151
|
Bai A. β2-glycoprotein I and its antibodies involve in the pathogenesis of the antiphospholipid syndrome. Immunol Lett 2017; 186:15-19. [DOI: 10.1016/j.imlet.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
152
|
Lu YW, Lowery AM, Sun LY, Singer HA, Dai G, Adam AP, Vincent PA, Schwarz JJ. Endothelial Myocyte Enhancer Factor 2c Inhibits Migration of Smooth Muscle Cells Through Fenestrations in the Internal Elastic Lamina. Arterioscler Thromb Vasc Biol 2017; 37:1380-1390. [PMID: 28473437 DOI: 10.1161/atvbaha.117.309180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo. APPROACH AND RESULTS To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ERT2 and examined aortas and carotid arteries by en face immunofluorescence. We observed enhanced actin stress fiber formation in the Mef2c-deleted thoracic aortic endothelium (laminar flow region), similar to those observed in normal aortic inner curvature (disturbed flow region). Furthermore, Mef2c deletion resulted in the de novo formation of subendothelial intimal cells expressing markers of differentiated smooth muscle in the thoracic aortas and carotids. Lineage tracing showed that these cells were not of endothelial origin. To define early events in intimal development, we induced endothelial deletion of Mef2c and examined aortas at 4 and 12 weeks postinduction. The number of intimal cell clusters increased from 4 to 12 weeks, but the number of cells within a cluster peaked at 2 cells in both cases, suggesting ongoing migration but minimal proliferation. Moreover, we identified cells extending from the media through fenestrations in the internal elastic lamina into the intima, indicating transfenestral smooth muscle migration. Similar transfenestral migration was observed in wild-type carotid arteries ligated to induce neointimal formation. CONCLUSIONS These results indicate that endothelial Mef2c regulates the endothelial actin cytoskeleton and inhibits smooth muscle cell migration into the intima.
Collapse
Affiliation(s)
- Yao Wei Lu
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Anthony M Lowery
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Li-Yan Sun
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Harold A Singer
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Guohao Dai
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Alejandro P Adam
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Peter A Vincent
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - John J Schwarz
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.).
| |
Collapse
|
153
|
Vascular protective effects of KLF2 on Aβ-induced toxicity: Implications for Alzheimer’s disease. Brain Res 2017; 1663:174-183. [DOI: 10.1016/j.brainres.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022]
|
154
|
Genetic Deletion of Krüppel-Like Factor 11 Aggravates Ischemic Brain Injury. Mol Neurobiol 2017; 55:2911-2921. [PMID: 28456933 DOI: 10.1007/s12035-017-0556-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
Abstract
Krüppel-like factors (KLFs) belong to the zinc finger family of transcription factors, and their function in the CNS is largely unexplored. KLF11 is a member of the KLF family, and we have previously demonstrated that peroxisome proliferator-activated receptor gamma-mediated cerebral protection during ischemic insults needs recruitment of KLF11 as its critical coactivator. Here, we sought to determine the role of KLF11 itself in cerebrovascular function and the pathogenesis of ischemic stroke. Transient middle cerebral artery occlusion (MCAO) was performed in KLF11 knockout and wild-type control mice, and brain infarction was analyzed by TTC staining. BBB integrity was assessed by using Evans Blue and TMR-Dextran extravasation assays. KLF11 KO mice exhibited significantly larger brain infarction and poorer neurological outcomes in response to ischemic insults. Genetic deficiency of KLF11 in mice also significantly aggravated ischemia-induced BBB disruption by increasing cerebrovascular permeability and edema. Mechanistically, KLF11 was found to directly regulate IL-6 in the brains of ischemic mice. These findings suggest that KLF11 acts as a novel protective factor in ischemic stroke. Elucidating the functional importance of KLF11 in ischemia may lead us to discover novel pharmacological targets for the development of effective therapies against ischemic stroke.
Collapse
|
155
|
Choi D, Park E, Jung E, Seong YJ, Hong M, Lee S, Burford J, Gyarmati G, Peti-Peterdi J, Srikanth S, Gwack Y, Koh CJ, Boriushkin E, Hamik A, Wong AK, Hong YK. ORAI1 Activates Proliferation of Lymphatic Endothelial Cells in Response to Laminar Flow Through Krüppel-Like Factors 2 and 4. Circ Res 2017; 120:1426-1439. [PMID: 28167653 PMCID: PMC6300148 DOI: 10.1161/circresaha.116.309548] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Lymphatic vessels function to drain interstitial fluid from a variety of tissues. Although shear stress generated by fluid flow is known to trigger lymphatic expansion and remodeling, the molecular basis underlying flow-induced lymphatic growth is unknown. OBJECTIVE We aimed to gain a better understanding of the mechanism by which laminar shear stress activates lymphatic proliferation. METHODS AND RESULTS Primary endothelial cells from dermal blood and lymphatic vessels (blood vascular endothelial cells and lymphatic endothelial cells [LECs]) were exposed to low-rate steady laminar flow. Shear stress-induced molecular and cellular responses were defined and verified using various mutant mouse models. Steady laminar flow induced the classic shear stress responses commonly in blood vascular endothelial cells and LECs. Surprisingly, however, only LECs showed enhanced cell proliferation by regulating the vascular endothelial growth factor (VEGF)-A, VEGF-C, FGFR3, and p57/CDKN1C genes. As an early signal mediator, ORAI1, a pore subunit of the calcium release-activated calcium channel, was identified to induce the shear stress phenotypes and cell proliferation in LECs responding to the fluid flow. Mechanistically, ORAI1 induced upregulation of Krüppel-like factor (KLF)-2 and KLF4 in the flow-activated LECs, and the 2 KLF proteins cooperate to regulate VEGF-A, VEGF-C, FGFR3, and p57 by binding to the regulatory regions of the genes. Consistently, freshly isolated LECs from Orai1 knockout embryos displayed reduced expression of KLF2, KLF4, VEGF-A, VEGF-C, and FGFR3 and elevated expression of p57. Accordingly, mouse embryos deficient in Orai1, Klf2, or Klf4 showed a significantly reduced lymphatic density and impaired lymphatic development. CONCLUSIONS Our study identified a molecular mechanism for laminar flow-activated LEC proliferation.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p57/genetics
- Cyclin-Dependent Kinase Inhibitor p57/metabolism
- Endothelial Cells/metabolism
- Endothelium, Lymphatic/metabolism
- Endothelium, Lymphatic/pathology
- Endothelium, Lymphatic/physiopathology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation
- Genotype
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/deficiency
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Lymphangiogenesis
- Mechanotransduction, Cellular
- Mice, Knockout
- ORAI1 Protein/deficiency
- ORAI1 Protein/genetics
- ORAI1 Protein/metabolism
- Phenotype
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Stress, Mechanical
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor C/genetics
- Vascular Endothelial Growth Factor C/metabolism
Collapse
Affiliation(s)
- Dongwon Choi
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunkyung Park
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunson Jung
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young Jin Seong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mingu Hong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sunju Lee
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James Burford
- Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Janos Peti-Peterdi
- Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sonal Srikanth
- Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yousang Gwack
- Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Chester J. Koh
- Pediatric Urology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Evgenii Boriushkin
- Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, New York, 11794
| | - Anne Hamik
- Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, New York, 11794
- Northport Veterans Affairs Medical Center, Northport, New York
| | - Alex K. Wong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
156
|
Silva GC, Abbas M, Khemais-Benkhiat S, Burban M, Ribeiro TP, Toti F, Idris-Khodja N, Côrtes SF, Schini-Kerth VB. Replicative senescence promotes prothrombotic responses in endothelial cells: Role of NADPH oxidase- and cyclooxygenase-derived oxidative stress. Exp Gerontol 2017; 93:7-15. [PMID: 28412252 DOI: 10.1016/j.exger.2017.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Endothelial senescence has been suggested to promote endothelial dysfunction in age-related vascular disorders. This study evaluated the prothrombotic properties of senescent endothelial cells (ECs) and the underlying mechanism. Serial passaging from passage (P)1 to P4 (replicative senescence) of porcine coronary artery ECs, or treatment of P1 ECs with the endothelial nitric oxide synthase (eNOS) inhibitor L-NAME (premature senescence) induced acquisition of markers of senescence including increased senescence-associated-β-galactosidase (SA-β-gal) activity and p53, p21, p16 expression. Approximately 55% of P3 cells were senescent with a high level oxidative stress, and decreased eNOS-derived nitric oxide (NO) formation associated with increased expression of NADPH oxidase subunits (gp91phox, p47phox), cyclooxygenase (COX)-2 but not COX-1, and a decreased eNOS expression leading to a reduced ability of ECs to inhibit platelet aggregation. P3 cells also presented increased expression and activity of tissue factor (TF), a key initiator of the coagulation cascade. Treatment of senesecent cells with a NADPH oxidase inhibitor (VAS-2870) or by a COX inhibitor (indomethacin) reduced oxidative stress, decreased TF activity and expression, and reduced the expression of gp91phox, p47phox and COX-2 and restored the ability of ECs to inhibit effectively platelet aggregation. Thus, replicative endothelial senescence promotes a prothrombotic response involving the down-regulation of the protective NO pathway and the upregulation of the NADPH oxidase- and COXs-dependent oxidative stress pathway promoting TF expression and activity.
Collapse
Affiliation(s)
- Grazielle Caroline Silva
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Malak Abbas
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Sonia Khemais-Benkhiat
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Melanie Burban
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Thais Porto Ribeiro
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Florence Toti
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Noureddine Idris-Khodja
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Steyner F Côrtes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valérie B Schini-Kerth
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France.
| |
Collapse
|
157
|
First identification of Krüppel-like factor 2 mutation in heritable pulmonary arterial hypertension. Clin Sci (Lond) 2017; 131:689-698. [DOI: 10.1042/cs20160930] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 01/13/2023]
Abstract
Heritable pulmonary arterial hypertension (HPAH) is an autosomal dominantly inherited disease caused by mutations in the bone morphogenic protein receptor 2 (BMPR2) gene and/or genes of its signalling pathway in approximately 85% of patients. We clinically and genetically analysed an HPAH family without mutations in previously described pulmonary arterial hypertension (PAH) genes. Clinical assessment included electrocardiogram, lung function, blood gas analysis, chest X-ray, laboratory testing, echocardiography and right heart catheterization in case of suspected disease. Genetic diagnostics were performed using a PAH-specific gene panel including all known 12 PAH genes and 20 further candidate genes by next-generation sequencing (NGS). HPAH was invasively confirmed in two sisters and their father who died aged 32 years. No signs of HPAH were detected in five first-degree family members. Both sisters were lung transplanted and remained stable during a follow-up of >20 years. We detected a novel missense mutation in the Krüppel-like factor 2 (KLF2) likely leading to a disruption of gene function. The same KLF2 mutation has been described as a recurrent somatic mutation in B-cell lymphoma. Neither the healthy family members carried the mutation nor >120000 controls. These findings point to KLF2 as a new PAH gene. Further studies are needed to assess frequency and implication of KLF2 mutations in PAH patients.
Collapse
|
158
|
Klf10 Gene, a Secondary Modifier and a Pharmacogenomic Biomarker of Hydroxyurea Treatment Among Patients With Hemoglobinopathies. J Pediatr Hematol Oncol 2017; 39:e155-e162. [PMID: 28085748 DOI: 10.1097/mph.0000000000000762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The klf10 gene could indirectly modify γ-globin chain production and hence the level of fetal hemoglobin (HbF) ameliorating the phenotype of β-hemoglobinopathies and the response to hydroxycarbamide (hydroxyurea [HU]) therapy. In this study, we aimed to evaluate the frequency of different genotypes for the klf10 gene in β-thalassemia major (B-TM), β-thalassemia intermedia (B-TI), and sickle cell disease (SCD) patients by polymerase chain reaction and to assess its relation to disease phenotypes and HU response. METHODS This cross-sectional study included 75 patients: 50 B-TM, 12 SCD, and 13 B-TI patients (on stable HU dose). The relation of the klf10 gene polymorphism (TIEG, TIEG1, EGRα) (rs3191333: c*0.141C>T) to phenotype was studied through baseline mean corpuscular volume, HbF, and transfusion history, whereas evaluation of response to HU therapy was carried out clinically and laboratory. RESULTS The frequency of the mutant klf10 genotype (TT) and that of the mutant allele (T) was significantly higher among B-TM patients compared with those with B-TI and SCD patients. Only homozygous SCD patients for the wild-type allele within the klf10 gene had a significantly lower transfusion frequency. The percentage of HU responders and nonresponders between different klf10 polymorphic genotypes among B-TI or SCD patients was comparable. CONCLUSIONS Although the klf10 gene does not play a standalone role as an HbF modifier, our data support its importance in ameliorating phenotype among β-hemoglobinopathies.
Collapse
|
159
|
Hardy WR, Moldovan NI, Moldovan L, Livak KJ, Datta K, Goswami C, Corselli M, Traktuev DO, Murray IR, Péault B, March K. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells. Stem Cells 2017; 35:1273-1289. [DOI: 10.1002/stem.2599] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- W. Reef Hardy
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- Department of Medicine; University of Indiana; Indianapolis Indiana USA
| | | | - Leni Moldovan
- Department of Ophthalmology; IUPUI; Indianapolis Indiana USA
| | | | - Krishna Datta
- Fluidigm Corporation; South San Francisco California USA
| | - Chirayu Goswami
- Thomas Jefferson University Hospitals; Philadelphia Pennsylvania USA
| | - Mirko Corselli
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- BD Biosciences; San Diego California
| | | | - Iain R. Murray
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- MRC Centre for Regenerative Medicine, University of Edinburgh; Scotland United Kingdom
| | - Bruno Péault
- Department of Orthopaedic Surgery and Broad Stem Cell Center; University of California at Los Angeles; California USA
- MRC Centre for Regenerative Medicine, University of Edinburgh; Scotland United Kingdom
| | - Keith March
- Department of Medicine; University of Indiana; Indianapolis Indiana USA
| |
Collapse
|
160
|
Kuebler WM. The Flow-Dependent Transcription Factor KLF2 Protects Lung Vascular Barrier Function in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 195:553-555. [DOI: 10.1164/rccm.201609-1946ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wolfgang M. Kuebler
- Institute of PhysiologyCharité–Universitaetsmedizin BerlinBerlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’sToronto, Ontario, Canada
- Department of Surgeryand
- Department of PhysiologyUniversity of TorontoToronto, Ontario, Canada
| |
Collapse
|
161
|
Di X, Tang X, Di X. Montelukast inhibits oxidized low-density lipoproteins (ox-LDL) induced vascular endothelial attachment: An implication for the treatment of atherosclerosis. Biochem Biophys Res Commun 2017; 486:58-62. [PMID: 28246014 DOI: 10.1016/j.bbrc.2017.02.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/25/2017] [Indexed: 11/19/2022]
Abstract
Recruitment of monocytes to endothelial cells is important during early stages of atherosclerosis development, which is activated in response to a number of inflammatory stimuli, including oxidized low-density lipoprotein (ox-LDL). Montelukast is a licensed drug approved by the Food and Drug Administration (FDA) and clinically used for the treatment of asthma by reducing the eosinophilic inflammation in the airway. Little information regarding the effects of Montelukast on endothelial inflammation has been reported before. In the current study, we found that Montelukast markedly reduced ox-LDL-induced monocyte adhesion to human umbilical vein endothelial cells. In addition, the inhibitory mechanism of Montelukast was associated with suppression of adhesion molecule expression, including VCAM-1 and E-selectin. Mechanistically, ERK5 mediated expression of the transcriptional factor KLF2 was found to be involved in the anti-inflammation effects of Montelukast against ox-LDL induced endothelial inflammation. Results indicate that Montelukast plays a protective role in the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Xiuhua Di
- Department of Color Ultrasonic, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China.
| | - Xuelu Tang
- Department of Color Ultrasonic, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Xiuting Di
- Department of ICU, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng 252000, China
| |
Collapse
|
162
|
Sangwung P, Zhou G, Nayak L, Chan ER, Kumar S, Kang DW, Zhang R, Liao X, Lu Y, Sugi K, Fujioka H, Shi H, Lapping SD, Ghosh CC, Higgins SJ, Parikh SM, Jo H, Jain MK. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2017; 2:e91700. [PMID: 28239661 DOI: 10.1172/jci.insight.91700] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Cardiovascular Research Institute, Department of Medicine, and.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Guangjin Zhou
- Cardiovascular Research Institute, Department of Medicine, and
| | - Lalitha Nayak
- Cardiovascular Research Institute, Department of Medicine, and.,Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Rongli Zhang
- Cardiovascular Research Institute, Department of Medicine, and
| | - Xudong Liao
- Cardiovascular Research Institute, Department of Medicine, and
| | - Yuan Lu
- Cardiovascular Research Institute, Department of Medicine, and
| | - Keiki Sugi
- Cardiovascular Research Institute, Department of Medicine, and
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hong Shi
- Cardiovascular Research Institute, Department of Medicine, and
| | | | - Chandra C Ghosh
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah J Higgins
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Mukesh K Jain
- Cardiovascular Research Institute, Department of Medicine, and.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
163
|
Han JM, Li H, Cho MH, Baek SH, Lee CH, Park HY, Jeong TS. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules. Int J Mol Sci 2017; 18:E373. [PMID: 28208647 PMCID: PMC5343908 DOI: 10.3390/ijms18020373] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR-/-) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR-/- mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively.
Collapse
Affiliation(s)
- Jong-Min Han
- Division of Life Science, Daejeon University, Daejeon 300-716, Korea.
| | - Hua Li
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Moon-Hee Cho
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Seung-Hwa Baek
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, KRIBB, Daejeon 305-806, Korea.
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Tae-Sook Jeong
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
- Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 305-806, Korea.
| |
Collapse
|
164
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf) 2017; 219:382-408. [PMID: 27246807 DOI: 10.1111/apha.12725] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/17/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Haemodynamic forces influence the functional properties of vascular endothelium. Endothelial cells (ECs) have a variety of receptors, which sense flow and transmit mechanical signals through mechanosensitive signalling pathways to recipient molecules that lead to phenotypic and functional changes. Arterial architecture varies greatly exhibiting bifurcations, branch points and curved regions, which are exposed to various flow patterns. Clinical studies showed that atherosclerotic plaques develop preferentially at arterial branches and curvatures, that is in the regions exposed to disturbed flow and shear stress. In the atheroprone regions, the endothelium has a proinflammatory phenotype associated with low nitric oxide production, reduced barrier function and increased proadhesive, procoagulant and proproliferative properties. Atheroresistant regions are exposed to laminar flow and high shear stress that induce prosurvival antioxidant signals and maintain the quiescent phenotype in ECs. Indeed, various flow patterns contribute to phenotypic and functional heterogeneity of arterial endothelium whose response to proatherogenic stimuli is differentiated. This may explain the preferential development of endothelial dysfunction in arterial sites with disturbed flow.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University; Moscow Russia
| | - A. N. Orekhov
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Institute for Atherosclerosis Research; Skolkovo Innovative Center; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research; University of New South Wales; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
165
|
Teasdale JE, Hazell GGJ, Peachey AMG, Sala-Newby GB, Hindmarch CCT, McKay TR, Bond M, Newby AC, White SJ. Cigarette smoke extract profoundly suppresses TNFα-mediated proinflammatory gene expression through upregulation of ATF3 in human coronary artery endothelial cells. Sci Rep 2017; 7:39945. [PMID: 28059114 PMCID: PMC5216376 DOI: 10.1038/srep39945] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases.
Collapse
Affiliation(s)
- Jack E. Teasdale
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Georgina G. J. Hazell
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Alasdair M. G. Peachey
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B. Sala-Newby
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Charles C. T. Hindmarch
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada, K7L 3N6
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tristan R. McKay
- School of Healthcare Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mark Bond
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C. Newby
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Stephen J. White
- School of Healthcare Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
166
|
Lin L, He Y, Xi BL, Zheng HC, Chen Q, Li J, Hu Y, Ye MH, Chen P, Qu Y. MiR-135a Suppresses Calcification in Senescent VSMCs by Regulating KLF4/STAT3 Pathway. Curr Vasc Pharmacol 2016. [PMID: 26202084 PMCID: PMC5403971 DOI: 10.2174/1570161113666150722151817] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cellular function phenotype is regulated by various microRNAs (miRs), including miR-135a. However, how miR-135a is involved in the calcification in senescent vascular smooth muscle cells (VSMCs) is not clear yet. In the present study, we first identified the significantly altered miRNAs in VSMCs, then performed consecutive passage culture of VSMCs and analyzed the expression of miR-135a and calcification genes in the senescent phase. Next, the effects of the miR-135a inhibition on calcification and calcification genes were analyzed. The luciferase assay was used to validate the target protein of miR-135a. The western blotting was used to determine the effects of miR-135a on Krüppel-like factor 4 (KLF4) and signal transducer and activator of transcription 3 protein (STAT3) expression, as well as the relationship between KLF4 and STAT3. Finally, the quantified cellular calcification was measured to examine the involvement of miR-135a, KLF4 and STAT3 in VSMCs calcification. Our results showed that miR-135a was significantly altered in VSMCs. Cell calcification and calcification genes were greatly altered by miR-135a inhibition. KLF4 was validated as the target RNA of miR-135a. Expression of KLF4 and STAT3 were both significantly decreased by over expressed miR-135a, while the inhibition of miR-135a and KLF4 siRNA both decreased the STAT3 protein levels. Moreover, the inhibition of miR-135a dramatically increased the calcium concentration, but co-treatment with KLF4 or STAT3 siRNA both decreased the calcium concentration. The present study identified miR-135a as a potential osteogenic differentiation suppressor in senescent VSMCs and revealed that KLF4/STAT3 pathway, at least partially, was involved in the mechanism.
Collapse
Affiliation(s)
| | | | - Bei-Li Xi
- Department of Geriatrics, Xuhui Central hospital, Shanghai Clinical Center, Chinese Academy of Science, No.966 Middle Huaihai Road, Shanghai, 200031, China.
| | | | | | | | | | | | | | - Yi Qu
- Department of Geriatrics, Xuhui Central hospital, Shanghai Clinical Center, Chinese Academy of Science, No.966 Middle Huaihai Road, Shanghai, 200031, China.
| |
Collapse
|
167
|
Araldi E, Suárez Y. MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:2094-2103. [PMID: 26825686 PMCID: PMC5039046 DOI: 10.1016/j.bbalip.2016.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
Endothelial cells (ECs) provide nutrients and oxygen essential for tissue homeostasis. Metabolic imbalances and other environmental stimuli, like cytokines or low shear stress, trigger endothelial inflammation, increase permeability, compromise vascular tone, promote cell proliferation, and ultimately cause cell death. These factors contribute to EC dysfunction, which is crucial in the development of cardiometabolic diseases. microRNAs (miRNAs) are small non-coding RNAs that have important functions in the regulation of ECs. In the present review, we discuss the role of miRNAs in various aspects of EC pathology in cardiometabolic diseases like atherosclerosis, type 2 diabetes, obesity, and the metabolic syndrome, and in complication of those pathologies, like ischemia. We also discuss the potential therapeutic applications of miRNAs in promoting angiogenesis and neovascularization in tissues where the endothelium is damaged in different cardiometabolic diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Elisa Araldi
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yajaira Suárez
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
168
|
Mallipattu SK, Estrada CC, He JC. The critical role of Krüppel-like factors in kidney disease. Am J Physiol Renal Physiol 2016; 312:F259-F265. [PMID: 27852611 DOI: 10.1152/ajprenal.00550.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 01/27/2023] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors critical to mammalian embryonic development, regeneration, and human disease. There is emerging evidence that KLFs play a vital role in key physiological processes in the kidney, ranging from maintenance of glomerular filtration barrier to tubulointerstitial inflammation to progression of kidney fibrosis. Seventeen members of the KLF family have been identified, and several have been well characterized in the kidney. Although they may share some overlap in their downstream targets, their structure and function remain distinct. This review highlights our current knowledge of KLFs in the kidney, which includes their pattern of expression and their function in regulating key biological processes. We will also critically examine the currently available literature on KLFs in the kidney and offer some key areas in need of further investigation.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York;
| | - Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
169
|
Yin ZZ, Dong XY, Dong DJ, Ma YZ. Association of MYF5 and KLF15 gene polymorphisms with carcass traits in domestic pigeons (Columba livia). Br Poult Sci 2016; 57:612-618. [PMID: 27180898 DOI: 10.1080/00071668.2016.1190000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the exons of the myogenic factor 5 (MYF5) and Kruppel-like factor 15 (KLF15) genes were identified and analysed by using DNA sequencing methods in 60 female domestic pigeons (Columba livia). Five SNPs (T5067A, C5084T, C5101T, T5127A and C5154G) were detected in exon 3 of MYF5 and 6 SNPs (C1398T, C1464T, G1542A, C1929T, G1965A and A2355G) were found in exon 2 of KLF15, respectively. The analysis revealed three genotypes, in which the AA genotype was dominant and the A allele showed a dominant advantage. For the MYF5 gene, the C5084T and T5127A SNP genotypes were significantly associated with carcass traits of pigeons. Within those two SNPs, the BB genotype showed relatively higher trait association values than those of AA or AB genotypes. No significant association was observed between the KLF15 SNP genotypes and carcass traits. These results indicated that the MYF5 gene is a potential major gene affecting carcass traits in domestic pigeons. The BB genotype of the C5084T and T5127A SNPs could be a potential candidate genetic marker for marker-assisted selection in pigeon.
Collapse
Affiliation(s)
- Z Z Yin
- a Animal Science College , Zhejiang University , Hangzhou , China
| | - X Y Dong
- a Animal Science College , Zhejiang University , Hangzhou , China
| | - D J Dong
- a Animal Science College , Zhejiang University , Hangzhou , China
| | - Y Z Ma
- a Animal Science College , Zhejiang University , Hangzhou , China
| |
Collapse
|
170
|
Zhang D, Li Z, Zhang Y, Tu C, Huo J, Liu Y. miR-4262 promotes the proliferation of human cutaneous malignant melanoma cells through KLF6-mediated EGFR inactivation and p21 upregulation. Oncol Rep 2016; 36:3657-3663. [PMID: 27779691 DOI: 10.3892/or.2016.5190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/08/2016] [Indexed: 11/05/2022] Open
Abstract
Alterations in the levels and functions of microRNAs (miRs) have been associated with carcinogenesis. In this study, we investigated the role and underlying mechanism of miR-4262 in the proliferation of human cutaneous malignant melanoma (CMM) cells. The expression levels of miR-4262 were significantly upregulated in cancerous tissues compared with those in matched adjacent normal tissues from 110 CMM patients. miR-4262 was also regulated in five types of CMM cell lines, displaying an opposite expression pattern to that of Kruppel-like 6 (KLF6), a proven tumor suppressor in several cancers other than CMM. KLF6 overexpression sharply reduced A375 cell proliferation, suppressed the activation of epidermal growth factor receptor (EGFR) and increased p21 expression levels, while knockdown of KLF6 by siRNA transfection had an opposite effect. Furthermore, KLF6 was proven to be a direct target gene of miR-4262 by bioinformatic analysis and KLF6‑3'UTR luciferase reporter assay. Finally, our data on miR-4262 mimic and inhibitor transfection indicated that miR-4262 could markedly reduce the expression of KLF6 protein and had a stimulatory effect on A375 cell proliferation. Our findings indicate that KLF6 acts as a tumor suppressor in CMM cells and miR-4262 promotes the proliferation of CMM cells through KLF6-mediated EGFR inactivation and p21 upregulation.
Collapse
Affiliation(s)
- Dingwei Zhang
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhangjun Li
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanfei Zhang
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Tu
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jia Huo
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Liu
- Department of Dermatology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
171
|
Sacilotto N, Chouliaras KM, Nikitenko LL, Lu YW, Fritzsche M, Wallace MD, Nornes S, García-Moreno F, Payne S, Bridges E, Liu K, Biggs D, Ratnayaka I, Herbert SP, Molnár Z, Harris AL, Davies B, Bond GL, Bou-Gharios G, Schwarz JJ, De Val S. MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes Dev 2016; 30:2297-2309. [PMID: 27898394 PMCID: PMC5110996 DOI: 10.1101/gad.290619.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/29/2016] [Indexed: 12/24/2022]
Abstract
Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Kira M Chouliaras
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Leonid L Nikitenko
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Yao Wei Lu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | - Martin Fritzsche
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Marsha D Wallace
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Svanhild Nornes
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Fernando García-Moreno
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Sophie Payne
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Esther Bridges
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Ke Liu
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Daniel Biggs
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Shane P Herbert
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Adrian L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Benjamin Davies
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gareth L Bond
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - John J Schwarz
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | - Sarah De Val
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
172
|
Ferraro F, Mafalda Lopes da S, Grimes W, Lee HK, Ketteler R, Kriston-Vizi J, Cutler DF. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells. Sci Rep 2016; 6:32473. [PMID: 27576551 PMCID: PMC5006059 DOI: 10.1038/srep32473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall.
Collapse
Affiliation(s)
- Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Silva Mafalda Lopes da
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - William Grimes
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Hwee Kuan Lee
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
173
|
Henning RJ. Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease. Future Cardiol 2016; 12:585-99. [PMID: 27420190 DOI: 10.2217/fca-2016-0006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stem cells encode vascular endothelial growth factors (VEGFs), fibroblastic growth factors (FGFs), stem cell factor, stromal cell-derived factor, platelet growth factor and angiopoietin that can contribute to myocardial vascularization. VEGFs and FGFs are the most investigated growth factors. VEGFs regulate angiogenesis and vasculogenesis. FGFs stimulate vessel cell proliferation and differentiation and are regulators of endothelial cell migration, proliferation and survival. Clinical trials of VEGF or FGF for myocardial angiogenesis have produced disparate results. The efficacy of therapeutic angiogenesis can be improved by: (1) identifying the most optimal patients; (2) increased knowledge of angiogenic factor pharmacokinetics and proper dose; (3) prolonging contact of angiogenic factors with the myocardium; (4) increasing the efficiency of VEGF or FGF gene transduction; and (5) utilizing PET or MRI to measure myocardial perfusion and perfusion reserve.
Collapse
Affiliation(s)
- Robert J Henning
- The University of South Florida and the James A. Haley Hospital, Tampa, FL 33612 USA
| |
Collapse
|
174
|
Liu H, Li G, Zhao W, Hu Y. Inhibition of MiR-92a May Protect Endothelial Cells After Acute Myocardial Infarction in Rats: Role of KLF2/4. Med Sci Monit 2016; 22:2451-62. [PMID: 27411964 PMCID: PMC4957625 DOI: 10.12659/msm.897266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background This study was designed to investigate the effects of microRNA-92 (miR-92), Kruppel-like factor 2 (KLF2), and Kruppel-like factor 4 (KLF4) on endothelial injury after acute myocardial infarction (AMI). Material/Methods Blood samples were collected from 50 AMI patients for detection of cardiac troponin I (cTnI), heart-type fatty acid-binding protein (H-FABP), and von Willebrand factor (vWF). The Sprague-Dawley rat models of AMI (n=30) were established by ligating their left anterior descending coronary artery. The cardiac markers of AMI patients and rat models were analyzed with enzyme-linked immunosorbent assay and immunohistochemistry. Human umbilical vein endothelial cells were processed into 5 groups: control, negative control, miR-92a inhibitors, miR-92a inhibitors + KLF2 small interfering RNA (siRNA), and miR-92a inhibitors + KLF4 siRNA. Cell proliferation and apoptosis were detected using MTT assay and flow cytometry. RT-PCR and Western blot were conducted to analyze KLF2 and KLF4 expressions. Results AMI patients exhibited significantly higher expression of both endothelial injury markers (e.g., cTnI, H-FABP, vWF) and miR-92a in blood samples, when compared with controls (P<0.05). Model rats also had similar expressional tendencies, along with lower KLF2 and KLF4 expressions (P<0.05). Further, it could be observed in cellular experiments that treatment of miR-92a mimics can further upregulate endothelial injury markers, and miR-92a and both KLF2 and KLF4 were downregulated by miR-92a mimics (all, P<0.05). Also, the luciferase activity assay confirmed the direct binding of miR-92a to 3′ UTR of KLF2/4. Conclusions MiR-92a was involved in the endothelial injury process after AMI and was able to suppress KLF2 and KLF4 expression.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Clinical Laboratory Medicine, The Central Hospital of Nanyang, Nanyang, Henan, China (mainland)
| | - Guofen Li
- Cell Morphology Inspection of Clinical Laboratory Medicine, The Central Hospital of Nanyang, Nanyang, Henan, China (mainland)
| | - Wenxue Zhao
- Department of Cardiology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yibo Hu
- Department of Cardiopulmonary Exercise Testing, The Central Hospital of Nanyang, Nanyang, Henan, China (mainland)
| |
Collapse
|
175
|
Li YZ, Wen L, Wei X, Wang QR, Xu LW, Zhang HM, Liu WC. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4. Oncol Rep 2016; 36:1569-75. [PMID: 27431648 DOI: 10.3892/or.2016.4912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/26/2016] [Indexed: 11/06/2022] Open
Abstract
Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors.
Collapse
Affiliation(s)
- Yi-Ze Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Wen
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Wei
- The Cadet Brigade, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qian-Rong Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Long-Wen Xu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen-Chao Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
176
|
Zhong F, Mallipattu SK, Estrada C, Menon M, Salem F, Jain MK, Chen H, Wang Y, Lee K, He JC. Reduced Krüppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2021-2031. [PMID: 27317905 DOI: 10.1016/j.ajpath.2016.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
Loss of functional nephrons induces compensatory glomerular hyperfiltration and hypertrophy, leading to the progression of chronic kidney disease. Krüppel-like factor 2 (KLF2), a shear-stress-inducible transcription factor, confers protection against endothelial injury. Because glomerular hyperfiltration is associated with shear stress, we hypothesized that KLF2 may be an important factor in the compensatory response to unilateral nephrectomy (UNX). To test this hypothesis, endothelial cell-specific Klf2 heterozygous knockout mice (KO) and their wild-type littermate control (WT) underwent either UNX or sham-operation. WT-UNX mice developed compensatory renal hypertrophy as expected, whereas KO-UNX mice did not. KO-UNX mice exhibited higher blood pressure, reduced glomerular filtration rate, and significant increase in proteinuria and glomerulosclerosis compared to WT-UNX. Expression of endothelial nitric oxide synthase (official name Nos3), a known transcriptional target gene of KLF2, was significantly reduced and dysregulation of other endothelial genes was also observed in the glomeruli of KO-UNX when compared to WT-UNX and sham-operated mice. Furthermore, both podocyte number and expression of podocyte markers were also significantly reduced in KO-UNX glomeruli, indicating a potential cross talk between glomerular endothelial cells and podocytes. Finally, decreased renal expression of KLF2 in nephrectomy patients was associated with the progression of kidney disease. Taken together, our data demonstrate a protective role of KLF2 against glomerular endothelial cell injury and progression of chronic kidney disease in the model of compensatory renal hypertrophy.
Collapse
Affiliation(s)
- Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology, Hang Zhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Chelsea Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Madhav Menon
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Institute Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Hongyu Chen
- Department of Nephrology, Hang Zhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongjun Wang
- Department of Nephrology, Hang Zhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York.
| |
Collapse
|
177
|
Grape seed flavanols decrease blood pressure via Sirt-1 and confer a vasoprotective pattern in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
178
|
Kuricová K, Pácal L, Šoupal J, Prázný M, Kaňková K. Effect of glucose variability on pathways associated with glucotoxicity in diabetes: Evaluation of a novel in vitro experimental approach. Diabetes Res Clin Pract 2016; 114:1-8. [PMID: 27103362 DOI: 10.1016/j.diabres.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/08/2016] [Indexed: 01/07/2023]
Abstract
AIMS Glycaemic variability (GV) has been hypothesized to increase the risk of diabetes complications; however, results of clinical studies are contradictory. The effect of GV on cell phenotypes has been investigated in vitro showing that GV may have more deleterious effect on cells that high glucose itself. However, methodology used to study GV in vitro differs significantly between studies and does not reflect in vivo situation. Therefore we aimed to establish clinically relevant an in vitro experimental approach for the study of GV that reflects intra-day glucose fluctuations of subjects with type 1 diabetes mellitus (T1DM) and of healthy subjects and to test how low and high GV affect expression of genes that protects cells from hyperglycaemia-induced damage. METHODS Human umbilical vein endothelial cells (HUVEC) were cultured 24h in medium with different glucose profiles: high GV, low GV and GV of healthy subjects-profiles created according to CGM of T1DM patients and healthy subjects. These profiles were compared to commonly used 5.5 and 25mmol/l glucose concentrations. Gene expression was determined using quantitative PCR. RESULTS Our results showed general down-regulation of enzymes that are involved in the protection against hyperglycaemia-induced intracellular changes in both low and high GV compared to normal glycaemia similarly to the decrease induced by continuous hyperglycaemia. Gene expressions did not differ between high and low GV. CONCLUSION Our data indicate that GV may have similar or even greater effect than continuous hyperglycaemia on the expression of several genes relevant to pathogenesis of diabetes microvascular complications.
Collapse
Affiliation(s)
- Katarína Kuricová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Šoupal
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Prázný
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
179
|
Powers CJ, Dickerson R, Zhang SW, Rink C, Roy S, Sen CK. Human cerebrospinal fluid microRNA: temporal changes following subarachnoid hemorrhage. Physiol Genomics 2016; 48:361-6. [PMID: 26945012 DOI: 10.1152/physiolgenomics.00052.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/01/2016] [Indexed: 02/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating form of hemorrhagic stroke with 30-day mortality between 33 and 45%. Delayed cerebral ischemia (DCI) is the chief cause of morbidity and mortality in patients who survive the initial aSAH. DCI accounts for almost 50% of deaths in patients surviving to treatment of the ruptured aneurysm. The mechanisms for brain injury after aSAH and the brain's response to this injury are not fully understood in humans. MicroRNAs (miRs) are 22- to 25-nucleotide single-stranded RNA molecules that inhibit the expression of specific messenger RNA targets. In this work, miR profiling of human cerebrospinal fluid from eight patients after aSAH was performed daily for 10 days with the goal of identifying changes in miR abundance. Using the nanoString nCounter Expression Assay, we identified two specific clusters of miR that were differentially regulated over time. Quantitative RT-PCR was performed on select miRs from each cluster. The first cluster contained miRs known to be present in blood and decreased in abundance over time. miRs in this group include miR-92a and let-7b. The second cluster contained several poorly characterized miRs that increased in abundance over time. miRs in this group included miR-491. This second cluster of miRs may be released into the CSF by the brain itself as a result of the initial SAH. Temporal changes in the abundance of specific miRs in human CSF after aSAH may provide novel insight into the role of miRs in brain injury and the brain's response.
Collapse
Affiliation(s)
- Ciarán J Powers
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio; and
| | - Ryan Dickerson
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| | - Stacey W Zhang
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio; and
| | - Cameron Rink
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| | - Sashwati Roy
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
180
|
Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest 2016; 126:821-8. [PMID: 26928035 DOI: 10.1172/jci83083] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cells transduce the frictional force from blood flow (fluid shear stress) into biochemical signals that regulate gene expression and cell behavior via specialized mechanisms and pathways. These pathways shape the vascular system during development and during postnatal and adult life to optimize flow to tissues. The same pathways also contribute to atherosclerosis and vascular malformations. This Review covers recent advances in basic mechanisms of flow signaling and the involvement of these mechanisms in vascular physiology, remodeling, and these diseases. We propose that flow sensing pathways that govern normal morphogenesis can contribute to disease under pathological conditions or can be altered to induce disease. Viewing atherosclerosis and vascular malformations as instances of pathological morphogenesis provides a unifying perspective that may aid in developing new therapies.
Collapse
|
181
|
Hide D, Ortega-Ribera M, Garcia-Pagan JC, Peralta C, Bosch J, Gracia-Sancho J. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy. Sci Rep 2016; 6:22107. [PMID: 26905693 PMCID: PMC4764954 DOI: 10.1038/srep22107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/08/2016] [Indexed: 02/08/2023] Open
Abstract
Warm ischemia and reperfusion (WIR) causes hepatic damage and may lead to liver failure, however the mechanisms involved are largely unknown. Here we have characterized the microcirculatory status and endothelial phenotype of livers undergoing WIR, and evaluated the use of simvastatin in WIR injury prevention. Male Wistar rats received simvastatin, or vehicle, 30 min before undergoing 60 min of partial warm ischemia (70%) followed by 2 h or 24 h of reperfusion. Hepatic and systemic hemodynamics, liver injury (AST, ALT, LDH), endothelial function (vasodilatation in response to acetylcholine), KLF2 and nitric oxide pathways, oxidative stress, inflammation (neutrophil and macrophage infiltration) and cell death were evaluated. Profound microcirculatory dysfunction occurred rapidly following WIR. This was evidenced by down-regulation of the KLF2 vasoprotective pathway, impaired vasodilatory capability and endothelial activation, altogether leading to increased hepatic vascular resistance and liver inflammation, with significant leukocyte infiltration, oxidative stress and cell death. Simvastatin preserved the hepatic endothelial phenotype, and blunted the detrimental effects of WIR on liver hemodynamics and organ integrity. In conclusion, WIR-induced injury to liver sinusoidal endothelial cells is mitigated by pre-treatment with Simvastatin probably through a KLF2-dependent mechanism.
Collapse
Affiliation(s)
- Diana Hide
- Barcelona Hepatic Hemodynamic Lab. IDIBAPS Biomedical Research Institute - Hospital Clinic de Barcelona - CIBEREHD. Barcelona, Spain
| | - Martí Ortega-Ribera
- Barcelona Hepatic Hemodynamic Lab. IDIBAPS Biomedical Research Institute - Hospital Clinic de Barcelona - CIBEREHD. Barcelona, Spain
| | - Juan-Carlos Garcia-Pagan
- Barcelona Hepatic Hemodynamic Lab. IDIBAPS Biomedical Research Institute - Hospital Clinic de Barcelona - CIBEREHD. Barcelona, Spain
| | | | - Jaime Bosch
- Barcelona Hepatic Hemodynamic Lab. IDIBAPS Biomedical Research Institute - Hospital Clinic de Barcelona - CIBEREHD. Barcelona, Spain
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Lab. IDIBAPS Biomedical Research Institute - Hospital Clinic de Barcelona - CIBEREHD. Barcelona, Spain
| |
Collapse
|
182
|
Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis 2016; 19:155-71. [PMID: 26850053 PMCID: PMC4819519 DOI: 10.1007/s10456-016-9495-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/23/2016] [Indexed: 12/31/2022]
Abstract
After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation, Klf6+/− mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.
Collapse
|
183
|
Kuosmanen SM, Viitala S, Laitinen T, Peräkylä M, Pölönen P, Kansanen E, Leinonen H, Raju S, Wienecke-Baldacchino A, Närvänen A, Poso A, Heinäniemi M, Heikkinen S, Levonen AL. The Effects of Sequence Variation on Genome-wide NRF2 Binding--New Target Genes and Regulatory SNPs. Nucleic Acids Res 2016; 44:1760-75. [PMID: 26826707 PMCID: PMC4770247 DOI: 10.1093/nar/gkw052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/16/2016] [Indexed: 12/11/2022] Open
Abstract
Transcription factor binding specificity is crucial for proper target gene regulation. Motif discovery algorithms identify the main features of the binding patterns, but the accuracy on the lower affinity sites is often poor. Nuclear factor E2-related factor 2 (NRF2) is a ubiquitous redox-activated transcription factor having a key protective role against endogenous and exogenous oxidant and electrophile stress. Herein, we decipher the effects of sequence variation on the DNA binding sequence of NRF2, in order to identify both genome-wide binding sites for NRF2 and disease-associated regulatory SNPs (rSNPs) with drastic effects on NRF2 binding. Interactions between NRF2 and DNA were studied using molecular modelling, and NRF2 chromatin immunoprecipitation-sequence datasets together with protein binding microarray measurements were utilized to study binding sequence variation in detail. The binding model thus generated was used to identify genome-wide binding sites for NRF2, and genomic binding sites with rSNPs that have strong effects on NRF2 binding and reside on active regulatory elements in human cells. As a proof of concept, miR-126–3p and -5p were identified as NRF2 target microRNAs, and a rSNP (rs113067944) residing on NRF2 target gene (Ferritin, light polypeptide, FTL) promoter was experimentally verified to decrease NRF2 binding and result in decreased transcriptional activity.
Collapse
Affiliation(s)
- Suvi M Kuosmanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Sari Viitala
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Mikael Peräkylä
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Suresh Raju
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | | | - Ale Närvänen
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland
| |
Collapse
|
184
|
Tokudome T, Kishimoto I, Shindo T, Kawakami H, Koyama T, Otani K, Nishimura H, Miyazato M, Kohno M, Nakao K, Kangawa K. Importance of Endogenous Atrial and Brain Natriuretic Peptides in Murine Embryonic Vascular and Organ Development. Endocrinology 2016; 157:358-67. [PMID: 26517044 DOI: 10.1210/en.2015-1344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) bind to the receptor guanylyl cyclase (GC)-A, leading to diuresis, natriuresis, and blood vessel dilation. In addition, ANP and BNP have various angiogenic properties in ischemic tissue. When breeding mice devoid of GC-A, we noted significant skewing of the Mendelian ratio in the offspring, suggesting embryonic lethality due to knockout of GC-A. Consequently, we here investigated the roles of endogenous ANP and BNP in embryonic neovascularization and organ morphogenesis. Embryos resulting from GC-A(-/-) × GC-A(+/-) crosses developed hydrops fetalis (HF) beginning at embryonic day (E)14.5. All embryos with HF had the genotype GC-A(-/-). At E17.5, 33.3% (12 of 36) of GC-A(-/-) embryos had HF, and all GC-A(-/-) embryos with HF were dead. Beginning at E16.0, HF-GC-A(-/-) embryos demonstrated poorly developed superficial vascular vessels and sc hemorrhage, the fetal side of the placenta appeared ischemic, and vitelline vessels on the yolk sac were poorly developed. Furthermore, HF-GC-A(-/-) embryos also showed abnormal constriction of umbilical cord vascular vessels, few cardiac trabeculae and a thin compact zone, hepatic hemorrhage, and poor bone development. Electron microscopy of E16.5 HF-GC-A(-/-) embryos revealed severe vacuolar degeneration in endothelial cells, and the expected 3-layer structure of the smooth muscle wall of the umbilical artery was indistinct. These data demonstrate the importance of the endogenous ANP/BNP-GC-A system not only in the neovascularization of ischemic tissues but also in embryonic vascular development and organ morphogenesis.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Cells, Cultured
- Crosses, Genetic
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Embryo, Mammalian/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/ultrastructure
- Humans
- Hydrops Fetalis/genetics
- Hydrops Fetalis/pathology
- Hydrops Fetalis/veterinary
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Knockout
- Microscopy, Electron, Transmission
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Neovascularization, Physiologic
- Organogenesis
- Pregnancy
- Receptors, Atrial Natriuretic Factor/agonists
- Receptors, Atrial Natriuretic Factor/deficiency
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Takeshi Tokudome
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Ichiro Kishimoto
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Takayuki Shindo
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Hayato Kawakami
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Teruhide Koyama
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Kentaro Otani
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Hirohito Nishimura
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Mikiya Miyazato
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Masakazu Kohno
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Kazuwa Nakao
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| | - Kenji Kangawa
- Department of Biochemistry (T.T., I.K., H.N., M.M.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiovascular Research (T.S., T.K.), Shinshu University Graduate School of Medicine, Shinshu, 565-8565 Japan; Department of Anatomy (H.K.), Kyorin University School of Medicine, Mitaka, Tokyo, 565-8565 Japan; Tissue Engineering and Regenerative Medicine (K.O.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan; Department of Cardiorenal and Cerebrovascular Medicine (M.K.), Kagawa University Faculty of Medicine, Kagawa, 565-8565 Japan; Kyoto University Graduate School of Medicine Medical Innovation Center (K.N.), Kyoto, 565-8565 Japan; and Director General (K.K.), National Cerebral and Cardiovascular Research Center, Suita, Osaka, 565-8565 Japan
| |
Collapse
|
185
|
Khemais-Benkhiat S, Idris-Khodja N, Ribeiro TP, Silva GC, Abbas M, Kheloufi M, Lee JO, Toti F, Auger C, Schini-Kerth VB. The Redox-sensitive Induction of the Local Angiotensin System Promotes Both Premature and Replicative Endothelial Senescence: Preventive Effect of a Standardized Crataegus Extract. J Gerontol A Biol Sci Med Sci 2015; 71:1581-1590. [PMID: 26672612 DOI: 10.1093/gerona/glv213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
Endothelial senescence, characterized by an irreversible cell cycle arrest, oxidative stress, and downregulation of endothelial nitric oxide synthase (eNOS), has been shown to promote endothelial dysfunction leading to the development of age-related vascular disorders. This study has assessed the possibility that the local angiotensin system promotes endothelial senescence in coronary artery endothelial cells and also the protective effect of the Crataegus extract WS1442, a quantified hawthorn extract. Serial passaging from P1 to P4 (replicative senescence) and treatment of P1 endothelial cells with the eNOS inhibitor L-NAME (premature senescence) promoted acquisition of markers of senescence, enhanced ROS formation, decreased eNOS expression, and upregulation of angiotensin-converting enzyme (ACE) and AT1 receptors. Increased SA-β-gal activity and the upregulation of ACE and AT1R in senescent cells were prevented by antioxidants, an ACE inhibitor, and by an AT1 receptor blocker. WS1442 prevented SA-β-gal activity, the downregulation of eNOS, and oxidative stress in P3 cells. These findings indicate that the impairment of eNOS-derived nitric oxide formation favors a pro-oxidant response triggering the local angiotensin system, which, in turn, promotes endothelial senescence. Such a sequence of events can be effectively inhibited by a standardized polyphenol-rich extract mainly by targeting the oxidative stress.
Collapse
Affiliation(s)
- Sonia Khemais-Benkhiat
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Noureddine Idris-Khodja
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Thais Porto Ribeiro
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Grazielle Caroline Silva
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.,EA 7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Université de Strasbourg. Illkirch, France
| | - Marouane Kheloufi
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Jung-Ok Lee
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Florence Toti
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Valérie B Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
186
|
Hemodynamics driven cardiac valve morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1760-6. [PMID: 26608609 DOI: 10.1016/j.bbamcr.2015.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Mechanical forces are instrumental to cardiovascular development and physiology. The heart beats approximately 2.6 billion times in a human lifetime and heart valves ensure that these contractions result in an efficient, unidirectional flow of the blood. Composed of endocardial cells (EdCs) and extracellular matrix (ECM), cardiac valves are among the most mechanically challenged structures of the body both during and after their development. Understanding how hemodynamic forces modulate cardiovascular function and morphogenesis is key to unraveling the relationship between normal and pathological cardiovascular development and physiology. Most valve diseases have their origins in embryogenesis, either as signs of abnormal developmental processes or the aberrant re-expression of fetal gene programs normally quiescent in adulthood. Here we review recent discoveries in the mechanobiology of cardiac valve development and introduce the latest technologies being developed in the zebrafish, including live cell imaging and optical technologies, as well as modeling approaches that are currently transforming this field. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
187
|
Wei S, Huang J, Li Y, Zhao J, Luo Y, Meng X, Sun H, Zhou X, Zhang M, Zhang W. Novel zinc finger transcription factor ZFP580 promotes differentiation of bone marrow-derived endothelial progenitor cells into endothelial cells via eNOS/NO pathway. J Mol Cell Cardiol 2015; 87:17-26. [DOI: 10.1016/j.yjmcc.2015.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
|
188
|
Kruppel-Like Factor 2-Mediated Suppression of MicroRNA-155 Reduces the Proinflammatory Activation of Macrophages. PLoS One 2015; 10:e0139060. [PMID: 26406238 PMCID: PMC4583437 DOI: 10.1371/journal.pone.0139060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
Objective Recent evidence indicates that significant interactions exist between Kruppel-like factor 2 (KLF2) and microRNAs (miRNAs) in endothelial cells. Because KLF2 is known to exert anti-inflammatory effects and inhibit the pro-inflammatory activation of monocytes, we sought to identify how inflammation-associated miR-155 is regulated by KLF2 in macrophages. Approach and Results Peritoneal macrophages from wild-type (WT) C57Bl/6 mice were transfected with either recombinant adenovirus vector expressing KLF2 (Ad-KLF2) or siRNA targeting KLF2 (KLF2-siRNA) for 24 h–48 h, then stimulated with oxidized low-density lipoproteins (ox-LDL, 50 μg/mL) for 24 h. Quantitative real-time polymerase chain reaction showed that KLF2 markedly reduced the expression of miR-155 in quiescent/ox-LDL-stimulated macrophages. We also found that the increased expression of miR-155, monocyte chemoattractant protein (MCP-1) and interleukin (IL)-6 and the decreased expression of the suppressor of cytokine signaling (SOCS)-1 and IL-10 in ox-LDL-treated macrophages were significantly suppressed by KLF2. Most importantly, over-expression of miR-155 could partly reverse the suppressive effects of KLF2 on the inflammatory response of macrophages. Conversely, the suppression of miR-155 in KLF2 knockdown macrophages significantly overcame the pro-inflammatory properties associated with KLF2 knockdown. Finally, Ad-KLF2 significantly attenuated the diet-induced formation of atherosclerotic lesions in apolipoprotein E-deficient (apoE-/-) mice, which was associated with a significantly reduced expression of miR-155 and its relative inflammatory cytokine genes in the aortic arch and in macrophages. Conclusion KLF2-mediated suppression of miR-155 reduced the inflammatory response of macrophages.
Collapse
|
189
|
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 2015; 21:827-46. [DOI: 10.1177/1753425915606525] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing to their widespread distribution throughout the body and their constant interaction with circulating blood. While not viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors (TLRs), which activate intracellular inflammatory pathways mediated through NF-κB and the MAP kinases. TLR agonists, including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis, highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic responses to infection and sepsis.
Collapse
Affiliation(s)
- Samira Khakpour
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| |
Collapse
|
190
|
Transcriptome Analysis of the Preterm Rabbit Lung after Seven Days of Hyperoxic Exposure. PLoS One 2015; 10:e0136569. [PMID: 26317699 PMCID: PMC4552674 DOI: 10.1371/journal.pone.0136569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022] Open
Abstract
The neonatal management of preterm born infants often results in damage to the developing lung and subsequent morbidity, referred to as bronchopulmonary dysplasia (BPD). Animal models may help in understanding the molecular processes involved in this condition and define therapeutic targets. Our goal was to identify molecular pathways using the earlier described preterm rabbit model of hyperoxia induced lung-injury. Transcriptome analysis by mRNA-sequencing was performed on lungs from preterm rabbit pups born at day 28 of gestation (term: 31 days) and kept in hyperoxia (95% O2) for 7 days. Controls were preterm pups kept in normoxia. Transcriptomic data were analyzed using Array Studio and Ingenuity Pathway Analysis (IPA), in order to identify the central molecules responsible for the observed transcriptional changes. We detected 2217 significantly dysregulated transcripts following hyperoxia, of which 90% could be identified. Major pathophysiological dysregulations were found in inflammation, lung development, vascular development and reactive oxygen species (ROS) metabolism. To conclude, amongst the many dysregulated transcripts, major changes were found in the inflammatory, oxidative stress and lung developmental pathways. This information may be used for the generation of new treatment hypotheses for hyperoxia-induced lung injury and BPD.
Collapse
|
191
|
Keenan SW, Hill CA, Kandoth C, Buck LT, Warren DE. Transcriptomic Responses of the Heart and Brain to Anoxia in the Western Painted Turtle. PLoS One 2015; 10:e0131669. [PMID: 26147940 PMCID: PMC4493013 DOI: 10.1371/journal.pone.0131669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022] Open
Abstract
Painted turtles are the most anoxia-tolerant tetrapods known, capable of surviving without oxygen for more than four months at 3°C and 30 hours at 20°C. To investigate the transcriptomic basis of this ability, we used RNA-seq to quantify mRNA expression in the painted turtle ventricle and telencephalon after 24 hours of anoxia at 19°C. Reads were obtained from 22,174 different genes, 13,236 of which were compared statistically between treatments for each tissue. Total tissue RNA contents decreased by 16% in telencephalon and 53% in ventricle. The telencephalon and ventricle showed ≥ 2x expression (increased expression) in 19 and 23 genes, respectively, while only four genes in ventricle showed ≤ 0.5x changes (decreased expression). When treatment effects were compared between anoxic and normoxic conditions in the two tissue types, 31 genes were increased (≥ 2x change) and 2 were decreased (≤ 0.5x change). Most of the effected genes were immediate early genes and transcription factors that regulate cellular growth and development; changes that would seem to promote transcriptional, translational, and metabolic arrest. No genes related to ion channels, synaptic transmission, cardiac contractility or excitation-contraction coupling changed. The generalized expression pattern in telencephalon and across tissues, but not in ventricle, correlated with the predicted metabolic cost of transcription, with the shortest genes and those with the fewest exons showing the largest increases in expression.
Collapse
Affiliation(s)
- Sarah W. Keenan
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Craig A. Hill
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Cyriac Kandoth
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leslie T. Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel E. Warren
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
192
|
Kanthi Y, Hyman MC, Liao H, Baek AE, Visovatti SH, Sutton NR, Goonewardena SN, Neral MK, Jo H, Pinsky DJ. Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis. J Clin Invest 2015; 125:3027-36. [PMID: 26121751 DOI: 10.1172/jci79514] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 01/18/2023] Open
Abstract
The ability of cells to detect and respond to nucleotide signals in the local microenvironment is essential for vascular homeostasis. The enzyme ectonucleotide tri(di)phosphohydrolase-1 (ENTPD1, also known as CD39) on the surface of leukocytes and endothelial cells metabolizes locally released, intravascular ATP and ADP, thereby eliminating these prothrombotic and proinflammatory stimuli. Here, we evaluated the contribution of CD39 to atherogenesis in the apolipoprotein E-deficient (ApoE-deficient) mouse model of atherosclerosis. Compared with control ApoE-deficient animals, plaque burden was markedly increased along with circulating markers of platelet activation in Cd39+/-Apoe-/- mice fed a high-fat diet. Plaque analysis revealed stark regionalization of endothelial CD39 expression and function in Apoe-/- mice, with CD39 prominently expressed in atheroprotective, stable flow regions and diminished in atheroprone areas subject to disturbed flow. In mice, disturbed flow as the result of partial carotid artery ligation rapidly suppressed endothelial CD39 expression. Moreover, unidirectional laminar shear stress induced atheroprotective CD39 expression in human endothelial cells. CD39 induction was dependent upon the vascular transcription factor Krüppel-like factor 2 (KLF2) binding near the transcriptional start site of CD39. Together, these data establish CD39 as a regionalized regulator of atherogenesis that is driven by shear stress.
Collapse
|
193
|
La Sala L, Pujadas G, De Nigris V, Canivell S, Novials A, Genovese S, Ceriello A. Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress. Acta Diabetol 2015; 52:505-12. [PMID: 25398480 DOI: 10.1007/s00592-014-0670-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
AIM High glucose-induced oxidative stress has been suggested as one of the mediators of endothelial damage in diabetes. The major endothelial protein, endoglin, has been found overexpressed in the vessels during pathological situations, but little is known about its relation to diabetic vascular complications. To clarify the role of endoglin in endothelial injury, we sought to determine the effects of high and oscillating glucose on its expression. MATERIALS Furthermore, the activation of the Krüppel-like factor 6 (KLF-6) and the hypoxia-inducible factor-1α (HIF-1α) as possible regulators of endoglin expression has been evaluated. The possible role of the oxidative stress has been studied evaluating the effects of the antioxidant alpha-lipoic acid (ALA) and the cellular antioxidant response mediated by NAD(P)H quinine-oxido-reductase-1 (NQO-1) and heme oxygenase-1 (HO-1). RESULTS Primary HUVECs were cultured for 21 days in normal, high and oscillating glucose (5, 25 and 5/25 mmol/l every 24 h, respectively) with/without ALA. In oscillating and high glucose total endoglin, its soluble form (sEng), KLF-6 and HIF-1α were significantly increased. Simultaneously, the oxidative DNA stress markers 8-OHdG and H2A.X were elevated. Moreover, ENG gene transcriptional rate increased during glucose exposures concomitantly with increased KLF-6 nuclear translocations. ALA significantly reduced all these phenomena. Interestingly, during oscillating and chronic high glucose, NQO-1 and HO-1 did not increase, but ALA induced their overexpression. CONCLUSIONS Together, these findings provide novel clue about endoglin in the regulation of high glucose-mediated vascular damage in HUVECs and the role of oxidative stress in this regulation.
Collapse
Affiliation(s)
- Lucia La Sala
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, C/Rosselló, 149-153, 08036, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
194
|
Wolberg AS, Rosendaal FR, Weitz JI, Jaffer IH, Agnelli G, Baglin T, Mackman N. Venous thrombosis. Nat Rev Dis Primers 2015; 1:15006. [PMID: 27189130 DOI: 10.1038/nrdp.2015.6] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Venous thromboembolism (VTE) encompasses deep-vein thrombosis (DVT) and pulmonary embolism. VTE is the leading cause of lost disability-adjusted life years and the third leading cause of cardiovascular death in the world. DVT leads to post-thrombotic syndrome, whereas pulmonary embolism can cause chronic pulmonary hypertension, both of which reduce quality of life. Genetic and acquired risk factors for thrombosis include non-O blood groups, factor V Leiden mutation, oral contraceptive use, hormone replacement therapy, advanced age, surgery, hospitalization and long-haul travel. A combination of blood stasis, plasma hypercoagulability and endothelial dysfunction is thought to trigger thrombosis, which starts most often in the valve pockets of large veins. Animal studies have revealed pathogenic roles for leukocytes, platelets, tissue factor-positive microvesicles, neutrophil extracellular traps and factors XI and XII. Diagnosis of VTE requires testing and exclusion of other pathologies, and typically involves laboratory measures (such as D-dimer) and diagnostic imaging. VTE is treated with anticoagulants and occasionally with thrombolytics to prevent thrombus extension and to reduce thrombus size. Anticoagulants are also used to reduce recurrence. New therapies with improved safety profiles are needed to prevent and treat venous thrombosis. For an illustrated summary of this Primer, visit: http://go.nature.com/8ZyCuY.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599-7525, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology and Department of Thrombosis and Hemostasis, Leiden University Medical Center, The Netherlands.,K.G. Jensen Thrombosis Research and Expertise Center, University of Tromsø, Norway
| | - Jeffrey I Weitz
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Iqbal H Jaffer
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Giancarlo Agnelli
- Division of Internal and Cardiovascular Medicine, Stroke Unit, University of Perugia, Italy
| | - Trevor Baglin
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Nigel Mackman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599-7525, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, USA.,K.G. Jensen Thrombosis Research and Expertise Center, University of Tromsø, Norway.,Department of Medicine, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
195
|
Nguyen T, Toussaint J, Xue Y, Raval C, Cancel L, Russell S, Shou Y, Sedes O, Sun Y, Yakobov R, Tarbell JM, Jan KM, Rumschitzki DS. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium. Am J Physiol Heart Circ Physiol 2015; 308:H1051-64. [PMID: 25659484 PMCID: PMC4551120 DOI: 10.1152/ajpheart.00499.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/23/2015] [Indexed: 01/23/2023]
Abstract
Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics.
Collapse
Affiliation(s)
- Tieuvi Nguyen
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Jimmy Toussaint
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Yan Xue
- Department of Chemical Engineering, City College of the City University of New York, New York, New York; Biology Department, City College and GSUC of The City College of New York, New York, New York; and
| | - Chirag Raval
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Limary Cancel
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Stewart Russell
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Yixin Shou
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Omer Sedes
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Yu Sun
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - Roman Yakobov
- Department of Chemical Engineering, City College of the City University of New York, New York, New York
| | - John M Tarbell
- Department of Biomedical Engineering, City College of the City University of New York, New York, New York
| | - Kung-ming Jan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - David S Rumschitzki
- Department of Chemical Engineering, City College of the City University of New York, New York, New York; Biology Department, City College and GSUC of The City College of New York, New York, New York; and Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
196
|
Liu YS, Xu DL, Huang ZW, Hao L, Wang X, Lu QH. Atorvastatin counteracts high glucose-induced Krüppel-like factor 2 suppression in human umbilical vein endothelial cells. Postgrad Med 2015; 127:446-54. [PMID: 25927862 DOI: 10.1080/00325481.2015.1039451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Krüppel-like factor 2 (KLF2) is a transcription factor that regulates endothelial function and atorvastatin can stabilize atherosclerotic plaque and inhibit inflammation on endothelial cells by attenuating the role of cytokines. The aim of this study is to investigate the effect of high glucose (HG) on KLF2 expression in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms. METHODS HUVECs were isolated from the human umbilical cords from normal pregnancies and exposed to medium containing 25.5 mM D-glucose for 24 hours as the HG induction model (HG group). In the HG plus atorvastatin groups or KLF2 gene transduction, the medium then was collected for the nitric oxide (NO) assay and the cells were harvested for Western blot and for the real-time polymerase chain reaction to observe the expression of KLF2, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, total and phosphorylated endothelial NO synthase (eNOS), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, caspase-3 and cleaved caspase-3 and the role of the p38MAPK and ERK1/2 intracellular signal pathway. The cells' apoptosis was analyzed by flow cytometry. RESULTS HG dose-dependently increased apoptosis. The presence of HG inhibited the expression of KLF2 mRNA and protein in HUVECs and atorvastatin treatment increased KLF2 expression, thus counteracted HG-induced suppression of KLF2 expression, and overexpression of KLF2 might protect the cells from apoptosis. HG increased the expression of VCAM-1, ICAM-1, but decreased the nitric oxide release and the expression of p-eNOs/eNos in HUVECs. However, atorvastatin reversed these changes and also attenuated high-glucose induced p38 MAPK and ERK1/2 phosphorylation. CONCLUSIONS HG suppressed the KLF2 expression in HUVECs. The suppression was counteracted by atorvastatin treatment, probably via attenuating the activation of the signal pathyway p38 MAPK and ERK1/2.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- Department of Cardiology, the Second Hospital of Shandong University , Shandong , PR China
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
198
|
Yin KJ, Hamblin M, Fan Y, Zhang J, Chen YE. Krüpple-like factors in the central nervous system: novel mediators in stroke. Metab Brain Dis 2015; 30:401-10. [PMID: 24338065 PMCID: PMC4113556 DOI: 10.1007/s11011-013-9468-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023]
Abstract
Transcription factors play an important role in the pathophysiology of many neurological disorders, including stroke. In the past three decades, an increasing number of transcription factors and their related gene signaling networks have been identified, and have become a research focus in the stroke field. Krüppel-like factors (KLFs) are members of the zinc finger family of transcription factors with diverse regulatory functions in cell growth, differentiation, proliferation, migration, apoptosis, metabolism, and inflammation. KLFs are also abundantly expressed in the brain where they serve as critical regulators of neuronal development and regeneration to maintain normal brain function. Dysregulation of KLFs has been linked to various neurological disorders. Recently, there is emerging evidence that suggests KLFs have an important role in the pathogenesis of stroke and provide endogenous vaso-or neuro-protection in the brain's response to ischemic stimuli. In this review, we summarize the basic knowledge and advancement of these transcriptional mediators in the central nervous system, highlighting the novel roles of KLFs in stroke.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| | | | | | | | - Y. Eugene Chen
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| |
Collapse
|
199
|
Atkins GB, Orasanu G, Jain MK. Endothelial Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
200
|
Sivarapatna A, Ghaedi M, Le AV, Mendez JJ, Qyang Y, Niklason LE. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials 2015; 53:621-33. [PMID: 25890758 DOI: 10.1016/j.biomaterials.2015.02.121] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/19/2015] [Accepted: 02/27/2015] [Indexed: 11/27/2022]
Abstract
Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.
Collapse
Affiliation(s)
- Amogh Sivarapatna
- Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Mahboobe Ghaedi
- Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Andrew V Le
- Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Julio J Mendez
- Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Department of Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06519, USA
| | - Laura E Niklason
- Department of Anesthesiology, Yale University, New Haven, CT 06519, USA; Department Biomedical Engineering, Yale University, New Haven, CT 06519, USA.
| |
Collapse
|