151
|
Wang Y, Yang C, Wang Z, Wang Y, Yan Q, Feng Y, Liu Y, Huang J, Zhou J. Epithelial Galectin-3 Induced the Mitochondrial Complex Inhibition and Cell Cycle Arrest of CD8 + T Cells in Severe/Critical COVID-19. Int J Mol Sci 2023; 24:12780. [PMID: 37628961 PMCID: PMC10454470 DOI: 10.3390/ijms241612780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Previous research suggested that the dramatical decrease in CD8+ T cells is a contributing factor in the poor prognosis and disease progression of COVID-19 patients. However, the underlying mechanisms are not fully understood. In this study, we conducted Single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq) analysis, which revealed a proliferative-exhausted MCM+FASLGlow CD8+ T cell phenotype in severe/critical COVID-19 patients. These CD8+ T cells were characterized by G2/M cell cycle arrest, downregulation of respiratory chain complex genes, and inhibition of mitochondrial biogenesis. CellChat analysis of infected lung epithelial cells and CD8+ T cells found that the galectin signaling pathway played a crucial role in CD8+ T cell reduction and dysfunction. To further elucidate the mechanisms, we established SARS-CoV-2 ORF3a-transfected A549 cells, and co-cultured them with CD8+ T cells for ex vivo experiments. Our results showed that epithelial galectin-3 inhibited the transcription of the mitochondrial respiratory chain complex III/IV genes of CD8+ T cells by suppressing the nuclear translocation of nuclear respiratory factor 1 (NRF1). Further findings showed that the suppression of NRF1 translocation was associated with ERK-related and Akt-related signaling pathways. Importantly, the galectin-3 inhibitor, TD-139, promoted nuclear translocation of NRF1, thus enhancing the expression of the mitochondrial respiratory chain complex III/IV genes and the mitochondrial biogenesis of CD8+ T cells. Our study provided new insights into the immunopathogenesis of COVID-19 and identified potential therapeutic targets for the prevention and treatment of severe/critical COVID-19 patients.
Collapse
Affiliation(s)
- Yudie Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Yang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhongyi Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yi Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qing Yan
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Feng
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanping Liu
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Huang
- Department of Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jingjiao Zhou
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
152
|
Barkas GI, Kotsiou OS. The Role of Osteopontin in Respiratory Health and Disease. J Pers Med 2023; 13:1259. [PMID: 37623509 PMCID: PMC10455105 DOI: 10.3390/jpm13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The biological functions of osteopontin (OPN) are diverse and specific to physiological and pathophysiological conditions implicated in inflammation, biomineralization, cardiovascular diseases, cellular viability, cancer, diabetes, and renal stone disease. We aimed to present the role of OPN in respiratory health and disease. OPN influences the immune system and is a chemo-attractive protein correlated with respiratory disease severity. There is evidence that OPN can advance the disease stage associated with its fibrotic, inflammatory, and immune functions. OPN contributes to eosinophilic airway inflammation. OPN can destroy the lung parenchyma through its neutrophil influx and fibrotic mechanisms, linking OPN to at least one of the two major chronic obstructive pulmonary disease phenotypes. Respiratory diseases that involve irreversible lung scarring, such as idiopathic pulmonary disease, are linked to OPN, with protein levels being overexpressed in individuals with severe or advanced stages of the disorders and considerably lower levels in those with less severe symptoms. OPN plays a significant role in lung cancer progression and metastasis. It is also implicated in the pathogenesis of pulmonary hypertension, coronavirus disease 2019, and granuloma generation.
Collapse
Affiliation(s)
- Georgios I. Barkas
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
| | - Ourania S. Kotsiou
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
153
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
154
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
155
|
Xie Z, Li X, Mora A. A Comparison of Cell-Cell Interaction Prediction Tools Based on scRNA-seq Data. Biomolecules 2023; 13:1211. [PMID: 37627276 PMCID: PMC10452151 DOI: 10.3390/biom13081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Computational prediction of cell-cell interactions (CCIs) is becoming increasingly important for understanding disease development and progression. We present a benchmark study of available CCI prediction tools based on single-cell RNA sequencing (scRNA-seq) data. By comparing prediction outputs with a manually curated gold standard for idiopathic pulmonary fibrosis (IPF), we evaluated prediction performance and processing time of several CCI prediction tools, including CCInx, CellChat, CellPhoneDB, iTALK, NATMI, scMLnet, SingleCellSignalR, and an ensemble of tools. According to our results, CellPhoneDB and NATMI are the best performer CCI prediction tools, among the ones analyzed, when we define a CCI as a source-target-ligand-receptor tetrad. In addition, we recommend specific tools according to different types of research projects and discuss the possible future paths in the field.
Collapse
Affiliation(s)
- Zihong Xie
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, China;
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Antonio Mora
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, China;
| |
Collapse
|
156
|
Nie Y, Zhai X, Li J, Sun A, Che H, Christman JW, Chai G, Zhao P, Karpurapu M. NFATc3 Promotes Pulmonary Inflammation and Fibrosis by Regulating Production of CCL2 and CXCL2 in Macrophages. Aging Dis 2023; 14:1441-1457. [PMID: 37523510 PMCID: PMC10389814 DOI: 10.14336/ad.2022.1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal inflammatory interstitial lung disease characterized by aberrant extracellular matrix deposition. Macrophage activation by cytokines released from repetitively injured alveolar epithelial cells regulates the inflammatory response, tissue remodeling, and fibrosis throughout various phases of IPF. Our previous studies demonstrate that nuclear factor of activated T cells cytoplasmic member 3 (NFATc3) regulates a wide array of macrophage genes during acute lung injury pathogenesis. However, the role of NFATc3 in IPF pathophysiology has not been previously reported. In the current study, we demonstrate that expression of NFATc3 is elevated in lung tissues and pulmonary macrophages in mice subjected to bleomycin (BLM)-induced pulmonary fibrosis and IPF patients. Remarkably, NFATc3 deficiency (NFATc3+/-) was protective in bleomycin (BLM)-induced lung injury and fibrosis. Adoptive transfer of NFATc3+/+ macrophages to NFATc3+/- mice restored susceptibility to BLM-induced pulmonary fibrosis. Furthermore, in vitro treatment with IL-33 or conditioned medium from BLM-treated epithelial cells increased production of CCL2 and CXCL2 in macrophages from NFATc3+/+ but not NFATc3+/- mice. CXCL2 promoter-pGL3 Luciferase reporter vector showed accentuated reporter activity when co-transfected with the NFATc3 expression vector. More importantly, exogenous administration of recombinant CXCL2 into NFATc3+/- mice increased fibrotic markers and exacerbated IPF phenotype in BLM treated mice. Collectively, our data demonstrate, for the first time, that NFATc3 regulates pulmonary fibrosis by regulating CCL2 and CXCL2 gene expression in macrophages.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Aijuan Sun
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
157
|
Zheng N, Liu X, Yang Y, Liu Y, Yan F, Zeng Y, Cheng Y, Wu D, Chen C, Wang X. Regulatory roles of NAT10 in airway epithelial cell function and metabolism in pathological conditions. Cell Biol Toxicol 2023; 39:1237-1256. [PMID: 35877022 DOI: 10.1007/s10565-022-09743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
N-acetyltransferase 10 (NAT10), a nuclear acetyltransferase and a member of the GNAT family, plays critical roles in RNA stability and translation processes as well as cell proliferation. Little is known about regulatory effects of NAT10 in lung epithelial cell proliferation. We firstly investigated NTA10 mRNA expression in alveolar epithelial types I and II, basal, ciliated, club, and goblet/mucous epithelia from heathy and patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung adenocarcinoma, para-tumor tissue, and systemic sclerosis, respectively. We selected A549 cells for representative of alveolar epithelia or H1299 and H460 cells as airway epithelia with different genetic backgrounds and studied dynamic responses of NAT10-down-regulated epithelia to high temperature, lipopolysaccharide, cigarette smoking extract (CSE), drugs, radiation, and phosphoinositide 3-kinase (PI3K) inhibitors at various doses. We also compared transcriptomic profiles between alveolar and airway epithelia, between cells with or without NAT10 down-regulation, between early and late stages, and between challenges. The present study demonstrated that NAT10 expression increased in human lung epithelia and varied among epithelial types, challenges, and diseases. Knockdown of NAT10 altered epithelial mitochondrial functions, dynamic responses to LPS, CSE, or PI3K inhibitors, and transcriptomic phenomes. NAT10 regulates biological phenomes, and behaviors are more complex and are dependent upon multiple signal pathways. Thus, NAT10-associated signal pathways can be a new alternative for understanding the disease and developing new biomarkers and targets.
Collapse
Affiliation(s)
- Nannan Zheng
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xuanqi Liu
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ying Yang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Duojiao Wu
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China.
| | - Chengshui Chen
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, China.
| | - Xiangdong Wang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China.
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
158
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549883. [PMID: 37502913 PMCID: PMC10370160 DOI: 10.1101/2023.07.20.549883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. Methods With the focus on identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Results We identified Lymphoid Enhancer Binding Factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with Idiopathic Pulmonary Fibrosis (IPF), an age-related disease with strong ties to cellular senescence, we demonstrated a stark dysregulation of LEF1. Conclusions Collectively, our results suggest that the LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
| | - Khaled Sayed
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eleanor Valenzi
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Lafyatis
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
159
|
Wu Y, Hu SS, Zhang R, Goplen NP, Gao X, Narasimhan H, Shi A, Chen Y, Li Y, Zang C, Dong H, Braciale TJ, Zhu B, Sun J. Single cell RNA sequencing unravels mechanisms underlying senescence-like phenotypes of alveolar macrophages. iScience 2023; 26:107197. [PMID: 37456831 PMCID: PMC10344965 DOI: 10.1016/j.isci.2023.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/11/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Alveolar macrophages (AMs) are resident innate immune cells that play vital roles in maintaining lung physiological functions. However, the effects of aging on their dynamics, heterogeneity, and transcriptional profiles remain to be fully elucidated. Through single cell RNA sequencing (scRNA-seq), we identified CBFβ as an indispensable transcription factor that ensures AM self-renewal. Intriguingly, despite transcriptome similarities of proliferating cells, AMs from aged mice exhibited reduced embryonic stem cell-like features. Aged AMs also displayed compromised DNA repair abilities, potentially leading to obstructed cell cycle progression and an elevation of senescence markers. Consistently, AMs from aged mice exhibited impaired self-renewal ability and reduced sensitivity to GM-CSF. Decreased CBFβ was observed in the cytosol of AMs from aged mice. Similar senescence-like phenotypes were also found in human AMs. Taken together, these findings suggest that AMs in aged hosts demonstrate senescence-like phenotypes, potentially facilitated by the abrogated CBF β activity.
Collapse
Affiliation(s)
- Yue Wu
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruixuan Zhang
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nick P. Goplen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ao Shi
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Yin Chen
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
| | - Ying Li
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Haidong Dong
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
- Department of Urology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas J. Braciale
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Bibo Zhu
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
160
|
Gadiyar V, Patel G, Chen J, Vigil D, Ji N, Campbell V, Sharma K, Shi Y, Weiss MM, Birge RB, Davra V. Targeted degradation of MERTK and other TAM receptor paralogs by heterobifunctional targeted protein degraders. Front Immunol 2023; 14:1135373. [PMID: 37545504 PMCID: PMC10397400 DOI: 10.3389/fimmu.2023.1135373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/26/2023] [Indexed: 08/08/2023] Open
Abstract
TAM receptors (TYRO3, AXL, and MERTK) comprise a family of homologous receptor tyrosine kinases (RTK) that are expressed across a range of liquid and solid tumors where they contribute to both oncogenic signaling to promote tumor proliferation and survival, as well as expressed on myeloid and immune cells where they function to suppress host anti-tumor immunity. In recent years, several strategies have been employed to inhibit TAM kinases, most notably small molecule tyrosine kinase inhibitors and inhibitory neutralizing monoclonal antibodies (mAbs) that block receptor dimerization. Targeted protein degraders (TPD) use the ubiquitin proteasome pathway to redirect E3 ubiquitin ligase activity and target specific proteins for degradation. Here we employ first-in-class TPDs specific for MERTK/TAMs that consist of a cereblon E3 ligase binder linked to a tyrosine kinase inhibitor targeting MERTK and/or AXL and TYRO3. A series of MERTK TPDs were designed and investigated for their capacity to selectively degrade MERTK chimeric receptors, reduce surface expression on primary efferocytic bone marrow-derived macrophages, and impact on functional reduction in efferocytosis (clearance of apoptotic cells). We demonstrate proof-of-concept and establish that TPDs can be tailored to either selectivity degrades MERTK or concurrently degrade multiple TAMs and modulate receptor expression in vitro and in vivo. This work demonstrates the utility of proteome editing, enabled by tool degraders developed here towards dissecting the therapeutically relevant pathway biology in preclinical models, and the ability for TPDs to degrade transmembrane proteins. These data also provide proof of concept that TPDs may serve as a viable therapeutic strategy for targeting MERTK and other TAMs and that this technology could be expanded to other therapeutically relevant transmembrane proteins.
Collapse
Affiliation(s)
- Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, Newark, NJ, United States
| | - Gopi Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, Newark, NJ, United States
| | - Jesse Chen
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Dominico Vigil
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Nan Ji
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Veronica Campbell
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Kirti Sharma
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Yatao Shi
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Matthew M. Weiss
- Department of Research and Development, Kymera Therapeutics, Watertown, MA, United States
| | - Raymond B. Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, Newark, NJ, United States
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers- New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
161
|
Theune WC, Frost MP, Trakhtenberg EF. Transcriptomic profiling of retinal cells reveals a subpopulation of microglia/macrophages expressing Rbpms marker of retinal ganglion cells (RGCs) that confound identification of RGCs. Brain Res 2023; 1811:148377. [PMID: 37121423 PMCID: PMC10246437 DOI: 10.1016/j.brainres.2023.148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Analysis of retinal ganglion cells (RGCs) by scRNA-seq is emerging as a state-of-the-art method for studying RGC biology and subtypes, as well as for studying the mechanisms of neuroprotection and axon regeneration in the central nervous system (CNS). Rbpms has been established as a pan-RGC marker, and Spp1 has been established as an αRGC type and macrophage marker. Here, we analyzed by scRNA-seq retinal microglia and macrophages, and found Rbpms+ subpopulations of retinal microglia/macrophages, which pose a potential pitfall in scRNA-seq studies involving RGCs. We performed comparative analysis of cellular identity of the presumed RGC cells isolated in recent scRNA-seq studies, and found that Rbpms+ microglia/macrophages confounded identification of RGCs. We also showed using immunohistological analysis that, Rbpms protein localizes to stress granules in a subpopulation of retinal microglia after optic nerve injury, which was further supported by bioinformatics analysis identifying stress granule-associated genes enriched in the Rbpms+ microglia/macrophages. Our findings suggest that the identification of Rbpms+ RGCs by immunostaining after optic nerve injury should exclude cells in which Rbpms signal is restricted to a subcellular granule, and include only those cells in which the Rbpms signal is labeling cell soma diffusely. Finally, we provide solutions for circumventing this potential pitfall of Rbpms-expressing microglia/macrophages in scRNA-seq studies, by including in RGC and αRGC selection criteria other pan-RGC and αRGC markers.
Collapse
Affiliation(s)
- William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
162
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
163
|
Ali T, Rogala S, Krause NM, Bains JK, Melissari MT, Währisch S, Schwalbe H, Herrmann B, Grote P. Fendrr synergizes with Wnt signalling to regulate fibrosis related genes during lung development via its RNA:dsDNA triplex element. Nucleic Acids Res 2023; 51:6227-6237. [PMID: 37207329 PMCID: PMC10325902 DOI: 10.1093/nar/gkad395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via an RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and found that this FendrrBox is partially required for Fendrr function in vivo. We found that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in lung fibroblasts. We biophysically confirmed the formation of an RNA:dsDNA triplex with target promoters in vitro. We found that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.
Collapse
Affiliation(s)
- Tamer Ali
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590Frankfurt am Main, Hesse, Germany
- Faculty of Science, Benha University, Benha13518, Egypt
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596Frankfurt am Main, Hesse, Germany
| | - Sandra Rogala
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590Frankfurt am Main, Hesse, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596Frankfurt am Main, Hesse, Germany
| | - Nina M Krause
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Hesse, Germany
| | - Jasleen Kaur Bains
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Hesse, Germany
| | - Maria-Theodora Melissari
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590Frankfurt am Main, Hesse, Germany
| | - Sandra Währisch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195Berlin, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Hesse, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195Berlin, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590Frankfurt am Main, Hesse, Germany
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596Frankfurt am Main, Hesse, Germany
| |
Collapse
|
164
|
Valenzi E, Bahudhanapati H, Tan J, Tabib T, Sullivan DI, Nouraie M, Sembrat J, Fan L, Chen K, Liu S, Rojas M, Lafargue A, Felsher DW, Tran PT, Kass DJ, Lafyatis R. Single-nucleus chromatin accessibility identifies a critical role for TWIST1 in idiopathic pulmonary fibrosis myofibroblast activity. Eur Respir J 2023; 62:2200474. [PMID: 37142338 PMCID: PMC10411550 DOI: 10.1183/13993003.00474-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Harinath Bahudhanapati
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Fan
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Audrey Lafargue
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| |
Collapse
|
165
|
Liu X, Dai K, Zhang X, Huang G, Lynn H, Rabata A, Liang J, Noble PW, Jiang D. Multiple Fibroblast Subtypes Contribute to Matrix Deposition in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:45-56. [PMID: 36927333 PMCID: PMC10324043 DOI: 10.1165/rcmb.2022-0292oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute and
| | - Kristy Dai
- Department of Medicine and Women’s Guild Lung Institute and
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Guanling Huang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Heather Lynn
- Department of Medicine and Women’s Guild Lung Institute and
| | - Anas Rabata
- Department of Medicine and Women’s Guild Lung Institute and
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute and
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
166
|
Flerlage T, Crawford JC, Allen EK, Severns D, Tan S, Surman S, Ridout G, Novak T, Randolph A, West AN, Thomas PG. Single cell transcriptomics identifies distinct profiles in pediatric acute respiratory distress syndrome. Nat Commun 2023; 14:3870. [PMID: 37391405 PMCID: PMC10313703 DOI: 10.1038/s41467-023-39593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), termed pediatric ARDS (pARDS) in children, is a severe form of acute respiratory failure (ARF). Pathologic immune responses are implicated in pARDS pathogenesis. Here, we present a description of microbial sequencing and single cell gene expression in tracheal aspirates (TAs) obtained longitudinally from infants with ARF. We show reduced interferon stimulated gene (ISG) expression, altered mononuclear phagocyte (MNP) transcriptional programs, and progressive airway neutrophilia associated with unique transcriptional profiles in patients with moderate to severe pARDS compared to those with no or mild pARDS. We additionally show that an innate immune cell product, Folate Receptor 3 (FOLR3), is enriched in moderate or severe pARDS. Our findings demonstrate distinct inflammatory responses in pARDS that are dependent upon etiology and severity and specifically implicate reduced ISG expression, altered macrophage repair-associated transcriptional programs, and accumulation of aged neutrophils in the pathogenesis of moderate to severe pARDS caused by RSV.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danielle Severns
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shaoyuan Tan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Granger Ridout
- Hartwell Center for Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Adrienne Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alina N West
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
167
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
168
|
Dib L, Koneva LA, Edsfeldt A, Zurke YX, Sun J, Nitulescu M, Attar M, Lutgens E, Schmidt S, Lindholm MW, Choudhury RP, Cassimjee I, Lee R, Handa A, Goncalves I, Sansom SN, Monaco C. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis increasing the risk of cerebrovascular complications. NATURE CARDIOVASCULAR RESEARCH 2023; 2:656-672. [PMID: 38362263 PMCID: PMC7615632 DOI: 10.1038/s44161-023-00295-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/31/2023] [Indexed: 02/17/2024]
Abstract
The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.
Collapse
Grants
- FS/18/63/34184 British Heart Foundation
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- British Heart Foundation (BHF)
- Fondation Leducq
- European Commission (EC)
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004), Oxford NIHR Biomedical Research Centre.
- Vetenskapsrådet (Swedish Research Council)
- The Swedish Society for Medical Research, Crafoord foundation; The Swedish Society of Medicine, the Swedish Heart and Lung Foundation, Diabetes foundation, SUS foundation, Lund University Diabetes Center, The Knut and Alice Wallenberg foundation, the Medical Faculty at Lund University and Region Skåne.
- Kennedy Trust for Rheumatology Research (KENN161701, KENN202101, KENN192004)
- Netcare-Physicians-Partnership trust
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
Collapse
Affiliation(s)
- Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lada A. Koneva
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yasemin-Xiomara Zurke
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN USA
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | | | - Ismail Cassimjee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Stephen N. Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
169
|
He H, Chen S, Fan Z, Dong Y, Wang Y, Li S, Sun X, Song Y, Yang J, Cao Q, Jiang J, Wang X, Wen W, Wang H. Multi-dimensional single-cell characterization revealed suppressive immune microenvironment in AFP-positive hepatocellular carcinoma. Cell Discov 2023; 9:60. [PMID: 37336873 PMCID: PMC10279759 DOI: 10.1038/s41421-023-00563-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/10/2023] [Indexed: 06/21/2023] Open
Abstract
Alpha-fetoprotein (AFP)-secreting hepatocellular carcinoma (HCC), which accounts for ~75% of HCCs, is more aggressive with a worse prognosis than those without AFP production. The mechanism through which the interaction between tumors and the microenvironment leads to distinct phenotypes is not yet clear. Therefore, our study aims to identify the characteristic features and potential treatment targets of AFP-negative HCC (ANHC) and AFP-positive HCC (APHC). We utilized single-cell RNA sequencing to analyze 6 ANHC, 6 APHC, and 4 adjacent normal tissues. Integrated multi-omics analysis together with survival analysis were also performed. Further validation was conducted via cytometry time-of-flight on 30 HCCs and multiplex immunohistochemistry on additional 59 HCCs. Our data showed that the genes related to antigen processing and interferon-γ response were abundant in tumor cells of APHC. Meanwhile, APHC was associated with multifaceted immune distortion, including exhaustion of diverse T cell subpopulations, and the accumulation of tumor-associated macrophages (TAMs). Notably, TAM-SPP1+ was highly enriched in APHC, as was its receptor CD44 on T cells and tumor cells. Targeting the Spp1-Cd44 axis restored T cell function in vitro and significantly reduced tumor burden when treated with either anti-Spp1 or anti-Cd44 antibody alone or in combination with anti-Pd-1 antibody in the mouse model. Furthermore, elevated IL6 and TGF-β1 signaling contributed to the enrichment of TAM-SPP1+ in APHC. In conclusion, this study uncovered a highly suppressive microenvironment in APHC and highlighted the role of TAM-SPP1+ in regulating the immune microenvironment, thereby revealing the SPP1-CD44 axis as a promising target for achieving a more favorable immune response in APHC treatment.
Collapse
Affiliation(s)
- Huisi He
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuzhen Chen
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhecai Fan
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yaping Dong
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shiyao Li
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaojuan Sun
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuting Song
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Jiang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xianming Wang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Wen
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China.
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Hongyang Wang
- Third Affiliated Hospital of Naval Medical University, National Center for Liver Cancer, Shanghai, China.
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China.
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
170
|
Liu X, Zhang X, Yao C, Liang J, Noble PW, Jiang D. A transcriptional cell atlas identifies the decline in the AT2 niche in aged human lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545378. [PMID: 37398304 PMCID: PMC10312782 DOI: 10.1101/2023.06.16.545378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial cells, including both alveolar type II (AT2) and type I (AT1) cells, demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription. The decline of the AT2 niche is further exacerbated by a weakened endothelial cell phenotype and a dysregulated genetic program in macrophages. These findings highlight the dysregulation observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Collapse
|
171
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
172
|
Sikkema L, Ramírez-Suástegui C, Strobl DC, Gillett TE, Zappia L, Madissoon E, Markov NS, Zaragosi LE, Ji Y, Ansari M, Arguel MJ, Apperloo L, Banchero M, Bécavin C, Berg M, Chichelnitskiy E, Chung MI, Collin A, Gay ACA, Gote-Schniering J, Hooshiar Kashani B, Inecik K, Jain M, Kapellos TS, Kole TM, Leroy S, Mayr CH, Oliver AJ, von Papen M, Peter L, Taylor CJ, Walzthoeni T, Xu C, Bui LT, De Donno C, Dony L, Faiz A, Guo M, Gutierrez AJ, Heumos L, Huang N, Ibarra IL, Jackson ND, Kadur Lakshminarasimha Murthy P, Lotfollahi M, Tabib T, Talavera-López C, Travaglini KJ, Wilbrey-Clark A, Worlock KB, Yoshida M, van den Berge M, Bossé Y, Desai TJ, Eickelberg O, Kaminski N, Krasnow MA, Lafyatis R, Nikolic MZ, Powell JE, Rajagopal J, Rojas M, Rozenblatt-Rosen O, Seibold MA, Sheppard D, Shepherd DP, Sin DD, Timens W, Tsankov AM, Whitsett J, Xu Y, Banovich NE, Barbry P, Duong TE, Falk CS, Meyer KB, Kropski JA, Pe'er D, Schiller HB, Tata PR, Schultze JL, Teichmann SA, Misharin AV, Nawijn MC, Luecken MD, Theis FJ. An integrated cell atlas of the lung in health and disease. Nat Med 2023; 29:1563-1577. [PMID: 37291214 PMCID: PMC10287567 DOI: 10.1038/s41591-023-02327-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2023] [Indexed: 06/10/2023]
Abstract
Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
Collapse
Grants
- P50 AR080612 NIAMS NIH HHS
- R01 HL153375 NHLBI NIH HHS
- R01 HL127349 NHLBI NIH HHS
- U54 HL165443 NHLBI NIH HHS
- P01 HL107202 NHLBI NIH HHS
- U01 HL148856 NHLBI NIH HHS
- R21 HL156124 NHLBI NIH HHS
- U54 AG075931 NIA NIH HHS
- Wellcome Trust
- R01 HL146557 NHLBI NIH HHS
- R01 HL123766 NHLBI NIH HHS
- U01 HL148861 NHLBI NIH HHS
- R01 HL141852 NHLBI NIH HHS
- R01 ES034350 NIEHS NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R01 HL126176 NHLBI NIH HHS
- R21 HL161760 NHLBI NIH HHS
- R01 HL145372 NHLBI NIH HHS
- P01 AG049665 NIA NIH HHS
- K12 HD105271 NICHD NIH HHS
- U19 AI135964 NIAID NIH HHS
- P30 CA008748 NCI NIH HHS
- R01 HL142568 NHLBI NIH HHS
- R01 HL153312 NHLBI NIH HHS
- U54 AG079754 NIA NIH HHS
- R56 HL157632 NHLBI NIH HHS
- R01 HL158139 NHLBI NIH HHS
- R01 HL135156 NHLBI NIH HHS
- R01 HL153045 NHLBI NIH HHS
- U54 HL145608 NHLBI NIH HHS
- P50 AR060780 NIAMS NIH HHS
- R01 HL128439 NHLBI NIH HHS
- R01 HL146519 NHLBI NIH HHS
- R01 HL117004 NHLBI NIH HHS
- R01 HL068702 NHLBI NIH HHS
- U01 HL145567 NHLBI NIH HHS
- P01 HL132821 NHLBI NIH HHS
- MR/R015635/1 Medical Research Council
- R01 MD010443 NIMHD NIH HHS
- Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0” NIH 1U54HL145608-01 CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation
- ESPOD fellowship of EMBL-EBI and Sanger Institute
- 3IA Cote d’Azur PhD program
- The Ministry of Economic Affairs and Climate Policy by means of the PPP
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Joachim Herz Stiftung (Joachim Herz Foundation)
- P50 AR060780-06A1
- University College London, Birkbeck MRC Doctoral Training Programme
- Jikei University School of Medicine (Jikei University)
- 5R01HL14254903, 4UH3CA25513503
- R01HL127349, R01HL141852, U01HL145567 and CZI
- MRC Clinician Scientist Fellowship (MR/W00111X/1)
- Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0” 2R01HL068702
- R01 HL135156, R01 MD010443, R01 HL128439, P01 HL132821, P01 HL107202, R01 HL117004, and DOD Grant W81WH-16-2-0018
- HL142568 and HL14507 from the NHLBI
- Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0”, 2R01HL068702
- Wellcome (WT211276/Z/18/Z) Sanger core grant WT206194 CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation
- R21HL156124, R56HL157632, and R21HL161760
- CZI, 5U01HL148856
- CZI, 5U01HL148856, R01 HL153045
- U.S. Department of Defense (United States Department of Defense)
- The National Institute of Health R01HL145372
- Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
- Conseil Départemental des Alpes Maritimes
- Inserm Cross-cutting Scientific Program HuDeCA 2018, ANR SAHARRA (ANR-19-CE14–0027), ANR-19-P3IA-0002–3IA, the National Infrastructure France Génomique (ANR-10-INBS-09-03), PPIA 4D-OMICS (21-ESRE-0052), and the Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0”.
- Wellcome Trust (Wellcome)
- Sanger core grant WT206194 Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0” CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation
- Doris Duke Charitable Foundation (DDCF)
- The National Institute of Health R01HL145372 Department of Defense W81XWH-19-1-0416
- The National Institute of Health R01HL146557 and R01HL153375 and funds from Chan Zuckerberg Initiative - Human Lung Cell Atlas-pilot award
- 1U54HL145608-01
- CZI Deep Visual Proteomics
- 1U54HL145608-01, U01HL148861-03
- 1) the Chan Zuckerberg Initiative, LLC Seed Network grant CZF2019-002438 “Lung Cell Atlas 1.0”; 2) R01 HL153312; 3) U19 AI135964; 4) P01 AG049665
- Netherlands Lung Foundation project nos. 5.1.14.020 and 4.1.18.226, LLC Seed Network grant CZF2019-002438 “Lung Cell Atlas 1.0”
- grant number 2019-002438 from the Chan Zuckerberg Foundation, by the Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI [ZT-I-PF-5-01] and by the Bavarian Ministry of Science and the Arts in the framework of the Bavarian Research Association “ForInter” (Interaction of human brain cells)
- 1 U01 HL14555-01, R01 HL123766-04
- NIH U54 AG075931, 5R01 HL146519
Collapse
Affiliation(s)
- Lisa Sikkema
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ciro Ramírez-Suástegui
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Daniel C Strobl
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tessa E Gillett
- Experimental Pulmonary and Inflammatory Research, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Luke Zappia
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | | | - Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
| | - Yuge Ji
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Meshal Ansari
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
| | - Leonie Apperloo
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin Banchero
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christophe Bécavin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
| | - Marijn Berg
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Mei-I Chung
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Antoine Collin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
- 3IA Côte d'Azur, Nice, France
| | - Aurore C A Gay
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Gote-Schniering
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Baharak Hooshiar Kashani
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Kemal Inecik
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Theodore S Kapellos
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Tessa M Kole
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sylvie Leroy
- Pulmonology Department, Fédération Hospitalo-Universitaire OncoAge, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Christoph H Mayr
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | | | | | - Lance Peter
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Chase J Taylor
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Chuan Xu
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Linh T Bui
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Carlo De Donno
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Leander Dony
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Alen Faiz
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- School of Life Sciences, Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, Australia
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, US
| | | | - Lukas Heumos
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Ni Huang
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Ignacio L Ibarra
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Preetish Kadur Lakshminarasimha Murthy
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Mohammad Lotfollahi
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlos Talavera-López
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Klinikum der Lüdwig-Maximilians-Universität, Munich, Germany
| | - Kyle J Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kaylee B Worlock
- Department of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- Department of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Tushar J Desai
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marko Z Nikolic
- Department of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cellular and Tissue Genomics, Genentech, South San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas P Shepherd
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
- 3IA Côte d'Azur, Nice, France
| | - Thu Elizabeth Duong
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine S Falk
- Institute for Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Jonathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Dana Pe'er
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | | | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen and University of Bonn, Bonn, Germany
| | - Sara A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Malte D Luecken
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany.
| | - Fabian J Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
173
|
Arif M, Basu A, Wolf KM, Park JK, Pommerolle L, Behee M, Gochuico BR, Cinar R. An Integrative Multiomics Framework for Identification of Therapeutic Targets in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207454. [PMID: 37038090 PMCID: PMC10238219 DOI: 10.1002/advs.202207454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Indexed: 06/04/2023]
Abstract
Pulmonary fibrosis (PF) is a heterogeneous disease with a poor prognosis. Therefore, identifying additional therapeutic modalities is required to improve outcome. However, the lack of biomarkers of disease progression hampers the preclinical to clinical translational process. Here, this work assesses and identifies progressive alterations in pulmonary function, transcriptomics, and metabolomics in the mouse lung at 7, 14, 21, and 28 days after a single dose of oropharyngeal bleomycin. By integrating multi-omics data, this work identifies two central gene subnetworks associated with multiple critical pathological changes in transcriptomics and metabolomics as well as pulmonary function. This work presents a multi-omics-based framework to establish a translational link between the bleomycin-induced PF model in mice and human idiopathic pulmonary fibrosis to identify druggable targets and test therapeutic candidates. This work also indicates peripheral cannabinoid receptor 1 (CB1 R) antagonism as a rational therapeutic target for clinical translation in PF. Mouse Lung Fibrosis Atlas can be accessed freely at https://niaaa.nih.gov/mouselungfibrosisatlas.
Collapse
Affiliation(s)
- Muhammad Arif
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
- Laboratory of Cardiovascular Physiology and Tissue InjuryNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Abhishek Basu
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Kaelin M. Wolf
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Lenny Pommerolle
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Madeline Behee
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Bernadette R. Gochuico
- Medical Genetics BranchNational Human Genome Research InstituteNational Institutes of Health (NIH)BethesdaMD20892USA
| | - Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| |
Collapse
|
174
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
175
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
176
|
Alladina J, Smith NP, Kooistra T, Slowikowski K, Kernin IJ, Deguine J, Keen HL, Manakongtreecheep K, Tantivit J, Rahimi RA, Sheng SL, Nguyen ND, Haring AM, Giacona FL, Hariri LP, Xavier RJ, Luster AD, Villani AC, Cho JL, Medoff BD. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma. Sci Immunol 2023; 8:eabq6352. [PMID: 37146132 PMCID: PMC10440046 DOI: 10.1126/sciimmunol.abq6352] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal P. Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Isabela J. Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jacques Deguine
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Rod A. Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan L. Sheng
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nhan D. Nguyen
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexis M. Haring
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca L. Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
177
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
178
|
She Y, Xu X, Yu Q, Yang X, He J, Tang XX. Elevated expression of macrophage MERTK exhibits profibrotic effects and results in defective regulation of efferocytosis function in pulmonary fibrosis. Respir Res 2023; 24:118. [PMID: 37120511 PMCID: PMC10148433 DOI: 10.1186/s12931-023-02424-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/08/2023] [Indexed: 05/01/2023] Open
Abstract
Increased apoptosis of alveolar epithelial cells is a prominent feature of pulmonary fibrosis. Macrophage efferocytosis, phagocytosis of apoptotic cells by macrophages, is crucial for maintaining tissue homeostasis. Expression of Mer tyrosine kinase (MERTK, an important recognition receptor in efferocytosis) in macrophages is thought to be associated with fibrosis. However, how macrophage MERTK affects pulmonary fibrosis and whether it depends on efferocytosis are not yet clear. Here, we found elevated MERTK expression in lung macrophages from IPF patients and mice with bleomycin-induced pulmonary fibrosis. In vitro experiments showed that macrophages overexpressing MERTK exhibit profibrotic effects and that macrophage efferocytosis abrogates the profibrotic effect of MERTK by downregulating MERTK, forming a negative regulatory loop. In pulmonary fibrosis, this negative regulation is defective, and MERTK mainly exhibits profibrotic effects. Our study reveals a previously unsuspected profibrotic effect of elevated macrophage MERTK in pulmonary fibrosis and defective regulation of efferocytosis function as a result of that elevation, suggesting that targeting MERTK in macrophages may help to attenuate pulmonary fibrosis.
Collapse
Affiliation(s)
- Yixin She
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangsheng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-Island, Guangzhou, China.
| |
Collapse
|
179
|
Unterman A, Zhao AY, Neumark N, Schupp JC, Ahangari F, Cosme C, Sharma P, Flint J, Stein Y, Ryu C, Ishikawa G, Sumida TS, Gomez JL, Herazo-Maya J, Dela Cruz CS, Herzog EL, Kaminski N. Single-cell profiling reveals immune aberrations in progressive idiopathic pulmonary fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.29.23289296. [PMID: 37163015 PMCID: PMC10168511 DOI: 10.1101/2023.04.29.23289296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rationale Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. Measurements and Main Results Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations, corresponding to all expected peripheral blood cell populations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive IPF (1.8% vs 1.1%, p=0.007), and were associated with decreased survival (P=0.009 in Kaplan-Meier analysis). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Tregs were also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).
Collapse
Affiliation(s)
- Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Pulmonary Fibrosis Center of Excellence, Institute of Pulmonary Medicine, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Genomic Research Laboratory for Lung Fibrosis, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amy Y. Zhao
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Nir Neumark
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hanover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover Medical School (MHH), German Center for Lung Research (DZL), Hanover, Germany
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Carlos Cosme
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Prapti Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jasper Flint
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yan Stein
- Pulmonary Fibrosis Center of Excellence, Institute of Pulmonary Medicine, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Genomic Research Laboratory for Lung Fibrosis, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Genta Ishikawa
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Tomokazu S. Sumida
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jose L. Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jose Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
180
|
Jia M, Rosas L, Kapetanaki MG, Tabib T, Sebrat J, Cruz T, Bondonese A, Mora AL, Lafyatis R, Rojas M, Benos PV. Early events marking lung fibroblast transition to profibrotic state in idiopathic pulmonary fibrosis. Respir Res 2023; 24:116. [PMID: 37085855 PMCID: PMC10122312 DOI: 10.1186/s12931-023-02419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is an age-associated progressive lung disease with accumulation of scar tissue impairing gas exchange. Previous high-throughput studies elucidated the role of cellular heterogeneity and molecular pathways in advanced disease. However, critical pathogenic pathways occurring in the transition of fibroblasts from normal to profibrotic have been largely overlooked. METHODS We used single cell transcriptomics (scRNA-seq) from lungs of healthy controls and IPF patients (lower and upper lobes). We identified fibroblast subclusters, genes and pathways associated with early disease. Immunofluorescence assays validated the role of MOXD1 early in fibrosis. RESULTS We identified four distinct fibroblast subgroups, including one marking the normal-to-profibrotic state transition. Our results show for the first time that global downregulation of ribosomal proteins and significant upregulation of the majority of copper-binding proteins, including MOXD1, mark the IPF transition. We find no significant differences in gene expression in IPF upper and lower lobe samples, which were selected to have low and high degree of fibrosis, respectively. CONCLUSIONS Early events during IPF onset in fibroblasts include dysregulation of ribosomal and copper-binding proteins. Fibroblasts in early stage IPF may have already acquired a profibrotic phenotype while hallmarks of advanced disease, including fibroblast foci and honeycomb formation, are still not evident. The new transitional fibroblasts we discover could prove very important for studying the role of fibroblast plasticity in disease progression and help develop early diagnosis tools and therapeutic interventions targeting earlier disease states.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
- Joint Carnegie Mellon University – University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA
| | - Lorena Rosas
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - John Sebrat
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Tamara Cruz
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Anna Bondonese
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
| | - Ana L. Mora
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
- Joint Carnegie Mellon University – University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA
- Department of Epidemiology, University of Florida, 2004 Mowry Rd, Gainesville, FL 32610 USA
| |
Collapse
|
181
|
Fabre T, Barron AMS, Christensen SM, Asano S, Bound K, Lech MP, Wadsworth MH, Chen X, Wang C, Wang J, McMahon J, Schlerman F, White A, Kravarik KM, Fisher AJ, Borthwick LA, Hart KM, Henderson NC, Wynn TA, Dower K. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci Immunol 2023; 8:eadd8945. [PMID: 37027478 DOI: 10.1126/sciimmunol.add8945] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Macrophages are central orchestrators of the tissue response to injury, with distinct macrophage activation states playing key roles in fibrosis progression and resolution. Identifying key macrophage populations found in human fibrotic tissues could lead to new treatments for fibrosis. Here, we used human liver and lung single-cell RNA sequencing datasets to identify a subset of CD9+TREM2+ macrophages that express SPP1, GPNMB, FABP5, and CD63. In both human and murine hepatic and pulmonary fibrosis, these macrophages were enriched at the outside edges of scarring and adjacent to activated mesenchymal cells. Neutrophils expressing MMP9, which participates in the activation of TGF-β1, and the type 3 cytokines GM-CSF and IL-17A coclustered with these macrophages. In vitro, GM-CSF, IL-17A, and TGF-β1 drive the differentiation of human monocytes into macrophages expressing scar-associated markers. Such differentiated cells could degrade collagen IV but not collagen I and promote TGF-β1-induced collagen I deposition by activated mesenchymal cells. In murine models blocking GM-CSF, IL-17A or TGF-β1 reduced scar-associated macrophage expansion and hepatic or pulmonary fibrosis. Our work identifies a highly specific macrophage population to which we assign a profibrotic role across species and tissues. It further provides a strategy for unbiased discovery, triage, and preclinical validation of therapeutic targets based on this fibrogenic macrophage population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ju Wang
- Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - Andrew J Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Neil C Henderson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, the Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
182
|
Gurshaney S, Morales-Alvarez A, Ezhakunnel K, Manalo A, Huynh TH, Abe JI, Le NT, Weiskopf D, Sette A, Lupu DS, Gardell SJ, Nguyen H. Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Commun Biol 2023; 6:374. [PMID: 37029220 PMCID: PMC10080180 DOI: 10.1038/s42003-023-04730-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.
Collapse
Affiliation(s)
- Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Anamaria Morales-Alvarez
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Kevin Ezhakunnel
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Andrew Manalo
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Thien-Huong Huynh
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1451, Houston, TX, 77030, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Daniel S Lupu
- AdventHealth Cancer Institute, AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
183
|
Upadhyay AA, Viox EG, Hoang TN, Boddapati AK, Pino M, Lee MYH, Corry J, Strongin Z, Cowan DA, Beagle EN, Horton TR, Hamilton S, Aoued H, Harper JL, Edwards CT, Nguyen K, Pellegrini KL, Tharp GK, Piantadosi A, Levit RD, Amara RR, Barratt-Boyes SM, Ribeiro SP, Sekaly RP, Vanderford TH, Schinazi RF, Paiardini M, Bosinger SE. TREM2 + and interstitial-like macrophages orchestrate airway inflammation in SARS-CoV-2 infection in rhesus macaques. Nat Commun 2023; 14:1914. [PMID: 37024448 PMCID: PMC10078029 DOI: 10.1038/s41467-023-37425-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amit A Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elise G Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Arun K Boddapati
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Michelle Y-H Lee
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jacqueline Corry
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - David A Cowan
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth N Beagle
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Tristan R Horton
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sydney Hamilton
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hadj Aoued
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Justin L Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Christopher T Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kathryn L Pellegrini
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rebecca D Levit
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan P Ribeiro
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rafick P Sekaly
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
184
|
Therapeutic strategies targeting pro-fibrotic macrophages in interstitial lung disease. Biochem Pharmacol 2023; 211:115501. [PMID: 36921632 DOI: 10.1016/j.bcp.2023.115501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the representative phenotype of interstitial lung disease where severe scarring develops in the lung interstitium. Although antifibrotic treatments are available and have been shown to slow the progression of IPF, improved therapeutic options are still needed. Recent data indicate that macrophages play essential pro-fibrotic roles in the pathogenesis of pulmonary fibrosis. Historically, macrophages have been classified into two functional subtypes, "M1" and "M2," and it is well described that "M2" or "alternatively activated" macrophages contribute to fibrosis via the production of fibrotic mediators, such as TGF-β, CTGF, and CCL18. However, highly plastic macrophages may possess distinct functions and phenotypes in the fibrotic lung environment. Thus, M2-like macrophages in vitro and pro-fibrotic macrophages in vivo are not completely identical cell populations. Recent developments in transcriptome analysis, including single-cell RNA sequencing, have attempted to depict more detailed phenotypic characteristics of pro-fibrotic macrophages. This review will outline the role and characterization of pro-fibrotic macrophages in fibrotic lung diseases and discuss the possibility of treating lung fibrosis by preventing or reprogramming the polarity of macrophages. We also utilized a systematic approach to review the literature and identify novel and promising therapeutic agents that follow this treatment strategy.
Collapse
|
185
|
Missarova A, Dann E, Rosen L, Satija R, Marioni J. Sensitive cluster-free differential expression testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531744. [PMID: 36945506 PMCID: PMC10028920 DOI: 10.1101/2023.03.08.531744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Comparing molecular features, including the identification of genes with differential expression (DE) between conditions, is a powerful approach for characterising disease-specific phenotypes. When testing for DE in single-cell RNA sequencing data, current pipelines first assign cells into discrete clusters (or cell types), followed by testing for differences within each cluster. Consequently, the sensitivity and specificity of DE testing are limited and ultimately dictated by the granularity of the cell type annotation, with discrete clustering being especially suboptimal for continuous trajectories. To overcome these limitations, we present miloDE - a cluster-free framework for differential expression testing. We build on the Milo approach, introduced for differential cell abundance testing, which leverages the graph representation of single-cell data to assign relatively homogenous, 'neighbouring' cells into overlapping neighbourhoods. We address key differences between differential abundance and expression testing at the level of neighbourhood assignment, statistical testing, and multiple testing correction. To illustrate the performance of miloDE we use both simulations and real data, in the latter case identifying a transient haemogenic endothelia-like state in chimeric mouse embryos lacking Tal1 as well as uncovering distinct transcriptional programs that characterise changes in macrophages in patients with Idiopathic Pulmonary Fibrosis. miloDE is available as an open-source R package at https://github.com/MarioniLab/miloDE.
Collapse
Affiliation(s)
- Alsu Missarova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leah Rosen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rahul Satija
- Center for Genomics and Systems Biology, NYU
- New York Genome Center
| | - John Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| |
Collapse
|
186
|
Th17.1 cell driven sarcoidosis-like inflammation after anti-BCMA CAR T cells in multiple myeloma. Leukemia 2023; 37:650-658. [PMID: 36720972 PMCID: PMC9888347 DOI: 10.1038/s41375-023-01824-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Pseudo-progression and flare-up phenomena constitute a novel diagnostic challenge in the follow-up of patients treated with immune-oncology drugs. We present a case study on pulmonary flare-up after Idecabtagen Vicleucel (Ide-cel), a BCMA targeting CAR T-cell therapy, and used single-cell RNA-seq (scRNA-seq) to identify a Th17.1 driven autoimmune mechanism as the biological underpinning of this phenomenon. By integrating datasets of various lung pathological conditions, we revealed transcriptomic similarities between post CAR T pulmonary lesions and sarcoidosis. Furthermore, we explored a noninvasive PET based diagnostic approach and showed that tracers binding to CXCR4 complement FDG PET imaging in this setting, allowing discrimination between immune-mediated changes and true relapse after CAR T-cell treatment. In conclusion, our study highlights a Th17.1 driven autoimmune phenomenon after CAR T, which may be misinterpreted as disease relapse, and that imaging with multiple PET tracers and scRNA-seq could help in this diagnostic dilemma.
Collapse
|
187
|
Hoeft K, Schaefer GJL, Kim H, Schumacher D, Bleckwehl T, Long Q, Klinkhammer BM, Peisker F, Koch L, Nagai J, Halder M, Ziegler S, Liehn E, Kuppe C, Kranz J, Menzel S, Costa I, Wahida A, Boor P, Schneider RK, Hayat S, Kramann R. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep 2023; 42:112131. [PMID: 36807143 PMCID: PMC9992450 DOI: 10.1016/j.celrep.2023.112131] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.
Collapse
Affiliation(s)
- Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Gideon J L Schaefer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Hyojin Kim
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Anesthesiology, RWTH Aachen University, Aachen, Germany
| | - Tore Bleckwehl
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Qingqing Long
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | | | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lars Koch
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Elisa Liehn
- Institute for Molecular Medicine, University of South Denmark, Odense, Denmark
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Urology, RWTH Aachen University, Aachen, Germany; Department of Urology and Kidney Transplantation, Martin-Luther-University, Halle (Saale), Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany; Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Cell Biology, Institute for Biomedical Technologies, RWTH Aachen University, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
188
|
Ahangari F, Price NL, Malik S, Chioccioli M, Bärnthaler T, Adams TS, Kim J, Pradeep SP, Ding S, Cosmos C, Rose KAS, McDonough JE, Aurelien NR, Ibarra G, Omote N, Schupp JC, DeIuliis G, Villalba Nunez JA, Sharma L, Ryu C, Dela Cruz CS, Liu X, Prasse A, Rosas I, Bahal R, Fernández-Hernando C, Kaminski N. microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis. JCI Insight 2023; 8:e158100. [PMID: 36626225 PMCID: PMC9977502 DOI: 10.1172/jci.insight.158100] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program, Yale Center for Molecular and System Metabolism, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Bärnthaler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Shuizi Ding
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Cosmos
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kadi-Ann S. Rose
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E. McDonough
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nachelle R. Aurelien
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, Weill Cornell Hospital Medicine, New York, New York, USA
| | - Gabriel Ibarra
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Life Span Medical Group, Department of Internal Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Norihito Omote
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julian A. Villalba Nunez
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinran Liu
- Center for Cellular and Molecular Imaging (CCMI), Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Antje Prasse
- Department of Pneumology, University of Hannover, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Ivan Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale Center for Molecular and System Metabolism, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
189
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
190
|
Al-Adwi Y, Westra J, van Goor H, Burgess JK, Denton CP, Mulder DJ. Macrophages as determinants and regulators of fibrosis in systemic sclerosis. Rheumatology (Oxford) 2023; 62:535-545. [PMID: 35861385 PMCID: PMC9891414 DOI: 10.1093/rheumatology/keac410] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
SSc is a multiphase autoimmune disease with a well-known triad of clinical manifestations including vasculopathy, inflammation and fibrosis. Although a plethora of drugs has been suggested as potential candidates to halt SSc progression, nothing has proven clinically efficient. In SSc, both innate and adaptive immune systems are abnormally activated fuelling fibrosis of the skin and other vital organs. Macrophages have been implicated in the pathogenesis of SSc and are thought to be a major source of immune dysregulation. Due to their plasticity, macrophages can initiate and sustain chronic inflammation when classically activated while, simultaneously or parallelly, when alternatively activated they are also capable of secreting fibrotic factors. Here, we briefly explain the polarization process of macrophages. Subsequently, we link the activation of macrophages and monocytes to the molecular pathology of SSc, and illustrate the interplay between macrophages and fibroblasts. Finally, we present recent/near-future clinical trials and discuss novel targets related to macrophages/monocytes activation in SSc.
Collapse
Affiliation(s)
- Yehya Al-Adwi
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine
| | - Johanna Westra
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology
| | - Harry van Goor
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Christopher P Denton
- UCL Division of Medicine, University College London
- UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, London, UK
| | - Douwe J Mulder
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine
| |
Collapse
|
191
|
Zhang Z, Cao Z, Hou L, Song M, Zhou Y, Chen Y, Hu H, Hou Y, Liu Y, Li B, Song X, Ge W, Li B, Jiang X, Yang J, Song D, Zhang X, Pang J, Zhang T, Zhang H, Yang P, Wang J, Wang C. Adenovirus-mediated Overexpression of FcγRIIB Attenuates Pulmonary Inflammation and Fibrosis. Am J Respir Cell Mol Biol 2023; 68:213-227. [PMID: 36227848 DOI: 10.1165/rcmb.2022-0056oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Progressive fibrosing interstitial lung diseases (PF-ILDs) result in high mortality and lack effective therapies. The pathogenesis of PF-ILDs involves macrophages driving inflammation and irreversible fibrosis. Fc-γ receptors (FcγRs) regulate macrophages and inflammation, but their roles in PF-ILDs remain unclear. We characterized the expression of FcγRs and found upregulated FcγRIIB in human and mouse lungs after exposure to silica. FcγRIIB deficiency aggravated lung dysfunction, inflammation, and fibrosis in silica-exposed mice. Using single-cell transcriptomics and in vitro experiments, FcγRIIB was found in alveolar macrophages, where it regulated the expression of fibrosis-related genes Spp1 and Ctss. In mice with macrophage-specific overexpression of FcγRIIB and in mice treated with adenovirus by intratracheal instillation to upregulate FcγRIIB, silica-induced functional and histological changes were ameliorated. Our data from three genetic models and a therapeutic model suggest that FcγRIIB plays a protective role that can be enhanced by adenoviral overexpression, representing a potential therapeutic strategy for PF-ILDs.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | | | - Lin Hou
- Department of Physiology and
| | - Meiyue Song
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yiling Chen
- Department of Physiology and.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China; and
| | - Huiyuan Hu
- Department of Physiology and.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China; and
| | - Yangfeng Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Bolun Li
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Baicun Li
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | | | | | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinri Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Junling Pang
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tiantian Zhang
- Department of Physiology and.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology and.,National Health Commission Key Laboratory of Pneumoconiosis, Taiyuan, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
192
|
Liao Y, Wang R, Wen F. Diagnostic and prognostic value of secreted phosphoprotein 1 for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Biomarkers 2023; 28:87-96. [PMID: 36377416 DOI: 10.1080/1354750x.2022.2148744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BackgroundThere is an increasing number of studies on the diagnostic and prognostic biomarkers associated with IPF. The purpose of this study was to explore the diagnostic and prognostic value of secreted phosphoprotein 1 (SPP1) in IPF.MethodsUsing five database, appropriate studies were included. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and 95% confidence intervals (CIs) were calculated. Pooled hazard ratios (HRs) and 95% CIs related to prognosis were calculated.ResultsThirteen studies were included in the meta-analyses. The pooled sensitivity, specificity, PLR, NLR and DOR were 0.84 (95% CI 0.72-0.91), 0.89 (95% CI 0.83-0.94), 7.94 (95% CI 4.63-13.62), 0.18 (95% CI 0.10-0.33), 43.08 (95% CI 15.88-116.84) for SPP1 in the differential diagnosis of IPF and healthy people. The pooled sensitivity, specificity, PLR, NLR and DOR were 0.97 (95% CI 0.57-1.00), 0.93 (95% CI 0.73-0.98), 13.87 (95% CI 3.26-58.99), 0.03 (95% CI 0-0.68), 446.91 (95% CI 21.02-9504.41) for SPP1 to differentiate IPF and lung cancer patients. High SPP1 expression predicts poor prognosis for IPF patients (HR= 1.42, 95% CI = 1.27 and 1.58, P < 0.001).ConclusionsSPP1 is a potential diagnostic and prognostic biomarker for IPF patients.
Collapse
Affiliation(s)
- Yi Liao
- Laboratory of Pulmonary Disease, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China school of Medicine, Sichuan University, Chengdu, China
| | - Ran Wang
- Laboratory of Pulmonary Disease, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China school of Medicine, Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Laboratory of Pulmonary Disease, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China school of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
193
|
Cerro Chiang G, Parimon T. Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. Int J Mol Sci 2023; 24:ijms24032405. [PMID: 36768729 PMCID: PMC9917355 DOI: 10.3390/ijms24032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a collection of systemic autoimmune disorders resulting in lung interstitial abnormalities or lung fibrosis. CTD-ILD pathogenesis is not well characterized because of disease heterogeneity and lack of pre-clinical models. Some common risk factors are inter-related with idiopathic pulmonary fibrosis, an extensively studied fibrotic lung disease, which includes genetic abnormalities and environmental risk factors. The primary pathogenic mechanism is that these risk factors promote alveolar type II cell dysfunction triggering many downstream profibrotic pathways, including inflammatory cascades, leading to lung fibroblast proliferation and activation, causing abnormal lung remodeling and repairs that result in interstitial pathology and lung fibrosis. In CTD-ILD, dysregulation of regulator pathways in inflammation is a primary culprit. However, confirmatory studies are required. Understanding these pathogenetic mechanisms is necessary for developing and tailoring more targeted therapy and provides newly discovered disease biomarkers for early diagnosis, clinical monitoring, and disease prognostication. This review highlights the central CTD-ILD pathogenesis and biological drivers that facilitate the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Giuliana Cerro Chiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| | - Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
194
|
Theune WC, Trakhtenberg EF. Transcriptomic profiling of retinal cells reveals a subpopulation of microglia/macrophages expressing Rbpms and Spp1 markers of retinal ganglion cells (RGCs) that confound identification of RGCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525216. [PMID: 36747805 PMCID: PMC9900785 DOI: 10.1101/2023.01.23.525216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Analysis of retinal ganglion cells (RGCs) by scRNA-seq is emerging as a state-of-the-art method for studying RGC biology and subtypes, as well as for studying the mechanisms of neuroprotection and axon regeneration in the central nervous system (CNS). Rbpms has been established as a pan-RGC marker, and Spp1 has been established as an αRGC type marker. Here, we analyzed by scRNA-seq retinal microglia and macrophages, and found Rbpms+ and Spp1+ subpopulations of retinal microglia/macrophages, which pose a potential pitfall in scRNA-seq studies involving RGCs. We performed comparative analysis of cellular identity of the presumed RGC cells isolated in recent scRNA-seq studies, and found that Rbpms+ and Spp1+ microglia/macrophages confounded identification of RGCs. We also provide solutions for circumventing this potential pitfall in scRNA-seq studies, by including in RGC and αRGC selection criteria other pan-RGC and αRGC markers.
Collapse
Affiliation(s)
- William C. Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Ephraim F. Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
195
|
Hong J, Wong B, Rhodes CJ, Kurt Z, Schwantes-An TH, Mickler EA, Gräf S, Eyries M, Lutz KA, Pauciulo MW, Trembath RC, Montani D, Morrell NW, Wilkins MR, Nichols WC, Trégouët DA, Aldred MA, Desai AA, Tuder RM, Geraci MW, Eghbali M, Stearman RS, Yang X. Integrative Multiomics to Dissect the Lung Transcriptional Landscape of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523812. [PMID: 36712057 PMCID: PMC9882207 DOI: 10.1101/2023.01.12.523812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.
Collapse
|
196
|
Zhao J, Wang C, Fan R, Liu X, Zhang W. A prognostic model based on clusters of molecules related to epithelial-mesenchymal transition for idiopathic pulmonary fibrosis. Front Genet 2023; 13:1109903. [PMID: 36685840 PMCID: PMC9853015 DOI: 10.3389/fgene.2022.1109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Most patients with idiopathic pulmonary fibrosis (IPF) have poor prognosis; Effective predictive models for these patients are currently lacking. Epithelial-mesenchymal transition (EMT) often occurs during idiopathic pulmonary fibrosis development, and is closely related to multiple pathways and biological processes. It is thus necessary for clinicians to find prognostic biomarkers with high accuracy and specificity from the perspective of Epithelial-mesenchymal transition. Methods: Data were obtained from the Gene Expression Omnibus database. Using consensus clustering, patients were grouped based on Epithelial-mesenchymal transition-related genes. Next, functional enrichment analysis was performed on the results of consensus clustering using gene set variation analysis. The gene modules associated with Epithelial-mesenchymal transition were obtained through weighted gene co-expression network analysis. Prognosis-related genes were screened via least absolute shrinkage and selection operator (LASSO) regression analysis. The model was then evaluated and validated using survival analysis and time-dependent receiver operating characteristic (ROC) analysis. Results: A total of 239 Epithelial-mesenchymal transition-related genes were obtained from patients with idiopathic pulmonary fibrosis. Six genes with strong prognostic associations (C-X-C chemokine receptor type 7 [CXCR7], heparan sulfate-glucosamine 3-sulfotransferase 1 [HS3ST1], matrix metallopeptidase 25 [MMP25], murine retrovirus integration site 1 [MRVI1], transmembrane four L6 family member 1 [TM4SF1], and tyrosylprotein sulfotransferase 1 [TPST1]) were identified via least absolute shrinkage and selection operator and Cox regression analyses. A prognostic model was then constructed based on the selected genes. Survival analysis showed that patients with high-risk scores had worse prognosis based on the training set [hazard ratio (HR) = 7.31, p < .001] and validation set (HR = 2.85, p = .017). The time-dependent receiver operating characteristic analysis showed that the area under the curve (AUC) values in the training set were .872, .905, and .868 for 1-, 2-, and 3-year overall survival rates, respectively. Moreover, the area under the curve values in the validation set were .814, .814, and .808 for 1-, 2-, and 3-year overall survival rates, respectively. Conclusion: The independent prognostic model constructed from six Epithelial-mesenchymal transition-related genes provides bioinformatics guidance to identify additional prognostic markers for idiopathic pulmonary fibrosis in the future.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Can Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiangyang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Wei Zhang,
| |
Collapse
|
197
|
Daniel B, Belk JA, Meier SL, Chen AY, Sandor K, Czimmerer Z, Varga Z, Bene K, Buquicchio FA, Qi Y, Kitano H, Wheeler JR, Foster DS, Januszyk M, Longaker MT, Chang HY, Satpathy AT. Macrophage inflammatory and regenerative response periodicity is programmed by cell cycle and chromatin state. Mol Cell 2023; 83:121-138.e7. [PMID: 36521490 PMCID: PMC9831293 DOI: 10.1016/j.molcel.2022.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.
Collapse
Affiliation(s)
- Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Stefanie L Meier
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Andy Y Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary; Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary
| | - Zsofia Varga
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Krisztian Bene
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Hugo Kitano
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Joshua R Wheeler
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Program in Immunology, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
198
|
Sathe A, Mason K, Grimes SM, Zhou Z, Lau BT, Bai X, Su A, Tan X, Lee H, Suarez CJ, Nguyen Q, Poultsides G, Zhang NR, Ji HP. Colorectal Cancer Metastases in the Liver Establish Immunosuppressive Spatial Networking between Tumor-Associated SPP1+ Macrophages and Fibroblasts. Clin Cancer Res 2023; 29:244-260. [PMID: 36239989 PMCID: PMC9811165 DOI: 10.1158/1078-0432.ccr-22-2041] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The liver is the most frequent metastatic site for colorectal cancer. Its microenvironment is modified to provide a niche that is conducive for colorectal cancer cell growth. This study focused on characterizing the cellular changes in the metastatic colorectal cancer (mCRC) liver tumor microenvironment (TME). EXPERIMENTAL DESIGN We analyzed a series of microsatellite stable (MSS) mCRCs to the liver, paired normal liver tissue, and peripheral blood mononuclear cells using single-cell RNA sequencing (scRNA-seq). We validated our findings using multiplexed spatial imaging and bulk gene expression with cell deconvolution. RESULTS We identified TME-specific SPP1-expressing macrophages with altered metabolism features, foam cell characteristics, and increased activity in extracellular matrix (ECM) organization. SPP1+ macrophages and fibroblasts expressed complementary ligand-receptor pairs with the potential to mutually influence their gene-expression programs. TME lacked dysfunctional CD8 T cells and contained regulatory T cells, indicative of immunosuppression. Spatial imaging validated these cell states in the TME. Moreover, TME macrophages and fibroblasts had close spatial proximity, which is a requirement for intercellular communication and networking. In an independent cohort of mCRCs in the liver, we confirmed the presence of SPP1+ macrophages and fibroblasts using gene-expression data. An increased proportion of TME fibroblasts was associated with the worst prognosis in these patients. CONCLUSIONS We demonstrated that mCRC in the liver is characterized by transcriptional alterations of macrophages in the TME. Intercellular networking between macrophages and fibroblasts supports colorectal cancer growth in the immunosuppressed metastatic niche in the liver. These features can be used to target immune-checkpoint-resistant MSS tumors.
Collapse
Affiliation(s)
- Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kaishu Mason
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan M. Grimes
- Stanford Genome Technology Center, Stanford University, Palo Alto, California
| | - Zilu Zhou
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Billy T. Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Andrew Su
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Carlos J. Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Nancy R. Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Stanford Genome Technology Center, Stanford University, Palo Alto, California
| |
Collapse
|
199
|
Hata K, Yanagihara T, Matsubara K, Kunimura K, Suzuki K, Tsubouchi K, Eto D, Ando H, Uehara M, Ikegame S, Baba Y, Fukui Y, Okamoto I. Mass cytometry identifies characteristic immune cell subsets in bronchoalveolar lavage fluid from interstitial lung diseases. Front Immunol 2023; 14:1145814. [PMID: 36949950 PMCID: PMC10027011 DOI: 10.3389/fimmu.2023.1145814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Immune cells have been implicated in interstitial lung diseases (ILDs), although their phenotypes and effector mechanisms remain poorly understood. To better understand these cells, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid (BALF) from patients with idiopathic pulmonary fibrosis (IPF), connective-tissue disease (CTD)-related ILD, and sarcoidosis, using two panels including 64 markers. Among myeloid cells, we observed the expansion of CD14+ CD36hi CD84hiCCR2- monocyte populations in IPF. These CD14+ CD36hi CD84hi CCR2- subsets were also increased in ILDs with a progressive phenotype, particularly in a case of acute exacerbation (AEx) of IPF. Analysis of B cells revealed the presence of cells at various stages of differentiation in BALF, with a higher percentage of IgG memory B cells in CTD-ILDs and a trend toward more FCRL5+ B cells. These FCRL5+ B cells were also present in the patient with AEx-IPF and sarcoidosis with advanced lung lesions. Among T cells, we found increased levels of IL-2R+ TIGIT+ LAG3+ CD4+ T cells in IPF, increased levels of CXCR3+ CD226+ CD4+ T cells in sarcoidosis, and increased levels of PD1+ TIGIT+ CD57+ CD8+ T cells in CTD-ILDs. Together, these findings underscore the diverse immunopathogenesis of ILDs.
Collapse
Affiliation(s)
- Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Toyoshi Yanagihara,
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Eto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Uehara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ikegame
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
200
|
LIU JIA, WANG FAPING, YUAN BO, LUO FENGMING. Transcriptional factor RUNX1: A potential therapeutic target for fibrotic pulmonary disease. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|