born in or after 2017 vs before 2017 (8 vs 19 months, P < .0001). CONCLUSIONS Feeding and sleeping problems and limited motor skills mostly contribute to difficulties in daily care. The majority of patients did not receive professional dietary advice, although being underweight is a key disease feature, strongly linked with poor survival. Despite sudden death being a prominent cause of death, potentially related to the cardiovascular abnormalities frequently observed, patients were hardly seen by cardiologists. These findings can directly improve patient-centered multidisciplinary care and define patient-centered outcome measures for intervention studies in patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Ferdy S van Geest
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Veronica M Popa
- Patient Advisory Council of RD Connect and MCT8-AHDS Foundation, Oklahoma, OK 74464, USA
| | - Milou A M Stals
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
192
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
193
|
Du Y, Chen C, Zhou G, Cai Z, Man Q, Liu B, Wang WC. Perfluorooctanoic acid disrupts thyroid-specific genes expression and regulation via the TSH-TSHR signaling pathway in thyroid cells. ENVIRONMENTAL RESEARCH 2023; 239:117372. [PMID: 37827365 DOI: 10.1016/j.envres.2023.117372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Chaojie Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
194
|
Edrisi M, Huang X, Ogilvie HA, Nakhleh L. Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA. Nat Commun 2023; 14:8262. [PMID: 38092737 PMCID: PMC10719311 DOI: 10.1038/s41467-023-44014-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Cancers develop and progress as mutations accumulate, and with the advent of single-cell DNA and RNA sequencing, researchers can observe these mutations and their transcriptomic effects and predict proteomic changes with remarkable temporal and spatial precision. However, to connect genomic mutations with their transcriptomic and proteomic consequences, cells with either only DNA data or only RNA data must be mapped to a common domain. For this purpose, we present MaCroDNA, a method that uses maximum weighted bipartite matching of per-gene read counts from single-cell DNA and RNA-seq data. Using ground truth information from colorectal cancer data, we demonstrate the advantage of MaCroDNA over existing methods in accuracy and speed. Exemplifying the utility of single-cell data integration in cancer research, we suggest, based on results derived using MaCroDNA, that genomic mutations of large effect size increasingly contribute to differential expression between cells as Barrett's esophagus progresses to esophageal cancer, reaffirming the findings of the previous studies.
Collapse
Affiliation(s)
| | - Xiru Huang
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, Texas, USA.
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas, USA.
| |
Collapse
|
195
|
Carr SN, Crites BR, Shinde H, Bridges PJ. Transcriptomic Changes in Response to Form of Selenium on the Interferon-Tau Signaling Mechanism in the Caruncular Tissue of Beef Heifers at Maternal Recognition of Pregnancy. Int J Mol Sci 2023; 24:17327. [PMID: 38139156 PMCID: PMC10743408 DOI: 10.3390/ijms242417327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
We have reported that selenium (Se) provided to grazing beef cattle in an inorganic (ISe) form versus a 1:1 mixture (MIX) of inorganic and organic (OSe) forms affects cholesterol biosynthesis in the corpus luteum (CL), the abundance of interferon tau (IFNτ) and progesterone (P4)-induced mRNAs in the caruncular (CAR) tissue of the endometrium, and conceptus length at maternal recognition of pregnancy (MRP). In this study, beef heifers were supplemented with a vitamin-mineral mix containing 35 ppm Se as ISe or MIX to achieve a Se-adequate status. Inseminated heifers were killed at MRP (d 17, n = 6 per treatment) for tissue collection. In CAR samples from MIX versus ISe heifers, qPCR revealed that mRNA encoding the thyroid regulating DIO2 and DIO3 was decreased (p < 0.05) and a complete transcriptomic analysis revealed effects on the interferon JAK-STAT1/2 pathway, including decreased expression of mRNAs encoding the classical interferon stimulated genes IFIT1, IFIT2, IFIT3, IRF1, IRF9, ISG15, OAS2, and RSAD2 (p < 0.05). Treatment also affected the abundance of mRNAs contributing to the immunotolerant environment (p < 0.05). In combination, these findings suggest more advanced preparation of the CAR and developing conceptus for implantation and to evade immune rejection by the maternal system in MIX- vs. ISe-treated heifers.
Collapse
Affiliation(s)
| | | | | | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (H.S.)
| |
Collapse
|
196
|
Ramanathan R, Patwa SA, Ali AH, Ibdah JA. Thyroid Hormone and Mitochondrial Dysfunction: Therapeutic Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023; 12:2806. [PMID: 38132126 PMCID: PMC10741470 DOI: 10.3390/cells12242806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly termed nonalcoholic fatty liver disease (NAFLD), is a widespread global health concern that affects around 25% of the global population. Its influence is expanding, and it is anticipated to overtake alcohol as the leading cause of liver failure and liver-related death worldwide. Unfortunately, there are no approved therapies for MASLD; as such, national and international regulatory health agencies undertook strategies and action plans designed to expedite the development of drugs for treatment of MASLD. A sedentary lifestyle and an unhealthy diet intake are important risk factors. Western countries have a greater estimated prevalence of MASLD partly due to lifestyle habits. Mitochondrial dysfunction is strongly linked to the development of MASLD. Further, it has been speculated that mitophagy, a type of mitochondrial quality control, may be impaired in MASLD. Thyroid hormone (TH) coordinates signals from the nuclear and mitochondrial genomes to control mitochondrial biogenesis and function in hepatocytes. Mitochondria are known TH targets, and preclinical and clinical studies suggest that TH, thyroid receptor β (TR-β) analogs, and synthetic analogs specific to the liver could be of therapeutic benefit in treating MASLD. In this review, we highlight how mitochondrial dysfunction contributes to development of MASLD, and how understanding the role of TH in improving mitochondrial function paved the way for innovative drug development programs of TH-based therapies targeting MASLD.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Sohum A. Patwa
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
197
|
Fame RM, Ali I, Lehtinen MK, Kanarek N, Petrova B. Optimized Mass Spectrometry Detection of Thyroid Hormones and Polar Metabolites in Rodent Cerebrospinal Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570731. [PMID: 38116027 PMCID: PMC10729774 DOI: 10.1101/2023.12.07.570731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Thyroid hormones (TH) are required for brain development and function. Cerebrospinal fluid (CSF), which bathes the brain and spinal cord, contains TH as free or transthyretin (TTR)-bound. Tight thyroid hormone level regulation in the central nervous system is essential for developmental gene expression that governs neurogenesis, myelination, and synaptogenesis. This integrated function of TH highlights the importance of developing precise and reliable methods for assessing TH levels in CSF. METHODS we report an optimized LC-MS based method to measure thyroid hormones in rodent CSF and serum, applicable to both fresh and frozen samples. RESULTS We find distinct differences in CSF thyroid hormone in pregnant dams vs. non-pregnant adults and in embryonic vs. adult CSF. Further, targeted LC-MS metabolic profiling uncovers distinct central carbon metabolism in the CSF of these populations. CONCLUSIONS TH detection and metabolite profiling of related metabolic pathways open new avenues of rigorous research into CSF thyroid hormone and will inform future studies on metabolic alterations in CSF during normal development.
Collapse
|
198
|
Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Front Pharmacol 2023; 14:1291856. [PMID: 38111381 PMCID: PMC10725963 DOI: 10.3389/fphar.2023.1291856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis maintains normal metabolic balance and homeostasis in the human body through positive and negative feedback regulation. Its main regulatory mode is the secretion of thyrotropin (TSH), thyroid hormones (TH), and thyrotropin-releasing hormone (TRH). By binding to their corresponding receptors, they are involved in the development and progression of several systemic diseases, including digestive, cardiovascular, and central nervous system diseases. The HPT axis-related receptors include thyrotropin receptor (TSHR), thyroid hormone receptor (TR), and thyrotropin-releasing hormone receptor (TRHR). Recently, research on regulators has become popular in the field of biology. Several HPT axis-related receptor modulators have been used for clinical treatment. This study reviews the developments and recent findings on HPT axis-related receptor modulators. This will provide a theoretical basis for the development and utilisation of new modulators of the HPT axis receptors.
Collapse
Affiliation(s)
- Xianbin Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
- Postdoctoral Research Workstation, Changchun Gangheng Electronics Company Limited, Changchun, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
199
|
Jansen HI, van Haeringen M, Bouva MJ, den Elzen WPJ, Bruinstroop E, van der Ploeg CPB, van Trotsenburg ASP, Zwaveling-Soonawala N, Heijboer AC, Bosch AM, de Jonge R, Hoogendoorn M, Boelen A. Optimizing the Dutch newborn screening for congenital hypothyroidism by incorporating amino acids and acylcarnitines in a machine learning-based model. Eur Thyroid J 2023; 12:e230141. [PMID: 37855424 PMCID: PMC10692681 DOI: 10.1530/etj-23-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Objective Congenital hypothyroidism (CH) is an inborn thyroid hormone (TH) deficiency mostly caused by thyroidal (primary CH) or hypothalamic/pituitary (central CH) disturbances. Most CH newborn screening (NBS) programs are thyroid-stimulating-hormone (TSH) based, thereby only detecting primary CH. The Dutch NBS is based on measuring total thyroxine (T4) from dried blood spots, aiming to detect primary and central CH at the cost of more false-positive referrals (FPRs) (positive predictive value (PPV) of 21% in 2007-2017). An artificial PPV of 26% was yielded when using a machine learning-based model on the adjusted dataset described based on the Dutch CH NBS. Recently, amino acids (AAs) and acylcarnitines (ACs) have been shown to be associated with TH concentration. We therefore aimed to investigate whether AAs and ACs measured during NBS can contribute to better performance of the CH screening in the Netherlands by using a revised machine learning-based model. Methods Dutch NBS data between 2007 and 2017 (CH screening results, AAs and ACs) from 1079 FPRs, 515 newborns with primary (431) and central CH (84) and data from 1842 healthy controls were used. A random forest model including these data was developed. Results The random forest model with an artificial sensitivity of 100% yielded a PPV of 48% and AUROC of 0.99. Besides T4 and TSH, tyrosine, and succinylacetone were the main parameters contributing to the model's performance. Conclusions The PPV improved significantly (26-48%) by adding several AAs and ACs to our machine learning-based model, suggesting that adding these parameters benefits the current algorithm.
Collapse
Affiliation(s)
- Heleen I Jansen
- Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Marije van Haeringen
- Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
- Department of Computer Science, Vrije Universiteit, Boelelaan, Amsterdam, The Netherlands
| | - Marelle J Bouva
- Reference Laboratory Neonatal Screening, Center for Health protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Wendy P J den Elzen
- Department of Laboratory Medicine, Laboratory Specialized Diagnostics & Research, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam, The Netherlands
| | - Eveline Bruinstroop
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | | | - A S Paul van Trotsenburg
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Annet M Bosch
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Robert de Jonge
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Amsterdam UMC, Vrije Universiteit, Boelelaan, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Mark Hoogendoorn
- Department of Computer Science, Vrije Universiteit, Boelelaan, Amsterdam, The Netherlands
| | - Anita Boelen
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
200
|
Zare R, Devrim-Lanpir A, Guazzotti S, Ali Redha A, Prokopidis K, Spadaccini D, Cannataro R, Cione E, Henselmans M, Aragon AA. Effect of Soy Protein Supplementation on Muscle Adaptations, Metabolic and Antioxidant Status, Hormonal Response, and Exercise Performance of Active Individuals and Athletes: A Systematic Review of Randomised Controlled Trials. Sports Med 2023; 53:2417-2446. [PMID: 37603200 PMCID: PMC10687132 DOI: 10.1007/s40279-023-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Protein supplements are important to maintain optimum health and physical performance, particularly in athletes and active individuals to repair and rebuild their skeletal muscles and connective tissues. Soy protein (SP) has gained popularity in recent years as an alternative to animal proteins. OBJECTIVES This systematic review evaluates the evidence from randomised controlled clinical trials of the effects of SP supplementation in active individuals and athletes in terms of muscle adaptations, metabolic and antioxidant status, hormonal response and exercise performance. It also explores the differences in SP supplementation effects in comparison to whey protein. METHODS A systematic search was conducted in PubMed, Embase and Web of Science, as well as a manual search in Google Scholar and EBSCO, on 27 June 2023. Randomised controlled trials that evaluated the applications of SPs supplementation on sports and athletic-related outcomes that are linked with exercise performance, adaptations and biomarkers in athletes and physically active adolescents and young adults (14 to 39 years old) were included, otherwise, studies were excluded. The risk of bias was assessed according to Cochrane's revised risk of bias tool. RESULTS A total of 19 eligible original research articles were included that investigated the effect of SP supplementation on muscle adaptations (n = 9), metabolic and antioxidant status (n = 6), hormonal response (n = 6) and exercise performance (n = 6). Some studies investigated more than one effect. SP was found to provide identical increases in lean mass compared to whey in some studies. SP consumption promoted the reduction of exercise-induced metabolic/blood circulating biomarkers such as triglycerides, uric acid and lactate. Better antioxidant capacity against oxidative stress has been seen with respect to whey protein in long-term studies. Some studies reported testosterone and cortisol fluctuations related to SP; however, more research is required. All studies on SP and endurance performance suggested the potential beneficial effects of SP supplementation (10-53.3 g) on exercise performance by improving high-intensity and high-speed running performance, enhancing maximal cardiac output, delaying fatigue and improving isometric muscle strength, improving endurance in recreational cyclists, increasing running velocity and decreasing accumulated lactate levels; however, studies determining the efficacy of soy protein on VO2max provided conflicted results. CONCLUSION It is possible to recommend SP to athletes and active individuals in place of conventional protein supplements by assessing their dosage and effectiveness in relation to different types of training. SP may enhance lean mass compared with other protein sources, enhance the antioxidant status, and reduce oxidative stress. SP supplementation had an inconsistent effect on testosterone and cortisol levels. SP supplementation may be beneficial, especially after muscle damage, high-intensity/high-speed or repeated bouts of strenuous exercise.
Collapse
Affiliation(s)
- Reza Zare
- Meshkat Sports Complex, Karaj, Alborz Province, Iran
- Arses Sports Complex, Karaj, Alborz Province, Iran
| | - Asli Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul, Turkey
- School of Health and Human Performance, Dublin City University, Dublin 9, D09 V209, Ireland
| | - Silvia Guazzotti
- Department of Translational Medicine (DiMeT), Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, University of Piemonte Orientale, 28100, Novara, Italy
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Society of Meta-Research and Biomedical Innovation, London, UK
| | - Daniele Spadaccini
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- GalaScreen Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- GalaScreen Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC, Amsterdam, The Netherlands
| | - Alan A Aragon
- Department of Family and Consumer Sciences, California State University, Northridge, CA, USA
| |
Collapse
|