151
|
Yan Y, Cao Y, Ma Q, Wang K, Liao Y, Sun Y, Chen C, Hu J, Zheng W, Chu C, Wang Y, Mu J. Long-Term Blood Pressure Exposure From Childhood and Early Vascular Aging in Midlife: A 30-Year Prospective Cohort Study. Angiology 2022; 73:869-876. [PMID: 35232270 DOI: 10.1177/00033197221082712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early vascular aging (EVA) increases cardiovascular mortality, but its long-term determinants are unknown. We included 2098 participants with ≥4 blood pressure (BP) measurements from childhood to adulthood (from the Hanzhong Adolescent Hypertension Cohort study) to investigate the impact of child-to-adult cumulative BP exposure on EVA patterns in midlife. Participants with EVA had significantly higher long-term BP burden than those with normal vascular age in midlife despite being much younger. Child-to-adult cumulative burden and trends of systolic and diastolic BP were associated with vascular age (standardized regression coefficient [β] = .31 to .53; P < .001 for all). Higher cumulative systolic and diastolic BP exposure significantly increased the risk of EVA in midlife (odds ratio, OR=1.67 to 2.75, P < .05 for all). All associations were independent of socio-demographics and cardiovascular risk factors. Excluding participants who were receiving anti-hypertensive, antidiabetic, or lipid-lowering treatments did not substantially change the above associations. This study, for the first time, reported that high cumulative child-to-adult BP exposure accelerated the vascular aging process. Stabilizing BP across life course could be beneficial to vascular health in the long run.
Collapse
Affiliation(s)
- Yu Yan
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Yu Cao
- Department of Pediatrics, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Xi'an, China
| | - Qiong Ma
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Keke Wang
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Yueyuan Liao
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Yue Sun
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Chen Chen
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Jiawen Hu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Xi'an, China
| | - Wenling Zheng
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Chao Chu
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Yang Wang
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| | - Jianjun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, 162798Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Shaanxi, China
| |
Collapse
|
152
|
Funatsu J, Murakami Y, Shimokawa S, Nakatake S, Fujiwara K, Okita A, Fukushima M, Shibata K, Yoshida N, Koyanagi Y, Akiyama M, Notomi S, Nakao S, Hisatomi T, Takeda A, Paschalis EI, Vavvas DG, Ikeda Y, Sonoda KH. Circulating inflammatory monocytes oppose microglia and contribute to cone cell death in retinitis pigmentosa. PNAS NEXUS 2022; 1. [PMID: 35529318 DOI: 10.1093/pnasnexus/pgac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinitis pigmentosa (RP) is an intractable inherited disease that primarily affects the rods through gene mutations followed by secondary cone degeneration. This cone-related dysfunction can lead to impairment of daily life activities, and ultimately blindness in patients with RP. Paradoxically, microglial neuroinflammation contributes to both protection against and progression of RP, but it is unclear which population(s) - tissue-resident microglia and/or peripheral monocyte-derived macrophages (mφ) - are implicated in the progression of the disease. Here we show that circulating blood inflammatory monocytes (IMo) are key effector cells that mediate cone cell death in RP. Attenuation of IMo and peripherally engrafted mφ by Ccl2 deficiency or immune modulation via intravenous nano-particle treatment suppressed cone cell death in rd10 mice, an animal model of RP. In contrast, the depletion of resident microglia by a colony-stimulating factor 1 receptor inhibitor exacerbated cone cell death in the same model. In human patients with RP, IMo was increased and correlated with disease progression. These results suggest that peripheral IMo is a potential target to delay cone cell death and prevent blindness in RP.
Collapse
Affiliation(s)
- Jun Funatsu
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shotaro Shimokawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ayako Okita
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kensuke Shibata
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Genomics and Molecular Analysis, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Fukuoka Dental College Medical and Dental Hospital, Fukuoka 814-0193, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Chikushi Hospital, Fukuoka University, Fukuoka 818-8502, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Eleftherios I Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Boston Keratoprosthesis Laboratory, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
153
|
Newer Drugs to Reduce High Blood Pressure and Mitigate Hypertensive Target Organ Damage. Curr Hypertens Rep 2022; 24:1-20. [PMID: 35165832 DOI: 10.1007/s11906-022-01166-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review aims to investigate the blood pressure (BP)-lowering effects of emerging drugs developed to treat diabetic kidney disease and heart failure (HF). We summarize the potential pathophysiological mechanisms responsible for mitigating hypertensive target organ damage and evaluating the available clinical data on these newer drugs. RECENT FINDINGS Nonsteroidal dihydropyridine-based mineralocorticoid receptor antagonists (MRAs), dual angiotensin II receptor-neprilysin inhibitors (valsartan with sacubitril), sodium-glucose cotransporter 2 inhibitors (SGLT2i), and soluble guanylate cyclase stimulators are new classes of chemical agents that have distinct mechanisms of action and have been shown to be effective for the treatment of cardiovascular (CV) disease (CVD), HF, and type 2 diabetes mellitus (T2D). These drugs can be used either alone or in combination with other antihypertensive and CV drugs. Among these, SGLT2i and valsartan with sacubitril offer new avenues to reduce CVD mortality. SGLT2i have a mild-to-moderate effect on BP lowering with a favorable effect on CV and renal hemodynamics and have been shown to produce a significant reduction in the incidence of major adverse CVD events (as monotherapy or add-on therapy) compared with controls (placebo or non-SGLT2i treatment). Most of the participants in these studies had hypertension (HTN) at baseline and were receiving antihypertensive therapy, including renin-angiotensin system blockers. The combination of valsartan with sacubitril also lowers BP in the short term and has demonstrated a striking reduction in CVD mortality and morbidity in HF patients with a reduced left ventricular ejection fraction. If widely adopted, these novel therapeutic agents hold significant promise for reducing the public health burden posed by HTN and CVD. Based on the results of several clinical trials and considering the high prevalence of HTN and T2D, these new classes of agents have emerged as powerful therapeutic tools in managing and lowering the BP of patients with diabetic kidney disease and HF.
Collapse
|
154
|
Li T, Wang W, Gan W, Lv S, Zeng Z, Hou Y, Yan Z, Zhang R, Yang M. Comprehensive bioinformatics analysis identifies LAPTM5 as a potential blood biomarker for hypertensive patients with left ventricular hypertrophy. Aging (Albany NY) 2022; 14:1508-1528. [PMID: 35157609 PMCID: PMC8876903 DOI: 10.18632/aging.203894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
Left ventricular hypertrophy (LVH) is a pivotal manifestation of hypertensive organ damage associated with an increased cardiovascular risk. However, early diagnostic biomarkers for assessing LVH in patients with hypertension (HT) remain indefinite. Here, multiple bioinformatics tools combined with an experimental verification strategy were used to identify blood biomarkers for hypertensive LVH. GSE74144 mRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database to screen candidate biomarkers, which were used to perform weighted gene co-expression network analysis (WGCNA) and establish the least absolute shrinkage and selection operator (LASSO) regression model, combined with support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, the potential blood biomarkers were verified in an animal model. A total of 142 hub genes in peripheral blood leukocytes were identified between HT with LVH and HT without LVH, which were mainly involved in the ATP metabolic process, oxidative phosphorylation, and mitochondrial structure and function. Notably, lysosomal associated transmembrane protein 5 (LAPTM5) was identified as the potential diagnostic marker of hypertensive LVH, which showed strong correlations with diverse marker sets of reactive oxygen species (ROS) and autophagy. RT-PCR validation of blood samples and cardiac magnetic resonance imaging (CMRI) showed that the expression of LAPTM5 was significantly higher in the HT with LVH model than in normal controls, LAPTM5 demonstrated a positive association with the left ventricle wall thickness as well as electrocardiogram (ECG) parameters widths of the QRS complex and QTc interval. In conclusion, LAPTM5 may be a potential biomarker for the diagnosis of LVH in patients with HT, and it can provide new insights for future studies on the occurrence and the molecular mechanisms of hypertensive LVH.
Collapse
Affiliation(s)
- Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenqiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Silin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zifan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yufang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rixin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
155
|
Gao H, Jin Z, Tang K, Ji Y, Suarez J, Suarez JA, Cunha e Rocha K, Zhang D, Dillmann WH, Mahata SK, Ying W. Microbial DNA Enrichment Promotes Adrenomedullary Inflammation, Catecholamine Secretion, and Hypertension in Obese Mice. J Am Heart Assoc 2022; 11:e024561. [PMID: 35112881 PMCID: PMC9245808 DOI: 10.1161/jaha.121.024561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Obesity is an established risk factor for hypertension. Although obesity‐induced gut barrier breach leads to the leakage of various microbiota‐derived products into host circulation and distal organs, the roles of microbiota in mediating the development of obesity‐associated adrenomedullary disorders and hypertension have not been elucidated. We seek to explore the impacts of microbial DNA enrichment on inducing obesity‐related adrenomedullary abnormalities and hypertension. Methods and Results Obesity was accompanied by remarkable bacterial DNA accumulation and elevated inflammation in the adrenal glands. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into the adrenal glands in obese mice, causing microbial DNA enrichment. In lean wild‐type mice, adrenal macrophages expressed CRIg (complement receptor of the immunoglobulin superfamily) that efficiently blocks the infiltration of gut mEVs. In contrast, the adrenal CRIg+ cell population was greatly decreased in obese mice. In lean CRIg−/− or C3−/− (complement component 3) mice intravenously injected with gut mEVs, adrenal microbial DNA accumulation elevated adrenal inflammation and norepinephrine secretion, concomitant with hypertension. In addition, microbial DNA promoted inflammatory responses and norepinephrine production in rat pheochromocytoma PC12 cells treated with gut mEVs. Depletion of microbial DNA cargo markedly blunted the effects of gut mEVs. We also validated that activation of cGAS (cyclic GMP‐AMP synthase)/STING (cyclic GMP–AMP receptor stimulator of interferon genes) signaling is required for the ability of microbial DNA to trigger adrenomedullary dysfunctions in both in vivo and in vitro experiments. Restoring CRIg+ cells in obese mice decreased microbial DNA abundance, inflammation, and hypertension. Conclusions The leakage of gut mEVs leads to adrenal enrichment of microbial DNA that are pathogenic to induce obesity‐associated adrenomedullary abnormalities and hypertension. Recovering the CRIg+ macrophage population attenuates obesity‐induced adrenomedullary disorders.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Zhongmou Jin
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA
| | | | - Yudong Ji
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
- Department of AnesthesiologyInstitute of Anesthesiology and Critical CareUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jorge Suarez
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Jorge A. Suarez
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Karina Cunha e Rocha
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Dinghong Zhang
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Wolfgang H. Dillmann
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Sushil K. Mahata
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
- VA San Diego Healthcare SystemSan DiegoCA
| | - Wei Ying
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| |
Collapse
|
156
|
Jin R, Yang R, Cui C, Zhang H, Cai J, Geng B, Chen Z. Ferroptosis due to Cystathionine γ Lyase/Hydrogen Sulfide Downregulation Under High Hydrostatic Pressure Exacerbates VSMC Dysfunction. Front Cell Dev Biol 2022; 10:829316. [PMID: 35186934 PMCID: PMC8850391 DOI: 10.3389/fcell.2022.829316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 01/25/2023] Open
Abstract
Hydrostatic pressure, stretch, and shear are major biomechanical forces of vessels and play critical roles in genesis and development of hypertension. Our previous work demonstrated that high hydrostatic pressure (HHP) promoted vascular smooth muscle cells (VSMCs) two novel subsets: inflammatory and endothelial function inhibitory VSMCs and then exacerbated VSMC dysfunction. However, the underlying mechanism remains unknown. Here, we first identified that aortic GPX4 (a core regulator of ferroptosis) significantly downregulated association with VSMC novel phenotype elevation in SHR rats and hypertension patients. In primary VSMCs, HHP (200 mmHg) increased iron accumulation, ROS production, and lipid peroxidation compared with normal pressure (100 mmHg). Consistently, the ferroptosis-related gene (COX-2, TFRC, ACSL4, and NOX-1) expression was also upregulated. The ferroptosis inhibitor ferrostatin-1 (Fer-1) administration blocked HHP-induced VSMC inflammatory (CXCL2 expression) and endothelial function inhibitory (AKR1C2 expression) phenotyping switch association with elevation in the GPX4 expression, reduction in the reactive oxygen species (ROS), and lipid peroxidation production. In contrast, the ferroptosis inducer RLS3 increased HHP-induced CXCL2 and AKR1C2 expressions. These data indicate HHP-triggering ferroptosis contributes to VSMC inflammatory and endothelial function inhibitory phenotyping switch. In mechanism, HHP reduced the VSMC GSH content and cystathionine gamma-lyase (CSE)/hydrogen sulfide (H2S)—an essential system for GSH generation. Supplementation of the H2S donor-NaHS increased the VSMC GSH level, alleviated iron deposit, ROS and lipid peroxidation production. NaHS administration rescues both HHP- and RLS3-induced ferroptosis. Collectively, HHP downregulated VSMC CSE/H2S triggering GSH level reduction, resulting in ferroptosis, which contributed to the genesis of VSMC inflammation and endothelial function inhibitory phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Geng
- *Correspondence: Bin Geng, ; Zhenzhen Chen,
| | | |
Collapse
|
157
|
Rizzoni D, De Ciuceis C, Szczepaniak P, Paradis P, Schiffrin EL, Guzik TJ. Immune System and Microvascular Remodeling in Humans. Hypertension 2022; 79:691-705. [PMID: 35098718 DOI: 10.1161/hypertensionaha.121.17955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-grade inflammatory processes and related oxidative stress may have a key role in the pathogenesis of hypertension and hypertension-mediated organ damage. Innate immune cells, such as neutrophils, dendritic cells, monocytes/macrophages, as well as unconventional T lymphocytes like γδ T cells contribute to hypertension and may trigger vascular inflammation. Adaptive immunity has been demonstrated to participate in elevation of blood pressure and in vascular and kidney injury. In particular, effector T lymphocytes (Th1, Th2, and Th17) may play a relevant role in promoting hypertension and microvascular remodeling, whereas T-regulatory lymphocytes may have a protective role. Effector cytokines produced by these immune cells lead to increased oxidative stress, endothelial dysfunction and contribute to target organ damage in hypertension. A possible role of immune cell subpopulations in the development and regression of microvascular remodeling has also been proposed in humans with hypertension. The present review summarizes the key immune mechanisms that may participate in the pathophysiology of hypertension-mediated inflammation and vascular remodeling; advances in this field may provide the basis for novel therapeutics for hypertension.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.D.C.).,Division of Medicine, Spedali Civili di Brescia, Montichiari, Italy (D.R.)
| | - Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.D.C.)
| | - Piotr Szczepaniak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (P.S., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (P.S., T.J.G.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada (P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada (P.P., E.L.S.).,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada (E.L.S.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (P.S., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (P.S., T.J.G.)
| |
Collapse
|
158
|
Agnello F, Capodanno D. Anti-inflammatory strategies for atherosclerotic artery disease. Expert Opin Drug Saf 2022; 21:661-672. [DOI: 10.1080/14740338.2022.2036717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Federica Agnello
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
159
|
Bock JM, Vungarala S, Covassin N, Somers VK. Sleep Duration and Hypertension: Epidemiological Evidence and Underlying Mechanisms. Am J Hypertens 2022; 35:3-11. [PMID: 34536276 DOI: 10.1093/ajh/hpab146] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
While the contribution of several physiological systems to arterial blood pressure regulation has been studied extensively, the role of normal and disrupted sleep as a modifiable determinant of blood pressure control, and in the pathophysiology of hypertension, has only recently emerged. Several sleep disorders, including sleep apnea and insomnia, are thought to contribute to the development of hypertension, although less attention is paid to the relationship between sleep duration and blood pressure independent of sleep disorders per se. Accordingly, this review focuses principally on the physiology of sleep and the consequences of abnormal sleep duration both experimentally and at the population level. Clinical implications for patients with insomnia who may or may not have abbreviated sleep duration are explored. As a corollary, we further review studies of the effects of sleep extension on blood pressure regulation. We also discuss epidemiological evidence suggesting that long sleep may also be associated with hypertension and describe the parabolic relationship between total sleep time and blood pressure. We conclude by highlighting gaps in the literature regarding the potential role of gut microbial health in the cross-communication of lifestyle patterns (exercise, diet, and sleep) with blood pressure regulation. Additionally, we discuss populations at increased risk of short sleep, and specifically the need to understand mechanisms and therapeutic opportunities in women, pregnancy, the elderly, and in African Americans.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Soumya Vungarala
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
160
|
|
161
|
Xie Y, Zhang J, Zhang M, Jiang L. [Gly14]-Humanin inhibits an angiotensin II-induced vascular smooth muscle cell phenotypic switch via ameliorating intracellular oxidative stress. Hum Exp Toxicol 2022; 41:9603271221136208. [PMID: 36289015 DOI: 10.1177/09603271221136208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Angiotensin II (AngII) is involved in the pathogenesis of hypertensive artery remodeling by inducing a phenotypic switch in vascular smooth muscle cells [Gly14]-Humanin (HNG), a humanin analogue, exerts potent cytoprotective effects both in vitro and in vivo. This study aimed to investigate the effects of HNG on an AngII-induced phenotypic switch in VSMCs and the potential mechanisms underlying these effects. The roles of [Gly14]-Humanin in AngII-stimulated VSMCs proliferation and migration was detected by CCK-8 assay, Cell cycle analysis, wound healing assay, trsnswell assay and western blot. The mechanism by which [Gly14]-Humanin regulates VSMC phenotypic switch was determined by intracellular oxidative stress detection, transcriptomic analysis and qRT-PCR. The results showed that HNG inhibited AngII-induced VSMC proliferation and migration and maintained a stable VSMC contractile phenotype. In addition, HNG reduced the level of AngII-induced oxidative stress in vascular smooth muscle cells. This process could be accomplished by inhibiting nicotinamide adenine dinucleotide phosphate oxidase activity. In conclusion, the results suggested that HNG ameliorated intracellular oxidative stress by inhibiting NAD(P)H oxidase activity, thereby suppressing the AngII-induced VSMC phenotype switch. Thus, HNG is a potential drug to ameliorate artery remodeling in hypertension.
Collapse
Affiliation(s)
- Yi Xie
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Jiang
- Division of Cardiology, Tongren Hospital, 537229Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
162
|
An C, Jiao B, Du H, Tran M, Zhou D, Wang Y. Myeloid PTEN deficiency aggravates renal inflammation and fibrosis in angiotensin II-induced hypertension. J Cell Physiol 2022; 237:983-991. [PMID: 34515350 PMCID: PMC8810675 DOI: 10.1002/jcp.30574] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
Hypertension is a major cause of chronic kidney disease. However, the pathogenesis of hypertensive kidney disease is not fully understood. Recently, we have shown that CXCL16/phosphoinositide-3 kinase γ (PI3Kγ) plays an important role in the development of renal inflammation and fibrosis in angiotensin II (AngII) induced hypertensive nephropathy. In the present study, we examined the role of phosphatase and tensin homolog (PTEN), a major regulator of PI3K signaling, in the pathogenesis of renal inflammation and fibrosis in an experimental model of hypertension induced by AngII. We generated myeloid PTEN conditional knockout mice by crossing PTENflox/flox mice with LysM-driven Cre mice. Littermate LysM-Cre-/- PTENflox/flox mice were used as a control. Both myeloid PTEN knockout mice and their littermate control mice exhibited similar blood pressure at baseline. AngII treatment resulted in an increase in blood pressure that was comparable between myeloid PTEN knockout mice and littermate control mice. Compared with littermate control mice, myeloid PTEN knockout mice developed more severe kidney dysfunction, proteinuria, and fibrosis following AngII treatment. Furthermore, myeloid PTEN deficiency exacerbated total collagen deposition and extracellular matrix protein production and enhanced myeloid fibroblast accumulation and myofibroblast formation in the kidney following AngII treatment. Finally, myeloid PTEN deficiency markedly augmented infiltration of F4/80+ macrophages and CD3+ T cells into the kidneys of AngII-treated mice. Taken together, these results indicate that PTEN plays a crucial role in the pathogenesis of renal inflammation and fibrosis through the regulation of infiltration of myeloid fibroblasts, macrophages, and T lymphocytes into the kidney.
Collapse
Affiliation(s)
- Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
163
|
Imig JD. Orally active epoxyeicosatrienoic acid analogs in hypertension and renal injury. ADVANCES IN PHARMACOLOGY 2022; 94:27-55. [PMID: 35659375 PMCID: PMC10105514 DOI: 10.1016/bs.apha.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites synthesized by cytochrome P450 epoxygenases. Biological activities for EETs include vasodilation, decreasing inflammation, opposing apoptosis, and inhibiting renal sodium reabsorption. These actions are beneficial in lowering blood pressure and slowing kidney disease progression. Furthermore, evidence in human and experimental animal studies have found that decreased EET levels contribute to hypertension and kidney diseases. Consequently, EET mimics/analogs have been developed as a potential therapeutic for hypertension and acute and chronic kidney diseases. Their development has resulted in EET analogs that are orally active with favorable pharmacological profiles. Analogs for 8,9-EET, 11,12-EET, and 14,15-EET have been tested in several hypertension and kidney disease animal models. More recently, kidney targeted EET analogs have been synthesized and tested against drug-induced nephrotoxicity. Experimental evidence has demonstrated compelling therapeutic potential for EET analogs to oppose cardiovascular and kidney diseases. These EET analogs lower blood pressure, decrease kidney inflammation, improve vascular endothelial function, and decrease kidney fibrosis and apoptosis. Overall, these preclinical studies support the likelihood that EET analogs will advance to clinical trials for hypertension and associated comorbidities or acute and chronic kidney diseases.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
164
|
Zeng C, Rosenberg L, Li X, Djousse L, Wei J, Lei G, Zhang Y. OUP accepted manuscript. Eur Heart J 2022; 43:1743-1755. [PMID: 35201347 PMCID: PMC9076395 DOI: 10.1093/eurheartj/ehac059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aims Previous studies have found high sodium intake to be associated with increased risks of cardiovascular disease (CVD) and all-cause mortality among individuals with hypertension; findings on the effect of intake among individuals without hypertension have been equivocal. We aimed to compare the risks of incident CVD and all-cause mortality among initiators of sodium-containing acetaminophen with the risk of initiators of non-sodium-containing formulations of the same drug according to the history of hypertension. Methods and results Using The Health Improvement Network, we conducted two cohort studies among individuals with and without hypertension. We examined the relation of sodium-containing acetaminophen to the risk of each outcome during 1-year follow-up using marginal structural models with an inverse probability weighting to adjust for time-varying confounders. The outcomes were incident CVD (myocardial infarction, stroke, and heart failure) and all-cause mortality. Among individuals with hypertension (mean age: 73.4 years), 122 CVDs occurred among 4532 initiators of sodium-containing acetaminophen (1-year risk: 5.6%) and 3051 among 146 866 non-sodium-containing acetaminophen initiators (1-year risk: 4.6%). The average weighted hazard ratio (HR) was 1.59 [95% confidence interval (CI) 1.32–1.92]. Among individuals without hypertension (mean age: 71.0 years), 105 CVDs occurred among 5351 initiators of sodium-containing acetaminophen (1-year risk: 4.4%) and 2079 among 141 948 non-sodium-containing acetaminophen initiators (1-year risk: 3.7%), with an average weighted HR of 1.45 (95% CI 1.18–1.79). Results of specific CVD outcomes and all-cause mortality were similar. Conclusion The initiation of sodium-containing acetaminophen was associated with increased risks of CVD and all-cause mortality among individuals with or without hypertension. Our findings suggest that individuals should avoid unnecessary excessive sodium intake through sodium-containing acetaminophen use.
Collapse
Affiliation(s)
- Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jie Wei
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|
165
|
Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol 2021; 12:793924. [PMID: 34966295 PMCID: PMC8711096 DOI: 10.3389/fphys.2021.793924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
166
|
Zhang Z, Chen Z. Higher Systemic Immune-Inflammation Index is associated with higher likelihood of peripheral arterial disease. Ann Vasc Surg 2021; 84:322-326. [PMID: 34954036 DOI: 10.1016/j.avsg.2021.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE To explore the association between SII (Systemic Immune-Inflammation Index) and PAD (peripheral arterial disease) in American adults. METHODS Related data from NHANES (National Health and Nutrition Examination Survey) database (1999-2004) were collected and analyzed. PAD was diagnosed by ankle brachial index assessment. The association between SII and prevalent PAD was assessed using multivariable logistic regression. RESULTS A total of 6,576 eligible subjects (including 6117 subjects without PAD and 459 with PAD) were finally enrolled in the study, among which there were 3,187 females and 3,389 males with a mean SII of 585.3± 401.5. The age of the subjects with PAD was larger compared to those without PAD (70.2±11.8 vs. 58.7±12.5), and the incidence of chronic diseases, that's CAD, diabetes and hypertension, was higher in those without PAD (p<0.001). Multivariable logistic regression indicated that a high SII level was an independent risk factor for PAD (OR = 1.51, 95% CI: 1.18- 1.93, p = 0.0012) after adjusting for body mass index, race, sex, age, diabetes mellitus (yes/no), hypertension (yes/no), and cardiovascular disease (yes/no). CONCLUSION It is suggested that a higher SII is associated with a higher risk of PAD.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhong Chen
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
167
|
MEKK3-TGFβ crosstalk regulates inward arterial remodeling. Proc Natl Acad Sci U S A 2021; 118:2112625118. [PMID: 34911761 DOI: 10.1073/pnas.2112625118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFβ-signaling both in vitro and in vivo. Endothelial-specific TGFβR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFβR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.
Collapse
|
168
|
Perrotta M, Carnevale D. Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxid Redox Signal 2021; 35:1515-1530. [PMID: 34269604 DOI: 10.1089/ars.2021.0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension. Critical Issues: On these premises, it has been necessary to reconsider the pathophysiological mechanisms underlying hypertension development, taking into account the potential interactions established between classically known determinants of high blood pressure and the immune system. Recent Advances: Interestingly, central nervous system areas controlling cardiovascular functions are enriched with Angiotensin II receptors. Observations showing that these brain areas are crucial for mediating peripheral ANS and immune responses were suggestive of a critical role of neuroimmune interactions in hypertension. In fact, the ANS, characterized by an intricate network of afferent and efferent fibers, represents an intermediate between the brain and peripheral responses that are essential for blood pressure regulation. Future Directions: In this review, we will summarize studies showing how specific brain areas can modulate immune responses that are involved in hypertension. Antioxid. Redox Signal. 35, 1515-1530.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
169
|
Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021; 21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an increasing cause of morbidity and mortality worldwide. Besides the higher prevalence of diabetes, hypertension and aging worldwide, immune mediated disorders remain an important cause of kidney disease and are especially prevalent in young adults. Regardless of the initial insult, final pathway to CKD and kidney failure is always the loss of normal tissue and fibrosis development, in which the dynamic equilibrium between extracellular matrix synthesis and degradation is disturbed, leading to excessive production and accumulation. During fibrosis, a multitude of cell types intervene at different levels, but myofibroblasts and inflammatory cells are considered critical in the process. They exert their effects through different molecular pathways, of which transforming growth factor β (TGF-β) has demonstrated to be of particular importance. Additionally, CKD itself promotes fibrosis due to the accumulation of toxins and hormonal changes, and proteinuria is simultaneously a manifestation of CKD and a specific driver of renal fibrosis. Pathways involved in renal fibrosis and CKD are closely interrelated, and although important advances have been made in our knowledge of them, it is still necessary to translate them into clinical practice. Given the complexity of this process, it is highly likely that its treatment will require a multi-target strategy to control the origin of the damage but also the mechanisms that perpetuate it. Fortunately, rapid technology development over the last years and new available drugs in the nephrologist's armamentarium give reasons for optimism that more personalized assistance for CKD and renal fibrosis will appear in the future.
Collapse
|
170
|
Mariano VS, Boer PA, Gontijo JAR. Fetal Undernutrition Programming, Sympathetic Nerve Activity, and Arterial Hypertension Development. Front Physiol 2021; 12:704819. [PMID: 34867434 PMCID: PMC8635863 DOI: 10.3389/fphys.2021.704819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence showed that low birth weight is associated with environmental disruption during gestation, triggering embryotic or fetal adaptations and increasing the susceptibility of progeny to non-communicable diseases, including metabolic and cardiovascular diseases, obesity, and arterial hypertension. In addition, dietary disturbance during pregnancy in animal models has highlighted mechanisms that involve the genesis of arterial hypertension, particularly severe maternal low-protein intake (LP). Functional studies demonstrated that maternal low-protein intake leads to the renal decrease of sodium excretion and the dysfunction of the renin-angiotensin-aldosterone system signaling of LP offspring. The antinatriuretic effect is accentuated by a reduced number of nephron units and glomerulosclerosis, which are critical in establishing arterial hypertension phenotype. Also, in this way, studies have shown that the overactivity of the central and peripheral sympathetic nervous system occurs due to reduced sensory (afferent) renal nerve activity. As a result of this reciprocal and abnormal renorenal reflex, there is an enhanced tubule sodium proximal sodium reabsorption, which, at least in part, contributes directly to arterial hypertension development in some of the programmed models. A recent study has observed that significant changes in adrenal medulla secretion could be involved in the pathophysiological process of increasing blood pressure. Thus, this review aims to compile studies that link the central and peripheral sympathetic system activity mechanisms on water and salt handle and blood pressure control in the maternal protein-restricted offspring. Besides, these pathophysiological mechanisms mainly may involve the modulation of neurokinins and catecholamines pathways.
Collapse
Affiliation(s)
- Vinícius Schiavinatto Mariano
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| |
Collapse
|
171
|
Single-cell analysis of salt-induced hypertensive mouse aortae reveals cellular heterogeneity and state changes. Exp Mol Med 2021; 53:1866-1876. [PMID: 34862465 PMCID: PMC8741768 DOI: 10.1038/s12276-021-00704-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Elevated blood pressure caused by excessive salt intake is common and associated with cardiovascular diseases in most countries. However, the composition and responses of vascular cells in the progression of hypertension have not been systematically described. We performed single-cell RNA sequencing on the aortic arch from C57BL/6J mice fed a chow/high-salt diet. We identified 19 distinct cell populations representing 12 lineages, including smooth muscle cells (SMCs), fibroblasts, endothelial cells (ECs), B cells, and T cells. During the progression of hypertension, the proportion of three SMC subpopulations, two EC subpopulations, and T cells increased. In two EC clusters, the expression of reactive oxygen species-related enzymes, collagen and contractility genes was upregulated. Gene set enrichment analysis showed that three SMC subsets underwent endothelial-to-mesenchymal transition. We also constructed intercellular networks and found more frequent cell communication among aortic cells in hypertension and that some signaling pathways were activated during hypertension. Finally, joint public genome-wide association study data and our single-cell RNA-sequencing data showed the expression of hypertension susceptibility genes in ECs, SMCs, and fibroblasts and revealed 21 genes involved in the initiation and development of high-salt-induced hypertension. In conclusion, our data illustrate the transcriptional landscape of vascular cells in the aorta associated with hypertension and reveal dramatic changes in cell composition and intercellular communication during the progression of hypertension.
Collapse
|
172
|
Dhande IS, Braun MC, Doris PA. Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies. Hypertension 2021; 78:1689-1700. [PMID: 34757770 PMCID: PMC8577298 DOI: 10.1161/hypertensionaha.121.18112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function. Emerging themes identified indicate that heritable risk of chronic kidney disease in hypertension can arise from genetic variation in (1) glomerular and tubular protein handling mechanisms; (2) autoregulatory capacity of the renal vasculature; and (3) innate and adaptive immune mechanisms. Increased prevalence of hypertension-associated chronic kidney disease that occurs with aging may reflect amplification of heritable risks by normal aging processes affecting immunity and autoregulation.
Collapse
Affiliation(s)
- Isha S. Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston (M.C.B.)
| | - Peter A. Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| |
Collapse
|
173
|
Lv SL, Zeng ZF, Gan WQ, Wang WQ, Li TG, Hou YF, Yan Z, Zhang RX, Yang M. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol Sin 2021; 42:2016-2032. [PMID: 34226664 PMCID: PMC8632984 DOI: 10.1038/s41401-021-00703-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Macrophage-mediated inflammation plays an important role in hypertensive cardiac remodeling, whereas effective pharmacological treatments targeting cardiac inflammation remain unclear. Lipoprotein-associated phospholipase A2 (Lp-PLA2) contributes to vascular inflammation-related diseases by mediating macrophage migration and activation. Darapladib, the most advanced Lp-PLA2 inhibitor, has been evaluated in phase III trials in atherosclerosis patients. However, the role of darapladib in inhibiting hypertensive cardiac fibrosis remains unknown. Using a murine angiotensin II (Ang II) infusion-induced hypertension model, we found that Pla2g7 (the gene of Lp-PLA2) was the only upregulated PLA2 gene detected in hypertensive cardiac tissue, and it was primarily localized in heart-infiltrating macrophages. As expected, darapladib significantly prevented Ang II-induced cardiac fibrosis, ventricular hypertrophy, and cardiac dysfunction, with potent abatement of macrophage infiltration and inflammatory response. RNA sequencing revealed that darapladib strongly downregulated the expression of genes and signaling pathways related to inflammation, extracellular matrix, and proliferation. Moreover, darapladib substantially reduced the Ang II infusion-induced expression of nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) and interleukin (IL)-1β and markedly attenuated caspase-1 activation in cardiac tissues. Furthermore, darapladib ameliorated Ang II-stimulated macrophage migration and IL-1β secretion in macrophages by blocking NLRP3 inflammasome activation. Darapladib also effectively blocked macrophage-mediated transformation of fibroblasts into myofibroblasts by inhibiting the activation of the NLRP3 inflammasome in macrophages. Overall, our study identifies a novel anti-inflammatory and anti-cardiac fibrosis role of darapladib in Lp-PLA2 inhibition, elucidating the protective effects of suppressing NLRP3 inflammasome activation. Lp-PLA2 inhibition by darapladib represents a novel therapeutic strategy for hypertensive cardiac damage treatment.
Collapse
Affiliation(s)
- Si-Lin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zi-Fan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Qiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei-Qi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tie-Gang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu-Fang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ri-Xin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
174
|
Jing H, Xie R, Bai Y, Duan Y, Sun C, Wang Y, Cao R, Ling Z, Qu X. The Mechanism Actions of Astragaloside IV Prevents the Progression of Hypertensive Heart Disease Based on Network Pharmacology and Experimental Pharmacology. Front Pharmacol 2021; 12:755653. [PMID: 34803698 PMCID: PMC8602690 DOI: 10.3389/fphar.2021.755653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Astragaloside IV (AS-IV) has been used to treat cardiovascular disease. However, whether AS-IV exerts a protective effect against hypertensive heart disease has not been investigated. This study aimed to investigate the antihypertensive and cardioprotective effects of AS-IV on L-NAME-induced hypertensive rats via network pharmacology and experimental pharmacology. The network pharmacology and bioinformatics analyses were performed to obtain the potential targets of AS-IV and hypertensive heart disease. The rat hypertension model was established by administrated 50 mg/kg/day of L-NAME for 5 weeks. Meanwhile, hypertension rats were intragastrically administrated with vehicle or AS-IV or fosinopril for 5 weeks. Cardiovascular parameters (systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rates, and body weight), cardiac function parameters (LVEDd, LVEDs, and fractional shortening), cardiac marker enzymes (creatine kinase, CK-MB, and lactate dehydrogenase), cardiac hypertrophy markers (atrial natriuretic peptide and brain natriuretic peptide), endothelial function biomarkers (nitric oxide and eNOS), inflammation biomarkers (IL-6 and TNF-α) and oxidative stress biomarkers (SOD, MDA, and GSH) were measured and cardiac tissue histology performed. Network pharmacological analysis screened the top 20 key genes in the treatment of hypertensive heart disease treated with AS-IV. Besides, AS-IV exerted a beneficial effect on cardiovascular and cardiac function parameters. Moreover, AS-IV alleviated cardiac hypertrophy via down-regulating the expression of ANP and BNP and improved histopathology changes of cardiac tissue. AS-IV improved endothelial function via the up-regulation of eNOS expression, alleviated oxidative stress via increasing antioxidant enzymes activities, and inhibited cardiac inflammation via down-regulating IL-6 and TNF-α expression. Our findings suggested that AS-IV is a potential therapeutic drug to improve L-NAME-induced hypertensive heart disease partly mediated via modulation of eNOS and oxidative stress.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongsheng Xie
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Bai
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuchen Duan
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chongyang Sun
- Department of CT, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Wang
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongyi Cao
- Blood Transfusion Department, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zaisheng Ling
- Department of CT, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
175
|
Kountouras J, Papaefthymiou A, Polyzos SA, Deretzi G, Vardaka E, Soteriades ES, Tzitiridou-Chatzopoulou M, Gkolfakis P, Karafyllidou K, Doulberis M. Impact of Helicobacter pylori-Related Metabolic Syndrome Parameters on Arterial Hypertension. Microorganisms 2021; 9:microorganisms9112351. [PMID: 34835476 PMCID: PMC8618184 DOI: 10.3390/microorganisms9112351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Arterial hypertension is a risk factor for several pathologies, mainly including cardio-cerebrovascular diseases, which rank as leading causes of morbidity and mortality worldwide. Arterial hypertension also constitutes a fundamental component of the metabolic syndrome. Helicobacter pylori infection is one of the most common types of chronic infection globally and displays a plethora of both gastric and extragastric effects. Among other entities, Helicobacter pylori has been implicated in the pathogenesis of the metabolic syndrome. Within this review, we illustrate the current state-of-the-art evidence, which may link several components of the Helicobacter pylori-related metabolic syndrome, including non-alcoholic fatty liver disease and arterial hypertension. In particular, current knowledge of how Helicobacter pylori exerts its virulence through dietary, inflammatory and metabolic pathways will be discussed. Although there is still no causative link between these entities, the emerging evidence from both basic and clinical research supports the proposal that several components of the Helicobacter pylori infection-related metabolic syndrome present an important risk factor in the development of arterial hypertension. The triad of Helicobacter pylori infection, the metabolic syndrome, and hypertension represents a crucial worldwide health problem on a pandemic scale with high morbidity and mortality, like COVID-19, thereby requiring awareness and appropriate management on a global scale.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- Correspondence:
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- Department of Gastroenterology, University Hospital of Larisa, 41110 Larisa, Greece
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgia Deretzi
- Multiple Sclerosis Unit, Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Elisabeth Vardaka
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia 2252, Cyprus;
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology (EOME), Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Paraskevas Gkolfakis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme University Hospital, 1070 Brussels, Belgium;
- Department of Medical Oncology, Institut Jules Bordet, 1000 Brussels, Belgium
| | - Kyriaki Karafyllidou
- Department of Pediatrics, University Children’s Hospital of Zurich, 8032 Zurich, Switzerland;
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.); (M.T.-C.); (M.D.)
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
176
|
Arterial stiffness in children with primary hypertension is related to subclinical inflammation. Cent Eur J Immunol 2021; 46:336-343. [PMID: 34764805 PMCID: PMC8574109 DOI: 10.5114/ceji.2021.109156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The immune system can trigger an inflammatory process leading to blood pressure elevation and arterial damage. The aim of the study was to assess the relation between subclinical inflammation and arterial damage in pediatric patients with primary hypertension (PH) and to establish the usefulness of neutrophil-to-lymphocyte (NLR) and platelet-to-lymphocyte (PLR) ratios, and mean platelet volume (MPV) as markers of arterial damage in these subjects. Material and methods In 119 children with PH (14.94 ±2.76 years) and 45 healthy children (14.91 ±2.69 years) we analyzed markers of subclinical inflammation (NLR, PLR, MPV), clinical and biochemical parameters, office blood pressure, ambulatory blood pressure monitoring (ABPM), central blood pressure, aortic pulse wave velocity (aPWV), augmentation index corrected for heart rates 75 (AIx75HR), carotid intima media thickness (cIMT), and common carotid artery stiffness (E-tracking). Results Children with PH were characterized by significantly higher neutrophil (3.9 ±1.7 vs. 3.0 ±1.0 [1000/µl], p < 0.001) and platelet counts (271.9 ±62.3 vs. 250.3 ±60.3 [1000/µl], p = 0.047), NLR (1.9 ±1.5 vs. 1.3 ±0.4, p = 0.010), PLR (131.4 ±41.9 vs. 114.7 ±37.6, p = 0.020), aPWV (5.36 ±0.88 vs. 4.88 ±0.92 m/s, p = 0.004), and cIMT (0.46 ±0.07 vs. 0.43 ±0.07 mm, p = 0.002) compared to healthy children. In PH children NLR correlated positively (p < 0.05) with: systolic, diastolic and mean blood pressure in ABPM (r = 0.243, r = 0.216, r = 0.251), aPWV [m/s] (r = 0.241), aPWV Z-score (r = 0.204), and common carotid artery PWVbeta [m/s] (r = 0.202). Conclusions There is a link between arterial stiffness and subclinical inflammation in pediatric patients with primary hypertension. Neutrophil-to-lymphocyte ratio may serve as a promising marker of arterial stiffness in pediatric patients affected by primary hypertension.
Collapse
|
177
|
Van Beusecum JP, Barbaro NR, Smart CD, Patrick DM, Loperena R, Zhao S, Ao M, Xiao L, Shibao CA, Harrison DG. Growth Arrest Specific-6 and Axl Coordinate Inflammation and Hypertension. Circ Res 2021; 129:975-991. [PMID: 34565181 PMCID: PMC9125747 DOI: 10.1161/circresaha.121.319643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Justin P. Van Beusecum
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Natalia R. Barbaro
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David M. Patrick
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Divison of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Roxana Loperena
- Vanderbilt Institute of Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Mingfang Ao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Liang Xiao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Cyndya A. Shibao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David G. Harrison
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
178
|
Cao Y, Yu Y, Xue B, Wang Y, Chen X, Beltz TG, Johnson AK, Wei SG. IL (Interleukin)-17A Acts in the Brain to Drive Neuroinflammation, Sympathetic Activation, and Hypertension. Hypertension 2021; 78:1450-1462. [PMID: 34628936 DOI: 10.1161/hypertensionaha.121.18219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yiling Cao
- Department of Internal Medicine (Y.C., Y.Y., S.-G.W.), University of Iowa Carver College of Medicine
| | - Yang Yu
- Department of Internal Medicine (Y.C., Y.Y., S.-G.W.), University of Iowa Carver College of Medicine
| | - Baojian Xue
- Psychological and Brain Sciences (B.X., T.G.B., A.K.J.), University of Iowa Carver College of Medicine
| | - Ye Wang
- Department of Cardiology, the First Affiliated Hospital of Shandong First Medical University, China (Y.W.)
| | - Xiaolei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China (X.C.)
| | - Terry G Beltz
- Psychological and Brain Sciences (B.X., T.G.B., A.K.J.), University of Iowa Carver College of Medicine
| | - Alan Kim Johnson
- Psychological and Brain Sciences (B.X., T.G.B., A.K.J.), University of Iowa Carver College of Medicine.,Abboud Cardiovascular Research Center (A.K.J., S.-G.W.), University of Iowa Carver College of Medicine.,Iowa Neuroscience Institute (A.K.J., S.-G.W.), University of Iowa Carver College of Medicine
| | - Shun-Guang Wei
- Department of Internal Medicine (Y.C., Y.Y., S.-G.W.), University of Iowa Carver College of Medicine.,Abboud Cardiovascular Research Center (A.K.J., S.-G.W.), University of Iowa Carver College of Medicine.,Department of Cardiology, the First Affiliated Hospital of Shandong First Medical University, China (Y.W.)
| |
Collapse
|
179
|
Rodionova K, Ditting T, Veelken R. Renal Nerve Ablation in Nephritis and Beyond. J Am Soc Nephrol 2021; 32:2393-2395. [PMID: 34599032 PMCID: PMC8722803 DOI: 10.1681/asn.2021060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany .,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
180
|
Abstract
Chronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease. These processes are themselves complex: many cardiovascular diseases arise in conjunction with the presence of sustained elevation of blood pressure. Inflammatory processes have been linked to hypertension, and causality has been suggested. Evidence of causality poses the difficult challenge of linking the integrated and multifaceted biology of blood pressure regulation with vascular function and complex elements of immune system function. These include both, innate and adaptive immunity, as well as interactions between the host immune system and the omnipresent microorganisms that are encountered in the environment and that colonize and exist in commensal relationship with the host. Progress has been made in this task and has drawn on experimental approaches in animals, much of which have focused on hypertension occurring with prolonged infusion of angiotensin II. These laboratory studies are complemented by studies that seek to inform disease mechanism by examining the genomic basis of heritable disease susceptibility in human populations. In this realm too, evidence has emerged that implicates genetic variation affecting immunity in disease pathogenesis. In this article, we survey the genetic and genomic evidence linking high blood pressure and its end-organ injuries to immune system function and examine evidence that genomic factors can influence disease risk. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
- Isha S Dhande
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
181
|
Zhang H, Zhang P, Zhang X, Song Y, Zeng Z, Fu X, Fu H, Qin Q, Fu N, Guo Z. Novel nanoliposomes alleviate contrast-induced acute kidney injury in New Zealand rabbits by mediating inflammatory response. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1250. [PMID: 34532387 PMCID: PMC8421945 DOI: 10.21037/atm-21-3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Background The purpose of the research was to investigate the preventive effect of nanoliposomes on contrast-induced nephropathy (CIN) in New Zealand rabbits and to provide a theoretical basis for clinically effective prevention and treatment of CIN and the development of new contrast agents. Methods A total of 48 New Zealand rabbits were divided into four groups randomly, there were 12 rabbits in eacj group: (I) control group; (II) contrast group; (III) hydration prevention group; and (IV) nanoliposome group. The changes of serum creatinine (SCr) and blood urea nitrogen (BUN) were messured before and after injection of iopromide. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory and oxidative stress indexes, including neutrophil gelatinase-associated lipoprotein (NGAL), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA). Twenty-four hours after injection of the contrast medium, the rabbits were killed and the pathological changes were observed under an electron microscope. Results There were statistical significances in sCr and BUN values among the four groups at both 8 hours and 24 hours after injection of the contrast medium. Serum NGAL and TNF-α levels were also significantly different among the four groups (P<0.05) 24 hours after injection of the contrast medium. The incidence rate of CIN in each group was statistically significant. Nanoliposomes had obvious advantages over hydration prevention in NGAL and TNF-α levels. Conclusions Nanoliposomes can prevent the occurrence of CIN and reduce the damage of contrast agent to the kidney by reducing inflammatory reaction.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Xue Zhang
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Zhican Zeng
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Xiaofeng Fu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Han Fu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Naikuan Fu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
182
|
Velikova TV, Kabakchieva PP, Assyov YS, Georgiev TА. Targeting Inflammatory Cytokines to Improve Type 2 Diabetes Control. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7297419. [PMID: 34557550 PMCID: PMC8455209 DOI: 10.1155/2021/7297419] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is one of the most common chronic metabolic disorders in adulthood worldwide, whose pathophysiology includes an abnormal immune response accompanied by cytokine dysregulation and inflammation. As the T2D-related inflammation and its progression were associated with the balance between pro and anti-inflammatory cytokines, anticytokine treatments might represent an additional therapeutic option for T2D patients. This review focuses on existing evidence for antihyperglycemic properties of disease-modifying antirheumatic drugs (DMARDs) and anticytokine agents (anti-TNF-α, anti-interleukin-(IL-) 6, -IL-1, -IL-17, -IL-23, etc.). Emphasis is placed on their molecular mechanisms and on the biological rationale for clinical use. Finally, we briefly summarize the results from experimental model studies and promising clinical trials about the potential of anticytokine therapies in T2D, discussing the effects of these drugs on systemic and islet inflammation, beta-cell function, insulin secretion, and insulin sensitivity.
Collapse
Affiliation(s)
- Tsvetelina V. Velikova
- Department of Clinical Immunology, University Hospital “Lozenetz”, Sofia University “St. Kliment Ohridski”, Sofia 1407, Bulgaria
| | - Plamena P. Kabakchieva
- Clinic of Endocrinology, University Hospital “Alexandrovska, ” Department of Internal Medicine, Medical Faculty, Medical University of Sofia, Sofia 1431, Bulgaria
- Clinic of Internal Medicine, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor S. Assyov
- Clinic of Endocrinology, University Hospital “Alexandrovska, ” Department of Internal Medicine, Medical Faculty, Medical University of Sofia, Sofia 1431, Bulgaria
| | - Tsvetoslav А. Georgiev
- Clinic of Rheumatology, University Hospital “St. Marina, ” First Department of Internal Medicine, Medical Faculty, Medical University-Varna, Varna 9010, Bulgaria
| |
Collapse
|
183
|
Sodium Intake as a Cardiovascular Risk Factor: A Narrative Review. Nutrients 2021; 13:nu13093177. [PMID: 34579054 PMCID: PMC8470268 DOI: 10.3390/nu13093177] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
While sodium is essential for human homeostasis, current salt consumption far exceeds physiological needs. Strong evidence suggests a direct causal relationship between sodium intake and blood pressure (BP) and a modest reduction in salt consumption is associated with a meaningful reduction in BP in hypertensive as well as normotensive individuals. Moreover, while long-term randomized controlled trials are still lacking, it is reasonable to assume a direct relationship between sodium intake and cardiovascular outcomes. However, a consensus has yet to be reached on the effectiveness, safety and feasibility of sodium intake reduction on an individual level. Beyond indirect BP-mediated effects, detrimental consequences of high sodium intake are manifold and pathways involving vascular damage, oxidative stress, hormonal alterations, the immune system and the gut microbiome have been described. Globally, while individual response to salt intake is variable, sodium should be perceived as a cardiovascular risk factor when consumed in excess. Reduction of sodium intake on a population level thus presents a potential strategy to reduce the burden of cardiovascular disease worldwide. In this review, we provide an update on the consequences of salt intake on human health, focusing on BP and cardiovascular outcomes as well as underlying pathophysiological hypotheses.
Collapse
|
184
|
Martí-Carvajal AJ, De Sanctis JB, Dayer M, Martí-Amarista CE, Alegría E, Monge Martín D, Abd El Aziz M, Correa-Pérez A, Nicola S, Parise Vasco JM. Interleukin-receptor antagonist and tumor necrosis factor inhibitors for the primary and secondary prevention of atherosclerotic cardiovascular diseases. Hippokratia 2021. [DOI: 10.1002/14651858.cd014741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arturo J Martí-Carvajal
- Facultad de Ciencias de la Salud Eugenio Espejo (Centro Cochrane Ecuador); Universidad UTE; Quito Ecuador
- Facultad de Medicina (Centro Cochrane Madrid); Universidad Francisco de Vitoria; Madrid Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia; Universidad de Carabobo; Valencia Venezuela
| | - Juan Bautista De Sanctis
- The Institute of Molecular and Translational Medicine; Palacky University Olomouc, Faculty of Medicine and Dentistry; Olomouc Czech Republic
| | - Mark Dayer
- Department of Cardiology; Somerset NHS Foundation Trust; Taunton UK
| | | | - Eduardo Alegría
- Faculty of Medicine; Universidad Francisco de Vitoria; Madrid Spain
| | | | - Mohamed Abd El Aziz
- Internal medicine; Texas Tech University Health Sciences Center El PasoPaul L. Foster School of Medicine; El Paso, Texas USA
| | - Andrea Correa-Pérez
- Faculty of Medicine; Universidad Francisco de Vitoria; Madrid Spain
- Clinical Biostatistics Unit; Hospital Universitario Ramón y Cajal (IRYCIS); Madrid Spain
| | - Susana Nicola
- Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC); Universidad UTE; Quito Ecuador
| | - Juan Marcos Parise Vasco
- Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC); Universidad UTE; Quito Ecuador
| |
Collapse
|
185
|
Kućmierz J, Frąk W, Młynarska E, Franczyk B, Rysz J. Molecular Interactions of Arterial Hypertension in Its Target Organs. Int J Mol Sci 2021; 22:ijms22189669. [PMID: 34575833 PMCID: PMC8471598 DOI: 10.3390/ijms22189669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Arterial hypertension (AH) is a major risk factor for the development of cardiovascular diseases. It is estimated that the disease affects between 10% and 20% of the adult population and is responsible for 5.8% of all deaths worldwide. Several pathophysiologic factors are crucial in AH, including inappropriate activation of the renin-angiotensin-aldosterone system, oxidative stress and inflammation. The heart, kidney, brain, retina and arterial blood vessels are prime targets of hypertensive damage. Uncontrolled and untreated AH accelerates the damage to these organs and could cause their failure. Damage to these organs could also manifest as coronary heart disease, cognitive impairment, retinopathy or optic neuropathy. For better understanding, it is important to analyze molecular factors which take part in pathogenesis of AH and hypertension-related target organ damage. In our paper, we would like to focus on molecular interactions of AH in the heart, blood vessels, brain and kidneys. We focus on matrix metalloproteinases, the role of immune system, the renin-angiotensin-aldosterone system and oxidative stress in hypertensive induced organ damage.
Collapse
|
186
|
Thrombo-Inflammation: A Focus on NTPDase1/CD39. Cells 2021; 10:cells10092223. [PMID: 34571872 PMCID: PMC8469976 DOI: 10.3390/cells10092223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.
Collapse
|
187
|
Santana-Garrido Á, Reyes-Goya C, Milla-Navarro S, de la Villa P, André H, Vázquez CM, Mate A. Anti-Inflammatory Action of Dietary Wild Olive (Acebuche) Oil in the Retina of Hypertensive Mice. Foods 2021; 10:foods10091993. [PMID: 34574102 PMCID: PMC8466332 DOI: 10.3390/foods10091993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a crucial role in the course of eye diseases, including many vascular retinopathies. Although olive oil is known to have beneficial effects against inflammatory processes, there is no information available on the anti-inflammatory potential of the wild olive tree (namely, acebuche (ACE) for the primitive Spanish lineages). Here we investigate the anti-inflammatory effects of ACE oil in the retina of a mouse model of arterial hypertension, which was experimentally induced by administration of L-NAME (NG-nitro-L-arginine-methyl-ester). The animals were fed supplements of ACE oil or extra virgin olive oil (EVOO, for comparative purposes). Retinal function was assessed by electroretinography (ERG), and different inflammation-related parameters were measured in the retina and choroid. Besides significant prevention of retinal dysfunction shown in ERG recordings, ACE oil-enriched diet upregulated the expression of the anti-inflammatory markers PPARγ, PPARα and IL-10, while reducing that of major proinflammatory biomarkers, IL-1β, IL-6, TNF-α and COX-2. This is the first report to highlight the anti-inflammatory properties of an ACE oil-enriched diet against hypertension-related retinal damage. Noteworthy, dietary supplementation with ACE oil yielded better results compared to a reference EVOO.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
| | - Santiago Milla-Navarro
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
| | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden;
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
- Correspondence:
| |
Collapse
|
188
|
Xu X, Du L, Jiang J, Yang M, Wang Z, Wang Y, Tang T, Fu X, Hao J. Microglial TREM2 Mitigates Inflammatory Responses and Neuronal Apoptosis in Angiotensin II-Induced Hypertension in Middle-Aged Mice. Front Aging Neurosci 2021; 13:716917. [PMID: 34489683 PMCID: PMC8417947 DOI: 10.3389/fnagi.2021.716917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Growing evidence suggests that hypertension and aging are prominent risk factors for the development of late-onset Alzheimer's disease (LOAD) by inducement of neuroinflammation. Recent study showed that neuroinflammation via activated microglia induces reactive astrocytes, termed A1 astrocytes, that highly upregulate numerous classical complement cascade genes that are destructive to neurons in neurodegeneration diseases. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) is considered as one of the strongest single-allele genetic risk factors and plays important roles in neuroinflammation for LOAD. However, the mechanisms of microglia in the regulation of A1 astrocytic activation are still not clear. We introduced angiotensin II-induced hypertension in middle-aged mice and found that hypertension-upregulated TREM2 expression and A1 astrocytic activation were involved in neuroinflammation in the animal models used in this study. The in vitro results revealed that overexpression of microglial TREM2 not only mitigated microglial inflammatory response but also had salutary effects on reverse A1 astrocytic activation and neuronal toxicity.
Collapse
Affiliation(s)
- Xiaotian Xu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Lin Du
- Department of Cardiology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ming Yang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Zhaoxia Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Tieyu Tang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Xuetao Fu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jiukuan Hao
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
189
|
Tan JS, Liu NN, Guo TT, Hu S, Hua L. Genetic predisposition to COVID-19 may increase the risk of hypertension disorders in pregnancy: A two-sample Mendelian randomization study. Pregnancy Hypertens 2021; 26:17-23. [PMID: 34428710 DOI: 10.1016/j.preghy.2021.08.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
AIMS The aim of this study was to apply the Mendelian randomization (MR) design to explore the potential causal association between COVID-19 and the risk of hypertension disorders in pregnancy. METHODS Our primary genetic instrument comprised 8 single-nucleotide polymorphisms (SNPs) associated with COVID-19 at genome-wide significance. Data on the associations between the SNPs and the risk of hypertension disorders in pregnancy were obtained from study based on a very large cohort of European population. The random-effects inverse-variance weighted method was conducted for the main analyses, with a complementary analysis of the weighted median and MR-Egger approaches. RESULTS Using IVW, we found that genetically predicted COVID-19 was significantly positively associated with hypertension disorders in pregnancy, with an odds ratio (OR) of 1.111 [95% confidence interval (CI) 1.042-1.184; P = 0.001]. Weighted median regression also showed directionally similar estimates [OR 1.098 (95% CI, 1.013-1.190), P = 0.023]. Both funnel plots and MR-Egger intercepts suggest no directional pleiotropic effects observed. CONCLUSIONS Our findings provide direct evidence that there is a shared genetic predisposition so that patients infected with COVID-19 may be causally associated with increased risk of hypertension disorders in pregnancy.
Collapse
Affiliation(s)
- Jiang-Shan Tan
- Thrombosis Center, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ning-Ning Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ting-Ting Guo
- Thrombosis Center, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Song Hu
- Thrombosis Center, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Hua
- Thrombosis Center, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
190
|
Elmarakby A, Sullivan J. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR). Clin Sci (Lond) 2021; 135:1791-1804. [PMID: 34338771 PMCID: PMC8329852 DOI: 10.1042/cs20201017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
Although numerous clinical and experimental studies have clearly identified a sexual dimorphism in blood pressure control, the mechanism(s) underlying gender differences in blood pressure remain unclear. Over the past two decades, numerous laboratories have utilized the spontaneously hypertensive rats (SHR) as an experimental model of essential hypertension to increase our understanding of the mechanisms regulating blood pressure in males and females. Previous work by our group and others have implicated that differential regulation of adrenergic receptors, the renin-angiotensin system, oxidative stress, nitric oxide bioavailability and immune cells contribute to sex differences in blood pressure control in SHR. The purpose of this review is to summarize previous findings to date regarding the mechanisms of blood pressure control in male versus female SHR.
Collapse
Affiliation(s)
- Ahmed A. Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA 30912, U.S.A
| | | |
Collapse
|
191
|
Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, Arelaki S, Pateinakis P, Ntinopoulou M, Mitsios A, Antoniadou C, Argyriou C, Georgiadis GS, Papadopoulos V, Giatromanolaki A, Ritis K, Skendros P. Angiotensin II triggers neutrophil extracellular traps release linking thromboinflammation with essential hypertension. JCI Insight 2021; 6:e148668. [PMID: 34324440 PMCID: PMC8492353 DOI: 10.1172/jci.insight.148668] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Innate immunity and chronic inflammation are involved in atherosclerosis and atherothrombosis leading to target organ damage in essential hypertension (EH). However, the role of neutrophils in EH is still elusive. We investigated the association between angiotensin II (Ang II) and neutrophil extracellular traps (NETs) in pathogenesis of EH. Plasma samples, kidney biopsies and surgical specimens of abdominal aortic aneurysms (AAA) from EH patients were used. Cell-based assays, NETs/human aortic endothelial cells co-cultures and in situ studies were performed. Increased plasma levels of NETs and tissue factor (TF) activity were detected in untreated, newly-diagnosed, EH patients. Stimulation of control neutrophils with plasma from untreated EH patients generated TF-enriched NETs promoting endothelial collagen production. Ang II induced NETosis in vitro via a reactive oxygen species (ROS)/peptidylarginine deiminase type 4 and autophagy-dependent pathway. Circulating NETs and thrombin generation levels were reduced significantly in EH patients starting treatment with Ang II receptor blockers, whereas their plasma was unable to trigger procoagulant NETs. Moreover, TF-bearing NETotic neutrophils/remnants were accumulated in sites of interstitial renal fibrosis and in the subendothelial layer of AAA. These data reveal the important pathogenic role of Ang II/ROS/NETs/TF axis in EH, linking thromboinflammation with endothelial dysfunction and fibrosis.
Collapse
Affiliation(s)
- Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Disease, Heidelberg, Germany
| | | | - Maria Ntinopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Antoniadou
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Argyriou
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- First Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
192
|
Hong Y, Wang Z, Rao Z, Wan J, Ling X, Zheng Q. Changes in Expressions of HSP27, HSP70, and Soluble Glycoprotein in Heart Failure Rats Complicated with Pulmonary Edema and Correlations with Cardiopulmonary Functions. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6733341. [PMID: 34337047 PMCID: PMC8315849 DOI: 10.1155/2021/6733341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022]
Abstract
The study is aimed at investigating the changes in expressions of heat shock protein 27 (HSP27), HSP70, and soluble glycoprotein (SGP) in heart failure (HF) rats complicated with pulmonary edema and exploring their potential correlations with cardiopulmonary functions. The rat model of HF was established, and the rats were divided into HF model group (model group, n = 15) and normal group (n = 15). After successful modeling, MRI and ECG were applied to detect the cardiac function indexes of the rats. The myocardial function indexes were determined, the injury of myocardial tissues was observed via hematoxylin and eosin (HE) staining, and the content of myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α) in the blood was measured. The partial pressure of oxygen (PaO2) and oxygenation index (OI) were observed, and the airway resistance and lung compliance were examined. Moreover, quantitative polymerase chain reaction (qPCR) and Western blotting assay were performed to detect the gene and protein expression levels of HSP27, HSP70, and SGP130. The levels of serum creatine kinase (CK), creatine (Cr), and blood urea nitrogen (BUN) were increased markedly in model group (p < 0.05). Model group had notably decreased fractional shortening (FS) and ejection fraction (EF) compared with normal group (p < 0.05), while the opposite results of left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) were detected. In model group, the content of serum MPO, MMP-9, and TNF-α was raised remarkably (p < 0.05), OI and PaO2 were reduced notably (p < 0.05), the airway resistance was increased (p < 0.05), and the lung compliance was decreased (p < 0.05). Obviously elevated gene and protein expression levels of HSP27, HSP70, and SGP130 were detected in model group (p < 0.05). The expressions of HSP27, HSP70, and SGP130 are increased in HF rats complicated with pulmonary edema, seriously affecting the cardiopulmonary functions of the rats.
Collapse
Affiliation(s)
- Yingcai Hong
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zhanpeng Rao
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Jun Wan
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Xie'an Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Qijun Zheng
- Department of Cardiac Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| |
Collapse
|
193
|
Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens 2021; 38:1682-1698. [PMID: 32649623 DOI: 10.1097/hjh.0000000000002508] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: Inflammation is a physiological response to aggression of pathogenic agents aimed at eliminating the aggressor agent and promoting healing. Excessive inflammation, however, may contribute to tissue damage and an alteration of arterial structure and function. Increased arterial stiffness is a well recognized cardiovascular risk factor independent of blood pressure levels and an intermediate endpoint for cardiovascular events. In the present review, we discuss immune-mediated mechanisms by which inflammation can influence arterial physiology and lead to vascular dysfunction such as atherosclerosis and arterial stiffening. We also show that acute inflammation predisposes the vasculature to arterial dysfunction and stiffening, and alteration of endothelial function and that chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis are accompanied by profound arterial dysfunction which is proportional to the severity of inflammation. Current findings suggest that treatment of inflammation by targeted drugs leads to regression of arterial dysfunction. There is hope that these treatments will improve outcomes for patients.
Collapse
|
194
|
Omidi F, Hajikhani B, Kazemi SN, Tajbakhsh A, Riazi S, Mirsaeidi M, Ansari A, Ghanbari Boroujeni M, Khalili F, Hadadi S, Nasiri MJ. COVID-19 and Cardiomyopathy: A Systematic Review. Front Cardiovasc Med 2021; 8:695206. [PMID: 34222385 PMCID: PMC8248804 DOI: 10.3389/fcvm.2021.695206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Cardiomyopathies (CMPs) due to myocytes involvement are among the leading causes of sudden adolescent death and heart failure. During the COVID-19 pandemic, there are limited data available on cardiac complications in patients with COVID-19, leading to severe outcomes. Methods: We conducted a systematic search in Pubmed/Medline, Web of Science, and Embase databases up to August 2020, for all relevant studies about COVID-19 and CMPs. Results: A total of 29 articles with a total number of 1460 patients were included. Hypertension, diabetes, obesity, hyperlipidemia, and ischemic heart disease were the most reported comorbidities among patients with COVID-19 and cardiomyopathy. In the laboratory findings, 21.47% of patients had increased levels of troponin. Raised D-dimer levels were also reported in all of the patients. Echocardiographic results revealed mild, moderate, and severe Left Ventricular (LV) dysfunction present in 17.13, 11.87, and 10% of patients, respectively. Conclusions: Cardiac injury and CMPs were common conditions in patients with COVID-19. Therefore, it is suggested that cardiac damage be considered in managing patients with COVID-19.
Collapse
Affiliation(s)
- Fatemeh Omidi
- Department of Cardiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyedeh Neda Kazemi
- Preventative Gynecology Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Tajbakhsh
- Anesthesiology Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Riazi
- Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Department of Pulmonary and Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ali Ansari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farima Khalili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Hadadi
- Department of Pulmonary and Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
195
|
Xu T, Zhou F, Xu C, Chen A, Huang S, Zhou H. The relationship between brachial-ankle pulse wave velocity and peripheral blood lymphocyte subsets in hypertensives: a cross-sectional study. J Hum Hypertens 2021; 36:651-658. [PMID: 34117347 DOI: 10.1038/s41371-021-00553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Arteriosclerosis is the common pathological basis of hypertension-related target organ damage, and pulse wave velocity (PWV) is commonly used to assess the degree of arterial stiffness. Previous studies have reported the correlation between peripheral blood inflammatory indicators and PWV in hypertensives, but few studies examined the role of immune cells in arteriosclerosis in the context of human hypertension. In order to enrich the understanding of this topic, we conducted a cross-sectional study on hospitalized hypertensives in Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology from January 2015 to February 2017 to investigate the relationship between brachial-ankle pulse wave velocity (baPWV) and peripheral blood lymphocyte subsets. Sixty-four eligible patients were enrolled in our study. The patients' blood pressure, height, body weight, and baPWV were collected, along with the lab results of their peripheral complete blood count, blood chemistry, and lymphocyte subsets. We studied the Spearman correlation between baPWV and lymphocyte subsets and other variables. We further used multivariable stepwise linear regression analysis and the results showed that baPWV was significantly correlated with age, height, systolic blood pressure, and the level of T lymphocytes (CD3+CD45+) in hypertensive patients (β = 8.77, P = 0.006; β = -17.50, P = 0.001; β = 6.70, P = 0.002, and β = -7.093, P = 0.024, respectively). According to our findings, baPWV was independently and negatively correlated with the level of peripheral blood T lymphocytes in hypertensives, and infiltration of T lymphocytes into the vessels wall may be a key part of the immune mechanism of arteriosclerosis in hypertension.
Collapse
Affiliation(s)
- Ting Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chang Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Benxi Central Hospital, Benxi, China
| | - Ailin Chen
- School of Information Systems & Technology Management, Business School, University of New South Wales, Sydney, NSW, Australia
| | - Shuaiwen Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Honglian Zhou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
196
|
Bruno AS, Lopes PDD, de Oliveira KCM, de Oliveira AK, de Assis Cau SB. Vascular Inflammation in Hypertension: Targeting Lipid Mediators Unbalance and Nitrosative Stress. Curr Hypertens Rev 2021; 17:35-46. [PMID: 31858899 DOI: 10.2174/1573402116666191220122332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
Arterial hypertension is a worldwide public health threat. High Blood Pressure (BP) is commonly associated with endothelial dysfunction, nitric oxide synthases (NOS) unbalance and high peripheral vascular resistance. In addition to those, inflammation has also been designated as one of the major components of BP increase and organ damage in hypertension. This minireview discusses vascular inflammatory triggers of high BP and aims to fill the existing gaps of antiinflammatory therapy of hypertension. Among the reasons discussed, enhanced prostaglandins rather than resolvins lipid mediators, immune cell infiltration and oxidative/nitrosative stress are pivotal players of BP increase within the inflammatory hypothesis. To address these inflammatory targets, this review also proposes new concepts in hypertension treatment with non-steroidal antiinflammatory drugs (NSAIDs), nitric oxide-releasing NSAIDs (NO-NSAIDs) and specialized proresolving mediators (SPM). In this context, the failure of NSAIDs in hypertension treatment seems to be associated with the reduction of endogenous NO bioavailability, which is not necessarily an effect of all drug members of this pharmacological class. For this reason, NO-releasing NSAIDs seem to be safer and more specific therapy to treat vascular inflammation in hypertension than regular NSAIDs.
Collapse
Affiliation(s)
- Alexandre S Bruno
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Patricia das Dores Lopes
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Karla C M de Oliveira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Anizia K de Oliveira
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Stefany B de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| |
Collapse
|
197
|
Radaeva OA, Simbirtsev AS, Kostina Y, Iskandiarova MS, Mashnina SV, Bessheynov DD, Negodnova EV, Kulyapkin VV. Changes in blood levels of IL1 family cytokines in patients with essential hypertension after having COVID-19. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogenetic progression mechanisms in the SARS-CoV-2–essential hypertension (EAH) system are more complex than interaction at the level of angiotensinconverting enzyme 2 (ACE2). The study was aimed to assess the dynamic changes of the IL1 members (IL1β, IL1α, IL1ra, IL18, IL18BP, IL37) blood levels in patients with EAH 10, 30, and 180 days after having COVID-19 in order to define cytokine-mediated mechanisms of EAH progression during the period following infection. The study involved four groups of patients: with a history of EAH and COVID-19 (pneumonia/no pneumonia), with a history of COVID-19 (pneumonia/no pneumonia) and no EAH. Cytokine levels were determined by enzyme immunoassay. The study results demonstrate the prolonged proinflammatory immune response during the period following infection in patients with EAH (retaining higher levels of IL1β, IL1α, and IL18 on days 10, 30, and 180 after recovery (р < 0.001) compared to levels measured prior to SARS-CoV-2 infection). In the group with no EAH, the balance of assayed cytokines was restored on day 30 of follow-up. The two-fold increase of blood IL18 levels in patients, having a history of EAH and COVID-19 and showing no increase in the IL18ВР levels after 30 days of follow up compared to the values measured prior to infection, is associated with cardiovascular complications occurring during the first six months of follow-up. This makes it possible to hypothesize the importance of these immunoregulatory peptides for the pathogenesis of complications and enhances the relevance of further scientific research.
Collapse
Affiliation(s)
- OA Radaeva
- National Research Mordovia State University, Saransk, Russia
| | - AS Simbirtsev
- State Research Institute of Highly Pure Biopreparations, FMBA, St. Petersburg, Russia
| | - YuA Kostina
- National Research Mordovia State University, Saransk, Russia
| | - MS Iskandiarova
- National Research Mordovia State University, Saransk, Russia
| | - SV Mashnina
- National Research Mordovia State University, Saransk, Russia
| | | | - EV Negodnova
- National Research Mordovia State University, Saransk, Russia
| | - VV Kulyapkin
- National Research Mordovia State University, Saransk, Russia
| |
Collapse
|
198
|
Trump S, Lukassen S, Anker MS, Chua RL, Liebig J, Thürmann L, Corman VM, Binder M, Loske J, Klasa C, Krieger T, Hennig BP, Messingschlager M, Pott F, Kazmierski J, Twardziok S, Albrecht JP, Eils J, Hadzibegovic S, Lena A, Heidecker B, Bürgel T, Steinfeldt J, Goffinet C, Kurth F, Witzenrath M, Völker MT, Müller SD, Liebert UG, Ishaque N, Kaderali L, Sander LE, Drosten C, Laudi S, Eils R, Conrad C, Landmesser U, Lehmann I. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat Biotechnol 2021; 39:705-716. [PMID: 33361824 DOI: 10.1038/s41587-020-00796-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.
Collapse
Affiliation(s)
- Saskia Trump
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Soeren Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus S Anker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Liebig
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Loreen Thürmann
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Binder
- Research group 'Dynamics of early viral infection and the innate antiviral response' (division F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christina Klasa
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Teresa Krieger
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bianca P Hennig
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marey Messingschlager
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Twardziok
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Philipp Albrecht
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Hadzibegovic
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Alessia Lena
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thore Bürgel
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Steinfeldt
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Maria Theresa Völker
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany
| | - Sarah Dorothea Müller
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Gerd Liebert
- Institute of Virology, University Hospital Leipzig, Leipzig, Germany
| | - Naveed Ishaque
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Laudi
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany.
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany. .,Health Data Science Unit, Medical Faculty and BioQuant, University of Heidelberg, Heidelberg, Germany.
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| | - Irina Lehmann
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
199
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
200
|
Pan K, Jiang S, Du X, Zeng X, Zhang J, Song L, Lei L, Zhou J, Kan H, Sun Q, Xie Y, Dong C, Zhao J. Parental PM 2 .5 exposure changes Th17/Treg cells in offspring, is associated with the elevation of blood pressure. ENVIRONMENTAL TOXICOLOGY 2021; 36:1152-1161. [PMID: 33605513 DOI: 10.1002/tox.23114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological evidences have indicated that fine particulate matter (PM2.5 ) exposure is associated with the occurrence and development of hypertension. The present study aims to explore the effects of parental PM2.5 exposure on blood pressure in offspring and elucidate the potential mechanism. The parental male and female C57BL/6 mice were exposed to concentrated PM2.5 or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) for 16 weeks. At week 12, the mice were assigned to breed offspring. The male offspring mice were further exposed to PM2.5 or FA as above method. During the parental exposure, the average PM2.5 concentration was 133.7 ± 53.32 μg/m3 in PM chamber, whereas the average concentration in FA chamber was 9.4 ± 0.23 μg/m3 . Similarly, during the offspring exposure, the average concentration in PM and FA chamber were 100.76 ± 26.97 μg/m3 and 9.15 ± 0.15 μg/m3 , respectively. The PM2.5 -exposed offspring mice displayed the elevation of blood pressure, the increase of angiotensin II (Ang II), the decrease of angiotensin converting enzyme 2 (ACE2) and Ang (1-7) in serum when compared with the FA-exposed offspring mice. The similar results displayed in the proteins expression of ACE2, AT1R, and Ang (1-7) in vessel and kidney. More importantly, parental PM exposure further induced the increase in serous Ang II and the protein expression of AT1R in vessel, but decrease in ACE2 and Ang (1-7). The serous Ang II was positively associated with splenic T helper type 17 (Th17) cell population and serous IL (interleukin)-17A, but negatively associated with T regular (Treg) cell population and serous IL-10. The results suggested that parental air pollution exposure might induce the elevation of offspring blood pressure via mediate Th17- and Treg-related immune microenvironment.
Collapse
Affiliation(s)
- Kun Pan
- Department of Infectious Disease Control, Center for Disease Control and Prevention of Shangcheng in Hangzhou, Hangzhou, Zhejiang, China
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Liying Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Ji Zhou
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Dong
- Administrative office, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| |
Collapse
|