151
|
Abstract
There is strong evidence that modifiable lifestyle factors such as obesity play a key role in colorectal carcinogenesis. Epidemiologic data have consistently reported a positive association between obesity and colorectal cancer. The relative risk associated with general obesity (as assessed by BMI) is higher in men than in women and for cancer of the colon than for cancer of the rectum. Abdominal obesity (as assessed by waist circumference (WC) or waist-to-hip ratio) is associated with an increased risk of colorectal cancer in both sexes, with stronger associations for cancer of the colon than for cancer of the rectum. Plausible biological mechanisms include insulin resistance, hyperinsulinemia, chronic inflammation, altered levels of growth factors, adipocytokines and steroid hormones. In addition to its effect on colorectal cancer incidence, obesity may play a role in colorectal cancer recurrence, treatment outcomes and survival. Understanding the effects of childhood and adolescent obesity and weight change over the life course in relation to future risk of colorectal cancer is incomplete but essential for targeted preventive recommendations. This chapter summarizes the current evidence on the relationship between obesity and colorectal cancer and colorectal adenoma, a common precursor lesion.
Collapse
Affiliation(s)
- Carmen Jochem
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Michael Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
152
|
Trans-resveratrol attenuates high fatty acid-induced P2X7 receptor expression and IL-6 release in PC12 cells: possible role of P38 MAPK pathway. Inflammation 2015; 38:327-37. [PMID: 25348860 DOI: 10.1007/s10753-014-0036-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic neuropathy (DNP) is the most common chronic complication of diabetes. Elevated free fatty acids (FFAs) have been recently recognized as major causes of inflammation and are relevant to the functional changes of nerve system in diabetes. Trans-resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have anti-inflammation properties and may exert a neuroprotective effect on neuronal damage in diabetes, while the mechanisms underlying are largely unknown. Our previous study on differential PC12 cells cultured with high FFAs has shown chronic FFAs overload increased PC12 interleukin (IL)-6 release mediated by P2X7 receptor, a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP); a high FFA-induced activation of P38 mitogen-activated protein kinase (MAPK) pathway was pointed to be a potential underlying mechanism. Data from this study indicated that RESV, in a dose-dependent manner, reduced high FFA-induced IL-6 release by impeding the activation of P2X7 receptor, as shown by the results that both high FFA-elevated P2X7 receptor messenger RNA (mRNA) and protein expression as well as high FFA-evoked [Ca(2+)]i in response to 3'-O-(4-benzoyl) benzoyl-ATP (a selective P2X7 receptor agonist) were significantly attenuated. Meanwhile, high FFA-induced activation of P38 MAPK, an essential prerequisite for high FFA-activated P2X7 receptor and subsequent IL-6 release, was also dose-dependently abrogated by RESV. Furthermore, RESV may hamper the activation of P38a MAPK (one paramount P38 isoform) via forming hydrogen bonding with Thr175 residue, surrounding the two residues (Thy180 and Tyr182) essential for canonical activation of P38a MAPK. Taken together, RESV could inhibit high FFA-induced inflammatory IL-6 release mediated by P2X7 receptor through deactivation of P38 MAPK signaling pathway. All these results outline the potential mechanisms involved in the neuroprotective roles of RESV and highlight the clinical application of RESV in treatment of inflammation in relation to DNP.
Collapse
|
153
|
Kim G, Jo K, Kim KJ, Lee YH, Han E, Yoon HJ, Wang HJ, Kang ES, Yun M. Visceral adiposity is associated with altered myocardial glucose uptake measured by (18)FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes. Cardiovasc Diabetol 2015; 14:148. [PMID: 26538247 PMCID: PMC4632263 DOI: 10.1186/s12933-015-0310-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background The heart requires constant sources of energy mostly from free fatty acids (FFA) and glucose. The alteration in myocardial substrate metabolism occurs in the heart of diabetic patients, but its specific association with other metabolic variables remains unclear. We aimed to evaluate glucose uptake in hearts of subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes mellitus (T2DM) using [18F]-fluorodeoxyglucose-positron emission tomography (18FDG-PET) in association with visceral and subcutaneous adiposity, and metabolic laboratory parameters. Methods A total of 346 individuals (NGT, n = 76; prediabetes, n = 208; T2DM, n = 62) in a health promotion center of a tertiary hospital were enrolled. The fasting myocardial glucose uptake, and visceral and subcutaneous fat areas were evaluated using 18FDG-PET and abdominal computed tomography, respectively. Results Myocardial glucose uptake was significantly decreased in subjects with T2DM compared to the NGT or prediabetes groups (p for trend = 0.001). Multivariate linear regression analyses revealed that visceral fat area (β = −0.22, p = 0.018), fasting FFA (β = −0.39, p < 0.001), and uric acid levels (β = −0.21, p = 0.007) were independent determinants of myocardial glucose uptake. Multiple logistic analyses demonstrated that decreased myocardial glucose uptake (OR 2.32; 95 % CI 1.02–5.29, p = 0.045) and visceral fat area (OR 1.02, 95 % CI 1.01–1.03, p = 0.018) were associated with T2DM. Conclusions Our findings indicate visceral adiposity is strongly associated with the alteration of myocardial glucose uptake evaluated by 18FDG-PET, and its association further relates to T2DM.
Collapse
Affiliation(s)
- Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Graduate School, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Kwanhyeong Jo
- Graduate School, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Department of Nuclear Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Kwang Joon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yong-ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Eugene Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Hye-jin Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Hye Jin Wang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
154
|
Sakuma M, Noda S, Morimoto Y, Suzuki A, Nishino K, Ando S, Umeda M, Ishikawa M, Arai H. Nocturnal eating disturbs phosphorus excretion in young subjects: a randomized crossover trial. Nutr J 2015; 14:106. [PMID: 26450680 PMCID: PMC4599584 DOI: 10.1186/s12937-015-0096-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Nocturnal eating have recently increased. Serum phosphorus levels and regulators of phosphorus have circadian variations, so it is suggested that the timing of eating may be important in controlling serum phosphorus levels. However, there have been no reports on the effects of nocturnal eating on phosphorus metabolism. The objective was to evaluate the effects of nocturnal eating on phosphorus metabolism. METHODS Fourteen healthy men participated in two experimental protocols with differing dinner times. The design of this study was a crossover study. The subjects were served test meals three times (breakfast; 07:30 h, lunch; 12:30 h, dinner; 17:30 or 22:30 h) a day. Blood and urine samples were collected to assess diurnal variation until the following morning. RESULTS The following morning, fasting serum phosphorus levels in the late dinner group were markedly higher than those in the early dinner group (p < 0.001), although serum calcium levels were maintained at approximately constant levels throughout the day in both groups. Fluctuations in urinary calcium excretion were synchronized with the timing of dinner eating, however, fluctuations in urinary phosphorus excretion were not synchronized. Urinary phosphorus excretions at night were inhibited in the late dinner group. In the late dinner group, intact parathyroid hormone levels didn't decrease, and they were significantly higher in this group compared with the early dinner group at 20:00 h (p = 0.004). The following morning, fasting serum fibroblast growth factor 23 levels in the late dinner group had not changed, but those in the early dinner group were significantly increased (p = 0.003). Serum free fatty acid levels before dinner were significantly higher in the late dinner group compared with the early dinner group. CONCLUSIONS Our results indicate that nocturnal eating inhibits phosphorus excretion. It is suggested that nocturnal eating should be abstained from to manage serum phosphorus levels to within an adequate range.
Collapse
Affiliation(s)
- Masae Sakuma
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Saaya Noda
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuuka Morimoto
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Akitsu Suzuki
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kanaho Nishino
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sakiko Ando
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Minako Umeda
- School of Nursing Sciences, The University of Shizuoka, Shizuoka, Japan
| | - Makoto Ishikawa
- School of Nursing Sciences, The University of Shizuoka, Shizuoka, Japan
| | - Hidekazu Arai
- Laboratory of Clinical Nutrition and Management, Graduate School of Nutritional and Environmental Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
155
|
Strodthoff D, Ma Z, Wirström T, Strawbridge RJ, Ketelhuth DFJ, Engel D, Clarke R, Falkmer S, Hamsten A, Hansson GK, Björklund A, Lundberg AM. Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion. Diabetes 2015; 64:3425-38. [PMID: 25918231 DOI: 10.2337/db14-0838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 04/17/2015] [Indexed: 11/13/2022]
Abstract
Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes-related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3(-/-) mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3(-/-) islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation.
Collapse
Affiliation(s)
- Daniela Strodthoff
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Metabolism Unit, Department of Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska Institutet at Karolinska University Hospital Huddinge, Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Center and Center for Innovative Medicine, NOVUM, Stockholm, Sweden
| | - Zuheng Ma
- Endocrinology and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tina Wirström
- Endocrinology and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Engel
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, U.K
| | - Sture Falkmer
- Laboratory of Pathology and Clinical Cytology, Ryhov Hospital, Jönköping, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Göran K Hansson
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anneli Björklund
- Endocrinology and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna M Lundberg
- Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
156
|
Hansen M, Lund MT, Gregers E, Kraunsøe R, Van Hall G, Helge JW, Dela F. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity (Silver Spring) 2015; 23:2022-9. [PMID: 26337597 DOI: 10.1002/oby.21223] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To study adipose tissue mitochondrial respiration and lipolysis following a massive weight loss. METHODS High resolution respirometry of adipose tissue biopsies and tracer determined whole body lipolysis. Sixteen obese patients with type 2 diabetes (T2DM) and 27 without (OB) were studied following a massive weight loss by diet and Roux-en-Y gastric bypass (RYGB). RESULTS The mitochondrial respiratory rates were similar in OB and T2DM, and the mass-specific oxygen flux increased significantly 4 and 18 months post-surgery (P < 0.05). With normalization to mitochondrial content, no differences in oxidative capacity after RYGB were seen. The ratio between the oxidative phosphorylation system capacity (P) and the capacity of the electron transfer system (E) increased 18 months after RYGB in both groups (P < 0.05). Lipolysis per fat mass was similar in the two groups and was increased (P < 0.05) and lipid oxidation during hyperinsulinemia decreased 4 months post-surgery. In T2DM, visceral fat mass was always higher relative to the body fat mass (%) compared to OB. CONCLUSIONS Adipose tissue mitochondrial respiratory capacity increases with RYGB. Adipocytes adapt to massive weight loss by increasing the phosphorylation system ratio (P/E), suggesting an increased ability to oxidize substrates after RYGB. Lipolysis increases in the short term post-surgery, and insulin sensitivity for suppression of lipolysis increases with RYGB.
Collapse
Affiliation(s)
- Merethe Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael T Lund
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Surgery, Koege Hospital, Koege, Denmark
| | - Emilie Gregers
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Kraunsøe
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit Van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
157
|
Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJF. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res 2015; 59:2199-208. [PMID: 26310822 DOI: 10.1002/mnfr.201500258] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023]
Abstract
SCOPE Saturated-free fatty acids, such as palmitate, are associated with insulin resistance. This study aimed to establish if an aspalathin-enriched green rooibos extract (GRE) and, its major flavanoid, aspalathin (ASP) could contribute significantly to the amelioration of experimentally induced insulin resistance in 3T3-L1 adipocytes. METHODS AND RESULTS 3T3-L1 adipocytes were cultured in DMEM containing 0.75 mM palmitate for 16 h to induce insulin resistance before treatment for 3 h with GRE (10 μg/mL) or ASP (10 μM). GRE and ASP reversed the palmitate-induced insulin resistance. At a protein level GRE and ASP suppressed nuclear factor kappa beta (NF-κB), insulin receptor substrate one (serine 307) (IRS1 (Ser (307) )) and AMP-activated protein kinase phosphorylation and increased serine/threonine kinase AKT (AKT) activation, while only GRE increased glucose transporter four (Glut4) protein expression. Peroxisome proliferator-activated receptor alpha and gamma (PPARα and γ), and carnitine palmitoyltransferase one (CPT1) expression were increased by ASP alone. CONCLUSION Together these effects offer a plausible explanation for the ameliorative effect of GRE and ASP on insulin-resistance, an underlying cause for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sithandiwe E Mazibuko
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Matieland, South Africa
| | - Rabia Johnson
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Johan Louw
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Andrew R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Christo J F Muller
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
158
|
Sips FLP, Nyman E, Adiels M, Hilbers PAJ, Strålfors P, van Riel NAW, Cedersund G. Model-Based Quantification of the Systemic Interplay between Glucose and Fatty Acids in the Postprandial State. PLoS One 2015; 10:e0135665. [PMID: 26356502 PMCID: PMC4565650 DOI: 10.1371/journal.pone.0135665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/29/2015] [Indexed: 11/18/2022] Open
Abstract
In metabolic diseases such as Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, the systemic regulation of postprandial metabolite concentrations is disturbed. To understand this dysregulation, a quantitative and temporal understanding of systemic postprandial metabolite handling is needed. Of particular interest is the intertwined regulation of glucose and non-esterified fatty acids (NEFA), due to the association between disturbed NEFA metabolism and insulin resistance. However, postprandial glucose metabolism is characterized by a dynamic interplay of simultaneously responding regulatory mechanisms, which have proven difficult to measure directly. Therefore, we propose a mathematical modelling approach to untangle the systemic interplay between glucose and NEFA in the postprandial period. The developed model integrates data of both the perturbation of glucose metabolism by NEFA as measured under clamp conditions, and postprandial time-series of glucose, insulin, and NEFA. The model can describe independent data not used for fitting, and perturbations of NEFA metabolism result in an increased insulin, but not glucose, response, demonstrating that glucose homeostasis is maintained. Finally, the model is used to show that NEFA may mediate up to 30–45% of the postprandial increase in insulin-dependent glucose uptake at two hours after a glucose meal. In conclusion, the presented model can quantify the systemic interactions of glucose and NEFA in the postprandial state, and may therefore provide a new method to evaluate the disturbance of this interplay in metabolic disease.
Collapse
Affiliation(s)
- Fianne L. P. Sips
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
- * E-mail:
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, SE-58185, Linköping, Sweden
- CVMD iMED DMPK AstraZeneca R&D, 431 83, Mölndal, Sweden
| | - Martin Adiels
- Health Metrics at Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Peter A. J. Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
| | - Peter Strålfors
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185, Linköping, Sweden
| | - Natal A. W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB, Eindhoven, The Netherlands
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, SE-58185, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185, Linköping, Sweden
| |
Collapse
|
159
|
Cefalu WT, Bray GA, Home PD, Garvey WT, Klein S, Pi-Sunyer FX, Hu FB, Raz I, Van Gaal L, Wolfe BM, Ryan DH. Advances in the Science, Treatment, and Prevention of the Disease of Obesity: Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2015; 38:1567-82. [PMID: 26421334 PMCID: PMC4831905 DOI: 10.2337/dc15-1081] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As obesity rates increase, so too do the risks of type 2 diabetes, cardiovascular disease, and numerous other detrimental conditions. The prevalence of obesity in U.S. adults more than doubled between 1980 and 2010, from 15.0 to 36.1%. Although this trend may be leveling off, obesity and its individual, societal, and economic costs remain of grave concern. In June 2014, a Diabetes Care Editors' Expert Forum convened to review the state of obesity research and discuss the latest prevention initiatives and behavioral, medical, and surgical therapies. This article, an outgrowth of the forum, offers an expansive view of the obesity epidemic, beginning with a discussion of its root causes. Recent insights into the genetic and physiological factors that influence body weight are reviewed, as are the pathophysiology of obesity-related metabolic dysfunction and the concept of metabolically healthy obesity. The authors address the crucial question of how much weight loss is necessary to yield meaningful benefits. They describe the challenges of behavioral modification and predictors of its success. The effects of diabetes pharmacotherapies on body weight are reviewed, including potential weight-neutral combination therapies. The authors also summarize the evidence for safety and efficacy of pharmacotherapeutic and surgical obesity treatments. The article concludes with an impassioned call for researchers, clinicians, governmental agencies, health policymakers, and health-related industries to collectively embrace the urgent mandate to improve prevention and treatment and for society at large to acknowledge and manage obesity as a serious disease.
Collapse
Affiliation(s)
- William T. Cefalu
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - George A. Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | | | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - F. Xavier Pi-Sunyer
- Obesity Research Center, Department of Medicine, Columbia University, New York, NY
| | - Frank B. Hu
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Itamar Raz
- Department of Internal Medicine, Diabetes Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology, and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Bruce M. Wolfe
- Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Donna H. Ryan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
160
|
Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One-Carbon Cycle Energy Producing Pathway. Metabolites 2015; 5:364-85. [PMID: 26087138 PMCID: PMC4495377 DOI: 10.3390/metabo5020364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001). However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA) cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway) one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.
Collapse
|
161
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
162
|
Gordon JW, Dolinsky VW, Mughal W, Gordon GRJ, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol 2015; 93:452-65. [PMID: 26151290 DOI: 10.1139/bcb-2015-0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased dramatically over the past two decades, not only among adults but also among adolescents. T2D is a systemic disorder affecting every organ system and is especially damaging to the cardiovascular system, predisposing individuals to severe cardiac and vascular complications. The precise mechanisms that cause T2D are an area of active research. Most current theories suggest that the process begins with peripheral insulin resistance that precedes failure of the pancreatic β-cells to secrete sufficient insulin to maintain normoglycemia. A growing body of literature has highlighted multiple aspects of mitochondrial function, including oxidative phosphorylation, lipid homeostasis, and mitochondrial quality control in the regulation of peripheral insulin sensitivity. Whether the cellular mechanisms of insulin resistance in adults are comparable to that in adolescents remains unclear. This review will summarize both clinical and basic studies that shed light on how alterations in skeletal muscle mitochondrial function contribute to whole body insulin resistance and will discuss the evidence supporting high-intensity exercise training as a therapy to circumvent skeletal muscle mitochondrial dysfunction to restore insulin sensitivity in both adults and adolescents.
Collapse
Affiliation(s)
- Joseph W Gordon
- a Department of Human Anatomy and Cell Science, College of Nursing, Faculty of Health Sciences, University of Manitoba, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- b Department of Pharmacology and Therapeutics, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Wajihah Mughal
- c Department of Human Anatomy and Cell Science, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Grant R J Gordon
- d Hotchkiss Brain Institute, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.,e Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jonathan McGavock
- f Department of Pediatrics and Child Health, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
163
|
Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur J Pharmacol 2015; 761:279-87. [PMID: 26007642 DOI: 10.1016/j.ejphar.2015.05.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/06/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022]
Abstract
Thymol is a monoterpene phenol with many pharmacological activities, but their anti- hyperglycemic and anti-hyperlipidemic activities are not yet explored. This study evaluates the beneficial effects of thymol on plasma, hepatic lipids and hyperglycaemic effects in high-fat diet (HFD) induced type 2 diabetes in C57BL/6J mice. These mice were fed continuously with high fat diet (fat- 35.8%) for 10 weeks and subjected to intragastric administration of various doses (10mg, 20mg and 40mg/kg body weight (BW)) of thymol daily for the subsequent 5 weeks. Body weight (BW), food intake, plasma glucose, insulin, insulin resistance, HbA1c, leptin and adiponectin were significantly decreased and there was an increase in food efficacy ratio. Thymol supplementation were significantly lowered the concentration of plasma triglyceride (TG), total cholesterol (TC), free fatty acids (FFAs), low density lipoprotein (LDL) and increased high density lipoprotein (HDL) cholesterol as compared to the HFD induced diabetic group due to lipid enzymatic activity. Also, the hepatic lipid contents such as triglycerides, total cholesterol, free fatty acid and phospholipids (PL) were significantly lowered in the thymol supplemented groups. As compared to other two tested doses of 10mg and 20mg, thymol (40mg/kg BW) were showed significant protective effect on the parameters studied. Thus, indicate thymol protects C57BL/6J mice against HFD due to its anti-hyperglycaemic and anti-hyperlipidemic activity. The above outcome concludes that thymol may exhibit promising anti-diabetic activity.
Collapse
|
164
|
Zhou W, Yang P, Liu L, Zheng S, Zeng Q, Liang H, Zhu Y, Zhang Z, Wang J, Yin B, Gong F, Wu Y, Li Z. Transmembrane tumor necrosis factor-alpha sensitizes adipocytes to insulin. Mol Cell Endocrinol 2015; 406:78-86. [PMID: 25725372 DOI: 10.1016/j.mce.2015.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 02/07/2015] [Accepted: 02/22/2015] [Indexed: 01/10/2023]
Abstract
Transmembrane TNF-α (tmTNF-α) acts both as a ligand, delivering 'forward signaling' via TNFR, and as a receptor, transducing 'reverse signaling'. The contradiction of available data regarding the effect of tmTNF-α on insulin resistance may be due to imbalance in both signals. Here, we demonstrated that high glucose-induced impairment of insulin-stimulated glucose uptake by 3T3-L1 adipocytes was concomitant with decreased tmTNF-α expression and increased soluble TNF-α (sTNF-α) secretion. However, when TACE was inhibited, preventing the conversion of tmTNF-α to sTNF-α, this insulin resistance was partially reversed, indicating a salutary role of tmTNF-α. Treatment of 3T3-L1 adipocytes with exogenous tmTNF-α promoted insulin-induced phosphorylation of IRS-1 and Akt, facilitated GLUT4 expression and membrane translocation, and increased glucose uptake while addition of sTNF-α resulted in the opposite effect. Furthermore, tmTNF-α downregulated the production of IL-6 and MCP-1 via NF-κB inactivation, as silencing of A20, an inhibitor for NF-κB, by siRNA, abolished this effect of tmTNF-α. However, tmTNF-α upregulated adiponectin expression through the PPAR-γ pathway, as inhibition of PPAR-γ by GW9662 abrogated both tmTNF-α-induced adiponectin transcription and glucose uptake. Our data suggest that tmTNF-α functions as an insulin sensitizer via forward signaling.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Liu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Zheng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingling Zeng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Hematology & Endocrinology, Fifth Hospital of Wuhan, Wuhan 430071, China
| | - Huifang Liang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yazhen Zhu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zunyue Zhang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingjiao Yin
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
165
|
Jain MR, Giri SR, Trivedi C, Bhoi B, Rath A, Vanage G, Vyas P, Ranvir R, Patel PR. Saroglitazar, a novel PPARα/γ agonist with predominant PPARα activity, shows lipid-lowering and insulin-sensitizing effects in preclinical models. Pharmacol Res Perspect 2015; 3:e00136. [PMID: 26171220 PMCID: PMC4492752 DOI: 10.1002/prp2.136] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
Saroglitazar is a novel nonthiazolidinediones (TZD) and nonfibric acid derivative designed to act as dual regulator of lipids and glucose metabolism by activating peroxisome proliferator-activated receptors (PPAR). These studies evaluate the efficacy and safety profile of Saroglitazar in preclinical in vitro and in vivo models. The EC50 values of Saroglitazar assessed in HepG2 cells using PPAR transactivation assay for hPPARα and hPPARγ were 0.65 pmol/L and 3 nmol/L, respectively. In db/db mice, 12-day treatment with Saroglitazar (0.01–3 mg/kg per day, orally) caused dose-dependent reductions in serum triglycerides (TG), free fatty acids (FFA), and glucose. The ED50 for these effects was found to be 0.05, 0.19, and 0.19 mg/kg, respectively with highly significant (91%) reduction in serum insulin and AUC-glucose following oral glucose administration (59%) at 1 mg/kg dose. Significant reduction in serum TG (upto 90%) was also observed in Zucker fa/fa rats, Swiss albino mice, and in high fat -high cholesterol (HF-HC)-fed Golden Syrian hamsters. LDL cholesterol was significantly lowered in hApoB100/hCETP double transgenic mice and HF-HC diet fed Golden Syrian Hamsters. Hyperinsulinemic-Euglycemic clamp study in Zucker fa/fa rats demonstrated potent insulin-sensitizing activity. Saroglitazar also showed a significant decrease in SBP (22 mmHg) and increase (62.1%) in serum adiponectin levels in Zucker fa/fa rats. A 90-day repeated dose comparative study in Wistar rats and marmosets confirmed efficacy (TG lowering) potential of Saroglitazar and has indicated low risk of PPAR-associated side effects in humans. Based on efficacy and safety profile, Saroglitazar appears to have good potential as novel therapeutic agent for treatment of dyslipidemia and diabetes.
Collapse
Affiliation(s)
- Mukul R Jain
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Suresh R Giri
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Chitrang Trivedi
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Bibhuti Bhoi
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Akshyaya Rath
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Geeta Vanage
- National Institute for Research in Reproductive Health Parel, Mumbai, India
| | - Purvi Vyas
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Ramchandra Ranvir
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| | - Pankaj R Patel
- Zydus Research Centre, Cadila Healthcare Limited Sarkhej-Bavla N.H. No. 8A, Moriya, Ahmedabad, 382 213, Gujarat, India
| |
Collapse
|
166
|
Haghani K, Pashaei S, Vakili S, Taheripak G, Bakhtiyari S. TNF-α knockdown alleviates palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Biochem Biophys Res Commun 2015; 460:977-82. [PMID: 25839650 DOI: 10.1016/j.bbrc.2015.03.137] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/27/2022]
Abstract
Insulin resistance is a cardinal feature of Type 2 Diabetes (T2D), which accompanied by lipid accumulation and TNF-α overexpression in skeletal muscle. The role of TNF-α in palmitate-induced insulin resistance remained to be elucidated. Here, we assessed effects of TNF-α knockdown on the components of insulin signaling pathway (IRS-1 and Akt) in palmitate-induced insulin resistant C2C12 skeletal muscle cells. To reduce TNF-α expression, C2C12 cells were transduced with TNF-α-shRNA lentiviral particles. Afterwards, the protein expression of TNF-α, IRS-1, and Akt, as well as phosphorylation levels of IRS-1 and Akt were evaluated by western blot. We also measured insulin-stimulated glucose uptake in the presence and absence of palmitate. TNF-α protein expression in C2C12 cells significantly increased by treatment with 0.75 mM palmitate (P < 0.05). In TNF-α knockdown cells, the protein expression level of TNF-α was significantly decreased by almost 70% (P < 0.01) compared with the control cells. Our results also revealed that, in control cells, palmitate treatment significantly reduced the insulin-induced phosphorylations of IRS-1 (Tyr632) and Akt (Ser473) by 60% and 66% (P < 0.01), respectively. Interestingly, these phosphorylations, even in the presence of palmitate, were not significantly reduced in TNF-α knockdown cells with respect to the untreated control cells (P > 0.05). Furthermore, palmitate significantly reduced insulin-dependent glucose uptake in control cells, however, it was not able to reduce insulin-stimulated glucose uptake in TNF-α knockdown cells in comparison with the untreated control cells (P < 0.01). These findings indicated that TNF-α down-regulation maintains insulin sensitivity, even in the presence of palmitate, therefore, TNF-α inhibition could be a good strategy for the treatment of palmitate-induced insulin resistance.
Collapse
Affiliation(s)
- Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Somayeh Pashaei
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Sanaz Vakili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Taheripak
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
167
|
Raffaelli M, Iaconelli A, Nanni G, Guidone C, Callari C, Fernandez Real JM, Bellantone R, Mingrone G. Effects of biliopancreatic diversion on diurnal leptin, insulin and free fatty acid levels. Br J Surg 2015; 102:682-90. [DOI: 10.1002/bjs.9780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 12/25/2022]
Abstract
Abstract
Background
Free fatty acid (FFA) levels are raised in obesity as a consequence of increased production and reduced clearance. They may link obesity with insulin resistance. Bariatric surgery can result in considerable weight loss and reduced insulin resistance, but the mechanism of action is not well understood. Although drugs such as metformin that lower insulin resistance can contribute to weight loss, a better understanding of the links between obesity, weight loss and changes in insulin resistance might lead to new approaches to patient management.
Methods
Variations in circulating levels of leptin, insulin and FFAs over 24 h were studied in severely obese (body mass index over 40 kg/m2) women before and 6 months after biliopancreatic diversion (BPD). Body composition was measured by dual-energy X-ray absorptiometry. A euglycaemic–hyperinsulinaemic clamp was used to assess insulin sensitivity. Levels of insulin, leptin and FFAs were measured every 20 min for 24 h. Pulsatile hormone and FFA analyses were performed.
Results
Among eight patients studied, insulin sensitivity more than doubled after BPD, from mean(s.d.) 39·78(7·74) to 96·66(27·01) mmol per kg fat-free mass per min, under plasma insulin concentrations of 102·29(9·60) and 93·61(9·95) µunits/ml respectively. The secretory patterns of leptin were significantly different from random but not statistically different before and after BPD, with the exception of the pulse height which was reduced after surgery. Both plasma insulin and FFA levels were significantly higher throughout the study day before BPD. Based on Granger statistical modelling, lowering of daily FFA levels was linked to decreased circulating leptin concentrations, which in turn were related to the lowering of daily insulin excursions. Multiple regression analysis indicated that FFA level was the only predictor of leptin level.
Conclusion
Lowering of circulating levels of FFAs after BPD may be responsible for the reduction in leptin secretion, which in turn can decrease circulating insulin levels. Surgical relevanceInsulin resistance is a common feature of obesity and type II diabetes. These patients are also relatively insensitive to the biological effects of leptin, a satiety hormone produced mainly in subcutaneous fat.Biliopancreatic diversion, a malabsorptive bariatric operation that drastically reduces circulating lipid levels, improves insulin resistance independently of weight loss. The mechanism of action, however, has still to be elucidated.This study demonstrated that normalization of insulin sensitivity after bariatric surgery was associated with a reduction in 24-h free fatty acid concentrations and changes in the pattern of leptin peaks in plasma. Bariatric surgery improves the metabolic dysfunction of obesity, and this may be through a reduction in circulating free fatty acids and modification of leptin metabolism.
Collapse
Affiliation(s)
- M Raffaelli
- Departments of Surgery, Catholic University of Rome, Rome, Italy
| | - A Iaconelli
- Departments of Internal Medicine, Catholic University of Rome, Rome, Italy
| | - G Nanni
- Departments of Surgery, Catholic University of Rome, Rome, Italy
| | - C Guidone
- Departments of Internal Medicine, Catholic University of Rome, Rome, Italy
| | - C Callari
- Departments of Surgery, Catholic University of Rome, Rome, Italy
| | - J M Fernandez Real
- Biomedical Research Institute of Girona (IDIBGI), CIBERobn Obesity Hospital of Girona ‘Dr Josep Trueta’, Girona, Spain
| | - R Bellantone
- Departments of Surgery, Catholic University of Rome, Rome, Italy
| | - G Mingrone
- Departments of Internal Medicine, Catholic University of Rome, Rome, Italy
- Department of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| |
Collapse
|
168
|
Liu Y, Song A, Zang S, Wang C, Song G, Li X, Zhu Y, Yu X, Li L, Wang Y, Duan L. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:244-252. [PMID: 25577992 DOI: 10.1016/j.jep.2014.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/19/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. MATERIALS AND METHODS Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. RESULTS Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. CONCLUSIONS Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - An Song
- Department of Clinical medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Shasha Zang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Chao Wang
- Department of Clinical Medical Research Center and Geriatric Key Laboratory, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China.
| | - Xiaoling Li
- Department of Endocrinology, Bethune International Peace Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Yajun Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Xian Yu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Ling Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yun Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Liyuan Duan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| |
Collapse
|
169
|
Lou M, Luo P, Tang R, Peng Y, Yu S, Huang W, He L. Relationship between neutrophil-lymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. BMC Endocr Disord 2015; 15:9. [PMID: 25887236 PMCID: PMC4357061 DOI: 10.1186/s12902-015-0002-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) plays a vital role in the pathogenesis of Type 2 Diabetes Mellitus (T2DM). The mechanism of IR may be associated with inflammation, whereas the neutrophil-lymphocyte ratio (NLR) is a new indicator of subclinical inflammation. Scholars have rarely investigated the relationship between IR and NLR. This study aims to evaluate the relationship between IR and NLR, and determine whether or not NLR is a reliable marker for IR. METHODS The sample consists of a total of 413 patients with T2DM, 310 of whom have a HOMA-IR value of > 2.0. The control group consists of 130 age and BMI matched healthy subjects. RESULTS The NLR values of the diabetic patients were significantly higher than those of the healthy control (P < 0.001), and the NLR values of the patients with a HOMA-IR value of > 2.0 are notably greater than those of the patients with a HOMA-IR value of ≤ 2.0 (P < 0.001). Pearson correlation analysis showed a significant positive correlation of NLR with HOMA-IR (r = 0.285) (P < 0.001). Logistic regression analysis showed that the risk predictors of IR include NLR, TG and HbA1c. NLR (P < 0.001, EXP(B) = 7.231, 95% CI = 4.277-12.223) levels correlated positively with IR. The IR odds ratio increased by a factor of 7.231 (95% CI, 4.277-12.223) for every one unit increase in NLR. CONCLUSIONS Increased NLR was significantly associated with IR, and high NLR values may be a reliable predictive marker of IR.
Collapse
Affiliation(s)
- Meiqin Lou
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| | - Peng Luo
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| | - Ru Tang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| | - Yixian Peng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| | - Siyuan Yu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| | - Wanjing Huang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| | - Lei He
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, # 253 Industry Road, Guangzhou, China.
| |
Collapse
|
170
|
Sallam HS, Tumurbaatar B, Zhang WR, Tuvdendorj D, Chandalia M, Tempia F, Laezza F, Taglialatela G, Abate N. Peripheral adipose tissue insulin resistance alters lipid composition and function of hippocampal synapses. J Neurochem 2015; 133:125-33. [PMID: 25640170 DOI: 10.1111/jnc.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
Compelling evidence indicates that type 2 diabetes mellitus, insulin resistance (IR), and metabolic syndrome are often accompanied by cognitive impairment. However, the mechanistic link between these metabolic abnormalities and CNS dysfunction requires further investigations. Here, we evaluated whether adipose tissue IR and related metabolic alterations resulted in CNS changes by studying synapse lipid composition and function in the adipocyte-specific ecto-nucleotide pyrophosphate phosphodiesterase over-expressing transgenic (AtENPP1-Tg) mouse, a model characterized by white adipocyte IR, systemic IR, and ectopic fat deposition. When fed a high-fat diet, AtENPP1-Tg mice recapitulate essential features of the human metabolic syndrome, making them an ideal model to characterize peripherally induced CNS deficits. Using a combination of gas chromatography and western blot analysis, we found evidence of altered lipid composition, including decreased phospholipids and increased triglycerides (TG) and free fatty acid in hippocampal synaptosomes isolated from high-fat diet-fed AtENPP1-Tg mice. These changes were associated with impaired basal synaptic transmission at the Schaffer collaterals to hippocampal cornu ammonis 1 (CA1) synapses, decreased phosphorylation of the GluN1 glutamate receptor subunit, down-regulation of insulin receptor expression, and up-regulation of the free fatty acid receptor 1.
Collapse
Affiliation(s)
- Hanaa S Sallam
- Division of Endocrinology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Kretowski A, Adamska E, Maliszewska K, Wawrusiewicz-Kurylonek N, Citko A, Goscik J, Bauer W, Wilk J, Golonko A, Waszczeniuk M, Lipinska D, Hryniewicka J, Niemira M, Paczkowska M, Ciborowski M, Gorska M. The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism. GENES AND NUTRITION 2015; 10:4. [PMID: 25601634 PMCID: PMC4298567 DOI: 10.1007/s12263-015-0454-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023]
Abstract
Large-scale meta-analyses of genome-wide association studies have recently confirmed that the rs340874 single-nucleotide polymorphism in PROX1 gene is associated with fasting glycemia and type 2 diabetes mellitus; however, the mechanism of this link was not well established. The aim of our study was to evaluate the functional/phenotypic differences related to rs340874 PROX1 variants. The study group comprised 945 subjects of Polish origin (including 634 with BMI > 25) without previously known dysglycemia. We analyzed behavioral patterns (diet, physical activity), body fat distribution and glucose/fat metabolism after standardized meals and during the oral glucose tolerance test. We found that the carriers of the rs340874 PROX1 CC genotype had higher nonesterified fatty acids levels after high-fat meal (p = 0.035) and lower glucose oxidation (p = 0.014) after high-carbohydrate meal in comparison with subjects with other PROX1 genotypes. Moreover, in subjects with CC variant, we found higher accumulation of visceral fat (p < 0.02), but surprisingly lower daily food consumption (p < 0.001). We hypothesize that lipid metabolism alterations in subjects with the PROX1 CC genotype may be a primary cause of higher glucose levels after glucose load, since the fatty acids can inhibit insulin-stimulated glucose uptake by decreasing carbohydrate oxidation. Our observations suggest that the PROX1 variants have pleiotropic effect on disease pathways and it seem to be a very interesting goal of research on prevention of obesity and type 2 diabetes mellitus. The study may help to understand the mechanisms of visceral obesity and type 2 diabetes mellitus risk development.
Collapse
Affiliation(s)
- Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Edyta Adamska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Anna Citko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Goscik
- Centre for Experimental Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Witold Bauer
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Juliusz Wilk
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Anna Golonko
- Department of Dietetics and Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Waszczeniuk
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Department of Dietetics and Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Danuta Lipinska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Justyna Hryniewicka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | | | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
172
|
Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Sci Rep 2015; 5:7561. [PMID: 25557754 PMCID: PMC5378987 DOI: 10.1038/srep07561] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease risk is associated with excess body weight and elevated plasma free fatty acid (FFA) concentrations. This study examines how an alternate-day fasting (ADF) diet high (HF) or low (LF) in fat affects plasma FFA profiles in the context of weight loss, and changes in body composition and lipid profiles. After a 2-week weight maintenance period, 29 women (BMI 30-39.9 kg/m(2)) 25-65 years old were randomized to an 8-week ADF-HF (45% fat) diet or an ADF-LF (25% fat) diet with 25% energy intake on fast days and ad libitum intake on feed days. Body weight, BMI and waist circumference were assessed weekly and body composition was measured using dual x-ray absorptiometry (DXA). Total and individual FFA and plasma lipid concentrations were measured before and after weight loss. Body weight, BMI, fat mass, total cholesterol, LDL-C and triglyceride concentrations decreased (P < 0.05) in both groups. Total FFA concentrations also decreased (P < 0.001). In the ADF-LF group, decreases were found in several more FFAs than in the ADF-HF group. In the ADF-HF group, FFA concentrations were positively correlated with waist circumference. Depending on the macronutrient composition of a diet, weight loss with an ADF diet decreases FFA concentrations through potentially different mechanisms.
Collapse
|
173
|
Liu HH, Li JJ. Aging and dyslipidemia: a review of potential mechanisms. Ageing Res Rev 2015; 19:43-52. [PMID: 25500366 DOI: 10.1016/j.arr.2014.12.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
Elderly adults constitute a rapidly growing part of the global population, thus resulting in an increase in morbidity and mortality related to cardiovascular disease (CVD), which remains the major cause of death in elderly population, including men and women. Dyslipidemia is a well-established risk factor for CVD and is estimated to account for more than half of the worldwide cases of coronary artery disease (CAD). Many studies have shown a strong correlation between serum cholesterol levels and risk of developing CAD. In this paper, we review the changes of plasma lipids that occur in men and women during aging and the potential mechanisms of age-related disorders of lipoprotein metabolism covering humans and/or animals, in which changes of the liver sinusoidal endothelium, postprandial lipemia, insulin resistance induced by free fatty acid (FFA), growth hormone (GH), androgen (only for men) and expression and activity of peroxisome proliferator-activated receptor α (PPARα) are mainly focused.
Collapse
Affiliation(s)
- Hui-Hui Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
174
|
Castoldi A, Naffah de Souza C, Câmara NOS, Moraes-Vieira PM. The Macrophage Switch in Obesity Development. Front Immunol 2015; 6:637. [PMID: 26779183 PMCID: PMC4700258 DOI: 10.3389/fimmu.2015.00637] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022] Open
Abstract
Immune cell infiltration in (white) adipose tissue (AT) during obesity is associated with the development of insulin resistance. In AT, the main population of leukocytes are macrophages. Macrophages can be classified into two major populations: M1, classically activated macrophages, and M2, alternatively activated macrophages, although recent studies have identified a broad range of macrophage subsets. During obesity, AT M1 macrophage numbers increase and correlate with AT inflammation and insulin resistance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. By contrast, in lean humans and mice, the number of M2 macrophages predominates. M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism to maintain AT homeostasis. Here, we review the immunologic and metabolic functions of AT macrophages and their different facets in obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Angela Castoldi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristiane Naffah de Souza
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Laboratory of Renal Physiology (LIM 16), Department of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pedro M. Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- *Correspondence: Pedro M. Moraes-Vieira,
| |
Collapse
|
175
|
Argiana V, Kanellos PΤ, Makrilakis K, Eleftheriadou I, Tsitsinakis G, Kokkinos A, Perrea D, Tentolouris N. The effect of consumption of low-glycemic-index and low-glycemic-load desserts on anthropometric parameters and inflammatory markers in patients with type 2 diabetes mellitus. Eur J Nutr 2014; 54:1173-80. [DOI: 10.1007/s00394-014-0795-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
176
|
Gunes O, Tascilar E, Sertoglu E, Tas A, Serdar MA, Kaya G, Kayadibi H, Ozcan O. Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chem Phys Lipids 2014; 184:69-75. [PMID: 25262585 DOI: 10.1016/j.chemphyslip.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVE Cytokines released from the adipose tissue and fatty acids (FAs) derived from lipolysis or uptake of fats go in to competition with glucose to be uptaken from the liver leads to insulin resistance (IR). We aimed to show the associations among serum lipid profile, FA compositions and IR. METHODS Anthropometrical measurements, biochemical parameters and erythrocyte membrane (EM) FA levels of 95 obese adolescents (41 with IR) and 40 healthy controls were compared. RESULTS LDL-C, fasting insulin levels, HOMA-IR were significantly higher and HDL-C levels were significantly lower in obese patients than in controls (p=0.013, p<0.001, p<0.001 and p<0.001, respectively). EM C 24:0, C 16:1 ω7 and C 22:1 ω9 FA levels were significantly higher, while C 20:5 ω3 (EPA) levels were significantly lower in obese subjects than in controls (p<0.001, p=0.018, p<0.001, p=0.043 and p<0.001, respectively). Moreover, when obese subjects divided into two groups according to the presence of IR; EM C 16:1 ω7 levels were still significantly higher and EPA levels were still significantly lower in both obese subjects with and without IR compared to controls (p<0.001 for both). CONCLUSION Saturated FA intake should be decreased because of its role in the development of obesity and IR, and ω-3 group FA intake should be increased.
Collapse
Affiliation(s)
- Omer Gunes
- Agri Military Hospital, Department of Pediatrics, Agri, Turkey.
| | - Emre Tascilar
- Gulhane School of Medicine, Department of Pediatrics, Ankara, Turkey
| | - Erdim Sertoglu
- Ankara Mevki Military Hospital, Anittepe Dispensary, Ankara, Turkey
| | - Ahmet Tas
- Gulhane School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Muhittin A Serdar
- Acıbadem University School Of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Güven Kaya
- Gulhane School of Medicine, Department of Pediatrics, Ankara, Turkey
| | - Huseyin Kayadibi
- Adana Military Hospital, Department of Medical Biochemistry, Adana, Turkey
| | - Okan Ozcan
- Gulhane School of Medicine, Department of Pediatrics, Ankara, Turkey
| |
Collapse
|
177
|
Astaxanthin supplementation effects on adipocyte size and lipid profile in OLETF rats with hyperphagia and visceral fat accumulation. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
178
|
Johns I, Goff L, Bluck LJ, Griffin BA, Jebb SA, Lovegrove JA, Sanders TAB, Frost G, Dornhorst A. Plasma free fatty acids do not provide the link between obesity and insulin resistance or β-cell dysfunction: results of the Reading, Imperial, Surrey, Cambridge, Kings (RISCK) study. Diabet Med 2014; 31:1310-5. [PMID: 25047698 DOI: 10.1111/dme.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/13/2014] [Accepted: 07/17/2014] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the relationship between adiposity and plasma free fatty acid levels and the influence of total plasma free fatty acid level on insulin sensitivity and β-cell function. METHODS An insulin sensitivity index, acute insulin response to glucose and a disposition index, derived from i.v. glucose tolerance minimal model analysis and total fasting plasma free fatty acid levels were available for 533 participants in the Reading, Imperial, Surrey, Cambridge, Kings study. Bivariate correlations were made between insulin sensitivity index, acute insulin response to glucose and disposition index and both adiposity measures (BMI, waist circumference and body fat mass) and total plasma free fatty acid levels. Multivariate linear regression analysis was performed, controlling for age, sex, ethnicity and adiposity. RESULTS After adjustment, all adiposity measures were inversely associated with insulin sensitivity index (BMI: β = -0.357; waist circumference: β = -0.380; body fat mass: β = -0.375) and disposition index (BMI: β = -0.215; waist circumference: β = -0.248; body fat mass: β = -0.221) and positively associated with acute insulin response to glucose [BMI: β = 0.200; waist circumference: β = 0.195; body fat mass β = 0.209 (P values <0.001)]. Adiposity explained 13, 4 and 5% of the variation in insulin sensitivity index, acute insulin response to glucose and disposition index, respectively. After adjustment, no adiposity measure was associated with free fatty acid level, but total plasma free fatty acid level was inversely associated with insulin sensitivity index (β = -0.133), acute insulin response to glucose (β = -0.148) and disposition index [β = -0.218 (P values <0.01)]. Plasma free fatty acid concentration accounted for 1.5, 2 and 4% of the variation in insulin sensitivity index, acute insulin response to glucose and disposition index, respectively. CONCLUSIONS Plasma free fatty acid levels have a modest negative association with insulin sensitivity, β-cell secretion and disposition index but no association with adiposity measures. It is unlikely that plasma free fatty acids are the primary mediators of obesity-related insulin resistance or β-cell dysfunction.
Collapse
Affiliation(s)
- I Johns
- Nutrition and Dietetic Research Group, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes. Biochem Biophys Res Commun 2014; 452:382-8. [DOI: 10.1016/j.bbrc.2014.08.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 11/24/2022]
|
180
|
Kim JN, Han SN, Kim HK. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells. Nutr Res 2014; 34:723-31. [DOI: 10.1016/j.nutres.2014.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/14/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
|
181
|
Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A 2014; 111:9597-602. [PMID: 24979806 DOI: 10.1073/pnas.1409229111] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Muscle insulin resistance is a key feature of obesity and type 2 diabetes and is strongly associated with increased intramyocellular lipid content and inflammation. However, the cellular and molecular mechanisms responsible for causing muscle insulin resistance in humans are still unclear. To address this question, we performed serial muscle biopsies in healthy, lean subjects before and during a lipid infusion to induce acute muscle insulin resistance and assessed lipid and inflammatory parameters that have been previously implicated in causing muscle insulin resistance. We found that acute induction of muscle insulin resistance was associated with a transient increase in total and cytosolic diacylglycerol (DAG) content that was temporally associated with protein kinase (PKC)θ activation, increased insulin receptor substrate (IRS)-1 serine 1101 phosphorylation, and inhibition of insulin-stimulated IRS-1 tyrosine phosphorylation and AKT2 phosphorylation. In contrast, there were no associations between insulin resistance and alterations in muscle ceramide, acylcarnitine content, or adipocytokines (interleukin-6, adiponectin, retinol-binding protein 4) or soluble intercellular adhesion molecule-1. Similar associations between muscle DAG content, PKCθ activation, and muscle insulin resistance were observed in healthy insulin-resistant obese subjects and obese type 2 diabetic subjects. Taken together, these data support a key role for DAG activation of PKCθ in the pathogenesis of lipid-induced muscle insulin resistance in obese and type 2 diabetic individuals.
Collapse
|
182
|
Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav 2014; 66:95-103. [PMID: 24589990 DOI: 10.1016/j.yhbeh.2014.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/24/2022]
Abstract
This article is part of a Special Issue "Energy Balance". Obesity and its associated comorbidities remain at epidemic levels globally and show no signs of abatement in either adult or child populations. White adipose tissue has long been established as an endocrine signalling organ possessing both metabolic and immune functions. This role can become dysregulated following excess adiposity caused by adipocyte hypertrophy and hyperplasia. In contrast, brown adipose tissue (BAT) is only present in comparatively small amounts in the body but can significantly impact on heat production, and thus could prevent excess white adiposity. Obesity and associated risk factors for adverse metabolic health are not only linked with enlarged fat mass but also are dependent on its anatomical deposition. In addition, numerous studies have revealed a disparity in white adipose tissue deposition prior to and during the development of obesity between the sexes. Females therefore tend to develop a greater abundance of femoral and gluteal subcutaneous fat whereas males exhibit more central adiposity. In females, lower body subcutaneous adipose tissue depots appear to possess a greater capacity for lipid storage, enhanced lipolytic flux and hyperplastic tissue remodelling compared to visceral adipocytes. These differences are acknowledged to contribute to the poorer metabolic and inflammatory profiles observed in males. Importantly, the converse outcomes between sexes disappear after the menopause, suggesting a role for sex hormones within the onset of metabolic complications with obesity. This review further considers how BAT impacts upon on the relationship between excess adiposity, gender, inflammation and endocrine signalling and could thus ultimately be a target to prevent obesity.
Collapse
Affiliation(s)
- Ian D Bloor
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
183
|
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82:748-53. [DOI: 10.1016/j.mehy.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
|
184
|
Miao H, Ou J, Ma Y, Guo F, Yang Z, Wiggins M, Liu C, Song W, Han X, Wang M, Cao Q, Chung BHF, Yang D, Liang H, Xue B, Shi H, Gan L, Yu L. Macrophage CGI-58 deficiency activates ROS-inflammasome pathway to promote insulin resistance in mice. Cell Rep 2014; 7:223-35. [PMID: 24703845 DOI: 10.1016/j.celrep.2014.02.047] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/04/2014] [Accepted: 02/28/2014] [Indexed: 01/08/2023] Open
Abstract
Overnutrition activates a proinflammatory program in macrophages to induce insulin resistance (IR), but its molecular mechanisms remain incompletely understood. Here, we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD)-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO) in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPAR)γ signaling. Consequently, they overproduce reactive oxygen species (ROS) to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from oversecreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the cocultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Hongming Miao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yinyan Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Feng Guo
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Zhenggang Yang
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Melvin Wiggins
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Bik-Ho Florence Chung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Dan Yang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Lixia Gan
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing 400038, China.
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
185
|
Grahn THM, Kaur R, Yin J, Schweiger M, Sharma VM, Lee MJ, Ido Y, Smas CM, Zechner R, Lass A, Puri V. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes. J Biol Chem 2014; 289:12029-12039. [PMID: 24627478 DOI: 10.1074/jbc.m113.539890] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In adipocytes, lipolysis is a highly regulated process involving hormonal signals, lipid droplet-associated proteins, and lipases. The discovery of new lipid droplet-associated proteins added complexity to the current model of lipolysis. In this study, we used cultured human adipocytes to demonstrate that fat-specific protein 27 (FSP27), an abundantly expressed protein in adipocytes, regulates both basal and stimulated lipolysis by interacting with adipose triglyceride lipase (ATGL, also called desnutrin or PNPLA2). We identified a core domain of FSP27, amino acids 120-220, that interacts with ATGL to inhibit its lipolytic function and promote triglyceride storage. We also defined the role of FSP27 in free fatty acid-induced insulin resistance in adipocytes. FSP27 depletion in human adipocytes increased lipolysis and inhibited insulin signaling by decreasing AKT phosphorylation. However, reducing lipolysis by either depletion of ATGL or expression of exogenous full-length FSP27 or amino acids 120-220 protected human adipocytes against the adverse effects of free fatty acids on insulin signaling. In embryonic fibroblasts derived from ATGL KO mice, exogenous free fatty acids did not affect insulin sensitivity. Our results demonstrate a crucial role for FSP27-ATGL interactions in regulating lipolysis, triglyceride accumulation, and insulin signaling in human adipocytes.
Collapse
Affiliation(s)
- Tan Hooi Min Grahn
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Rajween Kaur
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jun Yin
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz
| | - Vishva Mitra Sharma
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mi-Jeong Lee
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Yasuo Ido
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Cynthia M Smas
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz
| | - Vishwajeet Puri
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
186
|
Relationship of muscle sympathetic nerve activity to insulin sensitivity. Clin Auton Res 2014; 24:77-85. [PMID: 24577625 DOI: 10.1007/s10286-014-0235-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE An association between insulin resistance and activation of the sympathetic nervous system has been reported in previous studies. However, potential interactions between insulin sensitivity and sympathetic neural mechanisms in healthy people remain poorly understood. We conducted a study to determine the relationship between sympathetic activity and insulin resistance in young, healthy humans. METHODS Thirty-seven healthy adults (18-35 years, BMI <28 kg m(-2)) were studied. Resting muscle sympathetic nerve activity (MSNA) was measured with microneurography and insulin sensitivity of glucose and free fatty acid metabolism was measured during a hyperinsulinemic-euglycemic clamp with two levels of insulin. RESULTS During lower doses of insulin, we found a small association between lower insulin sensitivity and higher MSNA (P < 0.05) but age was a cofactor in this relationship. Overall, we found no difference in insulin sensitivity between groups of low and high MSNA, but when women were analyzed separately, insulin sensitivity was lower in the high MSNA group compared with the low MSNA group of women. CONCLUSIONS These data suggest that MSNA and insulin sensitivity are only weakly associated with young healthy individuals and that age and sex may be important modifiers of this relationship.
Collapse
|
187
|
Levy E, Spahis S, Garofalo C, Marcil V, Montoudis A, Sinnet D, Sanchez R, Peretti N, Beaulieu JF, Sane A. Sar1b transgenic male mice are more susceptible to high-fat diet-induced obesity, insulin insensitivity and intestinal chylomicron overproduction. J Nutr Biochem 2014; 25:540-8. [PMID: 24657056 DOI: 10.1016/j.jnutbio.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
In the intracellular secretory network, nascent proteins are shuttled from the endoplasmic reticulum to the Golgi by transport vesicles requiring Sar1b, a small GTPase. Mutations in this key enzyme impair intestinal lipid transport and cause chylomicron retention disease. The main aim of this study was to assess whether Sar1b overexpression under a hypercaloric diet accelerated lipid production and chylomicron (CM) secretion, thereby inducing cardiometabolic abnormalities. To this end, we generated transgenic mice overexpressing human Sar1b (Sar1b(+/+)) using pBROAD3-mcs that features the ubiquitous mouse ROSA26 promoter. In response to a high-fat diet (HFD), Sar1b(+/+) mice displayed significantly increased body weight and adiposity compared with Sar1b(+/+) mice under the same regimen or with wild-type (WT) mice exposed to chow diet or HFD. Furthermore, Sar1b(+/+) mice were prone to liver steatosis as revealed by significantly elevated hepatic triglycerides (TG) and cholesterol in comparison with WT animals. They also exhibited augmented levels of plasma TG along with alterations in fatty acid composition. Concomitantly, they showed susceptibility to develop insulin insensitivity and they responded abnormally to oral glucose tolerance test. Finally, Sar1b(+/+) mice that have been treated with Triton WR-1330 (to inhibit TG catabolism) and orotic acid (to block secretion of very low-density lipoprotein by the liver) responded more efficiently to fat meal tests as reflected by the rise in plasma TG and CM concentrations, indicating exaggerated intestinal fat absorption. These results suggest that Sar1b(+/+) under HFD can elicit cardiometabolic traits as revealed by incremental weight gain, fat deposition, dyslipidemia, hepatic steatosis, insulin insensitivity and intestinal fat absorption.
Collapse
Affiliation(s)
- Emile Levy
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4; Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4.
| | - Schohraya Spahis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1J4
| | - Carole Garofalo
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Institute, McGill University, Montreal, Quebec, Canada, H3G 1A4
| | - Alain Montoudis
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Daniel Sinnet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Rocio Sanchez
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| | - Noel Peretti
- Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Faculté de Médicine, Université de Lyon-1, France
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Alain Sane
- Research Center, Sainte-Justine UHC, Montreal, Quebec, Canada, H3T 1C5
| |
Collapse
|
188
|
Szendroedi J, Kaul K, Kloock L, Straßburger K, Schmid AI, Chmelik M, Kacerovsky M, Kacerovsky-Bielesz G, Prikoszovich T, Brehm A, Krssák M, Gruber S, Krebs M, Kautzky-Willer A, Moser E, Pacini G, Roden M. Lower fasting muscle mitochondrial activity relates to hepatic steatosis in humans. Diabetes Care 2014; 37:468-74. [PMID: 24026561 DOI: 10.2337/dc13-1359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Muscle insulin resistance has been implicated in the development of steatosis and dyslipidemia by changing the partitioning of postprandial substrate fluxes. Also, insulin resistance may be due to reduced mitochondrial function. We examined the association between mitochondrial activity, insulin sensitivity, and steatosis in a larger human population. RESEARCH DESIGN AND METHODS We analyzed muscle mitochondrial activity from ATP synthase flux (fATP) and ectopic lipids by multinuclei magnetic resonance spectroscopy from 113 volunteers with and without diabetes. Insulin sensitivity was assessed from M values using euglycemic-hyperinsulinemic clamps and/or from oral glucose insulin sensitivity (OGIS) using oral glucose tolerance tests. RESULTS Muscle fATP correlated negatively with hepatic lipid content and HbA1c. After model adjustment for study effects and other confounders, fATP showed a strong negative correlation with hepatic lipid content and a positive correlation with insulin sensitivity and fasting C-peptide. The negative correlation of muscle fATP with age, HbA1c, and plasma free fatty acids was weakened after adjustment. Body mass, muscle lipid contents, plasma lipoproteins, and triglycerides did not associate with fATP. CONCLUSIONS The association of impaired muscle mitochondrial activity with hepatic steatosis supports the concept of a close link between altered muscle and liver energy metabolism as early abnormalities promoting insulin resistance.
Collapse
|
189
|
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220:T61-79. [PMID: 24323910 DOI: 10.1530/joe-13-0397] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
190
|
Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 2014; 80:21-35. [DOI: 10.1016/j.phrs.2013.12.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 01/17/2023]
|
191
|
Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martínez C, Ricart W, Rieusset J, Rome S, Karczewska-Kupczewska M, Straczkowski M, Fernández-Real JM. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 2014; 37:1375-83. [PMID: 24478399 DOI: 10.2337/dc13-1847] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study sought to identify the profile of circulating microRNAs (miRNAs) in type 2 diabetes (T2D) and its response to changes in insulin sensitivity. RESEARCH DESIGN AND METHODS The circulating miRNA profile was assessed in a pilot study of 12 men: 6 with normal glucose tolerance (NGT) and 6 T2D patients. The association of 10 circulating miRNAs with T2D was cross-sectionally validated in an extended sample of 45 NGT vs. 48 T2D subjects (65 nonobese and 28 obese men) and longitudinally in 35 T2D patients who were recruited in a randomized, double-blinded, and placebo-controlled 3-month trial of metformin treatment. Circulating miRNAs were also measured in seven healthy volunteers before and after a 6-h hyperinsulinemic-euglycemic clamp and insulin plus intralipid/heparin infusion. RESULTS Cross-sectional studies disclosed a marked increase of miR-140-5p, miR-142-3p, and miR-222 and decreased miR-423-5p, miR-125b, miR-192, miR-195, miR-130b, miR-532-5p, and miR-126 in T2D patients. Multiple linear regression analyses revealed that miR-140-5p and miR-423-5p contributed independently to explain 49.5% (P < 0.0001) of fasting glucose variance after controlling for confounders. A discriminant function of four miRNAs (miR-140-5p, miR-423-5p, miR-195, and miR-126) was specific for T2D with an accuracy of 89.2% (P < 0.0001). Metformin (but not placebo) led to significant changes in circulating miR-192 (49.5%; P = 0.022), miR-140-5p (-15.8%; P = 0.004), and miR-222 (-47.2%; P = 0.03), in parallel to decreased fasting glucose and HbA1c. Furthermore, while insulin infusion during clamp decreased miR-222 (-62%; P = 0.002), the intralipid/heparin mixture increased circulating miR-222 (163%; P = 0.015) and miR-140-5p (67.5%; P = 0.05). CONCLUSIONS This study depicts the close association between variations in circulating miRNAs and T2D and their potential relevance in insulin sensitivity.
Collapse
|
192
|
Milardi D, Sciacca MFM, Randazzo L, Raudino A, La Rosa C. The role of calcium, lipid membranes and islet amyloid polypeptide in the onset of type 2 diabetes: innocent bystanders or partners in a crime? Front Endocrinol (Lausanne) 2014; 5:216. [PMID: 25566188 PMCID: PMC4268396 DOI: 10.3389/fendo.2014.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Danilo Milardi
- Istituto CNR di Biostrutture e Bioimmagini-Sezione di Catania, Catania, Italy
| | - Michele F. M. Sciacca
- Dipartimento di Scienze Chimiche Viale Andrea Doria 6, Università Degli Studi di Catania, Catania, Italy
| | - Loredana Randazzo
- Istituto CNR di Biostrutture e Bioimmagini-Sezione di Catania, Catania, Italy
| | - Antonino Raudino
- Dipartimento di Scienze Chimiche Viale Andrea Doria 6, Università Degli Studi di Catania, Catania, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche Viale Andrea Doria 6, Università Degli Studi di Catania, Catania, Italy
- *Correspondence:
| |
Collapse
|
193
|
Senthil Kumar SPD, Shen M, Spicer EG, Goudjo-Ako AJ, Stumph JD, Zhang J, Shi H. Distinct metabolic effects following short-term exposure of different high-fat diets in male and female mice. Endocr J 2014; 61:457-70. [PMID: 24646677 PMCID: PMC4045093 DOI: 10.1507/endocrj.ej13-0455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity-associated hepatic lipid accumulation and chronic low-grade inflammation lead to metabolic defects. Saturated fatty acids (SFA) are a risk factor for, whereas unsaturated fatty acids (UFA) are thought to be protective against, developing metabolic diseases. Sex differences exist in the regulation of metabolism. We tested the hypothesis that diets high in SFA, mono-UFA (MUFA), or poly-UFA (PUFA) had early, sex-distinct effects that differentially contribute to long-term metabolic disturbance such as fatty liver and insulin resistance. Metabolic changes including body and fat mass, circulating leptin and glucose levels, plasma lipid profile, hepatic lipid accumulation, expression levels of genes related to lipid metabolism and low-grade inflammation, and tissue insulin sensitivity were compared between male and female mice fed with a low-fat chow, or high-fat SFA, MUFA, or PUFA for a short period of four days. SFA and MUFA males increased adiposity associated with increased liver lipid accumulation and rapid activation of inflammation in adipose and muscle tissues, whereas PUFA males did not show lipid accumulation or tissue inflammation compared to chow males. All SFA and UFA males displayed tissue insulin resistance. In contrast, female high-fat diet groups had normal liver lipid content and maintained tissue insulin sensitivity without showing tissue inflammation. Therefore, sex differences existed during early phase of development of metabolic dysfunction. The beneficial effects of PUFA, but not MUFA, were corroborated in protection of obesity, hyperlipidemia, fatty liver, and low-grade inflammation. The benefit of MUFA and PUFA in maintaining tissue insulin sensitivity in males, however, was questioned.
Collapse
Affiliation(s)
| | - Minqian Shen
- Cell, Molecular, and Structural Biology, Miami University, Ohio, 45056, United States
| | - Elizabeth G Spicer
- Department of Nursing, School of Engineering and Applied Sciences, Miami University, Ohio, 45056, United States
| | - Ashley J Goudjo-Ako
- Program in Physiology and Neuroscience, Department of Biology, Miami University, Ohio, 45056, United States
| | - Justin D Stumph
- Program in Physiology and Neuroscience, Department of Biology, Miami University, Ohio, 45056, United States
| | - Jing Zhang
- Department of Statistics, Miami University, Ohio, 45056, United States
| | - Haifei Shi
- Cell, Molecular, and Structural Biology, Miami University, Ohio, 45056, United States
- Program in Physiology and Neuroscience, Department of Biology, Miami University, Ohio, 45056, United States
- Corresponding author: Haifei Shi, Department of Biology, Miami University, 700 E High St., Oxford, Ohio, 45056, United States, 001-513-529-3162 (Phone), 001-513-529-6900 (Fax),
| |
Collapse
|
194
|
Kim JH, Cho HT, Kim YJ. The role of estrogen in adipose tissue metabolism: insights into glucose homeostasis regulation. Endocr J 2014; 61:1055-67. [PMID: 25109846 DOI: 10.1507/endocrj.ej14-0262] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Adipose tissue is an organ with active endocrine function involved in the regulation of energy balance and glucose homeostasis via multiple metabolic signaling pathways targeting the brain, liver, skeletal muscle, pancreas, and other organs. There is increasing evidence demonstrating that the female sex hormone, estrogen, regulates adipose development and improves systemic glucose homeostasis in both males and females. The underlying mechanism linking estrogenic regulation in adipose tissue and systemic glucose metabolism has not been fully elucidated, but is thought to include interactions of estrogen receptor signaling events involving lipolytic and/or lipogenic enzyme activity, free fatty acid metabolism, and adipocytokine production. Thus, understanding the effects of estrogen replacement on adipose tissue biology and metabolism is important in determining the risk of developing obesity-related metabolic disorders in patients undergoing treatment for sex hormone deficiency. In this report, we review literature regarding the role of estrogens and their corresponding receptors in the control of adipose metabolism and glucose homeostasis in both rodents and humans. We also discuss the effects of selective estrogen receptor modulators on glucose metabolism.
Collapse
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | | | | |
Collapse
|
195
|
Pan MH, Lai CS, Tsai ML, Ho CT. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 2013; 58:147-71. [PMID: 24302567 DOI: 10.1002/mnfr.201300522] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a wide spectrum of liver disease that is not from excess alcohol consumption, but is often associated with obesity, type 2 diabetes, and metabolic syndrome. NAFLD pathogenesis is complicated and involves oxidative stress, lipotoxicity, mitochondrial damage, insulin resistance, inflammation, and excessive dietary fat intake, which increase hepatic lipid influx and de novo lipogenesis and impair insulin signaling, thus promoting hepatic triglyceride accumulation and ultimately NAFLD. Overproduction of proinflammatory adipokines from adipose tissue also affects hepatic metabolic function. Current NAFLD therapies are limited; thus, much attention has been focused on identification of potential dietary substances from fruits, vegetables, and edible plants to provide a new strategy for NAFLD treatment. Dietary natural compounds, such as carotenoids, omega-3-PUFAs, flavonoids, isothiocyanates, terpenoids, curcumin, and resveratrol, act through a variety of mechanisms to prevent and improve NAFLD. Here, we summarize and briefly discuss the currently known targets and signaling pathways as well as the role of dietary natural compounds that interfere with NAFLD pathogenesis.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
196
|
Filippi BM, Abraham MA, Yue JTY, Lam TKT. Insulin and glucagon signaling in the central nervous system. Rev Endocr Metab Disord 2013; 14:365-75. [PMID: 23959343 DOI: 10.1007/s11154-013-9258-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of the obesity and diabetes epidemic has triggered tremendous research investigating the role of the central nervous system (CNS) in the regulation of food intake, body weight gain and glucose homeostasis. This invited review focuses on the role of two pancreatic hormones--insulin and glucagon--that trigger signaling pathways in the brain to regulate energy and glucose homeostasis. Unlike in the periphery, insulin and glucagon signaling in the CNS does not seem to have opposing metabolic effects, as both hormones exert a suppressive effect on food intake and weight gain. They signal through different pathways and alter different neuronal populations suggesting a complementary action of the two hormones in regulating feeding behavior. Similar to its systemic effect, insulin signaling in the brain lowers glucose production. However, the ability of glucagon signaling in the brain to regulate glucose production remains unknown. Future studies that aim to dissect insulin and glucagon signaling in the CNS that regulate energy and glucose homeostasis could unveil novel signaling molecules to lower body weight and glucose levels in obesity and diabetes.
Collapse
|
197
|
Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol 2013; 62:314-9. [DOI: 10.1016/j.jjcc.2013.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/22/2013] [Accepted: 05/07/2013] [Indexed: 01/03/2023]
|
198
|
Hussain A, Nookaew I, Khoomrung S, Andersson L, Larsson I, Hulthén L, Jansson N, Jakubowicz R, Nilsson S, Sandberg AS, Nielsen J, Holmäng A. A maternal diet of fatty fish reduces body fat of offspring compared with a maternal diet of beef and a post-weaning diet of fish improves insulin sensitivity and lipid profile in adult C57BL/6 male mice. Acta Physiol (Oxf) 2013; 209:220-34. [PMID: 23746286 DOI: 10.1111/apha.12130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/20/2013] [Accepted: 05/31/2013] [Indexed: 01/22/2023]
Abstract
AIM The maternal diet during pregnancy and lactation may affect the long-term health of the offspring. Our aim was to study how a fish or meat diet perinatal and after weaning affects body composition, insulin sensitivity and the profile of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in breast milk, fat depots, skeletal muscle and liver in male adult mice offspring. METHODS During gestation and lactation, C57BL/6 dams were fed a herring- or beef-based diet. Half of the pups in each group changed diets after weaning. In offspring, body composition measured by DEXA, plasma lipid profile and insulin sensitivity measured by euglycemic clamp or QUICKI were monitored to adulthood. Analysis of total FAs by GC-MS were performed in the diet, breast milk and in different tissues. RESULTS At 9 week of age, offspring of herring-fed dams had less body fat than offspring of beef-fed dams. Mice fed herring after weaning had increased insulin sensitivity at 15 week of age, reduced total plasma cholesterol and triglyceride levels, and compared with beef-fed mice, larger interscapular brown adipose tissue depots. The FA composition of the maternal diet was mirrored in breast milk, and the herring diet significantly affected the FA profile of different tissues, leading to an increased content of n-3 PUFAs. CONCLUSION A herring-based maternal diet reduces body fat in the offspring, but the insulin sensitivity, plasma lipids and amount of brown adipose tissue are affected by the offspring's own diet; the herring diet is more beneficial than the beef diet.
Collapse
Affiliation(s)
- A. Hussain
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| | - I. Nookaew
- Department of Chemical and Biological Engineering; Systems Biology; Chalmers University of Technology; Gothenburg; Sweden
| | - S. Khoomrung
- Department of Chemical and Biological Engineering; Systems Biology; Chalmers University of Technology; Gothenburg; Sweden
| | - L. Andersson
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| | - I. Larsson
- Department of Endocrinology, Diabetology and Metabolism; Sahlgrenska University Hospital; Gothenburg; Sweden
| | - L. Hulthén
- Department of Internal Medicine and Clinical Nutrition; Institute of Medicine; The Sahlgrenska Academy, University of Gothenburg; Gothenburg; Sweden
| | - N. Jansson
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| | - R. Jakubowicz
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| | - S. Nilsson
- Department of Mathematical Statistics; Chalmers University of Technology; Gothenburg; Sweden
| | - A.-S. Sandberg
- Department of Chemical and Biological Engineering; Food Science; Chalmers University of Technology; Gothenburg; Sweden
| | - J. Nielsen
- Department of Chemical and Biological Engineering; Systems Biology; Chalmers University of Technology; Gothenburg; Sweden
| | - A. Holmäng
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| |
Collapse
|
199
|
Tuvdendorj D, Chandalia M, Batbayar T, Saraf M, Beysen C, Murphy EJ, Abate N. Altered subcutaneous abdominal adipose tissue lipid synthesis in obese, insulin-resistant humans. Am J Physiol Endocrinol Metab 2013; 305:E999-E1006. [PMID: 23982159 PMCID: PMC3798696 DOI: 10.1152/ajpendo.00194.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to evaluate the variability of subcutaneous abdominal adipose tissue (AT) dynamics in obese subjects with a wide range of insulin sensitivity (IS) and the correlation between these two metabolic measures. Ten obese (BMI 30-40 kg/m²) nondiabetic subjects with (n = 6) and without (n = 4) the metabolic syndrome were studied following a 12-wk ²H₂O labeling period. Subcutaneous abdominal AT biopsies were collected. Deuterium incorporation into triglyceride (TG)-glycerol and TG-palmitate were measured by gas chromatography-mass spectrometry for the calculation of fractional TG synthesis (fTG) and fractional de novo lipogenesis (fDNL). Muscle IS and insulin-mediated nonesterified fatty acid (NEFA) suppression (a measure for adipose IS) indexes were derived from the oral glucose tolerance test (OGTT). The ability of subcutaneous abdominal AT to synthesize lipids varied significantly in obese subjects (fTG range 7-28%, fDNL range 1.1-4.6%) with significantly lower values (>35% reduction) for both parameters in obese with the metabolic syndrome. fTG correlated positively with muscle IS (r = 0.64, P = 0.04) and inversely with NEFA suppression during the OGTT (r = -0.69, P = 0.03). These results demonstrate a large variability in subcutaneous abdominal AT lipid turnover in obesity. Moreover, a reduced capacity for subcutaneous abdominal AT fat storage is associated with muscle and adipose tissue insulin resistance as well as with the metabolic syndrome, thus identifying a form of obesity at heightened risk for type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Demidmaa Tuvdendorj
- Department of Medicine, Division of Endocrinology and Institute for Translational Science; University of Texas Medical Branch at Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
200
|
McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond) 2013; 10:63. [PMID: 24499129 PMCID: PMC3853754 DOI: 10.1186/1743-7075-10-63] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Research in the last decade has revolutionized the way in which we view mitochondria. Mitochondria are no longer viewed solely as cellular powerhouses; rather, mitochondria are now understood to be vibrant, mobile structures, constantly undergoing fusion and fission, and engaging in intimate interactions with other cellular compartments and structures. Findings have implicated mitochondria in a wide variety of cellular processes and molecular interactions, such as calcium buffering, lipid flux, and intracellular signaling. As such, it does not come as a surprise that an increasing number of human pathologies have been associated with functional defects in mitochondria. The difficulty in understanding and treating human pathologies caused by mitochondrial dysfunction arises from the complex relationships between mitochondria and other cellular processes, as well as the genetic background of such diseases. This review attempts to provide a summary of the background knowledge and recent developments in mitochondrial processes relating to mitochondrial-associated metabolic diseases arising from defects or deficiencies in mitochondrial function, as well as insights into current and future avenues for investigation.
Collapse
Affiliation(s)
- Joseph McInnes
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 1, Research II, Room 120, Bremen D-28759, Germany.
| |
Collapse
|