151
|
Selthofer-Relatić K, Kibel A, Delić-Brkljačić D, Bošnjak I. Cardiac Obesity and Cardiac Cachexia: Is There a Pathophysiological Link? J Obes 2019; 2019:9854085. [PMID: 31565432 PMCID: PMC6745151 DOI: 10.1155/2019/9854085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a risk factor for cardiometabolic and vascular diseases like arterial hypertension, diabetes mellitus type 2, dyslipidaemia, and atherosclerosis. A special role in obesity-related syndromes is played by cardiac visceral obesity, which includes epicardial adipose tissue and intramyocardial fat, leading to cardiac steatosis; hypertensive heart disease; atherosclerosis of epicardial coronary artery disease; and ischemic cardiomyopathy, cardiac microcirculatory dysfunction, diabetic cardiomyopathy, and atrial fibrillation. Cardiac expression of these changes in any given patient is unique and multimodal, varying in clinical settings and level of expressed changes, with heart failure development depending on pathophysiological mechanisms with preserved, midrange, or reduced ejection fraction. Progressive heart failure with misbalanced metabolic and catabolic processes will change muscle, bone, and fat mass and function, with possible changes in the cardiac fat state from excessive accumulation to reduction and cardiac cachexia with a worse prognosis. The question we address is whether cardiac obesity or cardiac cachexia is to be more feared.
Collapse
Affiliation(s)
- K. Selthofer-Relatić
- Department for Cardiovascular Disease, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Department for Internal Medicine, Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - A. Kibel
- Department for Cardiovascular Disease, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Department for Physiology and Immunology, Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - D. Delić-Brkljačić
- Department for Internal Medicine, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Clinic for Cardiology, University Hospital “Sestre Milosrdnice”, Vinogradska Cesta 29, 10000 Zagreb, Croatia
| | - I. Bošnjak
- Department for Cardiovascular Disease, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
152
|
Cai H, Chen S, Liu J, He Y. An attempt to reverse cardiac lipotoxicity by aerobic interval training in a high-fat diet- and streptozotocin-induced type 2 diabetes rat model. Diabetol Metab Syndr 2019; 11:43. [PMID: 31249632 PMCID: PMC6567651 DOI: 10.1186/s13098-019-0436-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is an important risk factor for cardiovascular disease. Aerobic interval training (AIT) has been recommended to patients as a non-pharmacological strategy to manage DM. However, little is known about whether AIT intervention at the onset of DM will reverse the process of diabetic cardiomyopathy (DCM). In this study, we sought to evaluate whether AIT can reverse the process of DCM and explore the underlying mechanisms. METHODS Fifty Wistar rats were randomly divided into a control group (CON), DCM group (DCM) and AIT intervention group (AIT). A high-fat diet and streptozotocin (STZ) were used to induce diabetes in rats in the DCM group and AIT group. Rats in the AIT group were subjected to an 8-week AIT intervention. Fasting blood glucose (FBG), lipid profiles and insulin levels were measured. Haematoxylin and eosin (HE) staining and oil red O staining were used to identify cardiac morphology and lipid accumulation, respectively. Serum BNP levels and cardiac BNP mRNA expression were measured to ensure the safety of the AIT intervention. Free fatty acid (FFA) and diacylglycerol (DAG) concentrations were analysed by enzymatic methods. AMPK, p-AMPK, FOXO1, CD36 and PPARα gene and protein expression were detected by RT-PCR and Western blotting. RESULTS AIT intervention significantly reduced rat serum cardiovascular disease risk factors in DCM rats (P < 0.05). The safety of AIT intervention was illustrated by reduced serum BNP levels and cardiac BNP mRNA expression (P < 0.05) after AIT intervention in DCM rats histological analysis and FFA and DAG concentrations revealed that AIT intervention reduced the accumulation of lipid droplets within cardiomyocytes and alleviated cardiac lipotoxicity (P < 0.05). CD36 and PPARα gene and protein expression were elevated in the DCM group, and these increases were reduced by AIT intervention (P < 0.01). The normalized myocardial lipotoxicity was due to increased expression of phosphorylated AMPK and reduced FOXO1 expression after AIT intervention. CONCLUSION AIT intervention may alleviate cardiac lipotoxicity and reverse the process of DCM through activation of the AMPK-FOXO1 pathway.
Collapse
Affiliation(s)
- Huan Cai
- Institute of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Jingqin Liu
- Department of Endocrinology, NO. 1 Hospital of Baoding, Baoding, China
| | - Yuxiu He
- Institute of Physical Education, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
153
|
AbdelMassih AF, Attia M, Ismail MM, Samir M. Insulin resistance linked to subtle myocardial dysfunction in normotensive Turner syndrome young patients without structural heart diseases. J Pediatr Endocrinol Metab 2018; 31:1355-1361. [PMID: 30433872 DOI: 10.1515/jpem-2018-0207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023]
Abstract
Background Turner syndrome (TS) patients have increased cardiovascular risk. This cardiovascular risk is famously attributed to structural abnormalities of the left side of the heart such as aortic stenosis and aortic coarctation. However, due to insulin resistance and subsequent pathogenic mechanisms, normotensive TS patients without structural abnormalities may develop varying degrees of myocardial dysfunction. The aim of this research was to examine the role of speckle tracking echocardiography in early detection of Turner cardiomyopathy and to correlate this myocardial dysfunction with measures of insulin resistance. Methods This cross-sectional case control study included 30 children with TS and 30 age-matched healthy controls. TS patients were excluded if: hypertensive, with major structural abnormalities of the heart or other systemic diseases that may affect myocardial function. Conventional speckle tracking echocardiography and glucose-insulin ratio were performed for all study subjects. Results Routine echocardiographic parameters of left ventricular systolic function were similar in cases and controls while global longitudinal and circumferential strain (GLS and GCS) were lower in patients with TS than controls: (-13.2±1.1 vs. -18.3±2.4, p-value<0.000) and (-11.3±1.1 vs. -16.3±2.1, p-value<0.000), respectively. Fasting glucose:insulin ratio (FGIR) proved to be the best predictor of myocardial dysfunction in TS patients by multivariate analysis. Conclusions This study points towards the potential role of two-dimensional (2D) speckle tracking echocardiography in early detection of subtle systolic myocardial dysfunction in TS patients. It also points towards the implication of insulin resistance in precipitation of the observed dysfunction in TS patients.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Lecturer of Pediatrics, Pediatric Cardiology, Pediatrics' Department, Division of Cardiology, Faculty of Medicine, Cairo University, Manial Street, Cario, Egypt.,Consultant of Pediatric Cardiology, Children Cancer Hospital 57357, Cairo, Egypt, Phone: 0223647655
| | - Mona Attia
- Pediatrics' Department, Division of Endocrinology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed M Ismail
- Pediatrics' Department, Division of Endocrinology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Samir
- Pediatrics' Department, Division of Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
154
|
Yamamoto T, Endo J, Kataoka M, Matsuhashi T, Katsumata Y, Shirakawa K, Yoshida N, Isobe S, Moriyama H, Goto S, Yamashita K, Nakanishi H, Shimanaka Y, Kono N, Shinmura K, Arai H, Fukuda K, Sano M. Decrease in membrane phospholipids unsaturation correlates with myocardial diastolic dysfunction. PLoS One 2018; 13:e0208396. [PMID: 30533011 PMCID: PMC6289418 DOI: 10.1371/journal.pone.0208396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 11/19/2022] Open
Abstract
Increase in saturated fatty acid (SFA) content in membrane phospholipids dramatically affects membrane properties and cellular functioning. We sought to determine whether exogenous SFA from the diet directly affects the degree of membrane phospholipid unsaturation in adult hearts and if these changes correlate with contractile dysfunction. Although both SFA-rich high fat diets (HFDs) and monounsaturated FA (MUFA)-rich HFDs cause the same degree of activation of myocardial FA uptake, triglyceride turnover, and mitochondrial FA oxidation and accumulation of toxic lipid intermediates, the former induced more severe diastolic dysfunction than the latter, which was accompanied with a decrease in membrane phospholipid unsaturation, induction of unfolded protein response (UPR), and a decrease in the expression of Sirt1 and stearoyl-CoA desaturase-1 (SCD1), catalyzing the conversion of SFA to MUFA. When the SFA supply in the heart overwhelms the cellular capacity to use it for energy, excess exogenous SFA channels to membrane phospholipids, leading to UPR induction, and development of diastolic dysfunction.
Collapse
Affiliation(s)
- Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Naohiro Yoshida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Yamashita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
155
|
Brittain EL, Talati M, Fortune N, Agrawal V, Meoli DF, West J, Hemnes AR. Adverse physiologic effects of Western diet on right ventricular structure and function: role of lipid accumulation and metabolic therapy. Pulm Circ 2018; 9:2045894018817741. [PMID: 30451070 PMCID: PMC6295706 DOI: 10.1177/2045894018817741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the impact of metabolic syndrome (MS) on right ventricular (RV) structure and function. We hypothesized that mice fed a Western diet (WD) would develop RV lipid accumulation and impaired RV function, which would be ameliorated with metformin. Male C57/Bl6 mice were fed a WD or standard rodent diet (SD) for eight weeks. A subset of mice underwent pulmonary artery banding (PAB). Treated mice were given 2.5 g/kg metformin mixed in food. Invasive hemodynamics, histology, Western, and quantitative polymerase chain reaction (qPCR) were performed using standard techniques. Lipid content was detected by Oil Red O staining. Mice fed a WD developed insulin resistance, RV hypertrophy, and higher RV systolic pressure compared with SD controls. Myocardial lipid accumulation was greater in the WD group and disproportionately affected the RV. These structural changes were associated with impaired RV diastolic function in WD mice. PAB-WD mice had greater RV hypertrophy, increased lipid deposition, and lower RV ejection fraction compared with PAB SD controls. Compared to untreated mice, metformin lowered HOMA-IR and prevented weight gain in mice fed a WD. Metformin reduced RV systolic pressure, prevented RV hypertrophy, and reduced RV lipid accumulation in both unstressed stressed conditions. RV diastolic function improved in WD mice treated with metformin. WD in mice leads to an elevation in pulmonary pressure, RV diastolic dysfunction, and disproportionate RV steatosis, which are exacerbated by PAB. Metformin prevents the deleterious effects of WD on RV function and myocardial steatosis in this model of the metabolic syndrome.
Collapse
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,2 Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megha Talati
- 3 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niki Fortune
- 3 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Vineet Agrawal
- 1 Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David F Meoli
- 1 Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James West
- 3 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anna R Hemnes
- 3 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
156
|
Fitzpatrick J, Sozio SM, Jaar BG, McAdams-DeMarco MA, Estrella MM, Tereshchenko LG, Monroy-Trujillo JM, Parekh RS. Association of Abdominal Adiposity with Cardiovascular Mortality in Incident Hemodialysis. Am J Nephrol 2018; 48:406-414. [PMID: 30428465 DOI: 10.1159/000494281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The risk of cardiovascular mortality is high among adults with end-stage renal disease (ESRD) undergoing hemodialysis. Waist-to-hip ratio (WHR), a metric of abdominal adiposity, is a predictor of cardiovascular disease (CVD) and mortality in the general population; however, no studies have examined the association with CVD mortality, particularly sudden cardiac death (SCD), in incident hemodialysis. METHODS Among 379 participants incident (< 6 months) to hemodialysis enrolled in the Predictors of Arrhythmic and Cardiovascular Risk in ESRD study, we evaluated associations between WHR and risk of CVD mortality, SCD, and non-CVD mortality in Cox proportional hazards regression models. RESULTS At study enrollment, mean age was 55 years with 41% females, 73% African Americans, and 57% diabetics. Mean body mass index was 29.3 kg/m2, and mean WHR was 0.95. During a median follow-up time of 2.5 years, there were 35 CVD deaths, 15 SCDs, and 48 non-CVD deaths. Every 0.1 increase in WHR was associated with higher risk (hazard ratio [95% CI]) of CVD mortality (1.75 [1.06-2.86]) and SCD (2.45 [1.20-5.02]), but not non-CVD mortality (0.93 [0.59-1.45]), independently of demographics, body mass index, comorbidities, inflammation, and traditional CVD risk factors. CONCLUSIONS WHR is significantly associated with CVD mortality including SCD, independently of other CVD risk factors in incident hemodialysis. This simple, easily obtained bedside metric may be useful in dialysis patients for CVD risk stratification.
Collapse
Affiliation(s)
- Jessica Fitzpatrick
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen M Sozio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, USA
| | - Bernard G Jaar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Nephrology Center of Maryland, Baltimore, Maryland, USA
| | - Mara A McAdams-DeMarco
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco and Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA
| | - Larisa G Tereshchenko
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Ontario, USA
- Division of Cardiology, Department of Medicine, Oregon Health and Science University, Portland, Ontario, USA
| | - Jose M Monroy-Trujillo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rulan S Parekh
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA,
- Division of Nephrology, Department of Pediatrics and Medicine, The Hospital for Sick Children, University Health Network and University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
157
|
Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018; 114:2. [PMID: 30443826 PMCID: PMC6244639 DOI: 10.1007/s00395-018-0711-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increases the risk of heart failure independent of co-existing hypertension and coronary artery disease. Although several molecular mechanisms for the development of diabetic cardiomyopathy have been identified, they are incompletely understood. The pathomechanisms are multifactorial and as a consequence, no causative treatment exists at this time to modulate or reverse the molecular changes contributing to accelerated cardiac dysfunction in diabetic patients. Numerous animal models have been generated, which serve as powerful tools to study the impact of type 1 and type 2 diabetes on the heart. Despite specific limitations of the models generated, they mimic various perturbations observed in the diabetic myocardium and continue to provide important mechanistic insight into the pathogenesis underlying diabetic cardiomyopathy. This article reviews recent studies in both diabetic patients and in these animal models, and discusses novel hypotheses to delineate the increased incidence of heart failure in diabetic patients.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
158
|
Barroso MV, Graça-Reis A, Cattani-Cavalieri I, Gitirana LB, Valenca SS, Lanzetti M. Mate tea reduces high fat diet-induced liver and metabolic disorders in mice. Biomed Pharmacother 2018; 109:1547-1555. [PMID: 30551407 DOI: 10.1016/j.biopha.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD)-induced obesity is a worldwide health problem and can cause lipid accumulation in the liver. We evaluated the hepatoprotective effect of mate tea treatment in mice submitted to an HFD. C57BL/6 mice were fed an HFD for 13 weeks with and without mate tea. A separate group of mice was treated with fenofibrate as a positive control (a regular drug for lipid disorders). Histological analyses, glucose tolerance tests (GTT), and quantification of mediators related to lipid peroxidation, oxidative stress and blood biomarkers for lipid profile were performed. The weight of animals and major organs related to hepatic steatosis was determined, and proinflammatory cytokines and the participation of the Nrf2 pathway and adiponectin were evaluated. Mate tea prevented the accumulation of lipid droplets in hepatocytes as well as weight gain in animals submitted to the HFD. Mate tea treatment also prevented increases in the liver weight, heart weight and amount of visceral and subcutaneous white adipose tissue. Mate tea was able to prevent the deregulation of glucose uptake, as evaluated by GTT, and improved the indicators of oxidative stress, such as nitrite levels, catalase activity, and oxidative damage, as evaluated by protein carbonylation and the MDA levels. Mate tea had an anti-inflammatory effect, preventing the increase of IL-1β and KC and upregulating the expression of Nrf2. Mate tea prevented insulin increase and HDL cholesterol decrease but did not affect total cholesterol or triglycerides levels. Treatment also prevented adiponectin increase. Mate tea may be a good resource to reduce hepatic steatosis in the future since it has anti-diabetic, anti-inflammatory and antioxidant effects, which prevent the accumulation of fat in the liver.
Collapse
Affiliation(s)
- Marina Valente Barroso
- Instituto de Microbiologia Paulo de Goes, Univeridade Federal do Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Graça-Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lycia Brito Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Santos Valenca
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
159
|
Sletten AC, Peterson LR, Schaffer JE. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med 2018; 284:478-491. [PMID: 29331057 PMCID: PMC6045461 DOI: 10.1111/joim.12728] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental and socioeconomic changes over the past thirty years have contributed to a dramatic rise in the worldwide prevalence of obesity. Heart disease is amongst the most serious health risks of obesity, with increases in both atherosclerotic coronary heart disease and heart failure among obese individuals. In this review, we focus on primary myocardial alterations in obesity that include hypertrophic remodelling and diastolic dysfunction. Obesity-associated perturbations in myocardial and systemic lipid metabolism are important contributors to cardiovascular complications of obesity. Accumulation of excess lipid in nonadipose cells of the cardiovascular system can cause cell dysfunction and cell death, a process known as lipotoxicity. Lipotoxicity has been modelled in mice using high-fat diet feeding, inbred lines with mutations in leptin receptor signalling, and in genetically engineered mice with enhanced myocardial fatty acid uptake, altered lipid droplet homoeostasis or decreased cardiac fatty acid oxidation. These studies, along with findings in cell culture model systems, indicate that the molecular pathophysiology of lipid overload involves endoplasmic reticulum stress, alterations in autophagy, de novo ceramide synthesis, oxidative stress, inflammation and changes in gene expression. We highlight recent advances that extend our understanding of the impact of obesity and altered lipid metabolism on cardiac function.
Collapse
Affiliation(s)
- A C Sletten
- Department of Medicine, Washington University, St Louis, MO, USA
| | - L R Peterson
- Department of Medicine, Washington University, St Louis, MO, USA
| | - J E Schaffer
- Department of Medicine, Washington University, St Louis, MO, USA
| |
Collapse
|
160
|
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol 2018; 9:1514. [PMID: 30425649 PMCID: PMC6218509 DOI: 10.3389/fphys.2018.01514] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and the associated complications represent a global burden on human health and economics. Cardiovascular diseases are the leading cause of death in diabetic patients, who have a 2–5 times higher risk of developing heart failure than age-matched non-diabetic patients, independent of other comorbidities. Diabetic cardiomyopathy is defined as the presence of abnormal cardiac structure and performance in the absence of other cardiac risk factors, such coronary artery disease, hypertension, and significant valvular disease. Hyperglycemia, hyperinsulinemia, and insulin resistance mediate the pathological remodeling of the heart, characterized by left ventricle concentric hypertrophy and perivascular and interstitial fibrosis leading to diastolic dysfunction. A change in the metabolic status, impaired calcium homeostasis and energy production, increased inflammation and oxidative stress, as well as an accumulation of advanced glycation end products are among the mechanisms implicated in the pathogenesis of diabetic cardiomyopathy. Despite a growing interest in the pathophysiology of diabetic cardiomyopathy, there are no specific guidelines for diagnosing patients or structuring a treatment strategy in clinical practice. Anti-hyperglycemic drugs are crucial in the management of diabetes by effectively reducing microvascular complications, preventing renal failure, retinopathy, and nerve damage. Interestingly, several drugs currently in use can improve cardiac health beyond their ability to control glycemia. GLP-1 receptor agonists and sodium-glucose co-transporter 2 inhibitors have been shown to have a beneficial effect on the cardiovascular system through a direct effect on myocardium, beyond their ability to lower blood glucose levels. In recent years, great improvements have been made toward the possibility of modulating the expression of specific cardiac genes or non-coding RNAs in vivo for therapeutic purpose, opening up the possibility to regulate the expression of key players in the development/progression of diabetic cardiomyopathy. This review summarizes the pathogenesis of diabetic cardiomyopathy, with particular focus on structural and molecular abnormalities occurring during its progression, as well as both current and potential future therapies.
Collapse
Affiliation(s)
- Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
161
|
Lee MMY, McMurray JJV, Lorenzo-Almorós A, Kristensen SL, Sattar N, Jhund PS, Petrie MC. Diabetic cardiomyopathy. Heart 2018; 105:337-345. [PMID: 30337334 DOI: 10.1136/heartjnl-2016-310342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Matthew Meng Yang Lee
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - John J V McMurray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ana Lorenzo-Almorós
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciónes Sanitarias-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | - Søren Lund Kristensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Pardeep S Jhund
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Mark C Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
162
|
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic Effects of Metformin in the Failing Heart. Int J Mol Sci 2018; 19:ijms19102869. [PMID: 30248910 PMCID: PMC6213955 DOI: 10.3390/ijms19102869] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence shows that metformin is an insulin-sensitizing antidiabetic drug widely used in the treatment of type 2 diabetes mellitus (T2DM), which can exert favorable effects on cardiovascular risk and may be safely used in patients with heart failure (HF), and even able to reduce the incidence of HF and to reduce HF mortality. In failing hearts, metformin improves myocardial energy metabolic status through the activation of AMP (adenosine monophosphate)-activated protein kinase (AMPK) and the regulation of lipid and glucose metabolism. By increasing nitric oxide (NO) bioavailability, limiting interstitial fibrosis, reducing the deposition of advanced glycation end-products (AGEs), and inhibiting myocardial cell apoptosis metformin reduces cardiac remodeling and hypertrophy, and thereby preserves left ventricular systolic and diastolic functions. While a lot of preclinical and clinical studies showed the cardiovascular safety of metformin therapy in diabetic patients and HF, to confirm observed benefits, the specific large-scale trials configured for HF development in diabetic patients as a primary endpoints are necessary.
Collapse
Affiliation(s)
- Aleksandra Dziubak
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Andrzej Wojtak
- Department of Vascular Surgery, Medical University of Lubin, 20-090 Lublin, Poland.
| | - Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
163
|
Lovric A, Granér M, Bjornson E, Arif M, Benfeitas R, Nyman K, Ståhlman M, Pentikäinen MO, Lundbom J, Hakkarainen A, Sirén R, Nieminen MS, Lundbom N, Lauerma K, Taskinen MR, Mardinoglu A, Boren J. Characterization of different fat depots in NAFLD using inflammation-associated proteome, lipidome and metabolome. Sci Rep 2018; 8:14200. [PMID: 30242179 PMCID: PMC6155005 DOI: 10.1038/s41598-018-31865-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as a liver manifestation of metabolic syndrome, accompanied with excessive fat accumulation in the liver and other vital organs. Ectopic fat accumulation was previously associated with negative effects at the systemic and local level in the human body. Thus, we aimed to identify and assess the predictive capability of novel potential metabolic biomarkers for ectopic fat depots in non-diabetic men with NAFLD, using the inflammation-associated proteome, lipidome and metabolome. Myocardial and hepatic triglycerides were measured with magnetic spectroscopy while function of left ventricle, pericardial and epicardial fat, subcutaneous and visceral adipose tissue were measured with magnetic resonance imaging. Measured ectopic fat depots were profiled and predicted using a Random Forest algorithm, and by estimating the Area Under the Receiver Operating Characteristic curves. We have identified distinct metabolic signatures of fat depots in the liver (TAG50:1, glutamate, diSM18:0 and CE20:3), pericardium (N-palmitoyl-sphinganine, HGF, diSM18:0, glutamate, and TNFSF14), epicardium (sphingomyelin, CE20:3, PC38:3 and TNFSF14), and myocardium (CE20:3, LAPTGF-β1, glutamate and glucose). Our analyses highlighted non-invasive biomarkers that accurately predict ectopic fat depots, and reflect their distinct metabolic signatures in subjects with NAFLD.
Collapse
Affiliation(s)
- Alen Lovric
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Marit Granér
- Heart and Lung Center, Division of Cardiology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Elias Bjornson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Rui Benfeitas
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Kristofer Nyman
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markku O Pentikäinen
- Heart and Lung Center, Division of Cardiology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Jesper Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Reijo Sirén
- Department of General Practice and Primary Health Care, Health Care Centre of City of Helsinki and University of Helsinki, Helsinki, Finland
| | - Markku S Nieminen
- Heart and Lung Center, Division of Cardiology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Kirsi Lauerma
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Marja-Riitta Taskinen
- Heart and Lung Center, Division of Cardiology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
164
|
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018; 29:749-791. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Type 2 diabetes mellitus and hyperglycemia can lead to the development of comorbidities such as atherosclerosis and microvascular/macrovascular complications. Both type 2 diabetes and its complications are related to mitochondrial dysfunction and oxidative stress. Type 2 diabetes is also a chronic inflammatory condition that leads to inflammasome activation and the release of proinflammatory mediators, including interleukins (ILs) IL-1β and IL-18. Moreover, sirtuins are energetic sensors that respond to metabolic load, which highlights their relevance in metabolic diseases, such as type 2 diabetes. Recent Advances: Over the past decade, great progress has been made in clarifying the signaling events regulated by mitochondria, inflammasomes, and sirtuins. Nod-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome, and the generation of oxidant species seems to be critical for its activation. NLRP3 inflammasome activation and altered sirtuin levels have been observed in type 2 diabetes. Critical Issue: Despite increasing evidence of the relationship between the NLRP3 inflammasome, mitochondrial dysfunction, and oxidative stress and of their participation in type 2 diabetes physiopathology, therapeutic strategies to combat type 2 diabetes that target NLRP3 inflammasome and sirtuins are yet to be consolidated. FUTURE DIRECTIONS In this review article, we attempt to provide an overview of the existing literature concerning the crosstalk between mitochondrial impairment and the inflammasome, with particular attention to cellular and mitochondrial redox metabolism and the potential role of the NLRP3 inflammasome and sirtuins in the pathogenesis of type 2 diabetes. In addition, we discuss potential targets for therapeutic intervention based on these molecular interactions. Antioxid. Redox Signal. 29, 749-791.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Nadezda Apostolova
- 2 Department of Pharmacology, University of Valencia , Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville , Seville, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain .,4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain .,5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
165
|
Kiefer LS, Fabian J, Rospleszcz S, Lorbeer R, Machann J, Storz C, Kraus MS, Schlett CL, Roemer F, Wintermeyer E, Rathmann W, Nikolaou K, Peters A, Bamberg F. Assessment of the degree of abdominal myosteatosis by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from the general population. Eur J Radiol 2018; 105:261-268. [DOI: 10.1016/j.ejrad.2018.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023]
|
166
|
Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:E2034. [PMID: 30011790 PMCID: PMC6073816 DOI: 10.3390/ijms19072034] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
NASH is becoming increasingly common worldwide because of the growing global prevalence of obesity and consequently NAFLD. Unfortunately, the mechanism of progression of NAFLD to NASH and then cirrhosis is not completely understood. Several factors, including insulin resistance, inflammation, oxidative stress, lipotoxicity, and bile acid (BA) toxicity, have been reported to be associated with NASH progression. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, which is caused by the ectopic accumulation of triglyceride-derived toxic metabolites and the subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. Adipose tissue (AT), especially visceral AT, comprises multiple cell populations that produce adipokines and insulin-like growth factor, plus macrophages and other immune cells that stimulate the development of lipotoxic liver disease. These biomolecules have been recently linked with many digestive diseases and gastrointestinal malignancies such as hepatocellular carcinoma. This made us question what role lipotoxicity has in the natural history of liver fibrosis. Therefore, this review focuses on the close relationship between AT and NASH. A good comprehension of the pathways that are related to dysregulated AT, metabolic dysfunction, and hepatic lipotoxicity will result in the development of prevention strategies and promising therapeutics for patients with NASH.
Collapse
Affiliation(s)
| | | | | | - Jessica P Hwang
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center "20 Noviembre", 03229 Mexico City, Mexico.
| | | |
Collapse
|
167
|
Abstract
INTRODUCTION Obesity is recognized as a risk factor for cardiovascular disease, expending independent adverse effects on the cardiovascular system. This relationship is complex due to several associations with cardiovascular disease risk factors/markers such as hypertension, dyslipidemia, insulin resistance/dysglycemia, or type 2 diabetes mellitus. Obesity induces a variety of cardiovascular system structural adaptations, from subclinical myocardial dysfunction to severe left ventricular systolic heart failure. Abnormalities in cardiac metabolism and subsequent cardiac energy, have been proposed as major contributors to obesity-related cardiovascular disease. Ectopic fat depots play an important role in several of the hypotheses postulated to explain the association between obesity, cardiac metabolism and cardiac dysfunction. AREAS COVERED In this review, we addressed with contemporary studies how obesity-associated metabolic conditions and ectopic cardiac fat accumulation, translate into cardiac energy metabolism disturbances that may lead to adverse effects on the cardiovascular system. EXPERT COMMENTARY Obesity and ectopic fat accumulation has long been related to metabolic diseases and adverse cardiovascular outcomes. Recent imaging advances have just started to address the complex interplays between obesity, ectopic fat depots, cardiac metabolism and the risk of obesity-related cardiovascular disease. A better comprehension of these obesity-associated metabolic disturbances will lead to earlier detection of patients at increased risk of cardiovascular disease and to the development of novel therapeutic metabolic targets to treat a wide variety of cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-Eve Piché
- a Quebec Heart and Lung Institute , Laval University , Quebec , Canada
- b Faculty of Medicine , Laval University , Quebec , Canada
| | - Paul Poirier
- a Quebec Heart and Lung Institute , Laval University , Quebec , Canada
- c Faculty of Pharmacy , Laval University , Quebec , Canada
| |
Collapse
|
168
|
Levelt E, Gulsin G, Neubauer S, McCann GP. MECHANISMS IN ENDOCRINOLOGY: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol 2018; 178:R127-R139. [PMID: 29440374 PMCID: PMC5863473 DOI: 10.1530/eje-17-0724] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022]
Abstract
Heart failure is a major cause of morbidity and mortality in type 2 diabetes. Type 2 diabetes contributes to the development of heart failure through a variety of mechanisms, including disease-specific myocardial structural, functional and metabolic changes. This review will focus on the contemporary contributions of state of the art non-invasive technologies to our understanding of diabetic cardiomyopathy, including data on cardiac disease phenotype, cardiac energy metabolism and energetic deficiency, ectopic and visceral adiposity, diabetic liver disease, metabolic modulation strategies and cardiovascular outcomes with new classes of glucose-lowering therapies.
Collapse
Affiliation(s)
- Eylem Levelt
- British Heart Foundation Cardiovascular Research CentreUniversity of Leicester, Glenfield Hospital, Leicester, UK
- (E Levelt is now at Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science DepartmentLeeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK)
- Correspondenceshould be addressed to E Levelt;
| | - Gaurav Gulsin
- British Heart Foundation Cardiovascular Research CentreUniversity of Leicester, Glenfield Hospital, Leicester, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of Oxford, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Gerry P McCann
- British Heart Foundation Cardiovascular Research CentreUniversity of Leicester, Glenfield Hospital, Leicester, UK
| |
Collapse
|
169
|
The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function. Sci Rep 2018; 8:4983. [PMID: 29563512 PMCID: PMC5862879 DOI: 10.1038/s41598-018-23223-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.
Collapse
|
170
|
Luo J, Xu L, Li J, Zhao S. Effects and mechanisms of apolipoprotein A-V on the regulation of lipid accumulation in cardiomyocytes. Lipids Health Dis 2018. [PMID: 29530023 PMCID: PMC5848552 DOI: 10.1186/s12944-018-0692-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Apolipoprotein (apo) A-V is a key regulator of triglyceride (TG) metabolism. We investigated effects of apoA-V on lipid metabolism in cardiomyocytes in this study. Methods We first examined whether apoA-V can be taken up by cardiomyocytes and whether low density lipoprotein receptor family members participate in this process. Next, triglyceride (TG) content and lipid droplet changes were detected at different concentrations of apoA-V in normal and lipid-accumulation cells in normal and obese animals. Finally, we tested the levels of fatty acids (FAs) taken up into cardiomyocytes and lipid secretion through [14C]-oleic acid. Results Our results show that heart tissue has apoA-V protein, and apoA-V is taken up by cardiomyocytes. When HL-1 cells were transfected with low density lipoprotein receptor (LDLR)-related protein 1(LRP1) siRNA, apoA-V intake decreased by 53% (P<0.05), while a 37% lipid accumulation in HL-1 cells remain unchanged. ApoA-V localized to the cytoplasm and was associated with lipid droplets in HL-1 cells. A 1200 and 1800 ng/mL apoA-V intervention decreased TG content by 28% and 45% in HL-1 cells, respectively and decreased TG content by 39% in mouse heart tissue (P<0.05). However, apoA-V had no effects on TG content in either normal HL-1 cells or mice. The levels of FAs taken up into cardiomyocytes decreased by 43% (P < 0.05), and the levels of TG and cholesterol ester secretion increased by 1.2-fold and 1.6-fold, respectively (P < 0.05). Conclusion ApoA-V is a novel regulator of lipid metabolism in cardiomyocytes.
Collapse
Affiliation(s)
- Jun Luo
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Li Xu
- Department of The Second Chest Medicine, The Affiliated Cancer Hospital of Xiangya School of medicine, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Shuiping Zhao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
171
|
Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart Failure With Preserved Ejection Fraction in Diabetes: Mechanisms and Management. Can J Cardiol 2018; 34:632-643. [PMID: 29731023 DOI: 10.1016/j.cjca.2018.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a major cause of heart failure in the Western world, either secondary to coronary artery disease or from a distinct entity known as "diabetic cardiomyopathy." Furthermore, heart failure with preserved ejection fraction (HFpEF) is emerging as a significant clinical problem for patients with DM. Current clinical data suggest that between 30% and 40% of patients with HFpEF suffer from DM. The typical structural phenotype of the HFpEF heart consists of endothelial dysfunction, increased interstitial and perivascular fibrosis, cardiomyocyte stiffness, and hypertrophy along with advanced glycation end products deposition. There is a myriad of mechanisms that result in the phenotypical HFpEF heart including impaired cardiac metabolism and substrate utilization, altered insulin signalling leading to protein kinase C activation, advanced glycated end products deposition, prosclerotic cytokine activation (eg, transforming growth factor-β activation), along with impaired nitric oxide production from the endothelium. Moreover, recent investigations have focused on the role of endothelial-myocyte interactions. Despite intense research, current therapeutic strategies have had little effect on improving morbidity and mortality in patients with DM and HFpEF. Possible explanations for this include a limited understanding of the role that direct cell-cell communication or indirect cell-cell paracrine signalling plays in the pathogenesis of DM and HFpEF. Additionally, integrins remain another important mediator of signals from the extracellular matrix to cells within the failing heart and might play a significant role in cell-cell cross-talk. In this review we discuss the characteristics and mechanisms of DM and HFpEF to stimulate potential future research for patients with this common, and morbid condition.
Collapse
Affiliation(s)
- Patrick Meagher
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Adam
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Robert Civitarese
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Antoinette Bugyei-Twum
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St Michael's Hospital; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Cardiology, St Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
172
|
Wang B, Zhang Y, Sun N, Gu S, Ding F, Xu S, Zhou H, Liu Y. MRI-measured myocardial iron load in patients with severe diabetic heart failure. Clin Radiol 2018; 73:324.e1-324.e7. [DOI: 10.1016/j.crad.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
|
173
|
Leutner M, Göbl C, Wolf P, Maruszczak K, Bozkurt L, Steinbrecher H, Just-Kukurova I, Ott J, Egarter C, Trattnig S, Kautzky-Willer A. Pericardial Fat Relates to Disturbances of Glucose Metabolism in Women with the Polycystic Ovary Syndrome, but Not in Healthy Control Subjects. Int J Endocrinol 2018; 2018:5406128. [PMID: 30158974 PMCID: PMC6109482 DOI: 10.1155/2018/5406128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/26/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The objective of the present study is to investigate the relationship of cardiac fat depots with disturbances of the carbohydrate metabolism in women with PCOS. METHODS An oral glucose tolerance test (OGTT) was realized, and metabolic parameters were collected in 48 women with PCOS and in 20 controls. Intramyocardial fat (MYCL) and pericardial fat (PERI) were measured using 1H-magnetic resonance spectroscopy and imaging. RESULTS Only in PCOS women, PERI was positively and independently related to parameters of glucose metabolism (HbA1c: p = 0.001, fasting plasma glucose: p < 0.001, stimulated glucose at 30 and 60 minutes in the OGTT). Thus, the disposition index, insulin sensitivity, and adiponectin also declined with the increase of PERI in women with PCOS; however, these results were not independent of BMI and age. In addition, PERI was positively related to atherogenic lipid profiles, BMI, waist circumference, CRP, and liver fat in women with PCOS. A negative relation of PERI with triglycerides and a positive relation with BMI and waist circumference could be observed in the controls. No relationship of MYCL with diabetes-specific parameters could be found in the study population. CONCLUSION PERI is related to metabolic disturbances in women with PCOS, but not in metabolically healthy lean subjects. This clinical trial was registered at ClinicalTrials.gov and has the registration number NCT03204461.
Collapse
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Göbl
- Department of Obstetrics and Gynecology, Division of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Wolf
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katharina Maruszczak
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Latife Bozkurt
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Helmut Steinbrecher
- Department of Obstetrics and Gynecology, Division of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | - Ivica Just-Kukurova
- Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence-High Field MR, Medical University of Vienna, Vienna, Austria
| | - Johannes Ott
- Department of Obstetrics and Gynecology, Division of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Egarter
- Department of Obstetrics and Gynecology, Division of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence-High Field MR, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
174
|
Jacob M, Holloway CJ. Cardiac Steatosis in HIV-A Marker or Mediator of Disease? Front Endocrinol (Lausanne) 2018; 9:529. [PMID: 30364255 PMCID: PMC6193415 DOI: 10.3389/fendo.2018.00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Although people living with HIV (PLHIV) are approaching normal life expectancy, a limitation to achieving this goal is managing the higher prevalence of co-morbidities, including cardiovascular disease. Whilst ischaemic heart disease likely contributes to a large proportion of cardiac disease in the modern era of treatment, cardio-metabolic disease, including cardiac steatosis, akin to obesity-related heart disease, is also a possible mechanism of increased cardiac morbidity and mortality. HIV and other metabolic and inflammatory diseases affecting the heart, including obesity, share many cardio-metabolic abnormalities, with increased pericardial and myocardial fat content, in association with chronic systemic inflammatory changes and alterations in cardiac metabolism. Understanding the mechanisms of HIV-associated cardiac steatosis remains an important challenge, as managing the untreated metabolic and inflammatory precipitants may substantially improve cardiac outcomes for PLHIV.
Collapse
Affiliation(s)
- Morgan Jacob
- St. Vincent's Hospital, Darlinghurst, NSW, Australia
- University of Notre Dame, Darlinghurst, NSW, Australia
| | - Cameron J. Holloway
- St. Vincent's Hospital, Darlinghurst, NSW, Australia
- University of Notre Dame, Darlinghurst, NSW, Australia
- St.Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- *Correspondence: Cameron J. Holloway
| |
Collapse
|
175
|
Fillmer A, Hock A, Cameron D, Henning A. Non-Water-Suppressed 1H MR Spectroscopy with Orientational Prior Knowledge Shows Potential for Separating Intra- and Extramyocellular Lipid Signals in Human Myocardium. Sci Rep 2017; 7:16898. [PMID: 29203776 PMCID: PMC5714998 DOI: 10.1038/s41598-017-16318-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022] Open
Abstract
Conditions such as type II diabetes are linked with elevated lipid levels in the heart, and significantly increased risk of heart failure; however, metabolic processes underlying the development of cardiac disease in type II diabetes are not fully understood. Here we present a non-invasive method for in vivo investigation of cardiac lipid metabolism: namely, IVS-McPRESS. This technique uses metabolite-cycled, non-water suppressed 1H cardiac magnetic resonance spectroscopy with prospective and retrospective motion correction. High-quality IVS-McPRESS data acquired from healthy volunteers allowed us to investigate the frequency shift of extramyocellular lipid signals, which depends on the myocardial fibre orientation. Assuming consistent voxel positioning relative to myofibres, the myofibre angle with the magnetic field was derived from the voxel orientation. For separation and individual analysis of intra- and extramyocellular lipid signals, the angle myocardial fibres in the spectroscopy voxel take with the magnetic field should be within ±24.5°. Metabolite and lipid concentrations were analysed with respect to BMI. Significant correlations between BMI and unsaturated fatty acids in intramyocellular lipids, and methylene groups in extramyocellular lipids were found. The proposed IVS-McPRESS technique enables non-invasive investigation of cardiac lipid metabolism and may thus be a useful tool to study healthy and pathological conditions.
Collapse
Affiliation(s)
- Ariane Fillmer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zurich, Switzerland.
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany.
| | - Andreas Hock
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Lenggstr. 31, 8032, Zurich, Switzerland
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, UK
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 South Hanover Street, Baltimore, MD21225, Maryland, USA
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zurich, Switzerland
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tuebingen, Germany
| |
Collapse
|
176
|
Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Shono M, Kugimiya F, Yoshimura M, Yasue H. The diabetic heart utilizes ketone bodies as an energy source. Metabolism 2017; 77:65-72. [PMID: 29132539 DOI: 10.1016/j.metabol.2017.08.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diabetic heart is characterized by failure of insulin to increase glucose uptake and increasingly relies on free fatty acids (FFAs) as a source of fuel in animal models. However, it is not well known how cardiac energy metabolism is altered in diabetic hearts in humans. We examined cardiac fuel metabolism in the diabetics as compared to non-diabetics who underwent cardiac catheterization for heart diseases. MATERIAL AND METHODS The study subjects comprised 81 patients (male 55, female 26, average age 63.0±10.0years) who underwent the cardiac catheterization for heart diseases. Thirty-six patients were diagnosed as diabetics (diabetic group) and 45 as non-diabetics (non-diabetic group). Blood samplings were done in both the aortic root (Ao) and coronary sinus (CS) simultaneously and the plasma levels of FFAs, glucose, lactate, pyruvate, total ketone bodies and β-hydroxybutyrate were measured and compared between the two groups. RESULTS The myocardial uptake of glucose, lactate and pyruvate were decreased, whereas those of total ketone bodies, β-hydroxybutyrate and acetoacetate were increased in the diabetics as compared to the non-diabetics. However, the myocardial uptakes of FFAs were not significantly increased in the diabetics as compared to the non-diabetics. CONCLUSIONS Cardiac uptakes of carbohydrate (glucose, lactate and pyruvate) were decreased, whereas those of total ketone bodies and β-hydroxybutyrate were increased in the diabetics as compared to the non-diabetics in humans. Ketone bodies therefore are utilized as an energy source partially replacing glucose in the human diabetic heart.
Collapse
Affiliation(s)
- Yuji Mizuno
- Division of Cardiovascular Medicine, Kumamoto Aging Research Institute, Kumamoto, Japan.
| | - Eisaku Harada
- Division of Cardiovascular Medicine, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Hitoshi Nakagawa
- First Department of Internal Medicine, Nara Medical University, Nara, Japan
| | - Yoshinobu Morikawa
- Division of Cardiovascular Medicine, Minami-nara General Medical Center, Japan
| | - Makoto Shono
- Division of Cardiovascular Medicine, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Fumihito Kugimiya
- Division of Cardiovascular Medicine, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hirofumi Yasue
- Division of Cardiovascular Medicine, Kumamoto Aging Research Institute, Kumamoto, Japan
| |
Collapse
|
177
|
Kibel A, Selthofer-Relatic K, Drenjancevic I, Bacun T, Bosnjak I, Kibel D, Gros M. Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res 2017; 45:1901-1929. [PMID: 28643578 PMCID: PMC5805190 DOI: 10.1177/0300060516675504] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives.
Collapse
Affiliation(s)
- Aleksandar Kibel
- Department for Heart and Vascular
Diseases, Clinic of Internal Medicine, Osijek University Hospital, Osijek,
Croatia
- Department of Physiology and Immunology,
Faculty of Medicine, University of Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Department for Heart and Vascular
Diseases, Clinic of Internal Medicine, Osijek University Hospital, Osijek,
Croatia
- Department of Internal Medicine, Faculty
of Medicine, University of Osijek, Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology,
Faculty of Medicine, University of Osijek, Croatia
| | - Tatjana Bacun
- Department of Internal Medicine, Faculty
of Medicine, University of Osijek, Osijek, Croatia
- Department of Endocrinology, Clinic of
Internal Medicine, Osijek University Hospital, Osijek, Croatia
| | - Ivica Bosnjak
- Department for Heart and Vascular
Diseases, Clinic of Internal Medicine, Osijek University Hospital, Osijek,
Croatia
| | - Dijana Kibel
- Department of Physiology and Immunology,
Faculty of Medicine, University of Osijek, Croatia
- Department of Diagnostic and
Interventional Radiology, Osijek University Hospital, Osijek, Croatia
| | - Mario Gros
- Department of Physiology and Immunology,
Faculty of Medicine, University of Osijek, Croatia
- Department of Diagnostic and
Interventional Radiology, Osijek University Hospital, Osijek, Croatia
| |
Collapse
|
178
|
Honkala SM, Motiani KK, Eskelinen JJ, Savolainen A, Saunavaara V, Virtanen KA, Löyttyniemi E, Kapanen J, Knuuti J, Kalliokoski KK, Hannukainen JC. Exercise Training Reduces Intrathoracic Fat Regardless of Defective Glucose Tolerance. Med Sci Sports Exerc 2017. [PMID: 28628064 PMCID: PMC5473372 DOI: 10.1249/mss.0000000000001232] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose Epicardial (EAT) and pericardial (PAT) fat masses and myocardial triglyceride content (MTC) are enlarged in obesity and insulin resistance. We studied whether the high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) similarly decrease ectopic fat in and around the heart and whether the decrease is similar in healthy subjects and subjects with defective glucose tolerance (DGT). Methods A total of 28 healthy men (body mass index = 20.7–30.0 kg·m−2, age = 40–55 yr) and 16 men with DGT (body mass index = 23.8–33.5 kg·m−2, age = 43–53 yr) were randomized into HIIT and MICT interventions for 2 wk. EAT and PAT were determined by computed tomography and MTC by 1H-MRS. Results At baseline, DGT subjects had impaired aerobic capacity and insulin sensitivity and higher levels of whole body fat, visceral fat, PAT, and EAT (P < 0.05, all) compared with healthy subjects. In the whole group, HIIT increased aerobic capacity (HIIT = 6%, MICT = 0.3%; time × training P = 0.007) and tended to improve insulin sensitivity (HIIT = 24%, MICT = 8%) as well as reduce MTC (HIIT = −42%, MICT = +23%) (time × training P = 0.06, both) more efficiently compared with MICT, and without differences in the training response between the healthy and the DGT subjects. However, both training modes decreased EAT (−5%) and PAT (−6%) fat (time P < 0.05) and not differently between the healthy and the DGT subjects. Conclusion Whole body fat, visceral fat, PAT, and EAT masses are enlarged in DGT. Both HIIT and MICT effectively reduce EAT and PAT in healthy and DGT subjects, whereas HIIT seems to be superior as regards improving aerobic capacity, whole-body insulin sensitivity, and MTC.
Collapse
Affiliation(s)
- Sanna M Honkala
- 1Turku PET Centre, University of Turku, Turku, FINLAND; 2Turku PET Centre, Turku University Hospital, Turku, FINLAND; 3Department of Medical Physics, Turku University Hospital, Turku, FINLAND; 4Department of Biostatistics, University of Turku, Turku, FINLAND; and 5Paavo Nurmi Centre, University of Turku, Turku, FINLAND
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Pop LM, Lingvay I, Yuan Q, Li X, Adams-Huet B, Maalouf NM. Impact of pioglitazone on bone mineral density and bone marrow fat content. Osteoporos Int 2017; 28:3261-3269. [PMID: 28735463 DOI: 10.1007/s00198-017-4164-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED Pioglitazone use is associated with an increased risk of fractures. In this randomized, placebo-controlled study, pioglitazone use for 12 months was associated with a significant increase in bone marrow fat content at the femoral neck, accompanied by a significant decrease in total hip bone mineral density. The change in bone marrow fat with pioglitazone use was predominantly observed in female vs. male participants. INTRODUCTION Use of the insulin sensitizer pioglitazone is associated with greater fracture incidence, although the underlying mechanisms are incompletely understood. This study aimed to assess the effect of pioglitazone treatment on femoral neck bone marrow (BM) fat content and on bone mineral density (BMD), and to establish if any correlation exists between the changes in these parameters. METHODS In this double-blind placebo-controlled clinical trial, 42 obese volunteers with metabolic syndrome were randomized to pioglitazone (45 mg/day) or matching placebo for 1 year. The following measurements were conducted at baseline and during the treatment: liver, pancreas, and femoral neck BM fat content (by magnetic resonance spectroscopy), BMD by DXA, abdominal subcutaneous and visceral fat, and beta-cell function and insulin sensitivity. RESULTS Results were available for 37 subjects who completed the baseline and 1-year evaluations. At 12 months, BM fat increased with pioglitazone (absolute change, +4.1%, p = 0.03), whereas BM fat content in the placebo group decreased non-significantly (-3.1%, p = 0.08) (p = 0.007 for the pioglitazone-placebo response difference). Total hip BMD declined in the pioglitazone group (-1.4%) and increased by 0.8% in the placebo group (p = 0.03 between groups). The change in total hip BMD was inversely and significantly correlated with the change in BM fat content (Spearman rho = -0.56, p = 0.01) in the pioglitazone group, but not within the placebo group (rho = -0.29, p = 0.24). Changes in BM fat with pioglitazone were predominantly observed in female vs. male subjects. CONCLUSIONS Pioglitazone use for 12 months compared with placebo is associated with significant increase in BM fat content at the femoral neck, accompanied by a small but significant decrease in total hip BMD.
Collapse
Affiliation(s)
- L M Pop
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - I Lingvay
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Q Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - X Li
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - B Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA
- Department of Internal Medicine, Division of Mineral Metabolism, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA
| | - N M Maalouf
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA.
- Department of Internal Medicine, Division of Mineral Metabolism, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8885, USA.
| |
Collapse
|
180
|
Myocardial metabolic alterations in mice with diet-induced atherosclerosis: linking sulfur amino acid and lipid metabolism. Sci Rep 2017; 7:13597. [PMID: 29051579 PMCID: PMC5648757 DOI: 10.1038/s41598-017-13991-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease (CVD), but the effect of diet on the atherosclerotic heart’s metabolism is unclear. We used an integrated metabolomics and lipidomics approach to evaluate metabolic perturbations in heart and serum from mice fed an atherogenic diet (AD) for 8, 16, and 25 weeks. Nuclear magnetic resonance (NMR)-based metabolomics revealed significant changes in sulfur amino acid (SAA) and lipid metabolism in heart from AD mice compared with heart from normal diet mice. Higher SAA levels in AD mice were quantitatively verified using liquid chromatography-mass spectrometry (LC/MS). Lipidomic profiling revealed that fatty acid and triglyceride (TG) levels in the AD group were altered depending on the degree of unsaturation. Additionally, levels of SCD1, SREBP-1, and PPARγ were reduced in AD mice after 25 weeks, while levels of reactive oxygen species were elevated. The results suggest that a long-term AD leads to SAA metabolism dysregulation and increased oxidative stress in the heart, causing SCD1 activity suppression and accumulation of toxic TGs with a low degree of unsaturation. These findings demonstrate that the SAA metabolic pathway is a promising therapeutic target for CVD treatment and that metabolomics can be used to investigate the metabolic signature of atherosclerosis.
Collapse
|
181
|
Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and heart failure. J Hypertens 2017; 34:1678-88. [PMID: 27488547 DOI: 10.1097/hjh.0000000000001013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese individuals are more likely to develop heart failure. Yet, once heart failure is established, the impact of overweight and obesity on prognosis and survival is unclear. The purpose of this joint scientific statement of the European Association for the Study of Obesity and the European Society of Hypertension is to provide an overview on the current scientific literature on obesity and heart failure in terms of prognosis, mechanisms, and clinical management implications. Moreover, the document identifies open questions that ought to be addressed. The need for more tailored weight management recommendations in heart failure will be emphasized and, in line with the emerging evidence, aims to distinguish between primary disease and secondary outcome prevention. In the primary prevention of heart failure, it appears prudent advising obese individuals to lose or achieve a healthy body weight, especially in those with risk factors such as hypertension or type 2 diabetes. However, there is no evidence from clinical trials to guide weight management in overweight or obese patients with established heart failure. Prospective clinical trials are strongly encouraged.
Collapse
|
182
|
Marín-Royo G, Martínez-Martínez E, Gutiérrez B, Jurado-López R, Gallardo I, Montero O, Bartolomé MV, San Román JA, Salaices M, Nieto ML, Cachofeiro V. The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 30:10-20. [PMID: 28869040 DOI: 10.1016/j.arteri.2017.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
AIMS To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. METHODS Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. RESULTS HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O2), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. CONCLUSIONS These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels.
Collapse
Affiliation(s)
- Gema Marín-Royo
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Beatriz Gutiérrez
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Olimpio Montero
- Centro de Desarrollo Biotecnológico, CSIC, Valladolid, Spain
| | - Mª Visitación Bartolomé
- Departamento de Oftalmología y Otorrinolaringología, Facultad de Psicología, Universidad Complutense, Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - José Alberto San Román
- Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, Valladolid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
183
|
Lai S, Gerstenblith G, Moore RD, Celentano DD, Bluemke DA, Treisman G, Liu CY, Li J, Chen S, Kickler T, Lai H. Cocaine use may modify HIV/ART-associated myocardial steatosis and hepatic steatosis. Drug Alcohol Depend 2017; 177:84-92. [PMID: 28578226 PMCID: PMC7028311 DOI: 10.1016/j.drugalcdep.2017.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been recognized that myocardial and hepatic steatosis may be more prevalent in HIV-infected individuals on antiretroviral therapy (ART); however, factors associated with these conditions have not been thoroughly investigated. The goals of this study were (1) to identify the risk factors for myocardial and hepatic steatosis in HIV-infected African Americans (AAs) and explore whether ART use is independently associated with myocardial and hepatic steatosis, and (2) to examine whether and how cocaine use influences any associations of ART use with myocardial and hepatic steatosis. METHODS Between June 2010 and December 2013, 220 HIV-infected AAs in Baltimore, Maryland, were enrolled in a study investigating HIV/ART-associated myocardial and hepatic damage. Proton magnetic resonance spectroscopy was performed to quantify myocardial and hepatic triglyceride contents. Sociodemographic, medical and laboratory data were also obtained. Robust regression model was employed to perform primary statistical analysis. RESULTS Robust regression analyses showed that (1) duration of protease inhibitor (PI) use was independently associated with myocardial and hepatic triglyceride contents, (2) duration of PI use was independently associated with myocardial triglyceride in cocaine users (p=0.025), but not in cocaine never-users (p=0.84), and (3) duration of PI use was independently associated with hepatic triglyceride in cocaine users, but not in cocaine never-users (p=0.52). CONCLUSIONS Cocaine use may trigger/exacerbate the toxicity of PI in ART-associated myocardial and hepatic steatosis, suggesting that cocaine abstinence/reduced use may retard these ART-associated comorbidities. Clinical trials should be conducted to examine whether reduced cocaine use improves HIV/AIDS-associated myocardial and hepatic steatosis.
Collapse
Affiliation(s)
- Shenghan Lai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Gary Gerstenblith
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David D. Celentano
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Bluemke
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, USA
| | - Glenn Treisman
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chia-Ying Liu
- Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, USA
| | - Ji Li
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shaoguang Chen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas Kickler
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hong Lai
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
184
|
Armani A, Berry A, Cirulli F, Caprio M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte. FASEB J 2017; 31:4240-4255. [PMID: 28705812 DOI: 10.1096/fj.201601125rrr] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) is defined as a cluster of 3 or more metabolic and cardiovascular risk factors and represents a serious problem for public health. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for the development of these metabolic derangements, collectively referred as to MetS. In particular, increased visceral and ectopic fat deposition play a major role in the development of insulin resistance and MetS. A large body of evidence demonstrates that aging and MetS share several metabolic alterations. Of importance, molecular pathways that regulate lifespan affect key processes of adipose tissue physiology, and transgenic mouse models with adipose-specific alterations in these pathways show derangements of adipose tissue and other metabolic features of MetS, which highlights a causal link between dysfunctional adipose tissue and deleterious effects on whole-body homeostasis. This review analyzes adipose tissue-specific dysfunctions, including metabolic alterations that are related to aging, that have a significant impact on the development of MetS.-Armani, A., Berry, A., Cirulli, F., Caprio, M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte.
Collapse
Affiliation(s)
- Andrea Armani
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy; .,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
185
|
Chew KW, Liu CY, Ambale-Venkatesh B, Liao D, Horwich TB, Lima JAC, Bluemke DA, Paul Finn J, Butt AA, Currier JS. Subclinical myocardial disease by cardiac magnetic resonance imaging and spectroscopy in healthy HIV/Hepatitis C virus-coinfected persons. J Int Med Res 2017; 45:1693-1707. [PMID: 28606026 PMCID: PMC5805202 DOI: 10.1177/0300060517708919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective The contribution of hepatitis C virus (HCV) infection to the risk of heart
failure in human immunodeficiency virus (HIV)-coinfected persons is unknown.
The objective was to characterize cardiac function and morphology in
HIV-treated coinfected persons. Methods In a cross-sectional study, HIV-infected patients virologically suppressed on
antiretroviral therapy without known cardiovascular disease or diabetes
mellitus underwent cardiac magnetic resonance imaging and spectroscopy for
measures of cardiac function, myocardial fibrosis, and steatosis. Results The study included 18 male patients with a median age of 44 years. Of these,
10 had untreated HCV coinfection and eight had HIV monoinfection. Global
systolic and diastolic function in the cohort were normal, and median
myocardial fat content was 0.48% (interquartile range 0.35–1.54). Left
ventricular (LV) mass index and LV mass/volume ratio were significantly
greater in the HIV/HCV-coinfected group compared with the HIV-monoinfected
group. In the HIV-monoinfected group, there was more myocardial fibrosis as
measured by extracellular volume fraction. Conclusions There were differences between HIV/HCV-coinfected and HIV-monoinfected
patients in cardiac structure and morphology. Larger studies are needed to
examine whether HIV and HCV independently contribute to mechanisms of heart
failure.
Collapse
Affiliation(s)
- Kara W Chew
- 1 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chia-Ying Liu
- 2 National Institutes of Health, Bethesda, MD, USA.,3 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Diana Liao
- 1 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tamara B Horwich
- 1 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - João A C Lima
- 3 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Bluemke
- 2 National Institutes of Health, Bethesda, MD, USA.,3 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Paul Finn
- 4 Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Adeel A Butt
- 5 VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.,6 Weill Cornell Medical College, Doha, Qatar and New York, NY, USA.,7 Hamad Healthcare Quality Institute and Hamad Medical Corporation, Doha, Qatar
| | - Judith S Currier
- 1 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
186
|
Cho KI, Jo EA, Cho SH, Kim BH. The Influence of Epicardial Fat and Nonalcoholic Fatty Liver Disease on Heart Rate Recovery in Metabolic Syndrome. Metab Syndr Relat Disord 2017; 15:226-232. [DOI: 10.1089/met.2016.0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kyoung Im Cho
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Convergence Medicine and Exercise Science Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Eun Ah Jo
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Convergence Medicine and Exercise Science Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Sang Hoon Cho
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Bo Hyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital and Biomedical Research Institute, Busan, South Korea
| |
Collapse
|
187
|
Kain V, Halade GV. Metabolic and Biochemical Stressors in Diabetic Cardiomyopathy. Front Cardiovasc Med 2017; 4:31. [PMID: 28620607 PMCID: PMC5449449 DOI: 10.3389/fcvm.2017.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and is widespread in US population and worldwide. Despite of the heterogeneous and distinct features of DCM, the clinical relevance of DCM is now becoming established. DCM progresses to pathological cardiac remodeling with the higher risk of heart attack and subsequent heart failure in diabetic patients. In this review, we emphasize lipid substrate quality and the phenotypic, metabolic, and biochemical stressors of DCM in the rodent and human pathophysiology. We discuss lipoxygenase signaling in the inflammatory pathway with multiple contributing and confounding factors leading to DCM. Additionally, emerging biochemical pathways are emphasized to make progress toward therapeutic advancement to treat DCM.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
188
|
Schmacht L, Traber J, Grieben U, Utz W, Dieringer MA, Kellman P, Blaszczyk E, von Knobelsdorff-Brenkenhoff F, Spuler S, Schulz-Menger J. Cardiac Involvement in Myotonic Dystrophy Type 2 Patients With Preserved Ejection Fraction: Detection by Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.115.004615. [PMID: 27363857 DOI: 10.1161/circimaging.115.004615] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Myotonic dystrophy type 2 (DM2) is a genetic disorder characterized by skeletal muscle symptoms, metabolic changes, and cardiac involvement. Histopathologic alterations of the skeletal muscle include fibrosis and fatty infiltration. The aim of this study was to investigate whether subclinical cardiac involvement in DM2 is already detectable in preserved left ventricular function by cardiovascular magnetic resonance. METHODS AND RESULTS Twenty-seven patients (mean age, 54±10 years; 20 females) with a genetically confirmed diagnosis of DM2 were compared with 17 healthy age- and sex-matched controls using a 1.5 T magnetic resonance imaging. For myocardial tissue differentiation, T1 and T2 mapping, fat/water-separated imaging, focal fibrosis imaging (late gadolinium enhancement [LGE]), and (1)H magnetic resonance spectroscopy were performed. Extracellular volume fraction was calculated. Conduction abnormalities were diagnosed based on Groh criteria. LGE located subepicardial basal inferolateral was detectable in 22% of the patients. Extracellular volume was increased in this region and in the adjacent medial inferolateral segment (P=0.03 compared with healthy controls). In 21% of patients with DM2, fat deposits were detectable (all women). The control group showed no abnormalities. Myocardial triglycerides were not different in LGE-positive and LGE-negative subjects (P=0.47). Six patients had indicators for conduction disease (60% of LGE-positive patients and 12.5% of LGE-negative patients). CONCLUSIONS In DM2, subclinical myocardial injury was already detectable in preserved left ventricular ejection fraction. Extracellular volume was also increased in regions with no focal fibrosis. Myocardial fibrosis was related to conduction abnormalities.
Collapse
Affiliation(s)
- Luisa Schmacht
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Julius Traber
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Ulrike Grieben
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Wolfgang Utz
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Matthias A Dieringer
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Peter Kellman
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Edyta Blaszczyk
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Florian von Knobelsdorff-Brenkenhoff
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Simone Spuler
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Jeanette Schulz-Menger
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.).
| |
Collapse
|
189
|
Abstract
Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Peter Wolf
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- High Field MR CentreDepartment of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
190
|
Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med 2017; 32:404-421. [PMID: 28415836 PMCID: PMC5432803 DOI: 10.3904/kjim.2016.208] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
The global burden of diabetes mellitus and its related complications are currently increasing. Diabetes mellitus affects the heart through various mechanisms including microvascular impairment, metabolic disturbance, subcellular component abnormalities, cardiac autonomic dysfunction, and a maladaptive immune response. Eventually, diabetes mellitus can cause functional and structural changes in the myocardium without coronary artery disease, a disorder known as diabetic cardiomyopathy (DCM). There are many diagnostic tools and management options for DCM, although it is difficult to detect its development and effectively prevent its progression. In this review, we summarize the current research regarding the pathophysiology and pathogenesis of DCM. Moreover, we discuss emerging diagnostic evaluation methods and treatment strategies for DCM, which may help our understanding of its underlying mechanisms and facilitate the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Correspondence to Jaetaek Kim, M.D. Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea Tel: +82-2-6299-1397 Fax: +82-2-6299-1390 E-mail:
| |
Collapse
|
191
|
Ritchie RH, Zerenturk EJ, Prakoso D, Calkin AC. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy. J Mol Endocrinol 2017; 58:R225-R240. [PMID: 28373293 DOI: 10.1530/jme-16-0249] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Diabetic cardiomyopathy was first defined over four decades ago. It was observed in small post-mortem studies of diabetic patients who suffered from concomitant heart failure despite the absence of hypertension, coronary disease or other likely causal factors, as well as in large population studies such as the Framingham Heart Study. Subsequent studies continue to demonstrate an increased incidence of heart failure in the setting of diabetes independent of established risk factors, suggesting direct effects of diabetes on the myocardium. Impairments in glucose metabolism and handling receive the majority of the blame. The role of concomitant impairments in lipid handling, particularly at the level of the myocardium, has however received much less attention. Cardiac lipid accumulation commonly occurs in the setting of type 2 diabetes and has been suggested to play a direct causal role in the development of cardiomyopathy and heart failure in a process termed as cardiac lipotoxicity. Excess lipids promote numerous pathological processes linked to the development of cardiomyopathy, including mitochondrial dysfunction and inflammation. Although somewhat underappreciated, cardiac lipotoxicity also occurs in the setting of type 1 diabetes. This phenomenon is, however, largely understudied in comparison to hyperglycaemia, which has been widely studied in this context. The current review addresses the changes in lipid metabolism occurring in the type 1 diabetic heart and how they are implicated in disease progression. Furthermore, the pathological pathways linked to cardiac lipotoxicity are discussed. Finally, we consider novel approaches for modulating lipid metabolism as a cardioprotective mechanism against cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure PharmacologyBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical SchoolMonash University, Melbourne, Victoria, Australia
| | - Eser J Zerenturk
- Lipid Metabolism & Cardiometabolic Disease LaboratoryBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Darnel Prakoso
- Heart Failure PharmacologyBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- School of BiosciencesThe University of Melbourne, Parkville, Victoria, Australia
| | - Anna C Calkin
- Central Clinical SchoolMonash University, Melbourne, Victoria, Australia
- Lipid Metabolism & Cardiometabolic Disease LaboratoryBaker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
192
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
193
|
Principals and clinical applications of magnetic resonance cardiac spectroscopy in heart failure. Heart Fail Rev 2017; 22:491-499. [DOI: 10.1007/s10741-017-9611-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
194
|
de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, Smit JWA, Revuelta-Lopez E, Nasarre L, Escola-Gil JC, Lamb HJ, Llorente-Cortes V. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep 2017; 7:47. [PMID: 28246388 PMCID: PMC5428350 DOI: 10.1038/s41598-017-00070-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Using in vitro, in vivo and patient-based approaches, we investigated the potential of circulating microRNAs (miRNAs) as surrogate biomarkers of myocardial steatosis, a hallmark of diabetic cardiomyopathy. We analysed the cardiomyocyte-enriched miRNA signature in serum from patients with well-controlled type 2 diabetes and with verified absence of structural heart disease or inducible ischemia, and control volunteers of the same age range and BMI (N = 86), in serum from a high-fat diet-fed murine model, and in exosomes from lipid-loaded HL-1 cardiomyocytes. Circulating miR-1 and miR-133a levels were robustly associated with myocardial steatosis in type 2 diabetes patients, independently of confounding factors in both linear and logistic regression analyses (P < 0.050 for all models). Similar to myocardial steatosis, miR-133a levels were increased in type 2 diabetes patients as compared with healthy subjects (P < 0.050). Circulating miR-1 and miR-133a levels were significantly elevated in high-fat diet-fed mice (P < 0.050), which showed higher myocardial steatosis, as compared with control animals. miR-1 and miR-133a levels were higher in exosomes released from lipid-loaded HL-1 cardiomyocytes (P < 0.050). Circulating miR-1 and miR-133a are independent predictors of myocardial steatosis. Our results highlight the value of circulating miRNAs as diagnostic tools for subclinical diabetic cardiomyopathy.
Collapse
Affiliation(s)
- D de Gonzalo-Calvo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain. .,CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - R W van der Meer
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - L J Rijzewijk
- Department of Medicine, Kantonsspital Baden AG, Baden, Switzerland
| | - J W A Smit
- Department of Internal Medicine, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - E Revuelta-Lopez
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - L Nasarre
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J C Escola-Gil
- IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona-CIBER de Diabetes y Enfermedades Metabolicas Asociadas, Barcelona, Spain
| | - H J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Llorente-Cortes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain. .,CIBERCV, Institute of Health Carlos III, Madrid, Spain. .,Biomedical Research Institute of Barcelona, CSIC, Barcelona, Spain.
| |
Collapse
|
195
|
Hendgen-Cotta UB, Esfeld S, Coman C, Ahrends R, Klein-Hitpass L, Flögel U, Rassaf T, Totzeck M. A novel physiological role for cardiac myoglobin in lipid metabolism. Sci Rep 2017; 7:43219. [PMID: 28230173 PMCID: PMC5322402 DOI: 10.1038/srep43219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023] Open
Abstract
Continuous contractile activity of the heart is essential and the required energy is mostly provided by fatty acid (FA) oxidation. Myocardial lipid accumulation can lead to pathological responses, however the underlying mechanisms remain elusive. The role of myoglobin in dioxygen binding in cardiomyocytes and oxidative skeletal muscle has widely been appreciated. Our recent work established myoglobin as a protector of cardiac function in hypoxia and disease states. We here unravel a novel role of cardiac myoglobin in governing FA metabolism to ensure the physiological energy production through β-oxidation, preventing myocardial lipid accumulation and preserving cardiac functions. In vivo1H magnetic resonance spectroscopy unveils a 3-fold higher deposition of lipids in mouse hearts lacking myoglobin, which was associated with depressed cardiac function compared to wild-type hearts as assessed by echocardiography. Mass spectrometry reveals a marked increase in tissue triglycerides with preferential incorporation of palmitic and oleic acids. Phospholipid levels as well as the metabolome, transcriptome and proteome related to FA metabolism tend to be unaffected by myoglobin ablation. Our results reveal a physiological role of myoglobin in FA metabolism with the lipid accumulation-suppressing effects of myoglobin preventing cardiac lipotoxicity.
Collapse
Affiliation(s)
- Ulrike B Hendgen-Cotta
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Sonja Esfeld
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Ludger Klein-Hitpass
- University Hospital Essen, Institute of Cell Biology, Medical Faculty, Virchowstr. 173, 45122 Essen, Germany
| | - Ulrich Flögel
- University Hospital Düsseldorf, Department of Molecular Cardiology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tienush Rassaf
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Totzeck
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
196
|
Kuo AH, Li C, Li J, Huber HF, Nathanielsz PW, Clarke GD. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing. J Physiol 2017; 595:1093-1110. [PMID: 27988927 PMCID: PMC5309359 DOI: 10.1113/jp272908] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies. ABSTRACT Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7 years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25 years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9 years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group and sex (with P < 0.05) indicated ejection fraction, 3D sphericity indices, cardiac index, normalized systolic volume, normalized LV wall thickness, and average filling rate differed by group. Group and sex differences were found for normalized LV wall thickening and normalized myocardial mass, without interactions. Normalized peak LV filling rate and diastolic sphericity index were not correlated in control but strongly correlated in OLD and IUGR baboons. IUGR programming in baboons produces myocardial remodelling, reduces systolic and diastolic function, and results in the emergence of a premature ageing phenotype in the heart. To our knowledge, this is the first demonstration of the specific characteristics of cardiac programming and early life functional decline with ageing in an IUGR non-human primate model. Further studies across the life span will determine progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Anderson H. Kuo
- Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Cun Li
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
| | - Jinqi Li
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | | | - Peter W. Nathanielsz
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
- Southwest National Primate CenterSan AntonioTXUSA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Southwest National Primate CenterSan AntonioTXUSA
| |
Collapse
|
197
|
Vega RB, Kelly DP. Cardiac nuclear receptors: architects of mitochondrial structure and function. J Clin Invest 2017; 127:1155-1164. [PMID: 28192373 DOI: 10.1172/jci88888] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.
Collapse
|
198
|
Chong CR, Clarke K, Levelt E. Metabolic Remodeling in Diabetic Cardiomyopathy. Cardiovasc Res 2017; 113:422-430. [PMID: 28177068 PMCID: PMC5412022 DOI: 10.1093/cvr/cvx018] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fatty acid uptake results in accumulation of toxic metabolites, such as ceramide and diacylglycerol, activation of protein kinase C, and elevation of uncoupling protein-3. Insulin signalling and glucose uptake/oxidation become further impaired, and mitochondrial function and ATP production become compromised. Increased oxidative stress also impairs mitochondrial function and disrupts metabolic pathways. The diabetic heart relies on free fatty acids (FFA) as the major substrate for oxidative phosphorylation and is unable to increase glucose oxidation during ischaemia or hypoxia, thereby increasing myocardial injury, especially in ageing female diabetic animals. Pharmacological activation of PPARγ in adipose tissue may lower plasma FFA and improve recovery from myocardial ischaemic injury in diabetes. Not only is the diabetic heart energetically-impaired, it also has early diastolic dysfunction and concentric remodelling. The contractile function of the diabetic myocardium negatively correlates with epicardial adipose tissue, which secretes proinflammatory cytokines, resulting in interstitial fibrosis. Novel pharmacological strategies targeting oxidative stress seem promising in preventing progression of diabetic cardiomyopathy, although clinical evidence is lacking. Metabolic agents that lower plasma FFA or glucose, including PPARγ agonism and SGLT2 inhibition, may therefore be promising options.
Collapse
Affiliation(s)
- Cher-Rin Chong
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Kieran Clarke
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Eylem Levelt
- 2 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital
| |
Collapse
|
199
|
Bergerot C, Davidsen ES, Amaz C, Thibault H, Altman M, Bellaton A, Moulin P, Derumeaux G, Ernande L. Diastolic function deterioration in type 2 diabetes mellitus: predictive factors over a 3-year follow-up. Eur Heart J Cardiovasc Imaging 2017; 19:67-73. [DOI: 10.1093/ehjci/jew331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
|
200
|
Abstract
PURPOSE OF REVIEW Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. RECENT FINDINGS We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. SUMMARY In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|