151
|
Salami A, Adolfsson R, Andersson M, Blennow K, Lundquist A, Adolfsson AN, Schöll M, Zetterberg H, Nyberg L. Association of APOE ɛ4 and Plasma p-tau181 with Preclinical Alzheimer’s Disease and Longitudinal Change in Hippocampus Function. J Alzheimers Dis 2021; 85:1309-1320. [PMID: 34924376 PMCID: PMC8925119 DOI: 10.3233/jad-210673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The Apolipoprotein E (APOE) ɛ4 allele has been linked to increased tau phosphorylation and tangle formation. APOE ɛ4 carriers with elevated tau might be at the higher risk for AD progression. Previous studies showed that tau pathology begins early in areas of the medial temporal lobe. Similarly, APOE ɛ4 carriers showed altered hippocampal functional integrity. However, it remains unknown whether elevated tau accumulation on hippocampal functional changes would be more pronounced for APOE ɛ4 carriers. Objective: We related ɛ4 carriage to levels of plasma phosphorylated tau (p-tau181) up to 15 years prior to AD onset. Furthermore, elevated p-tau181 was explored in relation to longitudinal changes in hippocampal function and connectivity. Methods: Longitudinal population-based study. Plasma p-tau181 was analyzed in 142 clinically defined Alzheimer’s disease (AD) cases and 126 controls. The longitudinal analysis involved 87 non-demented individuals with two waves of plasma samples and three waves of functional magnetic resonance imaging during rest and memory encoding. Results: Increased p-tau181 was observed for both ɛ4 carriers and non-carriers close to AD, but exclusively for ɛ4 carriers in the early preclinical groups (7- and 13-years pre-AD). In ɛ4 carriers, longitudinal p-tau181 increase was paralleled by elevated local hippocampal connectivity at rest and subsequent reduction of hippocampus encoding-related activity. Conclusion: Our findings support an association of APOE ɛ4 and p-tau181 with preclinical AD and hippocampus functioning.
Collapse
Affiliation(s)
- Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Statistics, USBE Umeå University, Umeå, Sweden
| | | | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
152
|
Zhang Q, Du Q, Liu G. A whole-process interpretable and multi-modal deep reinforcement learning for diagnosis and analysis of Alzheimer's disease ∗. J Neural Eng 2021; 18:066032. [PMID: 34753116 DOI: 10.1088/1741-2552/ac37cc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Objective. Alzheimer's disease (AD), a common disease of the elderly with unknown etiology, has been adversely affecting many people, especially with the aging of the population and the younger trend of this disease. Current artificial intelligence (AI) methods based on individual information or magnetic resonance imaging (MRI) can solve the problem of diagnostic sensitivity and specificity, but still face the challenges of interpretability and clinical feasibility. In this study, we propose an interpretable multimodal deep reinforcement learning model for inferring pathological features and the diagnosis of AD.Approach. First, for better clinical feasibility, the compressed-sensing MRI image is reconstructed using an interpretable deep reinforcement learning model. Then, the reconstructed MRI is input into the full convolution neural network to generate a pixel-level disease probability risk map (DPM) of the whole brain for AD. The DPM of important brain regions and individual information are then input into the attention-based fully deep neural network to obtain the diagnosis results and analyze the biomarkers. We used 1349 multi-center samples to construct and test the model.Main results.Finally, the model obtained 99.6% ± 0.2%, 97.9% ± 0.2%, and 96.1% ± 0.3% area under curve in ADNI, AIBL and NACC, respectively. The model also provides an effective analysis of multimodal pathology, predicts the imaging biomarkers in MRI and the weight of each individual item of information. In this study, a deep reinforcement learning model was designed, which can not only accurately diagnose AD, but analyze potential biomarkers.Significance. In this study, a deep reinforcement learning model was designed. The model builds a bridge between clinical practice and AI diagnosis and provides a viewpoint for the interpretability of AI technology.
Collapse
Affiliation(s)
- Quan Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, People's Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, People's Republic of China
| | - Qian Du
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, People's Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, People's Republic of China
| | - Guohua Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, People's Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
153
|
Tang Y, Zhang D, Gong X, Zheng J. A mechanistic survey of Alzheimer's disease. Biophys Chem 2021; 281:106735. [PMID: 34894476 DOI: 10.1016/j.bpc.2021.106735] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common, age-dependent neurodegenerative disorder. While AD has been intensively studied from different aspects, there is no effective cure for AD, largely due to a lack of a clear mechanistic understanding of AD. In this mini-review, we mainly focus on the discussion and summary of mechanistic causes of Alzheimer's disease (AD). While different AD mechanisms illustrate different molecular and cellular pathways in AD pathogenesis, they do not necessarily exclude each other. Instead, some of them could work together to initiate, trigger, and promote the onset and development of AD. In a broader viewpoint, some AD mechanisms (e.g., amyloid aggregation mechanism, microbial infection/neuroinflammation mechanism, and amyloid cross-seeding mechanism) could also be applicable to other amyloid diseases including type II diabetes, Parkinson's disease, and prion disease. Such common mechanisms for AD and other amyloid diseases explain not only the pathogenesis of individual amyloid diseases, but also the spreading of pathologies between these diseases, which will inspire new strategies for therapeutic intervention and prevention for AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, OH, United States of America
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America.
| |
Collapse
|
154
|
Jagadeesh KA, Dey KK, Montoro DT, Mohan R, Gazal S, Engreitz JM, Xavier RJ, Price AL, Regev A. Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.19.436212. [PMID: 34845454 PMCID: PMC8629197 DOI: 10.1101/2021.03.19.436212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes contributing to disease, but in many cases the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. We analyzed 1.6 million scRNA-seq profiles from 209 individuals spanning 11 tissue types and 6 disease conditions, and constructed gene programs capturing cell types, disease progression, and cellular processes both within and across cell types. We evaluated these gene programs for disease enrichment by transforming them to SNP annotations with tissue-specific epigenomic maps and computing enrichment scores across 60 diseases and complex traits (average N= 297K). Cell type, disease progression, and cellular process programs captured distinct heritability signals even within the same cell type, as we show in multiple complex diseases that affect the brain (Alzheimer’s disease, multiple sclerosis), colon (ulcerative colitis) and lung (asthma, idiopathic pulmonary fibrosis, severe COVID-19). The inferred disease enrichments recapitulated known biology and highlighted novel cell-disease relationships, including GABAergic neurons in major depressive disorder (MDD), a disease progression M cell program in ulcerative colitis, and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease progression immune cell type programs were associated, whereas for epithelial cells, disease progression programs were most prominent, perhaps suggesting a role in disease progression over initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.
Collapse
|
155
|
Hayashi K, Noguchi-Shinohara M, Sato T, Hosomichi K, Kannon T, Abe C, Domoto C, Yuki-Nozaki S, Mori A, Horimoto M, Yokogawa M, Sakai K, Iwasa K, Komai K, Ishimiya M, Nakamura H, Ishida N, Suga Y, Ishizaki J, Ishigami A, Tajima A, Yamada M. Effects of functional variants of vitamin C transporter genes on apolipoprotein E E4-associated risk of cognitive decline: The Nakajima study. PLoS One 2021; 16:e0259663. [PMID: 34780525 PMCID: PMC8592483 DOI: 10.1371/journal.pone.0259663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E E4 (APOE4) is a risk factor for cognitive decline. A high blood vitamin C (VC) level reduces APOE4-associated risk of developing cognitive decline in women. In the present study, we aimed to examine the effects of functional variants of VC transporter genes expressed in the brain (SLC2A1, SLC2A3, and SLC23A2) on APOE4-associated risk of developing cognitive decline. This case–control study involved 393 Japanese subjects: 252 cognitively normal and 141 cognitively impaired individuals (87 mild cognitive impairment and 54 dementia). Database searches revealed that rs1279683 of SLC23A2, and rs710218 and rs841851 of SLC2A1 are functional variants that are significantly associated with the altered expression of the respective genes and genotyped as three single nucleotide variants (SNVs). When stratified by SNV genotype, we found a significant association between APOE4 and cognitive decline in minor allele carriers of rs1279683 (odds ratio [OR] 2.02, 95% CI, 1.05–3.87, p = 0.035) but not in the homozygote carriers of the major allele. Significant associations between APOE4 and cognitive decline were also observed in participants with major allele homozygotes of rs710218 (OR 2.35, 95% CI, 1.05–5.23, p = 0.037) and rs841851 (OR 3.2, 95% CI, 1.58–6.46, p = 0.0012), but not in minor allele carriers of the respective SNVs. In contrast, the three functional SNVs showed no significant effect on cognitive decline. Our results imply that functional SNVs of VC transporter genes can affect APOE4-associated risk of developing cognitive decline via altered VC levels in the brain.
Collapse
Affiliation(s)
- Koji Hayashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Preemptive Medicine for Dementia, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiemi Abe
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Chiaki Domoto
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sohshi Yuki-Nozaki
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ayaka Mori
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mai Horimoto
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masami Yokogawa
- Department of Physical Therapy, Division of Health Sciences, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuo Iwasa
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Ishikawa Prefectural Nursing University, Kahoku, Japan
| | - Kiyonobu Komai
- Department of Neurology, Iou Hospital National Hospital Organization, Kanazawa, Japan
| | - Mai Ishimiya
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Oral and Maxillofacial Surgery, Ryukyu University Hospital, Nishihara, Japan
| | - Natsuko Ishida
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Yukio Suga
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Junko Ishizaki
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail: (AT); (MY)
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- * E-mail: (AT); (MY)
| |
Collapse
|
156
|
Sumien N, Cunningham JT, Davis DL, Engelland R, Fadeyibi O, Farmer GE, Mabry S, Mensah-Kane P, Trinh OTP, Vann PH, Wilson EN, Cunningham RL. Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress. Endocrinology 2021; 162:6360925. [PMID: 34467976 PMCID: PMC8462383 DOI: 10.1210/endocr/bqab185] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases cause severe impairments in cognitive and motor function. With an increasing aging population and the onset of these diseases between 50 and 70 years, the consequences are bound to be devastating. While age and longevity are the main risk factors for neurodegenerative diseases, sex is also an important risk factor. The characteristic of sex is multifaceted, encompassing sex chromosome complement, sex hormones (estrogens and androgens), and sex hormone receptors. Sex hormone receptors can induce various signaling cascades, ranging from genomic transcription to intracellular signaling pathways that are dependent on the health of the cell. Oxidative stress, associated with aging, can impact the health of the cell. Sex hormones can be neuroprotective under low oxidative stress conditions but not in high oxidative stress conditions. An understudied sex hormone receptor that can induce activation of oxidative stress signaling is the membrane androgen receptor (mAR). mAR can mediate nicotinamide adenine dinucleotide-phosphate (NADPH) oxidase (NOX)-generated oxidative stress that is associated with several neurodegenerative diseases, such as Alzheimer disease. Further complicating this is that aging can alter sex hormone signaling. Prior to menopause, women experience more estrogens than androgens. During menopause, this sex hormone profile switches in women due to the dramatic ovarian loss of 17β-estradiol with maintained ovarian androgen (testosterone, androstenedione) production. Indeed, aging men have higher estrogens than aging women due to aromatization of androgens to estrogens. Therefore, higher activation of mAR-NOX signaling could occur in menopausal women compared with aged men, mediating the observed sex differences. Understanding of these signaling cascades could provide therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Delaney L Davis
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Paapa Mensah-Kane
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Oanh T P Trinh
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: Rebecca L. Cunningham, PhD, Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, TX, USA, 76107-2699.
| |
Collapse
|
157
|
Lu K, Nicholas JM, Pertzov Y, Grogan J, Husain M, Pavisic IM, James SN, Parker TD, Lane CA, Keshavan A, Keuss SE, Buchanan SM, Murray-Smith H, Cash DM, Malone IB, Sudre CH, Coath W, Wong A, Henley SM, Fox NC, Richards M, Schott JM, Crutch SJ. Dissociable effects of APOE-ε4 and β-amyloid pathology on visual working memory. NATURE AGING 2021; 1:1002-1009. [PMID: 34806027 PMCID: PMC7612005 DOI: 10.1038/s43587-021-00117-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
Although APOE-ε4 carriers are at significantly higher risk of developing Alzheimer's disease than non-carriers1, controversial evidence suggests that APOE-ε4 might confer some advantages, explaining the survival of this gene (antagonistic pleiotropy)2,3. In a population-based cohort born in one week in 1946 (assessed aged 69-71), we assessed differential effects of APOE-ε4 and β-amyloid pathology (quantified using 18F-Florbetapir-PET) on visual working memory (object-location binding). In 398 cognitively normal participants, APOE-ε4 and β-amyloid had opposing effects on object identification, predicting better and poorer recall respectively. ε4-carriers also recalled locations more precisely, with a greater advantage at higher β-amyloid burden. These results provide evidence of superior visual working memory in ε4-carriers, showing that some benefits of this genotype are demonstrable in older age, even in the preclinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
- Department of Experimental Psychology, University of Oxford, UK
| | - Ivanna M. Pavisic
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Thomas D. Parker
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher A. Lane
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah E. Keuss
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah M. Buchanan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M. Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ian B. Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carole H. Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - William Coath
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Susie M.D. Henley
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
158
|
Dong L, Li J, Liu C, Mao C, Wang J, Lei D, Huang X, Chu S, Hou B, Feng F, Sha L, Xu Q, Gao J. Effects of ApoE genotype on clinical phenotypes in early-onset and late-onset Alzheimer's disease in China: Data from the PUMCH dementia cohort. Brain Behav 2021; 11:e2373. [PMID: 34555265 PMCID: PMC8613405 DOI: 10.1002/brb3.2373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION To investigate the heterogeneous effect of Apolipoprotein E (ApoE) genotype on clinical phenotypes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD), respectively. METHODS 785 probable AD patients were enrolled from the dementia cohort of Peking Union Medical College Hospital (PUMCH), China. There were 386 EOAD and 399 LOAD cases. All individuals finished history inquiry, neurological examination, blood biochemical test, neuropsychological screening test, electroencephalography, brain CT/MRI, and ApoE genotyping. Some participants had neuropsychological domain assessment (n = 317), MRI morphometry (n = 130), CSF testing of Aβ42, p-tau, t-tau (n = 144), or DNA sequencing (n = 690). The variables were compared mainly between ɛ4 carriers and non-carriers in EOAD and LOAD, respectively. RESULTS In LOAD, ɛ4 carriers showed female predominance; worse performance in trail making test, delayed recall of auditory verbal learning test (AVLT) and rey complex figure; smaller hippocampal, parahippocampal, and entorhinal volume, as compared to ɛ4 non-carriers. In EOAD, ɛ4 carriers had lower scores in AVLT, episodic memory and modified Luria's tapping task; but less cortical atrophy in entorhinal, middle cingulate, inferior frontal, and parieto-occipital regions, in comparison to ɛ4 non-carriers. 6.2% (43/690) subjects harbored potential causative mutations in APP, PSEN1, and PSEN2. In both EOAD and LOAD, no differences were observed between ɛ4 carriers and non-carriers in CSF levels of Aβ42, p-tau, t-tau, or mutation frequency. CONCLUSIONS ApoE exerts a heterogeneous effect on clinical phenotypes in EOAD and LOAD, which might be related to the different genetic and pathological basis underlying them.
Collapse
Affiliation(s)
- Liling Dong
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Jie Li
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Caiyan Liu
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Chenhui Mao
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Jie Wang
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Dan Lei
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Xinying Huang
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Shanshan Chu
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Bo Hou
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Feng Feng
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Longze Sha
- Institute of Basic Medical Sciences, Peking Union Medical College, Dongcheng, Beijing, China
| | - Qi Xu
- Institute of Basic Medical Sciences, Peking Union Medical College, Dongcheng, Beijing, China
| | - Jing Gao
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| |
Collapse
|
159
|
Abstract
Apolipoprotein E (APOE) has three different isoforms, with APOE4 carriers representing a major risk factor for the development of Alzheimer’s disease (AD). AD is the most common form of dementia, and is a relentlessly progressive disorder that afflicts the aged, characterized by severe memory loss. Presently, AD does not have a cure, increasing the urgency for the development of novel therapeutics for the prevention/treatment of AD. The APOE4 isoform is associated with many pathological mechanisms, such as increased neuroinflammation and a reduction in β-amyloid (Aβ) clearance. The accumulation of Aβ plaques in the brain is a hallmark of AD. The presence of APOE4 can increase neuroinflammation via overactivation of the nuclear factor kappa B (NF-κB) pathway. The NF-κB pathway is a family of transcription factors involved with regulating over 400 genes involved with inflammation. AD is associated with sustained inflammation and an overactivation of the NF-κB pathway. Therefore, targeting the APOE4 isoform and suppressing the NF-κB pathway using anti-inflammatory compounds may result in the development of novel therapeutics for the prevention/treatment of AD.
Collapse
Affiliation(s)
- Don A. Davies
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
160
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part II-Imaging Techniques and Clinical Applications. Radiology 2021; 301:516-532. [PMID: 34698564 DOI: 10.1148/radiol.2021204088] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The glymphatic system is a recently discovered network unique to the central nervous system that allows for dynamic exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF). As detailed in part I, ISF and CSF transport along paravascular channels of the penetrating arteries and possibly veins allow essential clearance of neurotoxic solutes from the interstitium to the CSF efflux pathways. Imaging tests to investigate this neurophysiologic function, although challenging, are being developed and are reviewed herein. These include direct visualization of CSF transport using postcontrast imaging techniques following intravenous or intrathecal administration of contrast material and indirect glymphatic assessment with detection of enlarged perivascular spaces. Application of MRI techniques, including intravoxel incoherent motion, diffusion tensor imaging, and chemical exchange saturation transfer, is also discussed, as are methods for imaging dural lymphatic channels involved with CSF efflux. Subsequently, glymphatic function is considered in the context of proteinopathies associated with neurodegenerative diseases and traumatic brain injury, cytotoxic edema following acute ischemic stroke, and chronic hydrocephalus after subarachnoid hemorrhage. These examples highlight the substantial role of the glymphatic system in neurophysiology and the development of certain neuropathologic abnormalities, stressing the importance of its consideration when interpreting neuroimaging investigations. © RSNA, 2021.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Diana Vucevic
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kartik D Bhatia
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Hans G J Kortman
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Timo Krings
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kieran P Murphy
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Karel G terBrugge
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - David J Mikulis
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| |
Collapse
|
161
|
Rohn TT, Beck JD, Galla SJ, Isho NF, Pollock TB, Suresh T, Kulkarni A, Sanghal T, Hayden EJ. Fragmentation of Apolipoprotein E4 is Required for Differential Expression of Inflammation and Activation Related Genes in Microglia Cells. ACTA ACUST UNITED AC 2021; 4. [PMID: 34693295 DOI: 10.23937/2643-4539/1710020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer's disease (AD) and accumulating evidence suggests that fragmentation with a toxic-gain of function may be a key molecular step associated with this risk. Recently, we demonstrated strong immunoreactivity of a 151 amino-terminal fragment of apoE4 (E4-fragment) within the nucleus of microglia in the human AD brain. In vitro, this fragment led to toxicity and activation of inflammatory processes in BV2 microglia cells. Additionally, a transcriptome analysis following exogenous treatment of BV2 microglia cells with this E4 fragment led to a > 2-fold up regulation of 1,608 genes, with many genes playing a role in inflammation and microglia activation. To extend these findings, we here report a similar transcriptome analysis in BV2 microglia cells following treatment with full-length ApoE4 (FL-ApoE4). The results indicated that full-length ApoE4 had a very small effect on gene expression compared to the fragment. Only 48 differentially expressed genes (DEGs) were identified (p < 0.05, and greater than 2-fold change). A gene ontology analysis of these DEGs indicated that they are not involved in inflammatory and activation processes, in contrast to the genes up regulated by the E4-fragment. In addition, genes that showed a negative fold-change upon FL-E4 treatment typically showed a strong positive fold-change upon treatment with the fragment (Pearson's r = -0.7). Taken together, these results support the hypothesis that a key step in the conversion of microglia to an activated phenotype is proteolytic cleavage of FL-ApoE4. Therefore, the neutralization of this amino-terminal fragment of ApoE4, specifically, may serve as an important therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biological Sciences, Boise State University, USA
| | - James D Beck
- Department of Biological Sciences, Boise State University, USA
| | | | - Noail F Isho
- University of Washington School of Medicine, University of Washington, USA
| | | | - Tarun Suresh
- Department of Biological Sciences, Boise State University, USA
| | - Arni Kulkarni
- Department of Biological Sciences, Boise State University, USA
| | - Tanya Sanghal
- Department of Biological Sciences, Boise State University, USA
| | - Eric J Hayden
- Department of Biological Sciences, Boise State University, USA
| |
Collapse
|
162
|
The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10102790. [PMID: 34685770 PMCID: PMC8534363 DOI: 10.3390/cells10102790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.
Collapse
|
163
|
Kotredes KP, Oblak A, Pandey RS, Lin PBC, Garceau D, Williams H, Uyar A, O’Rourke R, O’Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope Z, Foley KE, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Sasner M, Lamb BT, Howell GR. Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H. Front Aging Neurosci 2021; 13:735524. [PMID: 34707490 PMCID: PMC8544520 DOI: 10.3389/fnagi.2021.735524] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.
Collapse
Affiliation(s)
| | - Adrian Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | - Peter Bor-Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O’Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | | | - Zackary Cope
- Department of Medicine—Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kate E. Foley
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | - Stacey J. Sukoff Rizzo
- Department of Medicine—Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | | | | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana University Bloomington, Indianapolis, IN, United States
| | | |
Collapse
|
164
|
Kosti RI, Kasdagli MI, Kyrozis A, Orsini N, Lagiou P, Taiganidou F, Naska A. Fish intake, n-3 fatty acid body status, and risk of cognitive decline: a systematic review and a dose-response meta-analysis of observational and experimental studies. Nutr Rev 2021; 80:1445-1458. [PMID: 34605891 DOI: 10.1093/nutrit/nuab078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CONTEXT Randomized controlled trials (RCTs) testing supplementation with eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids have failed to provide evidence supporting a suggested inverse association between fish intake and dementia risk. OBJECTIVE Dose-response analyses were conducted to evaluate associations between fish intake, all-cause dementia or Alzheimer's Disease (AD), and the effect of EPA/DHA supplementation on cognitive performance. DATA SOURCES PubMed, Scopus and Web of Science databases were searched for original research evaluating either associations between fish intake and dementia or AD, or the impact of EPA and/or DHA supplementation on the risk of cognitive decline. DATA EXTRACTION Data were collected on study characteristics and methods; number of cases/deaths (for observational studies); categories of exposure; model covariates; risk estimates from the most-adjusted model; type and dosage of supplementation (from RCTs); fatty acid levels in blood; and differences in cognition test results before and after supplementation. Risk of bias was assessed through the ROBINS-E and RoB2.0 tools for observational and experimental studies, respectively. DATA ANALYSIS Weighted mixed-effects models were applied, allowing for the inclusion of studies with 2 levels of exposure. Based on findings with low/moderate risk of bias, fish intake of up to 2 portions (250 g) per week was associated with a 10% reduction (95% confidence interval [CI]: 0.79, 1.02, Ν = 5) in all-cause dementia and a 30% reduction (95% CI: 0.54, 0.89, Ν = 3) in AD risk. Changes in EPA and DHA body status had a positive impact on participants' executive functions, but not on their overall cognitive performance. CONCLUSION The protection offered by fish intake against cognitive decline levels off at intakes higher than 2 portions/week and likely relates to the impact of EPA and DHA on the individual's executive functions, although there remain questions about the mechanisms linking the short- and long-term effects. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42019139528.
Collapse
Affiliation(s)
- Rena I Kosti
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Maria I Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Kyrozis
- 1st Neurology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fani Taiganidou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
165
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
166
|
Li S, Luo Z, Zhang R, Xu H, Zhou T, Liu L, Qu J. Distinguishing Amyloid β-Protein in a Mouse Model of Alzheimer's Disease by Label-Free Vibrational Imaging. BIOSENSORS-BASEL 2021; 11:bios11100365. [PMID: 34677321 PMCID: PMC8533730 DOI: 10.3390/bios11100365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Due to the increase in the average age of humans, Alzheimer's disease (AD) has become one of the disorders with the highest incidence worldwide. Abnormal amyloid β protein (Aβ) accumulation is believed to be the most common cause of AD. Therefore, distinguishing the lesion areas can provide clues for AD diagnosis. Here, we present an optical spectroscopy and imaging approach based on coherent anti-Stokes Raman scattering (CARS). Label-free vibrational imaging of Aβ in a mouse model of AD was performed to distinguish the lesion areas by studying the spectra of regions with and without Aβ plaques. Raman spectra in Aβ and non-Aβ regions exhibited a specific difference in the intensity ratio of the wave peaks detected at 2850 and 2930 cm-1. In the non-Aβ region, the ratio of the peak intensity at 2850 cm-1 to that at 2930 cm-1 was approximately 1, whereas that in the Aβ region was 0.8. This label-free vibrational imaging may provide a new method for the clinical diagnosis and basic research of AD.
Collapse
|
167
|
Garcia AR, Finch C, Gatz M, Kraft T, Eid Rodriguez D, Cummings D, Charifson M, Buetow K, Beheim BA, Allayee H, Thomas GS, Stieglitz J, Gurven MD, Kaplan H, Trumble BC. APOE4 is associated with elevated blood lipids and lower levels of innate immune biomarkers in a tropical Amerindian subsistence population. eLife 2021; 10:68231. [PMID: 34586066 PMCID: PMC8480980 DOI: 10.7554/elife.68231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
In post-industrial settings, apolipoprotein E4 (APOE4) is associated with increased cardiovascular and neurological disease risk. However, the majority of human evolutionary history occurred in environments with higher pathogenic diversity and low cardiovascular risk. We hypothesize that in high-pathogen and energy-limited contexts, the APOE4 allele confers benefits by reducing innate inflammation when uninfected, while maintaining higher lipid levels that buffer costs of immune activation during infection. Among Tsimane forager-farmers of Bolivia (N = 1266, 50% female), APOE4 is associated with 30% lower C-reactive protein, and higher total cholesterol and oxidized LDL. Blood lipids were either not associated, or negatively associated with inflammatory biomarkers, except for associations of oxidized LDL and inflammation which were limited to obese adults. Further, APOE4 carriers maintain higher levels of total and LDL cholesterol at low body mass indices (BMIs). These results suggest that the relationship between APOE4 and lipids may be beneficial for pathogen-driven immune responses and unlikely to increase cardiovascular risk in an active subsistence population.
Collapse
Affiliation(s)
- Angela R Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,Department of Anthropology, Emory University, Atlanta, United States
| | - Caleb Finch
- Leonard Davis School of Gerontology, Dornsife College, University of Southern California, Los Angeles, Los Angeles, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, Los Angeles, United States
| | - Thomas Kraft
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Daniel Cummings
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Mia Charifson
- Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, United States
| | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,School of Life Sciences, Arizona State University, Tempe, United States
| | - Bret A Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hooman Allayee
- Department of Preventive Medicine and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States
| | - Gregory S Thomas
- Long Beach Memorial, Long Beach and University of California Irvine, Irvine, United States
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Universite Toulouse, Toulouse, France
| | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, United States
| |
Collapse
|
168
|
Chan HJ, Yanshree, Roy J, Tipoe GL, Fung ML, Lim LW. Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. Int J Mol Sci 2021; 22:10151. [PMID: 34576314 PMCID: PMC8471075 DOI: 10.3390/ijms221810151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee Wei Lim
- School of Biomedical, Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.J.C.); (Y.); (J.R.); (G.L.T.); (M.-L.F.)
| |
Collapse
|
169
|
Khullar S, Wang D. Predicting gene regulatory networks from multi-omics to link genetic risk variants and neuroimmunology to Alzheimer's disease phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34189529 DOI: 10.1101/2021.06.21.449165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genome-wide association studies have found many genetic risk variants associated with Alzheimer's disease (AD). However, how these risk variants affect deeper phenotypes such as disease progression and immune response remains elusive. Also, our understanding of cellular and molecular mechanisms from disease risk variants to various phenotypes is still limited. To address these problems, we performed an integrative multi-omics analysis of genotype, transcriptomics, and epigenomics for revealing gene regulatory mechanisms from disease variants to AD phenotypes. METHOD First, given the population gene expression data of a cohort, we construct and cluster its gene co-expression network to identify gene co-expression modules for various AD phenotypes. Next, we predict transcription factors (TFs) regulating co-expressed genes and AD risk SNPs that interrupt TF binding sites on regulatory elements. Finally, we construct a gene regulatory network (GRN) linking SNPs, interrupted TFs, and regulatory elements to target genes and gene modules for each phenotype in the cohort. This network thus provides systematic insights into gene regulatory mechanisms from risk variants to AD phenotypes. RESULTS Our analysis predicted GRNs in three major AD-relevant regions: Hippocampus, Dorsolateral Prefrontal Cortex (DLPFC), Lateral Temporal Lobe (LTL). Comparative analyses revealed cross-region-conserved and region-specific GRNs, in which many immunological genes are present. For instance, SNPs rs13404184 and rs61068452 disrupt SPI1 binding and regulation of AD gene INPP5D in the Hippocampus and LTL. However, SNP rs117863556 interrupts bindings of REST to regulate GAB2 in DLPFC only. Driven by emerging neuroinflammation in AD, we used Covid-19 as a proxy to identify possible regulatory mechanisms for neuroimmunology in AD. To this end, we looked at the GRN subnetworks relating to genes from shared AD-Covid pathways. From those subnetworks, our machine learning analysis prioritized the AD-Covid genes for predicting Covid-19 severity. Decision Curve Analysis also validated our AD-Covid genes outperform known Covid-19 genes for classifying severe Covid-19 patients. This suggests AD-Covid genes along with linked SNPs can be potential novel biomarkers for neuroimmunology in AD. Finally, our results are open-source available as a comprehensive functional genomic map for AD, providing a deeper mechanistic understanding of the interplay among multi-omics, brain regions, gene functions like neuroimmunology, and phenotypes.
Collapse
|
170
|
Ben Khedher MR, Haddad M, Laurin D, Ramassamy C. Effect of APOE ε4 allele on levels of apolipoproteins E, J, and D, and redox signature in circulating extracellular vesicles from cognitively impaired with no dementia participants converted to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12231. [PMID: 34541286 PMCID: PMC8438681 DOI: 10.1002/dad2.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The substantial link between apolipoprotein E (APOE) ε4 allele and oxidative stress may underlie enhanced Alzheimer's disease (AD) risk. Here, we studied the impact of APOE ε4 on the level of apolipoproteins with antioxidant activities along with oxidative markers in circulating extracellular vesicles (cEVs) and plasma from cognitively impaired-not demented (CIND) individuals converted to AD (CIND-AD). METHODS Apolipoproteins E, J, and D and antioxidant response markers were determined in cEVs and plasma using immunoblotting, electrochemical examination, and spectrofluorimetry. RESULTS Total antioxidant capacity and apolipoprotein D levels in cEVs, as judged by regression analysis and cognitive performance correlations, allowed us to differentiate CIND APOE ε4 carriers from controls and to predict their progression to AD 5 years later. DISCUSSION Our findings support the pathological redox linkage between APOE ε4 and AD onset and suggest the use of cEVs oxidative signature in early AD diagnosis.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
| | - Mohamed Haddad
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
| | - Danielle Laurin
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
- Centre d'excellence sur le vieillissement de QuébecCHU de Québec‐Université Laval Research CentreVITAM‐Centre de recherche en santé durableQuébecQuébecCanada
- Faculty of PharmacyLaval UniversityQuébecQuébecCanada
| | - Charles Ramassamy
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuébecCanada
| |
Collapse
|
171
|
Zhao Y, Caffo B, Luo X. Principal regression for high dimensional covariance matrices. Electron J Stat 2021; 15:4192-4235. [PMID: 35782590 PMCID: PMC9248851 DOI: 10.1214/21-ejs1887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
This manuscript presents an approach to perform generalized linear regression with multiple high dimensional covariance matrices as the outcome. In many areas of study, such as resting-state functional magnetic resonance imaging (fMRI) studies, this type of regression can be utilized to characterize variation in the covariance matrices across units. Model parameters are estimated by maximizing a likelihood formulation of a generalized linear model, conditioning on a well-conditioned linear shrinkage estimator for multiple covariance matrices, where the shrinkage coefficients are proposed to be shared across matrices. Theoretical studies demonstrate that the proposed covariance matrix estimator is optimal achieving the uniformly minimum quadratic loss asymptotically among all linear combinations of the identity matrix and the sample covariance matrix. Under certain regularity conditions, the proposed estimator of the model parameters is consistent. The superior performance of the proposed approach over existing methods is illustrated through simulation studies. Implemented to a resting-state fMRI study acquired from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach identified a brain network within which functional connectivity is significantly associated with Apolipoprotein E ε4, a strong genetic marker for Alzheimer's disease.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Xi Luo
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston
| |
Collapse
|
172
|
Chai AB, Lam HHJ, Kockx M, Gelissen IC. Apolipoprotein E isoform-dependent effects on the processing of Alzheimer's amyloid-β. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158980. [PMID: 34044125 DOI: 10.1016/j.bbalip.2021.158980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.
Collapse
Affiliation(s)
- Amanda B Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Hin Hei Julian Lam
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2139, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
173
|
Watson Y, Nelson B, Kluesner JH, Tanzy C, Ramesh S, Patel Z, Kluesner KH, Singh A, Murthy V, Mitchell CS. Aggregate Trends of Apolipoprotein E on Cognition in Transgenic Alzheimer's Disease Mice. J Alzheimers Dis 2021; 83:435-450. [PMID: 34334405 PMCID: PMC8461675 DOI: 10.3233/jad-210492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p < 0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.
Collapse
Affiliation(s)
- Yassin Watson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Brenae Nelson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Tanzy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Shreya Ramesh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Zoey Patel
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kaci Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Anita Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Vibha Murthy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Institute for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
174
|
Hsieh SW, Chen JC, Chen NC, Jhang KM, Wang W, Yang YH. Real-world Evaluation of Tolerability, Safety and Efficacy of Rivastigmine Oral Solution in Patients with Mild to Moderate Alzheimer's Disease Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:459-469. [PMID: 34294615 PMCID: PMC8316665 DOI: 10.9758/cpn.2021.19.3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the safety, tolerability and efficacy of titrating dose of rivastigmine oral solution in patients with mild to moderate Alzheimer's disease (AD) in Taiwan. METHODS We recruited 108 mild to moderate AD patients with RivastⓇ (rivastigmine oral solution 2 mg/ml) treatment for 52 weeks. We recorded the demographic characteristics, initial cognition by mini-mental state examination (MMSE), initial global status by clinical dementia rating (CDR) with CDR-Sum of Boxes (CDR-SB), initial dose, and titrating dose at each visit. We investigated the adherence, proportion of possible side effects, optimal dose, and time to optimal dose. We demonstrated the proportion of cognitive decline and its possible risk factors. RESULTS During the course, 9 patients discontinued the rivastigmine oral solution due to poor compliance or preference. Twelve out of 99 patients (12.1%) reported possible side effects. Among 87 patients, the mean age was 77.2 ± 9.0 years ago with female predominant (65.2%). The optimal dose was 3.6 ± 1.4 ml in average and 4 ml (n = 31, 35.6%) in mode. The duration to optimal dose was 12.5 ± 10.2 weeks and 24 weeks (n = 35, 40.2%) in mode. It presented 25% with cognitive decline in MMSE, 27% with global function decline in CDR and 63% with global function decline in CDR-SB. CONCLUSION We demonstrated the clinical experience of rivastigmine oral solution in mild to moderate AD patients. It suggested rivastigmine oral solution 4ml is the optimal dose with 24 weeks to the optimal dose for at least one third of patients.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Siao-Gang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Cheng Chen
- Department of Neurology, China Medical University Hsinchu Hospital, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Ming Jhang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wenfu Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Holistic Wellness, Ming Dao University, Changhua, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Taiwan
- Department of and Master’s Program in Neurology, Faculty of Medicine, Kaohsiung Medical University, Taiwan
- Chinese Mentality Protection Association, Kaohsiung, Taiwan
| |
Collapse
|
175
|
Pievani M, Mega A, Quattrini G, Guidali G, Ferrari C, Cattaneo A, D'Aprile I, Mascaro L, Gasparotti R, Corbo D, Brignani D, Bortoletto M. Targeting Default Mode Network Dysfunction in Persons at Risk of Alzheimer's Disease with Transcranial Magnetic Stimulation (NEST4AD): Rationale and Study Design. J Alzheimers Dis 2021; 83:1877-1889. [PMID: 34459405 DOI: 10.3233/jad-210659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Default mode network (DMN) dysfunction is well established in Alzheimer's disease (AD) and documented in both preclinical stages and at-risk subjects, thus representing a potential disease target. Multi-sessions of repetitive transcranial magnetic stimulation (rTMS) seem capable of modulating DMN dynamics and memory in healthy individuals and AD patients; however, the potential of this approach in at-risk subjects has yet to be tested. OBJECTIVE This study will test the effect of rTMS on the DMN in healthy older individuals carrying the strongest genetic risk factor for AD, the Apolipoprotein E (APOE) ɛ4 allele. METHODS We will recruit 64 older participants without cognitive deficits, 32 APOE ɛ4 allele carriers and 32 non-carriers as a reference group. Participants will undergo four rTMS sessions of active (high frequency) or sham DMN stimulation. Multimodal imaging exam (including structural, resting-state, and task functional MRI, and diffusion tensor imaging), TMS with concurrent electroencephalography (TMS-EEG), and cognitive assessment will be performed at baseline and after the stimulation sessions. RESULTS We will assess changes in DMN connectivity with resting-state functional MRI and TMS-EEG, as well as changes in memory performance in APOE ɛ4 carriers. We will also investigate the mechanisms underlying DMN modulation through the assessment of correlations with measures of neuronal activity, excitability, and structural connectivity with multimodal imaging. CONCLUSION The results of this study will inform on the physiological and cognitive outcomes of DMN stimulation in subjects at risk for AD and on the possible mechanisms. These results may outline the design of future non-pharmacological preventive interventions for AD.
Collapse
Affiliation(s)
- Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anna Mega
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Lorella Mascaro
- Medical Physics Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
| | - Daniele Corbo
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
| | - Debora Brignani
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
176
|
Hou TT, Han YD, Cong L, Liu CC, Liang XY, Xue FZ, Du YF. Apolipoprotein E Facilitates Amyloid-β Oligomer-Induced Tau Phosphorylation. J Alzheimers Dis 2021; 74:521-534. [PMID: 32065788 DOI: 10.3233/jad-190711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hyperphosphorylated tau is one of the key characteristics of Alzheimer's disease (AD), and tau pathology correlates with cognitive impairment in AD better than amyloid-β (Aβ) pathology. Thus, a complete understanding of the relevant factors involved in tau phosphorylation is important for AD treatment. APOEɛ4, the strongest genetic risk factor for AD, was found to be involved in tau pathology in frontotemporal dementia. This result indicated that apolipoprotein E (ApoE) may also participate in tau phosphorylation in AD. In the present study, we injected Aβ oligomer (AβO) into the lateral ventricles of wild-type (WT) mice and apoE-/- mice to test the process of tau phosphorylation in the acute phase. We found that the phosphorylated tau and phosphokinase levels were higher in WT mice than in apoE-/- mice. These phenomena were also confirmed in vitro. ApoE ɛ4-treated apoE-/- neurons exhibited more phosphorylated tau than ApoE ɛ2- and ApoE ɛ3-treated neurons. We also found that AβO induced more serious inflammation in WT mice and in ApoE-positive cultured neurons. Anti-inflammatory treatment reduced the phosphorylated tau level induced by AβOs in ApoE-positive neurons. These results suggest that ApoE may facilitate the phosphorylation of tau induced by AβO via inflammation.
Collapse
Affiliation(s)
- Ting-Ting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yun-Dan Han
- Department of Internal Medicine, Shandong Police Hospital, Jinan, Shandong, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Cui-Cui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao-Yan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Fu-Zhong Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yi-Feng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
177
|
Liu Y, Cong L, Han C, Li B, Dai R. Recent Progress in the Drug Development for the Treatment of Alzheimer's Disease Especially on Inhibition of Amyloid-peptide Aggregation. Mini Rev Med Chem 2021; 21:969-990. [PMID: 33245270 DOI: 10.2174/1389557520666201127104539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
As the world 's population is aging, Alzheimer's disease (AD) has become a big concern since AD has started affecting younger people and the population of AD patients is increasing worldwide. It has been revealed that the neuropathological hallmarks of AD are typically characterized by the presence of neurotoxic extracellular amyloid plaques in the brain, which are surrounded by tangles of neuronal fibers. However, the causes of AD have not been completely understood yet. Currently, there is no drug to effectively prevent AD or to completely reserve the symptoms in the patients. This article reviews the pathological features associated with AD, the recent progress in research on the drug development to treat AD, especially on the discovery of natural product derivatives to inhibit Aβ peptide aggregation as well as the design and synthesis of Aβ peptide aggregation inhibitors to treat AD.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Cong
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Chu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| |
Collapse
|
178
|
Chow H, Sun JK, Hart RP, Cheng KK, Hung CHL, Lau T, Kwan K. Low-Density Lipoprotein Receptor-Related Protein 6 Cell Surface Availability Regulates Fuel Metabolism in Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004993. [PMID: 34180138 PMCID: PMC8373092 DOI: 10.1002/advs.202004993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Indexed: 05/07/2023]
Abstract
Early changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes. The Wnt-LRP6 mediated mTOR-AKT axis is essential for sustaining glucose metabolism. In its absence, Wnt switches to activate the LRP6-independent Ca2+ -PKC-NFAT axis, resulting in a transcription network that favors glutamine and branched chain amino acids (BCAAs) catabolism over glucose metabolism. Exhaustion of these raw materials essential for neurotransmitter biosynthesis and recycling results in compromised synaptic, cognitive, and memory functions; priming for early changes that are frequently found in LOAD. The authors also highlight that intranasal supplementation of glutamine and BCAAs is effective in preserving neuronal integrity and brain functions, proposing a nutrient-based method for delaying cognitive and memory decline when LRP6 cell surface levels and functions are suboptimal.
Collapse
Affiliation(s)
- Hei‐Man Chow
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Jacquelyne Ka‐Li Sun
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Ronald P. Hart
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJ08854USA
| | - Kenneth King‐Yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic University999077Hong Kong
| | - Clara H. L. Hung
- The University Research Facility in Life SciencesThe Hong Kong Polytechnic University999077Hong Kong
| | - Tsun‐Ming Lau
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Kin‐Ming Kwan
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| |
Collapse
|
179
|
McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 2021; 16:49. [PMID: 34289882 PMCID: PMC8293489 DOI: 10.1186/s13024-021-00467-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) prevention trials hold the promise to delay or prevent cognitive decline and dementia onset by intervening before significant neuronal damage occurs. In recent years, the first AD prevention trials have launched and are yielding important findings on the biology of targeting asymptomatic AD pathology. However, there are limitations that impact the design of these prevention trials, including the translation of animal models that recapitulate key stages and multiple pathological aspects of the human disease, missing target validation in asymptomatic disease, uncertain causality of the association of pathophysiologic changes with cognitive and clinical symptoms, and limited biomarker validation for novel targets. The field is accelerating advancements in key areas including the development of highly specific and quantitative biomarker measures for AD pathology, increasing our understanding of the course and relationship of amyloid and tau pathology in asymptomatic through symptomatic stages, and the development of powerful interventions that can slow or reverse AD amyloid pathology. We review the current status of prevention trials and propose key areas of needed research as a call to basic and translational scientists to accelerate AD prevention. Specifically, we review (1) sporadic and dominantly inherited primary and secondary AD prevention trials, (2) proposed targets, mechanisms, and drugs including the amyloid, tau, and inflammatory pathways and combination treatments, (3) the need for more appropriate prevention animal models and experiments, and (4) biomarkers and outcome measures needed to design human asymptomatic prevention trials. We conclude with actions needed to effectively move prevention targets and trials forward.
Collapse
Affiliation(s)
- Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Jorge J. Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| |
Collapse
|
180
|
Mikuła E. Recent Advancements in Electrochemical Biosensors for Alzheimer's Disease Biomarkers Detection. Curr Med Chem 2021; 28:4049-4073. [PMID: 33176635 PMCID: PMC8287894 DOI: 10.2174/0929867327666201111141341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Background It is estimated that the average time between the diagnosis of Alzheimer’s disease (AD) and the patient’s death is 5-9 years. Therefore, both the initial phase of the disease and the preclinical state can be included in the critical period in disease diagnosis. Accordingly, huge progress has recently been observed in biomarker research to identify risk factors for dementia in older people with normal cognitive functions and mild cognitive impairments. Methods Electrochemical biosensors are excellent analytical tools that are used in the detection of AD biomarkers as they are easy to use, portable, and can do analysis in real time. Results This review presents the analytical techniques currently used to determine AD biomarkers in terms of their advantages and disadvantages; the most important clinical biomarkers of AD and their role in the disease. All recently used biorecognition molecules in electrochemical biosensor development, i.e., receptor protein, antibodies, aptamers and nucleic acids, are summarized for the first time. Novel electrochemical biosensors for AD biomarker detection, as ideal analytical platforms for point-of-care diagnostics, are also reviewed. Conclusion The article focuses on various strategies of biosensor chemical surface modifications to immobilize biorecognition molecules, enabling specific, quantitative AD biomarker detection in synthetic and clinical samples. In addition, this is the first review that presents innovative single-platform systems for simultaneous detection of multiple biomarkers and other important AD-associated biological species based on electrochemical techniques. The importance of these platforms in disease diagnosis is discussed.
Collapse
Affiliation(s)
- Edyta Mikuła
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
181
|
Shu ZY, Mao DW, Xu YY, Shao Y, Pang PP, Gong XY. Prediction of the progression from mild cognitive impairment to Alzheimer's disease using a radiomics-integrated model. Ther Adv Neurol Disord 2021; 14:17562864211029551. [PMID: 34349837 PMCID: PMC8290507 DOI: 10.1177/17562864211029551] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Objective: This study aimed to build and validate a radiomics-integrated model with whole-brain magnetic resonance imaging (MRI) to predict the progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD). Methods: 357 patients with MCI were selected from the ADNI database, which is an open-source database for AD with multicentre cooperation, of which 154 progressed to AD during the 48-month follow-up period. Subjects were divided into a training and test group. For each patient, the baseline T1WI MR images were automatically segmented into white matter, gray matter and cerebrospinal fluid (CSF), and radiomics features were extracted from each tissue. Based on the data from the training group, a radiomics signature was built using logistic regression after dimensionality reduction. The radiomics signatures, in combination with the apolipoprotein E4 (APOE4) and baseline neuropsychological scales, were used to build an integrated model using machine learning. The receiver operating characteristics (ROC) curve and data of the test group were used to evaluate the diagnostic accuracy and reliability of the model, respectively. In addition, the clinical prognostic efficacy of the model was evaluated based on the time of progression from MCI to AD. Results: Stepwise logistic regression analysis showed that the APOE4, clinical dementia rating, AD assessment scale, and radiomics signature were independent predictors of MCI progression to AD. The integrated model was constructed based on independent predictors using machine learning. The ROC curve showed that the accuracy of the model in the training and the test sets was 0.814 and 0.807, with a specificity of 0.671 and 0.738, and a sensitivity of 0.822 and 0.745, respectively. In addition, the model had the most significant diagnostic efficacy in predicting MCI progression to AD within 12 months, with an AUC of 0.814, sensitivity of 0.726, and specificity of 0.798. Conclusion: The integrated model based on whole-brain radiomics can accurately identify and predict the high-risk population of MCI patients who may progress to AD. Radiomics biomarkers are practical in the precursory stage of such disease.
Collapse
Affiliation(s)
- Zhen-Yu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - De-Wang Mao
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yu-Yun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan Shao
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Xiang-Yang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
182
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Failure of the Brain Glucagon-Like Peptide-1-Mediated Control of Intestinal Redox Homeostasis in a Rat Model of Sporadic Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1118. [PMID: 34356351 PMCID: PMC8301063 DOI: 10.3390/antiox10071118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer's disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia; (A.B.P.); (A.K.); (J.O.B.); (M.S.-P.)
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|
183
|
Gupta N, Ramakrishnan S, Wajid S. Emerging role of metabolomics in protein conformational disorders. Expert Rev Proteomics 2021; 18:395-410. [PMID: 34227444 DOI: 10.1080/14789450.2021.1948330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Metabolomics focuses on interactions among different metabolites associated with various cellular functions in cells, tissues, and organs. In recent years, metabolomics has emerged as a powerful tool to identify perturbed metabolites, pathways influenced by the environment, for protein conformational diseases (PCDs) and also offers wide clinical application.Area Covered: This review provides a brief overview of recent advances in metabolomics as applied to identify metabolic variations in PCDs, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, prion disease, and cardiac amyloidosis. The 'PubMed' and 'Google Scholar' database search methods have been used to screen the published reports with key search terms: metabolomics, biomarkers, and protein conformational disorders.Expert opinion: Metabolomics is the large-scale study of metabolites and is deemed to overwhelm other omics. It plays a crucial role in finding variations in diseases due to protein conformational changes. However, many PCDs are yet to be identified. Metabolomics is still an emerging field; there is a need for new high-resolution analytical techniques and more studies need to be carried out to generate new information.
Collapse
Affiliation(s)
- Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| | | | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| |
Collapse
|
184
|
Fatty Acid Binding Protein 3 (FABP3) and Apolipoprotein E4 (ApoE4) as Lipid Metabolism-Related Biomarkers of Alzheimer's Disease. J Clin Med 2021; 10:jcm10143009. [PMID: 34300173 PMCID: PMC8303862 DOI: 10.3390/jcm10143009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Lipid metabolism-related biomarkers gain increasing researchers interest in the field of neurodegenerative disorders. Mounting evidence have indicated the role of fatty acid-binding proteins and pathology lipid metabolism in Alzheimer’s Disease (AD). The imbalance of fatty acids (FA) and lipids may negatively affect brain functions related to neurodegenerative disorders. The ApoE4 and FABP3 proteins may reflect processes leading to neurodegeneration. This study aimed to evaluate the relationship between the CSF levels of FABP3 and ApoE4 proteins and cognitive decline as well as the diagnostic performance of these candidate biomarkers in AD and mild cognitive impairment (MCI). Methods: A total of 70 subjects, including patients with AD, MCI, and non-demented controls, were enrolled in the study. CSF concentrations of FABP3 and ApoE4 were measured using immunoassay technology. Results: Significantly higher CSF concentrations of FABP3 and ApoE4 were observed in AD patients compared to MCI subjects and individuals without cognitive impairment. Both proteins were inversely associated with Aβ42/40 ratio: ApoE4 (rho = −0.472, p < 0.001), and FABP3 (rho = −0.488, p < 0.001) in the whole study group, respectively. Additionally, FABP3 was negatively correlated with Mini-Mental State Examination score in the whole study cohort (rho = −0.585 p < 0.001). Conclusion: Presented results indicate the pivotal role of FABP3 and ApoE4 in AD pathology as lipid-related biomarkers, but studies on larger cohorts are needed.
Collapse
|
185
|
Schrader JM, Xu F, Van Nostrand WE. Distinct brain regional proteome changes in the rTg-DI rat model of cerebral amyloid angiopathy. J Neurochem 2021; 159:273-291. [PMID: 34218440 DOI: 10.1111/jnc.15463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-β1 (TGF-β1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
186
|
Hudák A, Jósvay K, Domonkos I, Letoha A, Szilák L, Letoha T. The Interplay of Apoes with Syndecans in Influencing Key Cellular Events of Amyloid Pathology. Int J Mol Sci 2021; 22:ijms22137070. [PMID: 34209175 PMCID: PMC8268055 DOI: 10.3390/ijms22137070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E (ApoE) isoforms exert intricate effects on cellular physiology beyond lipid transport and metabolism. ApoEs influence the onset of Alzheimer’s disease (AD) in an isoform-dependent manner: ApoE4 increases AD risk, while ApoE2 decreases it. Previously we demonstrated that syndecans, a transmembrane proteoglycan family with increased expression in AD, trigger the aggregation and modulate the cellular uptake of amyloid beta (Aβ). Utilizing our previously established syndecan-overexpressing cellular assays, we now explore how the interplay of ApoEs with syndecans contributes to key events, namely uptake and aggregation, in Aβ pathology. The interaction of ApoEs with syndecans indicates isoform-specific characteristics arising beyond the frequently studied ApoE–heparan sulfate interactions. Syndecans, and among them the neuronal syndecan-3, increased the cellular uptake of ApoEs, especially ApoE2 and ApoE3, while ApoEs exerted opposing effects on syndecan-3-mediated Aβ uptake and aggregation. ApoE2 increased the cellular internalization of monomeric Aβ, hence preventing its extracellular aggregation, while ApoE4 decreased it, thus helping the buildup of extracellular plaques. The contrary effects of ApoE2 and ApoE4 remained once Aβ aggregated: while ApoE2 reduced the uptake of Aβ aggregates, ApoE4 facilitated it. Fibrillation studies also revealed ApoE4′s tendency to form fibrillar aggregates. Our results uncover yet unknown details of ApoE cellular biology and deepen our molecular understanding of the ApoE-dependent mechanism of Aβ pathology.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
- Correspondence: ; Tel.: +36-(30)-2577393
| |
Collapse
|
187
|
Nowak D, Słupski W, Rutkowska M. New therapeutic strategies for Alzheimer’s disease. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) described as a chronic and irreversible neurodegenerative disease
remains the most common cause of dementia. Due to the aging of the population, the incurability
of AD has become a growing problem of medicine in the 21stcentury. Current treatment
is only symptomatic, providing minimal, temporary improvement in the patient’s
cognitive function. This paper presents the latest trends in the search for effective pharmacotherapy
capable of preventing or inhibiting AD progression. Since the exact pathogenesis
of Alzheimer’s disease is not known, the main therapeutic strategies are based only on the
following hypotheses: amyloid cascade, tau protein, oxidative stress, neuroinflammation and
those associated with dysfunction of the cholinergic system as well as glutamatergic. Most
of the compounds currently tested in clinical trials are targeted at pathological amyloid β
(A β), which is considered the cause of neurodegeneration, according to the most widely described
cascade theory. Most of the compounds currently tested in clinical trials are targeted
at pathological amyloid β (Aβ), which is the main cause of neurodegeneration according to
the widely described theory of the amyloid cascade. Attempts to fight the toxic Aβ are based
on the following: immunotherapy (vaccines, monoclonal antibodies), compounds that inhibit
its formation: γ-secretase inhibitors/modulators and β-secretase. Immunotherapy can
also be us,ed to increase the clearance of hyperphosphorylated tau protein, the occurrence
of which is another feature of Alzheimer’s disease. In addition to immunotherapy, anti-inflammatory,
metabolic and neuroprotective compounds have been the subject of a number of studies. A range of symptomatic compounds that improve cognitive functions by compensating
cholinergic, noradrenergic and glutamatergic signaling deficits have also been investigated
in clinical trials.
Collapse
Affiliation(s)
- Dominika Nowak
- Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu
| | - Wojciech Słupski
- Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu
| | - Maria Rutkowska
- Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu
| |
Collapse
|
188
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
189
|
Abbasi DA, Nguyen TTA, Hall DA, Robertson-Dick E, Berry-Kravis E, Cologna SM. Characterization of the Cerebrospinal Fluid Proteome in Patients with Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2021; 21:86-98. [PMID: 34046842 DOI: 10.1007/s12311-021-01262-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/11/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), first described in 2001, is a neurodegenerative and movement disorder, caused by a premutation in the fragile X mental retardation 1 (FMR1) gene. To date, the biological mechanisms causing this condition are still not well understood, as not all premutation carriers develop FXTAS. To further understand this syndrome, we quantitatively compared the cerebrospinal fluid (CSF) proteome of FXTAS patients with age-matched controls using mass spectrometry. We identified 415 proteins of which 97 were altered in FXTAS patients. These proteins suggest changes in acute phase response signaling, liver X receptor/ retinoid X receptor (LXR/RXR) activation, and farnesoid X receptor (FXR)/RXR activation, which are the main pathways found to be affected. Additionally, we detected changes in many other proteins including amyloid-like protein 2, contactin-1, afamin, cell adhesion molecule 4, NPC intracellular cholesterol transporter 2, and cathepsin B, that had been previously noted to hold important roles in other movement disorders. Specific to RXR pathways, several apolipoproteins (APOA1, APOA2, APOA4, APOC2, and APOD) showed significant changes in the CSF of FXTAS patients. Lastly, CSF parameters were analyzed to investigate abnormalities in blood brain barrier function. Correlations were observed between patient albumin quotient values, a measure of permeability, and CGG repeat length as well as FXTAS rating scale scores.
Collapse
Affiliation(s)
- Diana A Abbasi
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson-Dick
- Department of Communication Sciences and Disorders, Northwestern University, Chicago, IL, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA.
- Laboratory of Integrated Neuroscience, University of Illinois At Chicago, 845 W Taylor Street, Room 4500, Chicago, IL, 60607, USA.
| |
Collapse
|
190
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
191
|
Elahi FM, Ashimatey SB, Bennett DJ, Walters SM, La Joie R, Jiang X, Wolf A, Cobigo Y, Staffaroni AM, Rosen HJ, Miller BL, Rabinovici GD, Kramer JH, Green AJ, Kashani AH. Retinal imaging demonstrates reduced capillary density in clinically unimpaired APOE ε4 gene carriers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12181. [PMID: 34013017 PMCID: PMC8111703 DOI: 10.1002/dad2.12181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Apolipoprotein E (APOE) ε4, the strongest non-Mendelian genetic risk factor for Alzheimer's disease (AD), has been shown to affect brain capillaries in mice, with potential implications for AD-related neurodegenerative disease. However, human brain capillaries cannot be directly visualized in vivo. We therefore used retinal imaging to test APOE ε4 effects on human central nervous system capillaries. METHODS We collected retinal optical coherence tomography angiography, cognitive testing, and brain imaging in research participants and built statistical models to test genotype-phenotype associations. RESULTS Our analyses demonstrate lower retinal capillary densities in early disease, in cognitively normal APOE ε4 gene carriers. Furthermore, through regression modeling with a measure of brain perfusion (arterial spin labeling), we provide support for the relevance of these findings to cerebral vasculature. DISCUSSION These results suggest that APOE ε4 affects capillary health in humans and that retinal capillary measures could serve as surrogates for brain capillaries, providing an opportunity to study microangiopathic contributions to neurodegenerative disorders directly in humans.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco Veterans Affairs Health Care SystemSan FranciscoCaliforniaUSA
| | - Senyo B. Ashimatey
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Daniel J. Bennett
- Department of NeurologyDivision of Neuroimmunology and Glial BiologyWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Samantha M. Walters
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Xuejuan Jiang
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Wolf
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yann Cobigo
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Howie J. Rosen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ari J. Green
- Department of NeurologyDivision of Neuroimmunology and Glial BiologyWeill Institute for NeurosciencesSan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of OphthalmologySan FranciscoUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amir H. Kashani
- Department of OphthalmologyUSC Roski Eye InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
- USC Ginsberg Institute for Biomedical TherapeuticsLos AngelesCaliforniaUSA
| |
Collapse
|
192
|
Yadav J, Verma AK, Ahmad MK, Garg RK, Shiuli, Mahdi AA, Srivastava S. Metals toxicity and its correlation with the gene expression in Alzheimer's disease. Mol Biol Rep 2021; 48:3245-3252. [PMID: 33970397 DOI: 10.1007/s11033-021-06386-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is a common neurodegenerative disease in the elderly population and a leading cause of dementia. Genetics and environmental risk factors were considered to play a major role in the onset of the disease. This study aimed to examine the correlation between different metals levels and the gene expression in Alzheimer's patients with age-matched control subjects. Non- essential metals were measured in the whole blood due to its higher concentration in red blood corpuscles (RBCs) and essential biometals in the serum samples of Alzheimer's disease (AD) by using Inductively coupled plasma optical emission spectroscopy (ICP-OES) that allows the analysis and detection of the different elements at low levels. Gene expression level was performed by quantitative real-time PCR (qRT-PCR). In this study, the levels of Lead and Arsenic metals were not detected in the AD patient samples. Cadmium, Mercury, and Aluminum were found higher in cases as compared to controls with 0.009240 ± 0.0007707 (P = < 0.0001), 0.02332 ± 0.001041 (P = < 0.0001), and 0.09222 ± 0.02804 (P = 0.0087) respectively. Essential biometal like copper was higher 0.1274 ± 0.02453 (P = 0.0254) in cases, while iron 0.1117 ± 0.009599 (P = 0.0304) and zinc 0.03800 ± 0.003462 mg/L were found significantly lower as compared to controls. All targeted genes such as APP, PSEN1, PSEN2, and APOE4 were found up-regulated in AD patients. We concluded that there was no significant correlation between metals dyshomeostasis and gene expressions in this study.
Collapse
Affiliation(s)
- Jyoti Yadav
- Forensic Medicine & Toxicology Department, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anoop Kumar Verma
- Forensic Medicine & Toxicology Department, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| | | | | | - Shiuli
- Forensic Medicine & Toxicology Department, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | | | | |
Collapse
|
193
|
Kim M, Bezprozvanny I. Differences in Recycling of Apolipoprotein E3 and E4-LDL Receptor Complexes-A Mechanistic Hypothesis. Int J Mol Sci 2021; 22:5030. [PMID: 34068576 PMCID: PMC8126166 DOI: 10.3390/ijms22095030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein E (ApoE) is a protein that plays an important role in the transport of fatty acids and cholesterol and in cellular signaling. On the surface of the cells, ApoE lipoparticles bind to low density lipoprotein receptors (LDLR) that mediate the uptake of the lipids and downstream signaling events. There are three alleles of the human ApoE gene. Presence of ApoE4 allele is a major risk factor for developing Alzheimer's disease (AD) and other disorders late in life, but the mechanisms responsible for biological differences between different ApoE isoforms are not well understood. We here propose that the differences between ApoE isoforms can be explained by differences in the pH-dependence of the association between ApoE3 and ApoE4 isoforms and LDL-A repeats of LDLR. As a result, the following endocytosis ApoE3-associated LDLRs are recycled back to the plasma membrane but ApoE4-containing LDLR complexes are trapped in late endosomes and targeted for degradation. The proposed mechanism is predicted to lead to a reduction in steady-state surface levels of LDLRs and impaired cellular signaling in ApoE4-expressing cells. We hope that this proposal will stimulate experimental research in this direction that allows the testing of our hypothesis.
Collapse
Affiliation(s)
- Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
194
|
Yang K, Chen G, Sheng C, Xie Y, Li Y, Hu X, Sun Y, Han Y. Cognitive Reserve, Brain Reserve, APOEɛ4, and Cognition in Individuals with Subjective Cognitive Decline in the SILCODE Study. J Alzheimers Dis 2021; 76:249-260. [PMID: 32444543 DOI: 10.3233/jad-200082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cognitive reserve (CR) and brain reserve (BR) could offer protective effects on cognition in the early stage of Alzheimer's disease (AD). However, the effects of CR or BR on cognition in individuals with subjective cognitive decline (SCD) are not clear. OBJECTIVE To explore the effects of CR and BR on cognition in subjects with SCD. METHODS We included 149 subjects from the Sino Longitudinal Study on Cognitive Decline (SILCODE) study. Education was used as a proxy for CR, and head circumference was used as a proxy for BR. Multiple linear regression models were conducted to examine the effects of CR and BR on cognitive scores. Furthermore, we assessed differences in effects between APOEɛ4 carriers with SCD (n = 35) and APOEɛ4 non-carriers with SCD (n = 114) and linear trends among 4 reserve levels (low BR/CR, high BR/low CR, low BR/high CR, and high BR/high CR). RESULTS Both CR and BR had independent positive effects on multiple cognitive measures in SCD participants, and the effects of CR were greater than those of BR. CR has positive effects on cognitive measures in both APOEɛ4 carriers and non-carriers with SCD. However, the positive effects of BR on cognitive measures were observed in APOEɛ4 non-carriers with SCD but not in APOEɛ4 carriers with SCD. Furthermore, there was a linear trend toward better cognitive performance on all cognitive measures in the BR+/CR+ group, followed by the BR-/CR+, BR+/CR-, and BR-/CR-groups. CONCLUSION This study suggests that both CR and BR have the potential to delay or slow cognitive decline in individuals with SCD.
Collapse
Affiliation(s)
- Kun Yang
- Department of Evidence-based Medicine, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guanqun Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yuxia Li
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaochen Hu
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
195
|
Mitochondrial dysfunction: A potential target for Alzheimer's disease intervention and treatment. Drug Discov Today 2021; 26:1991-2002. [PMID: 33962036 DOI: 10.1016/j.drudis.2021.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder which manifests as a progressive decline in cognitive function. Mitochondrial dysfunction plays a critical role in the early stages of AD, and advances the progression of this age-related neurodegenerative disorder. Therefore, it can be a potential target for interventions to treat AD. Several therapeutic strategies to target mitochondrial dysfunction have gained significant attention in the preclinical stage, but the clinical trials performed to date have shown little progress. Thus, we discuss the mechanisms and strategies of different therapeutic agents for targeting mitochondrial dysfunction in AD. We hope that this review will inspire and guide the development of efficient AD drugs in the future.
Collapse
|
196
|
Lee CS, Lee ML, Gibbons LE, Yanagihara RT, Blazes M, Kam JP, McCurry SM, Bowen JD, McCormick WC, Lee AY, Larson EB, Crane PK. Associations Between Retinal Artery/Vein Occlusions and Risk of Vascular Dementia. J Alzheimers Dis 2021; 81:245-253. [PMID: 33749651 DOI: 10.3233/jad-201492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular disease is a risk factor for Alzheimer's disease (AD) and related dementia in older adults. Retinal artery/vein occlusion (RAVO) is an ophthalmic complication of systemic vascular pathology. Whether there are associations between RAVO and dementia risk is unknown. OBJECTIVE To determine whether RAVOs are associated with an increased risk of developing vascular dementia or AD. METHODS Data from Adult Changes in Thought (ACT) study participants were analyzed. This prospective, population-based cohort study followed older adults (age ≥65 years) who were dementia-free at enrollment for development of vascular dementia or AD based on research criteria. RAVO diagnoses were extracted from electronic medical records. Cox-regression survival analyses were stratified by APOEɛ4 genotype and adjusted for demographic and clinical factors. RESULTS On review of 41,216 person-years (4,743 participants), 266 (5.6%) experienced RAVO. APOEɛ4 carriers who developed RAVO had greater than four-fold higher risk for developing vascular dementia (Hazard Ratio [HR] 4.54, 95% Confidence Interval [CI] 1.86, 11.10, p = 0.001). When including other cerebrovascular disease (history of carotid endarterectomy or transient ischemic attack) in the model, the risk was three-fold higher (HR 3.06, 95% CI 1.23, 7.62). No other conditions evaluated in the secondary analyses were found to confound this relationship. There was no effect in non-APOEɛ4 carriers (HR 1.03, 95% CI 0.37, 2.80). There were no significant associations between RAVO and AD in either APOE group. CONCLUSION Older dementia-free patients who present with RAVO and carry the APOEɛ4 allele appear to be at higher risk for vascular dementia.
Collapse
Affiliation(s)
- Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ryan T Yanagihara
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jason P Kam
- Kaiser Permanente Washington, Seattle, WA, USA
| | - Susan M McCurry
- Department of Child, Family, and Population Health Nursing, University of Washington, Seattle, WA, USA
| | - James D Bowen
- Department of Neurology, Swedish Medical Center, Seattle, WA, USA
| | | | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
197
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
198
|
Abi Nader C, Ayache N, Frisoni GB, Robert P, Lorenzi M. Simulating the outcome of amyloid treatments in Alzheimer's disease from imaging and clinical data. Brain Commun 2021; 3:fcab091. [PMID: 34085040 PMCID: PMC8168944 DOI: 10.1093/braincomms/fcab091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigate SimulAD, a novel quantitative instrument for the development of intervention strategies for disease-modifying drugs in Alzheimer's disease. SimulAD is based on the modeling of the spatio-temporal dynamics governing the joint evolution of imaging and clinical biomarkers along the history of the disease, and allows the simulation of the effect of intervention time and drug dosage on the biomarkers' progression. When applied to multi-modal imaging and clinical data from the Alzheimer's Disease Neuroimaging Initiative the method enables to generate hypothetical scenarios of amyloid lowering interventions. The results quantify the crucial role of intervention time, and provide a theoretical justification for testing amyloid modifying drugs in the pre-clinical stage. Our experimental simulations are compatible with the outcomes observed in past clinical trials, and suggest that anti-amyloid treatments should be administered at least 7 years earlier than what is currently being done in order to obtain statistically powered improvement of clinical endpoints.
Collapse
Affiliation(s)
- Clément Abi Nader
- Université Côte d'Azur, INRIA Sophia Antipolis, EPIONE Research Project, 06902, Sophia-Antipolis, France
| | - Nicholas Ayache
- Université Côte d'Azur, INRIA Sophia Antipolis, EPIONE Research Project, 06902, Sophia-Antipolis, France
| | - Giovanni B Frisoni
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, Hospitals and University of Geneva, 1205, Geneva, Switzerland
| | - Philippe Robert
- Université Côte d'Azur, CoBTeK Lab, MNC3 Program, 06103, Nice, France
| | - Marco Lorenzi
- Université Côte d'Azur, INRIA Sophia Antipolis, EPIONE Research Project, 06902, Sophia-Antipolis, France
| | | |
Collapse
|
199
|
Mofrad SA, Lundervold A, Lundervold AS. A predictive framework based on brain volume trajectories enabling early detection of Alzheimer's disease. Comput Med Imaging Graph 2021; 90:101910. [PMID: 33862355 DOI: 10.1016/j.compmedimag.2021.101910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
We present a framework for constructing predictive models of cognitive decline from longitudinal MRI examinations, based on mixed effects models and machine learning. We apply the framework to detect conversion from cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to Alzheimer's disease (AD), using a large collection of subjects sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL). We extract subcortical segmentation and cortical parcellation from corresponding T1-weighted images using FreeSurfer v.6.0, select bilateral 3D regions of interest relevant to neurodegeneration/dementia, and fit their longitudinal volume trajectories using linear mixed effects models. Features describing these model-based trajectories are then used to train an ensemble of machine learning classifiers to distinguish stable CN from converters to MCI, and stable MCI from converters to AD. On separate test sets the models achieved an average of accuracy/precision/recall score of 69/73/60% for converted to MCI and 75/74/77% for converted to AD, illustrating the framework's ability to extract predictive imaging-based biomarkers from routine T1-weighted MRI acquisitions.
Collapse
Affiliation(s)
- Samaneh Abolpour Mofrad
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Postbox 7030, 5020 Bergen, Norway; The Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway.
| | - Arvid Lundervold
- The Neural Networks and Microcircuits Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway; The Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Alexander Selvikvåg Lundervold
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Postbox 7030, 5020 Bergen, Norway; The Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | -
- Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | -
- Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database. The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au
| |
Collapse
|
200
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|