151
|
Heindryckx F, Li JP. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol 2018; 68-69:589-601. [PMID: 29382609 DOI: 10.1016/j.matbio.2018.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
Abstract
Fibrosis is defined as the thickening and scarring of connective tissue, usually as a consequence of tissue damage. The central nervous system (CNS) is special in the sense that fibrogenic cells are restricted to vascular and meningeal areas. Inflammation and the disruption of the blood-brain barrier can lead to the infiltration of fibroblasts and trigger fibrotic response. While the initial function of the fibrotic tissue is to restore the blood-brain barrier and to limit the site of injury, it also demolishes the structure of extracellular matrix and impedes the healing process by producing inhibitory molecules and forming a physical and biochemical barrier that prevents axon regeneration. As a major constituent in the extracellular matrix, proteoglycans participate in the neuro-inflammation, modulating the fibrotic process. In this review, we will discuss the pathophysiology of fibrosis during acute injuries of the CNS, as well as during chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and age-related neurodegeneration with focus on the functional roles of proteoglycans.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology/SciLifeLab, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
152
|
Zhang J, Chen C, Zhou Q, Zheng S, Lv Y, Zhang J, You X, Li Z, Zhou Z, Pan M. Elevated serum fibrinogen level is an independent risk factor for IgA nephropathy. Oncotarget 2017; 8:99125-99135. [PMID: 29228758 PMCID: PMC5716798 DOI: 10.18632/oncotarget.21702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Background IgA nephropathy is a primary cause of renal failure, and inflammation and renal fibrosis are the main mechanisms leading to kidney damage. The serum fibrinogen level is closely related to inflammatory states, but its relationship to the prognosis of IgA nephropathy (IgAN) is unclear. Materials and Methods 1053 patients diagnosed with IgAN after renal biopsy were enrolled from two Nephrology Departments. Demographic and clinical data and histopathological features were collected. The patients were divided into four groups (Q1–Q4) according to the serum fibrinogen levels at the time of renal biopsy, and the relationships of serum fibrinogen levels with other risk factors and the prognosis of IgAN were investigated. Results 672 patients with proven primary IgAN were included in this study, which included a median follow-up of 36 months. Patients with higher serum fibrinogen levels had elevated serum creatinine levels, 24-hour urinary protein, and blood pressure compared with patients with the lowest levels of serum fibrinogen as well as severe renal damage at the time of renal biopsy. Univariate and multivariate Cox regression analyses confirmed that the serum fibrinogen level at the time of renal biopsy was significantly related to the prognosis of patients with IgAN. Conclusions In patients with IgAN, an elevated serum fibrinogen level at the time of renal biopsy is associated with poor renal outcomes, which suggests the need for more aggressive early interventions. Greater benefits of aggressive treatments were observed in patients with higher serum fibrinogen levels.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Qiongxiu Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Shubei Zheng
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yinqiu Lv
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jianna Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaohan You
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhanyuan Li
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhihong Zhou
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Min Pan
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
153
|
Petersen MA, Ryu JK, Chang KJ, Etxeberria A, Bardehle S, Mendiola AS, Kamau-Devers W, Fancy SPJ, Thor A, Bushong EA, Baeza-Raja B, Syme CA, Wu MD, Rios Coronado PE, Meyer-Franke A, Yahn S, Pous L, Lee JK, Schachtrup C, Lassmann H, Huang EJ, Han MH, Absinta M, Reich DS, Ellisman MH, Rowitch DH, Chan JR, Akassoglou K. Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron 2017; 96:1003-1012.e7. [PMID: 29103804 DOI: 10.1016/j.neuron.2017.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/30/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
Blood-brain barrier (BBB) disruption alters the composition of the brain microenvironment by allowing blood proteins into the CNS. However, whether blood-derived molecules serve as extrinsic inhibitors of remyelination is unknown. Here we show that the coagulation factor fibrinogen activates the bone morphogenetic protein (BMP) signaling pathway in oligodendrocyte progenitor cells (OPCs) and suppresses remyelination. Fibrinogen induces phosphorylation of Smad 1/5/8 and inhibits OPC differentiation into myelinating oligodendrocytes (OLs) while promoting an astrocytic fate in vitro. Fibrinogen effects are rescued by BMP type I receptor inhibition using dorsomorphin homolog 1 (DMH1) or CRISPR/Cas9 activin A receptor type I (ACVR1) knockout in OPCs. Fibrinogen and the BMP target Id2 are increased in demyelinated multiple sclerosis (MS) lesions. Therapeutic depletion of fibrinogen decreases BMP signaling and enhances remyelination in vivo. Targeting fibrinogen may be an upstream therapeutic strategy to promote the regenerative potential of CNS progenitors in diseases with remyelination failure.
Collapse
Affiliation(s)
- Mark A Petersen
- Gladstone Institutes, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jae Kyu Ryu
- Gladstone Institutes, San Francisco, CA, USA
| | - Kae-Jiun Chang
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ainhoa Etxeberria
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Wanjiru Kamau-Devers
- Gladstone Institutes, San Francisco, CA, USA; Berkeley City College, Berkeley, CA, USA
| | - Stephen P J Fancy
- Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA; Newborn Brain Research Institute, University of California, San Francisco, CA, USA
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Michael D Wu
- Gladstone Institutes, San Francisco, CA, USA; Department of Anesthesia, University of California, San Francisco, CA, USA
| | | | | | - Stephanie Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lauriane Pous
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, CA, USA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, California, USA; Salk Institute for Biological Studies, La Jolla, San Diego, California, USA
| | - David H Rowitch
- Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Neurosurgery, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA, USA; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
154
|
Shumakovich MA, Mencio CP, Siglin JS, Moriarty RA, Geller HM, Stroka KM. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. FASEB J 2017; 31:5049-5067. [PMID: 32083386 PMCID: PMC5636694 DOI: 10.1096/fj.201700254r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
Tumor cell metastasis to the brain involves cell migration through biochemically and physically complex microenvironments at the blood-brain barrier (BBB). The current understanding of tumor cell migration across the BBB is limited. We hypothesize that an interplay between biochemical cues and physical cues at the BBB affects the mechanisms of brain metastasis. We found that astrocyte conditioned medium(ACM) applied directly to tumor cells increased tumor cell velocity, induced elongation, and promoted actin stress fiber organization. Notably, treatment of the extracellular matrix with ACM led to even more significant increases in tumor cell velocity in comparison with ACM treatment of cells directly. Furthermore, inhibiting matrix metalloproteinases in ACM reversed ACM's effect on tumor cells. The effects of ACM on tumor cell morphology and migration also depended on astrocytes' activation state. Finally, using a microfluidic device, we found that the effects of ACM were abrogated in confinement. Overall, our work demonstrates that astrocyte-secreted factors alter migration and morphology of metastatic breast tumor cells, and this effect depends on the cells' mechanical microenvironment.-Shumakovich, M. A., Mencio, C. P., Siglin, J. S., Moriarty, R. A., Geller, H. M., Stroka, K. M. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. FASEB J. 31, 5049-5067 (2017). www.fasebj.org.
Collapse
Affiliation(s)
- Marina A. Shumakovich
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Caitlin P. Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan S. Siglin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Herbert M. Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, USA; and
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
155
|
Nakazato R, Kawabe K, Yamada D, Ikeno S, Mieda M, Shimba S, Hinoi E, Yoneda Y, Takarada T. Disruption of Bmal1 Impairs Blood-Brain Barrier Integrity via Pericyte Dysfunction. J Neurosci 2017; 37:10052-10062. [PMID: 28912161 PMCID: PMC6596539 DOI: 10.1523/jneurosci.3639-16.2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 09/04/2017] [Indexed: 01/13/2023] Open
Abstract
Circadian rhythm disturbances are well established in neurological diseases. However, how these disruptions cause homeostatic imbalances remains poorly understood. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1) is a major circadian clock transcriptional activator, and Bmal1 deficiency in male Bmal1nestin-/- mice induced marked astroglial activation without affecting the number of astrocytes in the brain and spinal cord. Bmal1 deletion caused blood-brain barrier (BBB) hyperpermeability with an age-dependent loss of pericyte coverage of blood vessels in the brain. Using Nestin-green fluorescent protein (GFP) transgenic mice, we determined that pericytes are Nestin-GFP+ in the adult brain. Bmal1 deletion caused Nestin-GFP+ pericyte dysfunction, including the downregulation of platelet-derived growth factor receptor β (PDGFRβ), a protein necessary for maintaining BBB integrity. Knockdown of Bmal1 downregulated PDGFRβ transcription in the brain pericyte cell line. Thus, the circadian clock component Bmal1 maintains BBB integrity via regulating pericytes.SIGNIFICANCE STATEMENT Circadian rhythm disturbances may play a role in neurodegenerative disorders, such as Alzheimer's disease. Our results revealed that one of the circadian clock components maintains the integrity of the blood-brain barrier (BBB) by regulating vascular-embedded pericytes. These cells were recently identified as a vital component for the control of BBB permeability and cerebral blood flow. Our present study demonstrates the involvement of circadian clock component Bmal1 in BBB homeostasis and highlights the role of Bmal1 dysfunction in multiple neurological diseases.
Collapse
Affiliation(s)
- Ryota Nakazato
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Kawabe
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinsuke Ikeno
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan, and
| | - Shigeki Shimba
- Department of Health Science, College of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan,
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
156
|
Nataf S, Barritault M, Pays L. A Unique TGFB1-Driven Genomic Program Links Astrocytosis, Low-Grade Inflammation and Partial Demyelination in Spinal Cord Periplaques from Progressive Multiple Sclerosis Patients. Int J Mol Sci 2017; 18:ijms18102097. [PMID: 28981455 PMCID: PMC5666779 DOI: 10.3390/ijms18102097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023] Open
Abstract
We previously reported that, in multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord periplaques extend distance away from plaque borders and are characterized by the co-occurrence of partial demyelination, astrocytosis and low-grade inflammation. However, transcriptomic analyses did not allow providing a comprehensive view of molecular events in astrocytes vs. oligodendrocytes. Here, we re-assessed our transcriptomic data and performed co-expression analyses to characterize astrocyte vs. oligodendrocyte molecular signatures in periplaques. We identified an astrocytosis-related co-expression module whose central hub was the astrocyte gene Cx43/GJA1 (connexin-43, also named gap junction protein α-1). Such a module comprised GFAP (glial fibrillary acidic protein) and a unique set of transcripts forming a TGFB/SMAD1/SMAD2 (transforming growth factor β/SMAD family member 1/SMAD family member 2) genomic signature. Partial demyelination was characterized by a co-expression network whose central hub was the oligodendrocyte gene NDRG1 (N-myc downstream regulated 1), a gene previously shown to be specifically silenced in the normal-appearing white matter (NAWM) of MS patients. Surprisingly, besides myelin genes, the NDRG1 co-expression module comprised a highly significant number of translation/elongation-related genes. To identify a putative cause of NDRG1 downregulation in periplaques, we then sought to identify the cytokine/chemokine genes whose mRNA levels inversely correlated with those of NDRG1. Following this approach, we found five candidate immune-related genes whose upregulation associated with NDRG1 downregulation: TGFB1(transforming growth factor β 1), PDGFC (platelet derived growth factor C), IL17D (interleukin 17D), IL33 (interleukin 33), and IL12A (interleukin 12A). From these results, we propose that, in the spinal cord periplaques of progressive MS patients, TGFB1 may limit acute inflammation but concurrently induce astrocytosis and an alteration of the translation/elongation of myelin genes in oligodendrocytes.
Collapse
Affiliation(s)
- Serge Nataf
- Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, F-69600 Oullins, France.
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003 Lyon, France.
| | - Marc Barritault
- Univ Lyon, Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, INSERMU1052, CNRS UMR5286, University Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France.
- Service d'Anatomie Pathologique, Hospices Civils de Lyon, Groupement Hospitalier Est, 59 boulevard Pinel, 69677 Bron, France.
| | - Laurent Pays
- Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, F-69600 Oullins, France.
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003 Lyon, France.
| |
Collapse
|
157
|
Pfurr S, Chu YH, Bohrer C, Greulich F, Beattie R, Mammadzada K, Hils M, Arnold SJ, Taylor V, Schachtrup K, Uhlenhaut NH, Schachtrup C. The E2A splice variant E47 regulates the differentiation of projection neurons via p57(KIP2) during cortical development. Development 2017; 144:3917-3931. [PMID: 28939666 DOI: 10.1242/dev.145698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2).
Collapse
Affiliation(s)
- Sabrina Pfurr
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Yu-Hsuan Chu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Christian Bohrer
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Franziska Greulich
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Robert Beattie
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Basel 4058, Switzerland
| | - Könül Mammadzada
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Miriam Hils
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg 79104, Germany
| | - Verdon Taylor
- Department of Biomedicine, Embryology and Stem Cell Biology, University of Basel, Basel 4058, Switzerland
| | - Kristina Schachtrup
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
158
|
Wang CH, Chang SJ, Tzeng YS, Shih YJ, Adrienne C, Chen SG, Chen TM, Dai NT, Cherng JH. Enhanced wound-healing performance of a phyto-polysaccharide-enriched dressing - a preclinical small and large animal study. Int Wound J 2017; 14:1359-1369. [PMID: 28941182 DOI: 10.1111/iwj.12813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Alginate is a natural rich anionic polysaccharide (APS), commonly available as calcium alginate (CAPS). It can maintain a physiologically moist microenvironment, which minimises bacterial infection and facilitates wound healing at a wound site. Patients with burn injuries suffer from pain and an inflammatory response. In this study, we evaluated the CAPS dressing and traditional dressing containing carboxymethyl cellulose (CMC) for wound healing and scar tissue formation in a burn model of rat and swine. In our pilot study of a burn rat model to evaluate inflammatory response and wound healing, we found that the monocyte chemoattractant protein (MCP)-1 and transforming growth factor (TGF)-β were up-regulated in the CAPS treatment group. Next, the burn swine models tested positive for MCP-1 in a Gram-positive bacterial infection, and there was overproduction of TGF-β during the burn wound healing process. Rats were monitored daily for 1 week for cytokine assay and sacrificed on day 28 post-burn injury. The swine were monitored over 6 weeks. We further examined the pain and related factors and inflammatory cytokine expression in a rodent burns model monitored everyday for 7 days post-burn. Our results revealed that the efficacy of the dressing containing CAPS for wound repair post-burn was better than the CMC dressing with respect to natural wound healing and scar formation. The polysaccharide-enriched dressing exerted an antimicrobial effect on burn wounds, regulated the inflammatory response and stimulated anti-inflammatory cytokine release. However, one pain assessment method showed no significant difference in the reduction in levels of adenosine triphosphate in serum of rats after wound dressing in either the CAPS or CMC group. In conclusion, a polysaccharide-enriched dressing outperformed a traditional dressing in reducing wound size, minimising hypertrophic scar formation, regulating cytokines and maximising antimicrobial effects.
Collapse
Affiliation(s)
- Chih-Hsin Wang
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Shu-Jen Chang
- Department of Dentistry, National Yang-Ming University, National Defense Medical Center, Taipei, Taiwan (R.O.C)
| | - Yuan-Sheng Tzeng
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Yu-Jen Shih
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Chang Adrienne
- Department of Chemistry, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shyi-Gen Chen
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Tim-Mo Chen
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Niann-Tzyy Dai
- Department of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan (R.O.C)
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan (R.O.C).,General Clinical Research Center, Tri-Service General Hospital, Taipei, Taiwan (R.O.C).,Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan (R.O.C)
| |
Collapse
|
159
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
160
|
Orlandin JR, Ambrósio CE, Lara VM. Glial scar-modulation as therapeutic tool in spinal cord injury in animal models. Acta Cir Bras 2017; 32:168-174. [PMID: 28300871 DOI: 10.1590/s0102-865020170209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Spinal Cord injury represents, in veterinary medicine, most of the neurological attendances and may result in permanent disability, death or euthanasia. Due to inflammation resulting from trauma, it originates the glial scar, which is a cell interaction complex system. Its function is to preserve the healthy circuits, however, it creates a physical and molecular barrier that prevents cell migration and restricts the neuroregeneration ability. METHODS This review aims to present innovations in the scene of treatment of spinal cord injury, approaching cell therapy, administration of enzyme, anti-inflammatory, and other active principles capable of modulating the inflammatory response, resulting in glial scar reduction and subsequent functional improvement of animals. RESULTS Some innovative therapies as cell therapy, administration of enzymes, immunosuppressant or other drugs cause the modulation of inflammatory response proved to be a promising tool for the reduction of gliosis. CONCLUSION Those tools promise to reduce gliosis and promote locomotor recovery in animals with spinal cord injury.
Collapse
Affiliation(s)
- Jéssica Rodrigues Orlandin
- Veterinary Medicine Department, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | | |
Collapse
|
161
|
Li Y, Chen Y, Tan L, Pan JY, Lin WW, Wu J, Hu W, Chen X, Wang XD. RNAi-mediated ephrin-B2 silencing attenuates astroglial-fibrotic scar formation and improves spinal cord axon growth. CNS Neurosci Ther 2017; 23:779-789. [PMID: 28834283 DOI: 10.1111/cns.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
AIMS Astroglial-fibrotic scar formation following central nervous system injury can help repair blood-brain barrier and seal the lesion, whereas it also represents a strong barrier for axonal regeneration. Intensive preclinical efforts have been made to eliminate/reduce the inhibitory part and, in the meantime, preserve the beneficial role of astroglial-fibrotic scar. METHODS In this study, we established an in vitro system, in which coculture of astrocytes and meningeal fibroblasts was treated with exogenous transforming growth factor-β1 (TGF-β1) to form astroglial-fibrotic scar-like cell clusters, and thereby evaluated the efficacy of RNAi targeting ephrin-B2 in preventing scar formation from the very beginning. We further tested the effect of RNAi-based mitigation of astroglial-fibrotic scar on spinal axon outgrowth on a custom-made microfluidic platform. RESULTS We found that siRNA targeting ephrin-B2 significantly reduced both the number and the diameter of cell clusters induced by TGF-β1 and diminished the expression of aggrecan and versican in the coculture, and allowed for significantly longer extension of outgrowing spinal cord axons into astroglial-fibrotic scar as assessed on the microfluidic platform. CONCLUSIONS These results suggest that astroglial-fibrotic scar formation and particularly the expression of aggrecan and versican could be mitigated by ephrin-B2 specific siRNA, thus improving the microenvironment for spinal axon regeneration.
Collapse
Affiliation(s)
- Yi Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Ling Tan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Jing-Ying Pan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Wei-Wei Lin
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China
| | - Wen Hu
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, China
| | - Xue Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xiao-Dong Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, China.,Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, China
| |
Collapse
|
162
|
Kim SY, Senatorov VV, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 2017; 7:7711. [PMID: 28794441 PMCID: PMC5550510 DOI: 10.1038/s41598-017-07394-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/27/2017] [Indexed: 01/17/2023] Open
Abstract
Brain damage due to stroke or traumatic brain injury (TBI), both leading causes of serious long-term disability, often leads to the development of epilepsy. Patients who develop post-injury epilepsy tend to have poor functional outcomes. Emerging evidence highlights a potential role for blood-brain barrier (BBB) dysfunction in the development of post-injury epilepsy. However, common mechanisms underlying the pathological hyperexcitability are largely unknown. Here, we show that comparative transcriptome analyses predict remodeling of extracellular matrix (ECM) as a common response to different types of injuries. ECM-related transcriptional changes were induced by the serum protein albumin via TGFβ signaling in primary astrocytes. In accordance with transcriptional responses, we found persistent degradation of protective ECM structures called perineuronal nets (PNNs) around fast-spiking inhibitory interneurons, in a rat model of TBI as well as in brains of human epileptic patients. Exposure of a naïve brain to albumin was sufficient to induce the transcriptional and translational upregulation of molecules related to ECM remodeling and the persistent breakdown of PNNs around fast-spiking inhibitory interneurons, which was contingent on TGFβ signaling activation. Our findings provide insights on how albumin extravasation that occurs upon BBB dysfunction in various brain injuries can predispose neural circuitry to the development of chronic inhibition deficits.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Christapher S Morrissey
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kristina Lippmann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, D10117, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, 04315, Germany
| | - Oscar Vazquez
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dan Z Milikovsky
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Feng Gu
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, , Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, 53105, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, D10117, Germany
| | - Alon Friedman
- Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA. .,Canadian Institute for Advanced Research (CIFAR) Program in Child and Brain Development, ON M5G 1Z8, Toronto, Canada.
| |
Collapse
|
163
|
Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN, Sawai S, Flodby P, Crandall ED, Borok Z, Sofroniew MV, Chapouly C, John GR. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 2017; 127:3136-3151. [PMID: 28737509 DOI: 10.1172/jci91301] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Lesions and neurologic disability in inflammatory CNS diseases such as multiple sclerosis (MS) result from the translocation of leukocytes and humoral factors from the vasculature, first across the endothelial blood-brain barrier (BBB) and then across the astrocytic glia limitans (GL). Factors secreted by reactive astrocytes open the BBB by disrupting endothelial tight junctions (TJs), but the mechanisms that control access across the GL are unknown. Here, we report that in inflammatory lesions, a second barrier composed of reactive astrocyte TJs of claudin 1 (CLDN1), CLDN4, and junctional adhesion molecule A (JAM-A) subunits is induced at the GL. In a human coculture model, CLDN4-deficient astrocytes were unable to control lymphocyte segregation. In models of CNS inflammation and MS, mice with astrocyte-specific Cldn4 deletion displayed exacerbated leukocyte and humoral infiltration, neuropathology, motor disability, and mortality. These findings identify a second inducible barrier to CNS entry at the GL. This barrier may be therapeutically targetable in inflammatory CNS disease.
Collapse
Affiliation(s)
- Sam Horng
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Anthony Therattil
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Sarah Moyon
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexandra Gordon
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Karla Kim
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Azeb Tadesse Argaw
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Yuko Hara
- Friedman Brain Institute.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John N Mariani
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Setsu Sawai
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael V Sofroniew
- Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Candice Chapouly
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| | - Gareth R John
- Friedman Brain Institute.,Corinne Goldsmith Dickinson Center for Multiple Sclerosis.,Department of Neurology, and
| |
Collapse
|
164
|
Love S, Miners JS. Small vessel disease, neurovascular regulation and cognitive impairment: post-mortem studies reveal a complex relationship, still poorly understood. Clin Sci (Lond) 2017; 131:1579-1589. [PMID: 28667060 DOI: 10.1042/cs20170148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2023]
Abstract
The contribution of vascular disease to cognitive impairment is under-recognized and the pathogenesis is poorly understood. This information gap has multiple causes, including a lack of post-mortem validation of clinical diagnoses of vascular cognitive impairment (VCI) or vascular dementia (VaD), the exclusion of cases with concomitant neurodegenerative disease when diagnosing VCI/VaD, and a lack of standardization of neuropathological assessment protocols for vascular disease. Other contributors include a focus on end-stage destructive lesions to the exclusion of more subtle types of diffuse brain injury, on structural abnormalities of arteries and arterioles to the exclusion of non-structural abnormalities and capillary damage, and the use of post-mortem sampling strategies that are biased towards the identification of neurodegenerative pathologies. Recent studies have demonstrated the value of detailed neuropathology in characterizing vascular contributions to cognitive impairment (e.g. in diabetes), and highlight the importance of diffuse white matter changes, capillary damage and vasoregulatory abnormalities in VCI/VaD. The use of standardized, evidence-based post-mortem assessment protocols and the inclusion of biochemical as well as morphological methods in neuropathological studies should improve the accuracy of determination of the contribution of vascular disease to cognitive impairment and clarify the relative contribution of different pathogenic processes to the tissue damage.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, School of Clinical Sciences, University of Bristol, Learning and Research Level 1, Southmead Hospital, Bristol BS10 5NB, U.K.
| | - J Scott Miners
- Dementia Research Group, School of Clinical Sciences, University of Bristol, Learning and Research Level 1, Southmead Hospital, Bristol BS10 5NB, U.K
| |
Collapse
|
165
|
Wang J, Pathak R, Garg S, Hauer-Jensen M. Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy. World J Gastroenterol 2017; 23:4701-4711. [PMID: 28765691 PMCID: PMC5514635 DOI: 10.3748/wjg.v23.i26.4701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the mechanistic role of fibrinogen, a key regulator of inflammation and fibrosis, in early and delayed radiation enteropathy.
METHODS Fibrinogen wild-type (Fib+/+), fibrinogen heterozygous (Fib+/-), and fibrinogen knockout (Fib-/-) mice were exposed to localized intestinal irradiation and assessed for early and delayed structural changes in the intestinal tissue. A 5-cm segment of ileum of mice was exteriorized and exposed to 18.5 Gy of x-irradiation. Intestinal tissue injury was assessed by quantitative histology, morphometry, and immunohistochemistry at 2 wk and 26 wk after radiation. Plasma fibrinogen level was measured by enzyme-linked immunosorbent assay.
RESULTS There was no difference between sham-irradiated Fib+/+ and Fib+/- mice in terms of fibrinogen concentration in plasma and intestinal tissue, intestinal histology, morphometry, intestinal smooth muscle cell proliferation, and neutrophil infiltration. Therefore, Fib+/- mice were used as littermate controls. Unlike sham-irradiated Fib+/+ and Fib+/- mice, no fibrinogen was detected in the plasma and intestinal tissue of sham-irradiated Fib-/- mice. Moreover, fibrinogen level was not elevated after irradiation in the intestinal tissue of Fib-/- mice, while significant increase in intestinal fibrinogen level was noticed in irradiated Fib+/+ and Fib+/- mice. Importantly, irradiated Fib-/- mice exhibited substantially less overall intestinal structural injury (RIS, P = 0.000002), intestinal wall thickness (P = 0.003), intestinal serosal thickness (P = 0.009), collagen deposition (P = 0.01), TGF-β immunoreactivity (P = 0.03), intestinal smooth muscle proliferation (P = 0.046), neutrophil infiltration (P = 0.01), and intestinal mucosal injury (P = 0.0003), compared to irradiated Fib+/+ and Fib+/- mice at both 2 wk and 26 wk.
CONCLUSION These data demonstrate that fibrinogen deficiency directly attenuates development of early and delayed radiation enteropathy. Fibrinogen could be a novel target in treating intestinal damage.
Collapse
|
166
|
Muradashvili N, Tyagi SC, Lominadze D. Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice. Brain Sci 2017; 7:brainsci7070077. [PMID: 28684673 PMCID: PMC5532590 DOI: 10.3390/brainsci7070077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/27/2023] Open
Abstract
Besides causing neuronal damage, traumatic brain injury (TBI) is involved in memory reduction, which can be a result of alterations in vasculo-neuronal interactions. Inflammation following TBI is involved in elevation of blood content of fibrinogen (Fg), which is known to enhance cerebrovascular permeability, and thus, enhance its deposition in extravascular space. However, the localization of Fg in the extravascular space and its possible interaction with nonvascular cells are not clear. The localization of Fg deposition in the extravascular space was defined in brain samples of mice after cortical contusion injury (CCI) and sham-operation (control) using immunohistochemistry and laser-scanning confocal microscopy. Memory changes were assessed with new object recognition and Y-maze tests. Data showed a greater deposition of Fg in the vascular and astrocyte endfeet interface in mice with CCI than in control animals. This effect was accompanied by enhanced neuronal degeneration and reduction in short-term memory in mice with CCI. Thus, our results suggest that CCI induces increased deposition of Fg in the vasculo-astrocyte interface, and is accompanied by neuronal degeneration, which may result in reduction of short-term memory.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
167
|
Liu JM, Lan M, Zhou Y, Chen XY, Huang SH, Liu ZL. Serum Concentrations of Fibrinogen in Patients with Spinal Cord Injury and Its Relationship with Neurologic Function. World Neurosurg 2017; 106:219-223. [PMID: 28673884 DOI: 10.1016/j.wneu.2017.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Many studies have focused on axon regeneration after spinal cord injury (SCI), and fibrinogen has been reported to be an inhibitory factor for axon regeneration. However, most of these studies were based on animal experiments and in vitro trials. Few studies reported serum concentrations of fibrinogen in patients with SCI. OBJECTIVE We sought to investigate the circulating serum concentrations of fibrinogen in patients with SCI and determine the relationship between fibrinogen concentrations and patients' neurologic function. METHODS A total of 306 patients who were diagnosed with acute SCI between January 2008 and March 2016 were included in this study. Patients with traumatic fractures of the extremities at the same period (220 of them with single fracture and 207 with multiple fractures) were enrolled as a control group. Additionally, 151 patients with no injury were involved as the normal group. The fibrinogen concentrations in each group were recorded and compared at different time points, and the correlation between fibrinogen serum concentrations and American Spinal Injury Association impairment scale in patients with SCI were analyzed. RESULTS The mean serum concentrations of fibrinogen within 2 days after injury were 2.63 ± 0.76 g/L in the SCI group, 3.03 ± 0.82 g/L in the single-fracture group, and 2.86 ± 0.91 g/L in the multiple-fractures group, respectively, which were significant higher than those in the normal group (2.33 ± 0.43 g/L). Additionally, the concentrations of fibrinogen in SCI group were significantly lower compared with those in single- and multiple-fractures groups (P < 0.001 and P = 0.001). The positive rate of fibrinogen concentrations was 12.42% in the SCI group, which was significantly lower than that of the single-fracture group (25.45%) and multiple-fractures group (25.13%) (P < 0.01). In patients with SCI, Spearman correlation analysis revealed that a significant correlation was found between fibrinogen serum concentrations and patients' American Spinal Injury Association impairment scales (r = 0.17, P < 0.001). CONCLUSIONS The serum concentrations of fibrinogen in patients with SCI were significantly increased after injury and were correlated with the severity of neurologic deficit in patients with SCI.
Collapse
Affiliation(s)
- Jia-Ming Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Min Lan
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yang Zhou
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xuan-Yin Chen
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Shan-Hu Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, PR China.
| | - Zhi-Li Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
168
|
Stokum JA, Keledjian K, Hayman E, Karimy JK, Pampori A, Imran Z, Woo SK, Gerzanich V, Simard JM. Glibenclamide pretreatment protects against chronic memory dysfunction and glial activation in rat cranial blast traumatic brain injury. Behav Brain Res 2017; 333:43-53. [PMID: 28662892 DOI: 10.1016/j.bbr.2017.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 02/03/2023]
Abstract
Blast traumatic brain injury (bTBI) affects both military and civilian populations, and often results in chronic deficits in cognition and memory. Chronic glial activation after bTBI has been linked with cognitive decline. Pharmacological inhibition of sulfonylurea receptor 1 (SUR1) with glibenclamide was shown previously to reduce glial activation and improve cognition in contusive models of CNS trauma, but has not been examined in bTBI. We postulated that glibenclamide would reduce chronic glial activation and improve long-term memory function after bTBI. Using a rat direct cranial model of bTBI (dc-bTBI), we evaluated the efficacy of two glibenclamide treatment paradigms: glibenclamide prophylaxis (pre-treatment), and treatment with glibenclamide starting after dc-bTBI (post-treatment). Our results show that dc-bTBI caused hippocampal astrocyte and microglial/macrophage activation that was associated with hippocampal memory dysfunction (rapid place learning paradigm) at 28days, and that glibenclamide pre-treatment, but not post-treatment, effectively protected against glial activation and memory dysfunction. We also report that a brief transient time-window of blood-brain barrier (BBB) disruption occurs after dc-bTBI, and we speculate that glibenclamide, which is mostly protein bound and does not normally traverse the intact BBB, can undergo CNS delivery only during this brief transient opening of the BBB. Together, our findings indicate that prophylactic glibenclamide treatment may help to protect against chronic cognitive sequelae of bTBI in warfighters and other at-risk populations.
Collapse
Affiliation(s)
- Jesse A Stokum
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA.
| | - Kaspar Keledjian
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Erik Hayman
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Jason K Karimy
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Adam Pampori
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Ziyan Imran
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Seung Kyoon Woo
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - Volodymyr Gerzanich
- Departments of Neurosurgery, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| | - J Marc Simard
- Departments of Pathology, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA; Departments of Physiology, University of Maryland School of Medicine, 10 S Pine St, MSTF, Room 634B, Baltimore, MD 21201, USA
| |
Collapse
|
169
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
170
|
Dusaban SS, Chun J, Rosen H, Purcell NH, Brown JH. Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes. J Neuroinflammation 2017; 14:111. [PMID: 28577576 PMCID: PMC5455202 DOI: 10.1186/s12974-017-0882-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Background Sphingosine 1-phosphate (S1P) signals through G protein-coupled receptors to elicit a wide range of cellular responses. In CNS injury and disease, the blood-brain barrier is compromised, causing leakage of S1P from blood into the brain. S1P can also be locally generated through the enzyme sphingosine kinase-1 (Sphk1). Our previous studies demonstrated that S1P activates inflammation in murine astrocytes. The S1P1 receptor subtype has been most associated with CNS disease, particularly multiple sclerosis. S1P3 is most highly expressed and upregulated on astrocytes, however, thus we explored the involvement of this receptor in inflammatory astrocytic responses. Methods Astrocytes isolated from wild-type (WT) or S1P3 knockout (KO) mice were treated with S1P3 selective drugs or transfected with short interfering RNA to determine which receptor subtypes mediate S1P-stimulated inflammatory responses. Interleukin-6 (IL-6), and vascular endothelial growth factor A (VEGFa) messenger RNA (mRNA) and cyclooxygenase-2 (COX-2) mRNA and protein were assessed by q-PCR and Western blotting. Activation of RhoA was measured using SRE.L luciferase and RhoA implicated in S1P signaling by knockdown of Gα12/13 proteins or by inhibiting RhoA activation with C3 exoenzyme. Inflammation was simulated by in vitro scratch injury of cultured astrocytes. Results S1P3 was highly expressed in astrocytes and further upregulated in response to simulated inflammation. Studies using S1P3 knockdown and S1P3 KO astrocytes demonstrated that S1P3 mediates activation of RhoA and induction of COX-2, IL-6, and VEGFa mRNA, with some contribution from S1P2. S1P induces expression of all of these genes through coupling to the Gα12/13 proteins which activate RhoA. Studies using S1P3 selective agonists/antagonists as well as Fingolimod (FTY720) confirmed that stimulation of S1P3 induces COX-2 expression in astrocytes. Simulated inflammation increased expression of Sphk1 and consequently activated S1P3, demonstrating an autocrine pathway through which S1P is formed and released from astrocytes to regulate COX-2 expression. Conclusions S1P3, through its ability to activate RhoA and its upregulation in astrocytes, plays a unique role in inducing inflammatory responses and should be considered as a potentially important therapeutic target for CNS disease progression.
Collapse
Affiliation(s)
- Stephanie S Dusaban
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA, 92093-0636, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicole H Purcell
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA, 92093-0636, USA.
| | - Joan Heller Brown
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
171
|
Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia - angiogenesis connection. Neurosci Biobehav Rev 2017; 77:327-339. [PMID: 28396239 PMCID: PMC5497758 DOI: 10.1016/j.neubiorev.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder with unknown etiology and elusive neuropathological and neurobiological features have been a focus of many theoretical hypotheses and empirical studies. Current genetic and neurobiology information relevant to SZ implicates neuronal developmental and synaptic plasticity abnormalities, and neurotransmitter, microglial and oligodendrocytes dysfunction. Several recent theories have highlighted the neurovascular unit as a potential contributor to the pathophysiology of SZ. We explored the biological plausibility of a link between SZ and the neurovascular system by examining insights gained from genetic, neuroimaging and postmortem studies, which include gene expression and neuropathology analyses. We also reviewed information from animal models of cerebral angiogenesis in order to understand better the complex interplay between angiogenic and neurotrophic factors in development, vascular endothelium/blood brain barrier remodeling and maintenance, all of which contribute to sustaining adequate regional blood flow and safeguarding normal brain function. Microvascular and hemodynamic alterations in SZ highlight the importance of further research and reveal the neurovascular unit as a potential therapeutic target in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Mikhail Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
172
|
Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia - angiogenesis connection. Neurosci Biobehav Rev 2017. [PMID: 28396239 DOI: 10.1016/j.neubiorev.2017.04.003)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder with unknown etiology and elusive neuropathological and neurobiological features have been a focus of many theoretical hypotheses and empirical studies. Current genetic and neurobiology information relevant to SZ implicates neuronal developmental and synaptic plasticity abnormalities, and neurotransmitter, microglial and oligodendrocytes dysfunction. Several recent theories have highlighted the neurovascular unit as a potential contributor to the pathophysiology of SZ. We explored the biological plausibility of a link between SZ and the neurovascular system by examining insights gained from genetic, neuroimaging and postmortem studies, which include gene expression and neuropathology analyses. We also reviewed information from animal models of cerebral angiogenesis in order to understand better the complex interplay between angiogenic and neurotrophic factors in development, vascular endothelium/blood brain barrier remodeling and maintenance, all of which contribute to sustaining adequate regional blood flow and safeguarding normal brain function. Microvascular and hemodynamic alterations in SZ highlight the importance of further research and reveal the neurovascular unit as a potential therapeutic target in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Mikhail Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
173
|
Tamm ER, Ethier CR. Biological aspects of axonal damage in glaucoma: A brief review. Exp Eye Res 2017; 157:5-12. [PMID: 28223179 PMCID: PMC6545378 DOI: 10.1016/j.exer.2017.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 12/01/2022]
Abstract
Intraocular pressure (IOP) is a critical risk factor in glaucoma, and the available evidence derived from experimental studies in primates and rodents strongly indicates that the site of IOP-induced axonal damage in glaucoma is at the optic nerve head (ONH). However, the mechanisms that cause IOP-induced damage at the ONH are far from understood. A possible sequence of events could originate with IOP-induced stress in the ONH connective tissue elements (peripapillary sclera, scleral canal and lamina cribrosa) that leads to an increase in biomechanical strain. In consequence, molecular signaling cascades might be activated that result in extracellular matrix turnover of the peripapillary sclera, changing its biomechanical properties. Peripapillary sclera strain might induce reactive changes in ONH astrocytes and cause astrogliosis. The biological changes that are associated with ONH astrocyte reactivity could lead to withdrawal of trophic or metabolic support for optic nerve axons and cause their degeneration. Alternatively, the expression of neurotoxic molecules might be induced. Unfortunately, direct experimental in vivo evidence for these or other scenarios is currently lacking. The pathogenic processes that cause axonal degeneration at the ONH in glaucoma need to be identified before any regenerative therapy is likely to succeed. Several topics and emerging techniques should be pursued to enhance our understanding of the mechanisms that are behind axonal degeneration. Among them are: Advanced imaging techniques, the development of in vivo markers to identify axonal injury, the generation of molecular approaches for in vivo detection of mechanosensitivity and for molecular manipulation of the ONH, a more complete characterization of retinal ganglion cells, the use of organ cultures, 3D-bioprinting, and the engineering of microdevices that can measure pressure. Questions that need to be answered relate to the specific roles of astrogliosis, neuroinflammation, blood flow and intracranial pressure in axonal degeneration at the ONH.
Collapse
Affiliation(s)
- Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| |
Collapse
|
174
|
Zamolodchikov D, Strickland S. A possible new role for Aβ in vascular and inflammatory dysfunction in Alzheimer's disease. Thromb Res 2017; 141 Suppl 2:S59-61. [PMID: 27207427 DOI: 10.1016/s0049-3848(16)30367-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is often characterized by vascular pathology, a procoagulant state, and chronic inflammation. The mechanisms behind these abnormalities in AD are not clear. Here, we review evidence for the role of the AD-associated peptide Aβ in promoting inflammation and thrombosis in AD via its interaction with the circulating proteins factor XII and fibrinogen.
Collapse
Affiliation(s)
- Daria Zamolodchikov
- Laboratory of Neurobiology and Genetics; The Rockefeller University; New York, NY 10065, USA
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics; The Rockefeller University; New York, NY 10065, USA.
| |
Collapse
|
175
|
Brombacher TM, Nono JK, De Gouveia KS, Makena N, Darby M, Womersley J, Tamgue O, Brombacher F. IL-13-Mediated Regulation of Learning and Memory. THE JOURNAL OF IMMUNOLOGY 2017; 198:2681-2688. [PMID: 28202615 DOI: 10.4049/jimmunol.1601546] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022]
Abstract
The role of proinflammatory cytokines in cognitive function has been investigated with both beneficial and possible detrimental effects, depending on the cytokine. More recently, the type 2 IL-4 has been demonstrated to play a role in cognition. In this study, using the Morris water maze task, we demonstrate that IL-13-deficient mice are significantly impaired in working memory as well as attenuated reference memory, both functions essential for effective complex learning. During the learning process, wild-type mice increased the number of CD4+ T cells in the meninges and production of IL-13, whereas neither Morris water maze-trained IL-4 nor trained IL-13-deficient mice were able to increase CD4+ T cells in the meninges. Mechanistically, we showed that IL-13 is able to stimulate primary astrocytes to produce brain-derived neurotrophic factor, which does foster cognitive functions. Moreover, Morris water maze-trained wild-type mice were able to increase astrocyte-produced glial fibrillary acidic protein in the hippocampus, which was impaired in Morris water maze-trained IL-4- and IL-13-deficient mice. Collectively, this study strongly suggests that the Th2 cytokines, not only IL-4 but also IL-13, are involved in cognitive functions by stimulating astrocytes from the meninges and hippocampus. These results may be important for future development of therapeutic approaches associated with neurologic disorders such as Parkinson disease-associated dementia and HIV-associated dementia among others.
Collapse
Affiliation(s)
- Tiroyaone M Brombacher
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa.,South African Medical Research Council, Cape Town 7501, South Africa
| | - Justin K Nono
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa.,South African Medical Research Council, Cape Town 7501, South Africa.,Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon; and
| | - Keisha S De Gouveia
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa.,South African Medical Research Council, Cape Town 7501, South Africa
| | - Nokuthula Makena
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Matthew Darby
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa.,South African Medical Research Council, Cape Town 7501, South Africa
| | - Jacqueline Womersley
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Ousman Tamgue
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa.,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa.,South African Medical Research Council, Cape Town 7501, South Africa
| | - Frank Brombacher
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; .,Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town 7925, South Africa.,South African Medical Research Council, Cape Town 7501, South Africa
| |
Collapse
|
176
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev 2017; 35:213-33. [PMID: 27189210 DOI: 10.1007/s10555-016-9626-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between blood coagulation and cancer development is well recognized. Thrombin, the pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis, may also trigger cellular events through protease-activated receptors, PAR-1 and PAR-4, leading to cancer progression. Our pioneering findings provided evidence that thrombin contributes to cancer metastasis by increasing adhesive potential of malignant cells. However, there is evidence that thrombin regulates every step of cancer dissemination: (1) cancer cell invasion, detachment from primary tumor, migration; (2) entering the blood vessel; (3) surviving in vasculature; (4) extravasation; (5) implantation in host organs. Recent studies have provided new molecular data about thrombin generation in cancer patients and the mechanisms by which thrombin contributes to transendothelial migration, platelet/tumor cell interactions, angiogenesis, and other processes. Though a great deal is known regarding the role of thrombin in cancer dissemination, there are new data for multiple thrombin-mediated events that justify devoting focus to this topic with a comprehensive approach.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland. .,Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland.
| | - Dominika Hempel
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.,Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.,Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI, USA
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Chemistry, Wayne State University, Detroit, MI, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
177
|
Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater 2017; 47:14-24. [PMID: 27662809 DOI: 10.1016/j.actbio.2016.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Fibrin is a major component of the provisional extracellular matrix formed during tissue repair following injury, and enables cell infiltration and anchoring at the wound site. Macrophages are dynamic regulators of this process, advancing and resolving inflammation in response to cues in their microenvironment. Although much is known about how soluble factors such as cytokines and chemokines regulate macrophage polarization, less is understood about how insoluble and adhesive cues, specifically the blood coagulation matrix fibrin, influence macrophage behavior. In this study, we observed that fibrin and its precursor fibrinogen elicit distinct macrophage functions. Culturing macrophages on fibrin gels fabricated by combining fibrinogen with thrombin stimulated secretion of the anti-inflammatory cytokine, interleukin-10 (IL-10). In contrast, exposure of macrophages to soluble fibrinogen stimulated high levels of inflammatory cytokine tumor necrosis factor alpha (TNF-α). Macrophages maintained their anti-inflammatory behavior when cultured on fibrin gels in the presence of soluble fibrinogen. In addition, adhesion to fibrin matrices inhibited TNF-α production in response to stimulation with LPS and IFN-γ, cytokines known to promote inflammatory macrophage polarization. Our data demonstrate that fibrin exerts a protective effect on macrophages, preventing inflammatory activation by stimuli including fibrinogen, LPS, and IFN-γ. Together, our study suggests that the presentation of fibrin(ogen) may be a key switch in regulating macrophage phenotype behavior, and this feature may provide a valuable immunomodulatory strategy for tissue healing and regeneration. STATEMENT OF SIGNIFICANCE Fibrin is a fibrous protein resulting from blood clotting and provides a provisional matrix into which cells migrate and to which they adhere during wound healing. Macrophages play an important role in this process, and are needed for both advancing and resolving inflammation. We demonstrate that culture of macrophages on fibrin matrices exerts an anti-inflammatory effect, whereas the soluble precursor fibrinogen stimulates inflammatory activation. Moreover, culture on fibrin completely abrogates inflammatory signaling caused by fibrinogen or known inflammatory stimuli including LPS and IFN-γ. Together, these studies show that the presentation of fibrin(ogen) is important for regulating a switch between macrophage pro- and anti-inflammatory behavior.
Collapse
Affiliation(s)
- Jessica Y Hsieh
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Tim D Smith
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Vijaykumar S Meli
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Thi N Tran
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States.
| |
Collapse
|
178
|
Abstract
Reactive astrogliosis occurs after central nervous system (CNS) injuries whereby resident astrocytes form rapid responses along a graded continuum. Following CNS lesions, naïve astrocytes are converted into reactive astrocytes and eventually into scar-forming astrocytes that block axon regeneration and neural repair. It has been known for decades that scarring development and its related extracellular matrix molecules interfere with regeneration of injured axons after CNS injury, but the cellular and molecular mechanisms for controlling astrocytic scar formation and maintenance are not well known. Recent use of various genetic tools has made tremendous progress in better understanding genesis of reactive astrogliosis. Especially, the latest experiments demonstrate environment-dependent plasticity of reactive astrogliosis because reactive astrocytes isolated from injured spinal cord form scarring astrocytes when transplanted into injured spinal cord, but revert in retrograde to naive astrocytes when transplanted into naive spinal cord. The interactions between upregulated type I collagen and its receptor integrin β1 and the N-cadherin-mediated cell adhesion appear to play major roles for local astrogliosis around the lesion. This review centers on the environment-dependent plasticity of reactive astrogliosis after spinal cord injury and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Fatima M Nathan
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
179
|
Li S, Gu X, Yi S. The Regulatory Effects of Transforming Growth Factor-β on Nerve Regeneration. Cell Transplant 2016; 26:381-394. [PMID: 27983926 DOI: 10.3727/096368916x693824] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGF-β) belongs to a group of pleiotropic cytokines that are involved in a variety of biological processes, such as inflammation and immune reactions, cellular phenotype transition, extracellular matrix (ECM) deposition, and epithelial-mesenchymal transition. TGF-β is widely distributed throughout the body, including the nervous system. Following injury to the nervous system, TGF-β regulates the behavior of neurons and glial cells and thus mediates the regenerative process. In the current article, we reviewed the production, activation, as well as the signaling pathway of TGF-β. We also described altered expression patterns of TGF-β in the nervous system after nerve injury and the regulatory effects of TGF-β on nerve repair and regeneration in many aspects, including inflammation and immune response, phenotypic modulation of neural cells, neurite outgrowth, scar formation, and modulation of neurotrophic factors. The diverse biological actions of TGF-β suggest that it may become a potential therapeutic target for the treatment of nerve injury and regeneration.
Collapse
|
180
|
Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2016; 12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain tumors display the highest mortality rates of all childhood cancers, and over the last decade its prevalence has steadily increased in elderly. To date, effective treatments for brain tumors and particularly for malignant gliomas remain a challenge mainly due to the low permeability and high selectivity of the blood-brain barrier (BBB) to conventional anticancer drugs. In recent years, the elucidation of the cellular mechanisms involved in the transport of substances into the brain has boosted the development of therapeutic-targeted nanoparticles (NPs) with the ability to cross the BBB. Here, we present a comprehensive overview of the available therapeutic strategies developed against malignant gliomas based on 'actively targeted' NPs, the challenges of crossing the BBB and blood-brain tumor barrier as well as its mechanisms and a critical assessment of clinical studies that have used targeted NPs for the treatment of malignant gliomas. Finally, we discuss the potential of actively targeted NP-based strategies in clinical settings, its possible side effects and future directions for therapeutic applications. First draft submitted: 4 October 2016; Accepted for publication: 14 October 2016; Published online: 23 November 2016.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Laboratory of Immunology of Reproduction, Faculty of Chemistry & Biology, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Maximiliano Arce
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Basit Yameen
- Laboratory of Nanomedicine & Biomaterials, Department of Anesthesiology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
181
|
Derakhshankhah H, Hajipour MJ, Barzegari E, Lotfabadi A, Ferdousi M, Saboury AA, Ng EP, Raoufi M, Awala H, Mintova S, Dinarvand R, Mahmoudi M. Zeolite Nanoparticles Inhibit Aβ-Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30768-30779. [PMID: 27766857 DOI: 10.1021/acsami.6b10941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
EMT-type zeolite nanoparticles (EMT NPs) with particle size of 10-20 nm and external surface area of 200 m2/g have shown high selective affinity toward plasma protein (fibrinogen). Besides, the EMT NPs have demonstrated no adverse effect on blood coagulation hemostasis. Therefore, it was envisioned that the EMT NPs could inhibit possible β-amyloid (Aβ)-fibrinogen interactions that result in the formation of structurally abnormal clots, which are resistant to lysis, in cerebral vessels of patients with Alzheimer disease (AD). To evaluate this hypothesis, the clot formation and degradation of Aβ-fibrinogen in the presence and absence of the EMT zeolite NPs were assessed. The results clearly showed that the delay in clot dissolution was significantly reduced in the presence of zeolite NPs. By formation of protein corona, the EMT NPs showed a negligible reduction in their inhibitory strength. Docking of small molecules (Aβ-fibrinogen) introduced a novel potential inhibitory candidate. The zeolite NPs showed similar inhibitory effects on binding of fibrinogen to both Aβ(25-35) and/or Aβ(1-42). This indicates that the inhibitory strength of these NPs is independent of Aβ sequence, and it is suggested that the zeolite NPs adsorb fibrinogen and specifically obstruct their Aβ binding sites. Therefore, the zeolite NPs can be the safe and effective inhibitors in preventing Aβ-fibrinogen interaction and consequent cognitive damage.
Collapse
Affiliation(s)
| | - Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr 75147, Iran
| | | | | | | | | | - Eng Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia , 11800 USM, Malaysia
| | | | - Hussein Awala
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen , CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Svetlana Mintova
- Laboratory of Catalysis and Spectroscopy, ENSICAEN, University of Caen , CNRS, 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | | | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
182
|
Yuan J, Liu W, Zhu H, Chen Y, Zhang X, Li L, Chu W, Wen Z, Feng H, Lin J. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Brain Res 2016; 1655:90-103. [PMID: 27865778 DOI: 10.1016/j.brainres.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/13/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) leads to glial scar formation by astrocytes, which severely hinders neural regeneration. Curcumin (cur) can inhibit glial scar formation, but the underlying mechanism is not fully understood. Using both in vivo and in vitro experiments, the current study investigated the phenotypic transformation of astrocytes following cur and siRNA intervention during the processes of inflammation and fibrosis and determined details of the relationship between cur treatment and the glial scar components GFAP and CSPG. We found that cur and NF-κb p65 siRNA could inhibit astrocyte activation through suppressing NF-κb signaling pathway, which led to down-regulate the expression of chemokines MCP-1, RANTES and CXCL10 released by astrocytes and decreased macrophage and T-cell infiltration, thus reducing the inflammation in the glial scar. In addition, silencing SOX-9 may reduce the deposition of extracellular matrix CSPG; whereas its over-expression could increase the CSPG expression. Cur suppressedSOX-9-inducedCSPG deposition, reduced α-SMA (an important symbol of fibrosis) expression in astrocytes, altered astrocyte phenotype, and inhibited glial scar formation by regulating fibrosis. This study confirmed that cur could regulate both the NF-κb and SOX9 signaling pathways and reduce the expression of intracellular and extracellular glial scar components through dual-target regulating both inflammation and fibrosis after SCI in the rat. This study provides an important hypothesis centered on the dual inhibition of intracellular and extracellular glial scar components as a treatment strategy for SCI.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Wei Liu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Haitao Zhu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Yaxing Chen
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Xuan Zhang
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Lan Li
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Weihua Chu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Zexian Wen
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Hua Feng
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| | - Jiangkai Lin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing 400038, China.
| |
Collapse
|
183
|
Barreda-Manso MA, Yanguas-Casás N, Nieto-Sampedro M, Romero-Ramírez L. Neuroprotection and Blood-Brain Barrier Restoration by Salubrinal After a Cortical Stab Injury. J Cell Physiol 2016; 232:1501-1510. [PMID: 27753092 DOI: 10.1002/jcp.25655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023]
Abstract
Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB. This process is beneficial for the resolution of the inflammation, neuronal survival, and the initiation of the healing process. Salubrinal is a small molecule with neuroprotective properties in different animal models of stroke and trauma to the CNS. Here, we show that salubrinal increased neuronal survival in the neighbourhood of a cerebral cortex stab injury. Moreover, salubrinal reduced cortical blood leakage into the parenchyma of injured animals compared with injured controls. Adjacent to the site of injury, salubrinal induced immunoreactivity for platelet-derived growth factor subunit B (PDGF-B), a specific mitogenic factor for mesenchymal cells. This effect might be responsible for the increased immunoreactivity for fibronectin and the decreased activation of microglia and macrophages in injured mice treated with salubrinal, compared with injured controls. The immunoreactivity for PDGF-B colocalized with neuronal nuclei (NeuN), suggesting that cortical neurons in the proximity of the injury were the main source of PDGF-B. Our results suggest that after an injury, neurons play an important role in both, the healing process and the restoration of the BBB integrity. J. Cell. Physiol. 232: 1501-1510, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Asunción Barreda-Manso
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Madrid, Spain.,Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Madrid, Spain
| | - Natalia Yanguas-Casás
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Madrid, Spain
| | - Manuel Nieto-Sampedro
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Madrid, Spain.,Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Madrid, Spain
| | - Lorenzo Romero-Ramírez
- Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Madrid, Spain
| |
Collapse
|
184
|
Fan H, Chen K, Duan L, Wang YZ, Ju G. Beneficial effects of early hemostasis on spinal cord injury in the rat. Spinal Cord 2016; 54:924-932. [PMID: 27137123 PMCID: PMC5399149 DOI: 10.1038/sc.2016.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Experimental study. OBJECTIVES To investigate the effect of early hemostasis on spinal cord injury (SCI). SETTING Fourth Military Medical University, Xi'an, China. METHODS Sprague Dawley rats were used. Hematoxylin and eosin (HE) staining was performed to observe hemorrhage at different time points (2, 6, 12, 24 and 48 h) after SCI to determine the time window of hemostatic drug administration (n=3 per time point). Three different concentrations of Etamsylate (0.025, 0.05 and 0.1 g kg-1) were administered immediately and 5 and 10 h after SCI to evaluate the effective dosage (n=6 per group). Another 82 rats were then randomly divided into two groups, Etamsylate group (0.1 g kg-1, n=41) and glucose control group (n=41). Nissl staining was performed to observe neurons at 10 days post injury. Immunohistochemistry, western blot and quantitative real-time PCR were performed to detect tissue necrosis at 7 d.p.i., the activation of astrocytes and microglia/macrophages and lesion cavity at 10 d.p.i. Basso-Beattie-Bresnahan scoring and rump height index assay were used to examine locomotion recovery. RESULTS Early hemostasis reduced the lesion area and tissue necrosis, enhanced neuronal survival, alleviated the activation of microglia/macrophages and astrocytes and facilitated functional recovery after spinal cord contusion in rats. Early hemostasis decreased hemorrhage area and lesion area after spinal cord transection in rats. CONCLUSION The present study demonstrated that early hemostasis has beneficial effects on SCI in the rat. It has the potential to be translated into clinical practice.
Collapse
Affiliation(s)
- H Fan
- Institute of Neurosciences, Key Laboratory of Spinal Cord Injury and Repair, Fourth Military Medical University, Xi'an, China
| | - K Chen
- Institute of Neurosciences, Key Laboratory of Spinal Cord Injury and Repair, Fourth Military Medical University, Xi'an, China
| | - L Duan
- Institute of Neurosciences, Key Laboratory of Spinal Cord Injury and Repair, Fourth Military Medical University, Xi'an, China
| | - Y-Z Wang
- Institute of Neurosciences, Key Laboratory of Spinal Cord Injury and Repair, Fourth Military Medical University, Xi'an, China
| | - G Ju
- Institute of Neurosciences, Key Laboratory of Spinal Cord Injury and Repair, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
185
|
Yanguas-Casás N, Barreda-Manso MA, Pérez-Rial S, Nieto-Sampedro M, Romero-Ramírez L. TGFβ Contributes to the Anti-inflammatory Effects of Tauroursodeoxycholic Acid on an Animal Model of Acute Neuroinflammation. Mol Neurobiol 2016; 54:6737-6749. [PMID: 27744574 DOI: 10.1007/s12035-016-0142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway. The bacterial lipopolysaccharide (LPS) was injected intravenously (iv) on TGFβ reporter mice (Smad-binding element (SBE)/Tk-Luc) to study in their brains the real-time activation profile of the TGFβ pathway in a non-invasive way. The activation of the TGFβ pathway in the brain of SBE/Tk-Luc mice increased 24 h after LPS injection, compared to control animals. This activation peak increased further in mice treated with both LPS and TUDCA than in mice treated with LPS only. The enhanced TGFβ activation in mice treated with LPS and TUDCA correlated with both an increase in TGFβ3 transcript in mouse brain and an increase in TGFβ3 immunoreactivity in microglia/macrophages, endothelial cells, and neurons. Inhibition of the TGFβ receptor with SB431542 drug reverted the effect of TUDCA on microglia/macrophages activation and on TGFβ3 immunoreactivity. Under inflammatory conditions, treatment with TUDCA enhanced further the activation of TGFβ pathway in mouse brain and increased the expression of TGFβ3. Therefore, the induction of TGFβ3 by TUDCA might act as a positive feedback, increasing the initial activation of the TGFβ pathway by the inflammatory stimulus. Our findings provide proof-of-concept that TGFβ contributes to the anti-inflammatory effect of TUDCA under neuroinflammatory conditions.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.,Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - M Asunción Barreda-Manso
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.,Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - Sandra Pérez-Rial
- Laboratorio de Neumología, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - Manuel Nieto-Sampedro
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.,Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - Lorenzo Romero-Ramírez
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
186
|
Zhang Z, Bassam B, Thomas AG, Williams M, Liu J, Nance E, Rojas C, Slusher BS, Kannan S. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol Dis 2016; 94:116-28. [PMID: 27326668 PMCID: PMC5394739 DOI: 10.1016/j.nbd.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by impaired astrocyte function and GCPII upregulation in activated microglia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Bassam Bassam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Barbara S Slusher
- Neurology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
187
|
Cekanaviciute E, Buckwalter MS. Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics 2016; 13:685-701. [PMID: 27677607 PMCID: PMC5081110 DOI: 10.1007/s13311-016-0477-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astrocytes regulate neuroinflammatory responses after stroke and in other neurological diseases. Although not all astrocytic responses reduce inflammation, their predominant function is to protect the brain by driving the system back to homeostasis after injury. They receive multidimensional signals within the central nervous system and between the brain and the systemic circulation. Processing this information allows astrocytes to regulate synapse formation and maintenance, cerebral blood flow, and blood-brain barrier integrity. Similarly, in response to stroke and other central nervous system disorders, astrocytes detect and integrate signals of neuronal damage and inflammation to regulate the neuroinflammatory response. Two direct regulatory mechanisms in the astrocyte arsenal are the ability to form both physical and molecular barriers that seal the injury site and localize the neuroinflammatory response. Astrocytes also indirectly regulate the inflammatory response by affecting neuronal health during the acute injury and axonal regrowth. This ability to regulate the location and degree of neuroinflammation after injury, combined with the long time course of neuroinflammation, makes astrocytic signaling pathways promising targets for therapies.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford Medical School, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford Medical School, Stanford, CA, 94305, USA.
| |
Collapse
|
188
|
Exercise protects against methamphetamine-induced aberrant neurogenesis. Sci Rep 2016; 6:34111. [PMID: 27677455 PMCID: PMC5039713 DOI: 10.1038/srep34111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus.
Collapse
|
189
|
Filous AR, Silver J. "Targeting astrocytes in CNS injury and disease: A translational research approach". Prog Neurobiol 2016; 144:173-87. [PMID: 27026202 PMCID: PMC5035184 DOI: 10.1016/j.pneurobio.2016.03.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/03/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Astrocytes are a major constituent of the central nervous system. These glia play a major role in regulating blood-brain barrier function, the formation and maintenance of synapses, glutamate uptake, and trophic support for surrounding neurons and glia. Therefore, maintaining the proper functioning of these cells is crucial to survival. Astrocyte defects are associated with a wide variety of neuropathological insults, ranging from neurodegenerative diseases to gliomas. Additionally, injury to the CNS causes drastic changes to astrocytes, often leading to a phenomenon known as reactive astrogliosis. This process is important for protecting the surrounding healthy tissue from the spread of injury, while it also inhibits axonal regeneration and plasticity. Here, we discuss the important roles of astrocytes after injury and in disease, as well as potential therapeutic approaches to restore proper astrocyte functioning.
Collapse
Affiliation(s)
- Angela R Filous
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 216-368-4615, United States.
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 216-368-4615, United States.
| |
Collapse
|
190
|
Abstract
Epilepsy is among the most prevalent chronic neurological diseases and affects an estimated 2.2 million people in the United States alone. About one third of patients are resistant to currently available antiepileptic drugs, which are exclusively targeting neuronal function. Yet, reactive astrocytes have emerged as potential contributors to neuronal hyperexcitability and seizures. Astrocytes react to any kind of CNS insult with a range of cellular adjustments to form a scar and protect uninjured brain regions. This process changes astrocyte physiology and can affect neuronal network function in various ways. Traumatic brain injury and stroke, both conditions that trigger astroglial scar formation, are leading causes of acquired epilepsies and surgical removal of this glial scar in patients with drug-resistant epilepsy can alleviate the seizures. This review will summarize the currently available evidence suggesting that epilepsy is not a disease of neurons alone, but that astrocytes, glial cells in the brain, can be major contributors to the disease, especially when they adopt a reactive state in response to central nervous system insult.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| |
Collapse
|
191
|
Silver J. The glial scar is more than just astrocytes. Exp Neurol 2016; 286:147-149. [PMID: 27328838 DOI: 10.1016/j.expneurol.2016.06.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH 44106, USA.
| |
Collapse
|
192
|
Kim SY, Porter BE, Friedman A, Kaufer D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J Neurosci Res 2016; 94:794-803. [PMID: 27265805 DOI: 10.1002/jnr.23758] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/04/2023]
Abstract
Head trauma and vascular injuries are known risk factors for acquired epilepsy. The sequence of events that lead from the initial injury to the development of epilepsy involves complex plastic changes and circuit rewiring. In-depth, comprehensive understanding of the epileptogenic process is critical for the identification of disease-modifying targets. Here we review the complex interactions of cellular and extracellular components that may promote epileptogenesis, with an emphasis on the role of astrocytes. Emerging evidence demonstrates that astrocytes promptly respond to brain damage and play a critical role in the development of postinjury epilepsy. Astrocytes have been shown to regulate extracellular matrix (ECM) remodeling, which can affect plasticity and stability of synapses and, in turn, contribute to the epileptogenic process. From these separate lines of evidence, we present a hypothesis suggesting a possible role for astrocyte-regulated remodeling of ECM and perineuronal nets, a specialized ECM structure around fast-spiking inhibitory interneurons, in the development and progression of posttraumatic epilepsies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California.,Canadian Institute for Advanced Research Program in Child and Brain Development, Toronto, Ontario, Canada
| |
Collapse
|
193
|
Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, Xiong Y. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg 2016; 126:782-795. [PMID: 28245754 DOI: 10.3171/2016.3.jns152699] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-β1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment initiated 1 hour postinjury provides neuroprotection and neurorestoration after TBI, indicating that this small tetrapeptide has promising therapeutic potential for treatment of TBI. Further investigation of the optimal dose and therapeutic window of AcSDKP treatment for TBI and the associated underlying mechanisms is therefore warranted.
Collapse
Affiliation(s)
| | | | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit; and.,Department of Physics, Oakland University, Rochester, Michigan
| | | | - Li Zhang
- Neurology, Henry Ford Hospital, Detroit; and
| | | | - Ye Xiong
- Departments of 1 Neurosurgery and
| |
Collapse
|
194
|
Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int 2016; 2016:6810562. [PMID: 27274738 PMCID: PMC4870368 DOI: 10.1155/2016/6810562] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.
Collapse
|
195
|
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016; 10:98. [PMID: 27147970 PMCID: PMC4829593 DOI: 10.3389/fncel.2016.00098] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | | | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
196
|
Hu X, Yuan Y, Wang D, Su Z. Heterogeneous astrocytes: Active players in CNS. Brain Res Bull 2016; 125:1-18. [PMID: 27021168 DOI: 10.1016/j.brainresbull.2016.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes, the predominant cell type that are broadly distributed in the brain and spinal cord, play key roles in maintaining homeostasis of the central nerve system (CNS) in physiological and pathological conditions. Increasing evidence indicates that astrocytes are a complex colony with heterogeneity on morphology, gene expression, function and many other aspects depending on their spatio-temporal distribution and activation level. In pathological conditions, astrocytes differentially respond to all kinds of insults, including injury and disease, and participate in the neuropathological process. Based on current studies, we here give an overview of the roles of heterogeneous astrocytes in CNS, especially in neuropathologies, which focuses on biological and functional diversity of astrocytes. We propose that a precise understanding of the heterogeneous astrocytes is critical to unlocking the secrets about pathogenesis and treatment of the mazy CNS.
Collapse
Affiliation(s)
- Xin Hu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yimin Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China.
| |
Collapse
|
197
|
Gilmour AD, Woolley AJ, Poole-Warren LA, Thomson CE, Green RA. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials 2016; 91:23-43. [PMID: 26994876 DOI: 10.1016/j.biomaterials.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023]
Abstract
The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches.
Collapse
Affiliation(s)
- A D Gilmour
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - A J Woolley
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Western Sydney University, Sydney, NSW, Australia
| | - L A Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - C E Thomson
- Department of Veterinary Medicine, University of Alaska, Fairbanks, AK 99775, USA
| | - R A Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
198
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
199
|
Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016; 136:475-91. [PMID: 26546579 PMCID: PMC4720533 DOI: 10.1111/jnc.13424] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer's disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional, and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here, we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, transforming growth factor β, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer's disease. This review discusses the role of astrocytic NFκB and calcium as well as astroglial secreted factors, including proteoglycans, TGFβ, and complement in mediating neuronal function and AD pathogenesis through direct interaction with neurons and through cooperation with microglia.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Neuroscience, Xiamen University College of Medicine, Xiamen, Fujian 361102, China
| |
Collapse
|
200
|
Satoh J, Tabunoki H, Ishida T, Saito Y, Arima K. Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: a possible hallmark of regenerative failure in Alzheimer's disease brains. Neuropathol Appl Neurobiol 2015; 39:109-20. [PMID: 22582881 DOI: 10.1111/j.1365-2990.2012.01281.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS RGMa is a repulsive guidance molecule that induces the collapse of axonal growth cones by interacting with the receptor neogenin in the central nervous system during development. It remains unknown whether RGMa plays a role in the neurodegenerative process of Alzheimer's disease (AD). We hypothesize that RGMa, if it is concentrated on amyloid plaques, might contribute to a regenerative failure of degenerating axons in AD brains. METHODS By immunohistochemistry, we studied RGMa and neogenin (NEO1) expression in the frontal cortex and the hippocampus of 6 AD and 12 control cases. The levels of RGMa expression were determined by qRT-PCR and Western blot in cultured human astrocytes following exposure to cytokines and amyloid beta (Aβ) peptides. RESULTS In AD brains, an intense RGMa immunoreactivity was identified on amyloid plaques and in the glial scar. In the control brains, the glial scar and vascular foot processes of astrocytes expressed RGMa immunoreactivity, while oligodendrocytes and microglia were negative for RGMa. In AD brains, a small subset of amyloid plaques expressed a weak NEO1 immunoreactivity, while some reactive astrocytes in both AD and control brains showed an intense NEO1 immunoreactivity. In human astrocytes, transforming growth factor beta-1 (TGFβ1 ), Aβ 1-40 or Aβ 1-42 markedly elevated the levels of RGMa, and TGFβ1 also increased its own levels. Coimmunoprecipitation analysis validated the molecular interaction between RGMa and the C-terminal fragment β of amyloid beta precursor protein (APP). Furthermore, recombinant RGMa protein interacted with amyloid plaques in situ. CONCLUSIONS RGMa, produced by TGFβ-activated astrocytes and accumulated in amyloid plaques and the glial scar, could contribute to the regenerative failure of degenerating axons in AD brains.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Departments ofLaboratory MedicinePsychiatry, National Center Hospital, NCNP, TokyoDepartment of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - H Tabunoki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Departments ofLaboratory MedicinePsychiatry, National Center Hospital, NCNP, TokyoDepartment of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - T Ishida
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Departments ofLaboratory MedicinePsychiatry, National Center Hospital, NCNP, TokyoDepartment of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - Y Saito
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Departments ofLaboratory MedicinePsychiatry, National Center Hospital, NCNP, TokyoDepartment of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - K Arima
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Departments ofLaboratory MedicinePsychiatry, National Center Hospital, NCNP, TokyoDepartment of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| |
Collapse
|