151
|
Lapchak PA. Tumor necrosis factor-α is involved in thrombolytic-induced hemorrhage following embolic strokes in rabbits. Brain Res 2007; 1167:123-8. [PMID: 17673188 DOI: 10.1016/j.brainres.2007.06.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/14/2022]
Abstract
The present study assessed whether tumor necrosis factor-alpha (TNFalpha) is involved in hemorrhage following large clot embolism-induced ischemia in New Zealand white rabbits by intracisternally administering either TNFalpha or a goat-anti-rabbit-TNFalpha antibody following a stroke. The first aim of the study showed that TNFalpha administration increased stroke-induced hemorrhage incidence to 53.3% from 18.5% (an increase of 188%) in the control group and also increased hemorrhage volume by 87% (p<0.05). The second aim showed that administration of tissue plasminogen activator (tPA) using a standard dose of 3.3 mg/kg increased hemorrhage incidence in rabbits to 76.5% from 18.5% (an increase of 314%) and this effect was reversed by administration of an anti-TNFalpha antibody. In the tPA-anti-TNFalpha antibody group, the absolute hemorrhage rate was 38.8% and the hemorrhage volume was 98% of control. In conclusion, following an embolic stroke, TNFalpha administration increased the incidence and volume of hemorrhage and an anti-TNFalpha antibody counteracted tPA-induced hemorrhage. The results suggest that TNFalpha may either be directly or indirectly involved in vascular damage following an embolic stroke. Moreover, TNFalpha may mediate some of the detrimental effects of tPA on the vascular compartment. Based upon our studies, TNFalpha receptor antagonists or TNFalpha processing inhibitors should be further pursued as targets for the treatment of hemorrhagic stroke as adjuvant treatment for stroke patients receiving thrombolytic treatment.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
152
|
Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ. Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. THE JOURNAL OF IMMUNOLOGY 2007; 178:8158-67. [PMID: 17548654 DOI: 10.4049/jimmunol.178.12.8158] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Early in the pathogenesis of multiple sclerosis, the blood-brain barrier is compromised, which leads to deposition of the plasma proteins fibronectin and vitronectin in cerebral parenchyma. In light of our previous finding that microglial activation in vitro is strongly promoted by fibronectin and vitronectin, we set out to examine the possibility that modulation of microglial activation by fibronectin or vitronectin is an important regulatory mechanism in vivo. In an experimental autoimmune encephalomyelitis mouse model of demyelination, total brain levels of fibronectin and vitronectin were strongly increased and there was a close relationship between fibronectin and vitronectin deposition, microglial activation, and microglial expression of matrix metalloproteinase-9. In murine cell culture, flow cytometry for MHC class I and gelatin zymography revealed that microglial activation and expression of pro-matrix metalloproteinase-9 were significantly increased by fibronectin and vitronectin. Function-blocking studies showed that the influence of fibronectin and vitronectin was mediated by the alpha(5)beta(1) and alpha(v)beta(5) integrins, respectively. Taken together, this work suggests that fibronectin and vitronectin deposition during demyelinating disease is an important influence on microglial activation state. Furthermore, it provides the first evidence that the alpha(5)beta(1) and alpha(v)beta(5) integrins are important mediators of microglial activation.
Collapse
Affiliation(s)
- Richard Milner
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 20550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Sharma AB, Barlow MA, Yang SH, Simpkins JW, Mallet RT. Pyruvate enhances neurological recovery following cardiopulmonary arrest and resuscitation. Resuscitation 2007; 76:108-19. [PMID: 17618729 PMCID: PMC2737333 DOI: 10.1016/j.resuscitation.2007.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/11/2007] [Accepted: 04/19/2007] [Indexed: 01/07/2023]
Abstract
PURPOSE Cerebral oxidative stress and metabolic dysfunction impede neurological recovery from cardiac arrest-resuscitation. Pyruvate, a potent antioxidant and energy-yielding fuel, has been shown to protect against oxidant- and ischemia-induced neuronal damage. This study tested whether acute pyruvate treatment during cardiopulmonary resuscitation can prevent neurological dysfunction and cerebral injury following cardiac arrest. METHODS Anesthetized, open-chest mongrel dogs underwent 5 min cardiac arrest, 5 min open-chest cardiac compression (OCCC), defibrillation and 3-day recovery. Pyruvate (n=9) or NaCl volume control (n=8) were given (0.125 mmol kg(-1) min(-1) i.v.) throughout OCCC and the first 55 min recovery. Sham dogs (n=6) underwent surgery and recovery without cardiac arrest-resuscitation. RESULTS Neurological deficit score (NDS), evaluated at 2-day recovery, was sharply increased in NaCl-treated dogs (10.3+/-3.5) versus shams (1.2+/-0.4), but pyruvate treatment mitigated neurological deficit (NDS=3.3+/-1.2; P<0.05 versus NaCl). Brain samples were taken for histological examination and evaluation of inflammation and cell death at 3-day recovery. Loss of pyramidal neurons in the hippocampal CA1 subregion was greater in the NaCl controls than in pyruvate-treated dogs (11.7+/-2.3% versus 4.3+/-1.2%; P<0.05). Cardiac arrest increased caspase-3 activity, matrix metalloproteinase activity, and DNA fragmentation in the CA1 subregion; pyruvate prevented caspase-3 activation and DNA fragmentation, and suppressed matrix metalloproteinase activity. CONCLUSION Intravenous pyruvate therapy during cardiopulmonary resuscitation prevents initial oxidative stress and neuronal injury and enhances neurological recovery from cardiac arrest.
Collapse
Affiliation(s)
- Arti B. Sharma
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Matthew A. Barlow
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - James W. Simpkins
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Robert T. Mallet
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
154
|
Chattopadhyay S, Myers RR, Janes J, Shubayev V. Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007; 21:561-8. [PMID: 17189680 PMCID: PMC2865892 DOI: 10.1016/j.bbi.2006.10.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/20/2006] [Accepted: 10/20/2006] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is an extracellular protease that is induced in Schwann cells hours after peripheral nerve injury and controls axonal degeneration and macrophage recruitment to the lesion. Here, we report a robust (90-fold) increase in MMP-9 mRNA within 24 h after rat sciatic nerve crush (1 to 60 days time-course). Using direct injection into a normal sciatic nerve, we identify the proinflammatory cytokines TNF-alpha and IL-1beta as potent regulators of MMP-9 expression (Taqman qPCR, zymography). Myelinating Schwann cells produced MMP-9 in response to cytokine injection and crush nerve injury. MMP-9 gene deletion reduced unstimulated neuropathic nociceptive behavior after one week post-crush and preserved myelin thickness by protecting myelin basic protein (MBP) from degradation, tested by Western blot and immunofluorescence. These data suggest that MMP-9 expression in peripheral nerve is controlled by key proinflammatory cytokine pathways, and that its removal protects nerve fibers from demyelination and reduces neuropathic pain after injury.
Collapse
Affiliation(s)
- Sharmila Chattopadhyay
- San Diego VA Healthcare System, USA
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, CA, USA
| | - Robert R. Myers
- San Diego VA Healthcare System, USA
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, CA, USA
| | | | - Veronica Shubayev
- San Diego VA Healthcare System, USA
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, CA, USA
- Corresponding author. Fax: +1 858 534 1445. (V. Shubayev)
| |
Collapse
|
155
|
Koyama Y, Baba A, Matsuda T. Intracerebroventricular administration of an endothelin ETB receptor agonist increases expression of tissue inhibitor of matrix metalloproteinase-1 and -3 in rat brain. Neuroscience 2007; 147:620-30. [PMID: 17555880 DOI: 10.1016/j.neuroscience.2007.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/17/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Production of tissue inhibitors of matrix metalloproteinases (TIMPs), a family of secreted proteins with inhibitory actions on matrix metalloproteinases (MMPs), is up-regulated following nerve injuries and is suggested to have protective effects against MMP-mediated tissue damages. To clarify the extracellular signals involved in TIMP production in the brain, the effects of endothelins (ETs), a family of vasoconstricting peptides, were examined. I.c.v. administration of 500 pmol/day Ala(1,3,11,15)-ET-1, an ET(B) receptor agonist, increased the level of TIMP-1 mRNA in rat hippocampus, caudate-putamen and cerebrum. Ala(1,3,11,15)-ET-1 increased the level of TIMP-3 mRNA in the cerebrum, but not in the hippocampus or caudate-putamen. TIMP-2 mRNA was not affected in these brain regions. Ala(1,3,11,15)-ET-1 also stimulated the production of TIMP-1 and TIMP-3 proteins in the cerebrum. Immunohistochemical observations in the hippocampi of Ala(1,3,11,15)-ET-1-infused rats showed that NeuN-positive neurons and glial fibrillary acidic protein-positive astrocytes were immunoreactive for TIMP-1. In the cerebrum, astrocytes had TIMP-1 and TIMP3 reactivity, but neurons did not. In rat cultured astrocytes, both 100 nM Ala(1,3,11,15)-ET-1 and ET-1 increased the mRNA levels and protein release of TIMP-1 and TIMP-3 mRNAs. The effects of ET-1 on astrocytic TIMP-1 and TIMP-3 mRNAs were inhibited by BQ788, an ET(B) antagonist. These findings indicate that activation of brain ET(B) receptors causes production of TIMP-1 and TIMP-3, and suggest the involvement of astrocytes in ET-induced TIMP production.
Collapse
Affiliation(s)
- Y Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tonda-bayashi, Japan.
| | | | | |
Collapse
|
156
|
Martinez G, Musumeci G, Loreto C, Carnazza ML. Immunohistochemical changes in vulnerable rat brain regions after reversible global brain ischaemia. J Mol Histol 2007; 38:295-302. [PMID: 17551674 DOI: 10.1007/s10735-007-9102-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Human global ischaemia was simulated in adult rats by inducing 20 min brain ischaemia and 60 min post-ischaemic recirculation. Immunohistochemical expression of MMP-9, TIMP-3, Bax and Bcl-2, and DNA fragmentation (with the TUNEL reaction) were investigated. The morphological data showed different neuronal responses in the hippocampus compared with the cerebral and cerebellar cortices. MMP-9 immunoreactivity was different in the hippocampus, particularly in dentate gyrus and the CA1 region, compared with these cortices. Negative TIMP-3 staining in ischaemic hippocampal neurons may indicate a loss of its inhibitory activity on MMP-9 that could enhance cell death. Bcl-2 down regulation, Bax positivity and TUNEL+ type II cells in the dentate gyrus granular layer could be responsible for induction of apoptotic death in CA1 hippocampal pyramidal cells via loss of fibre input. Results suggest differential behaviours of neural cells after 60 min reperfusion.
Collapse
Affiliation(s)
- Giuseppa Martinez
- Department of Anatomy, Diagnostic Pathology, Forensic Medicine, Hygiene and Public Health, University of Catania, Via S. Sofia n. 87, Catania, Italy.
| | | | | | | |
Collapse
|
157
|
Bozdagi O, Nagy V, Kwei KT, Huntley GW. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol 2007; 98:334-44. [PMID: 17493927 PMCID: PMC4415272 DOI: 10.1152/jn.00202.2007] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular proteolysis is an important regulatory nexus for coordinating synaptic functional and structural plasticity, but the identity of such proteases is incompletely understood. Matrix metalloproteinases (MMPs) have well-known, mostly deleterious roles in remodeling after injury or stroke, but their role in nonpathological synaptic plasticity and function in intact adult brains has not been extensively investigated. Here we address the role of MMP-9 in hippocampal synaptic plasticity using both gain- and loss-of-function approaches in urethane-anesthetized adult rats. Acute blockade of MMP-9 proteolytic activity with inhibitors or neutralizing antibodies impairs maintenance, but not induction, of long-term potentiation (LTP) at synapses formed between Schaffer-collaterals and area CA1 dendrites. LTP is associated with significant increases in levels of MMP-9 and proteolytic activity within the potentiated neuropil. By introducing a novel application of gelatin-substrate zymography in vivo, we find that LTP is associated with significantly elevated numbers of gelatinolytic puncta in the potentiated neuropil that codistribute with immunolabeling for MMP-9 and for markers of synapses and dendrites. Such increases in proteolytic activity require NMDA receptor activation. Exposing intact area CA1 neurons to recombinant-active MMP-9 induces a slow synaptic potentiation that mutually occludes, and is occluded by, tetanically evoked potentiation. Taken together, our data reveal novel roles for MMP-mediated proteolysis in regulating nonpathological synaptic function and plasticity in mature hippocampus.
Collapse
Affiliation(s)
- Ozlem Bozdagi
- Fishberg Dept of Neuroscience, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
158
|
Meighan PC, Meighan SE, Davis CJ, Wright JW, Harding JW. Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses. J Neurochem 2007; 102:2085-2096. [PMID: 17587312 DOI: 10.1111/j.1471-4159.2007.04682.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is increasingly evident that matrix metalloproteinases (MMPs), a family of zinc containing extracellular endopeptidases, participate in processes supporting hippocampal synaptic plasticity. The purpose of this study was to further the understanding of MMPs involvement in hippocampal plasticity. Acute hippocampal slices, generated from 20- to 30-day-old male Sprague-Dawley rats, were subjected to various electrophysiologic stimulatory paradigms to produce either short-term or long-term modifications to synaptic efficacy. Slices exposed to broad-spectrum MMP inhibitor, FN-439, exhibited impairments in paired-pulse facilitation, theta-burst facilitation, and long-term depression. Additionally, we observed that MMP inhibition impaired both the induction and stability of long-term potentiation (LTP). Furthermore, evidence indicated that the effect of MMP inhibition on LTP maintenance is dependent upon integrin-directed adhesion, whereas the effects of MMP inhibition on LTP induction are independent of integrin-directed adhesion. Together, these data support a generalized role for MMPs in short-term and long-term hippocampal plasticity and indicate that MMPs are a necessary facet of integrin-mediated cell adhesion supporting LTP stabilization.
Collapse
Affiliation(s)
- Peter C Meighan
- Departments of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USADepartment of Psychology, Washington State University, Pullman, Washington, USA
| | - Starla E Meighan
- Departments of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USADepartment of Psychology, Washington State University, Pullman, Washington, USA
| | - Christopher J Davis
- Departments of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USADepartment of Psychology, Washington State University, Pullman, Washington, USA
| | - John W Wright
- Departments of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USADepartment of Psychology, Washington State University, Pullman, Washington, USA
| | - Joseph W Harding
- Departments of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USADepartment of Psychology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
159
|
Mizoguchi H, Yamada K, Mouri A, Niwa M, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T. Role of matrix metalloproteinase and tissue inhibitor of MMP in methamphetamine-induced behavioral sensitization and reward: implications for dopamine receptor down-regulation and dopamine release. J Neurochem 2007; 102:1548-1560. [PMID: 17472698 DOI: 10.1111/j.1471-4159.2007.04623.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Matrix metalloproteinases (MMPs) and its inhibitors (TIMPs) function to remodel the pericellular environment. We have demonstrated that methamphetamine (METH)-induced behavioral sensitization and reward were markedly attenuated in MMP-2- and MMP-9 deficient [MMP-2-(-/-) and MMP-9-(-/-)] mice compared with those in wild-type mice, suggesting that METH-induced expression of MMP-2 and MMP-9 in the brain plays a role in the development of METH-induced sensitization and reward. In the present study, we investigated the changes in TIMP-2 expression in the brain after repeated METH treatment. Furthermore, we studied a role of MMP/TIMP system in METH-induced behavioral changes and dopamine neurotransmission. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in TIMP-2 expression. Antisense TIMP-2 oligonucleotide (TIMP-AS) treatment enhanced the sensitization, which was associated with the potentiation of METH-induced dopamine release in the nucleus accumbens (NAc). On the other hand, MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference, a measure of the rewarding effect, and reduced the METH-increased dopamine release in the NAc. Dopamine receptor agonist-stimulated [(35)S]GTPgammaS binding was reduced in the frontal cortex of sensitized rats. TIMP-AS treatment potentiated, while MMP-2/-9 inhibitor attenuated, the reduction of dopamine D2 receptor agonist-stimulated [(35)S]GTPgammaS binding. Repeated METH treatment also reduced dopamine D2 receptor agonist-stimulated [(35)S]GTPgammaS binding in wild-type mice, but such changes were significantly attenuated in MMP-2-(-/-) and MMP-9-(-/-) mice. These results suggest that the MMP/TIMP system is involved in METH-induced behavioral sensitization and reward, by regulating dopamine release and receptor signaling.
Collapse
Affiliation(s)
- Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Minae Niwa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Tomoko Mizuno
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Yukihiro Noda
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Atsumi Nitta
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Shigeyoshi Itohara
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Yoshiko Banno
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Toshitaka Nabeshima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, JapanLaboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, JapanDepartment of Cell Signaling, Gifu University Graduate School of Medicine, Gifu, JapanDivision of Clinical Science in Clinical Pharmacy Practice, Management and Research, Faculty of Pharmacy, Meijo University, Nagoya, JapanLaboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, JapanDepartment of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| |
Collapse
|
160
|
Mizoguchi H, Yamada K, Niwa M, Mouri A, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T. Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J Neurochem 2007; 100:1579-88. [PMID: 17348864 DOI: 10.1111/j.1471-4159.2006.04288.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. Their activation and regulation are associated with synaptic physiology and pathology. Here, we investigated whether MMP-2 and MMP-9 are involved in the rewarding effects of and sensitization to methamphetamine (METH) in animals, in which the remodelling of neural circuits may play a crucial role. Repeated METH treatment induced behavioural sensitization, which was accompanied by an increase in MMP-2 and MMP-9 activity in the brain. In MMP-2- and MMP-9-deficient mice [MMP-2-(-/-) and MMP-9-(-/-)], METH-induced behavioural sensitization and conditioned place preference, a measure of the rewarding effect, as well as METH-increased dopamine release in the nucleus accumbens (NAc) were attenuated compared with those in wild-type mice. In contrast, infusion of purified human MMP-2 into the NAc significantly potentiated the METH-increased dopamine release. The [(3)H]dopamine uptake into striatal synaptosomes was reduced in wild-type mice after repeated METH treatment, but METH-induced changes in [(3)H]dopamine uptake were significantly attenuated in MMP-2-(-/-) and MMP-9-(-/-) mice. These results suggest that both MMP-2 and MMP-9 play a crucial role in METH-induced behavioural sensitization and reward by regulating METH-induced dopamine release and uptake in the NAc.
Collapse
Affiliation(s)
- Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Michaluk P, Kaczmarek L. Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction. Cell Death Differ 2007; 14:1255-8. [PMID: 17431423 DOI: 10.1038/sj.cdd.4402141] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- P Michaluk
- Laboratory for Molecular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | | |
Collapse
|
162
|
Abstract
Matrix metalloproteinases (MMPs) mediate tissue injury during acute stroke. Clinical data show that elevated MMPs in plasma of stroke patients may correlate with outcomes, suggesting its use as a biomarker. MMP-9 signal has also been detected in clinical stroke brain tissue samples. Because tissue plasminogen activator can upregulate MMPs via lipoprotein receptor signaling, these neurovascular proteolytic events may underlie some of the complications of edema and hemorrhage that plague thrombolytic therapy. However, in contrast to its deleterious actions in acute stroke, MMPs and other neurovascular proteases may play beneficial roles during stroke recovery. MMPs are increased in the subventricular zone weeks after focal stroke, and inhibition of MMPs suppress neurogenic migration from subventricular zone into damaged tissue. In peri-infarct cortex, MMPs may mediate neurovascular remodeling. Delayed inhibition of MMPs decrease markers of remodeling, and these phenomena may be related to reductions in bioavailable growth factors. Acute versus chronic protease profiles within the neurovascular unit are likely to underlie critical responses to stroke, therapy, and recovery.
Collapse
Affiliation(s)
- Bing-Qiao Zhao
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
163
|
del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007; 38:646-51. [PMID: 17261708 DOI: 10.1161/01.str.0000254477.34231.cb] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Local environmental conditions contribute to the activation state of cells. Extracellular matrix glycoproteins participate in cell-cell boundaries within the microvascular and extravascular tissues of the central nervous system and provide a scaffold for the local environment. These conditions are altered during focal cerebral ischemia (and other central nervous system disorders) when extracellular matrix boundaries are degraded or when matrix proteins in the vascular circulation enter the neuropil as the microvascular permeability barrier is degraded. Microglia in the resting state become activated after the onset of ischemia. During activation these cells can express a number of factors and proteases, including latent matrix metalloproteinase-9 (pro-MMP-9). Whereas MMP-9 and MMP-2 are generated early during focal ischemia in select models, their cellular sources in vivo are still under study. In vitro microglia cells activate and respond to exposure to specific matrix proteins (eg, vitronectin, fibronectin) that circulate. Certain MMP inhibitors, specifically tetracycline derivatives, can modulate microglial activation and reduce injury volume in limited studies. But, the injury reduction relies on preinjury exposure to the tetracycline. Other studies underway suggest the hypothesis that microglial cell activation and pro-MMP-9 generation during focal cerebral ischemia is promoted in part by matrix proteins in the circulation that extravasate into the neuropil when the blood-brain barrier is compromised. These matrix proteins are known to activate microglia through their specific cell surface matrix receptors.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Matrix metalloproteinases function in the remodeling of the extracellular matrix during growth and development as well as in injury and disease processes. We examined the role of matrix metalloproteinase-9 in a model of olfactory nerve injury in mice. We measured changes in matrix metalloproteinase-9 protein levels for up to 60 days following olfactory nerve transection. Matrix metalloproteinase-9 levels increased within hours after injury, peaked at day 1 and were elevated for approximately 2 weeks before returning to control levels over the 60-day time period. The increase in matrix metalloproteinase-9 was temporally associated with the degeneration of olfactory neurons that follows nerve transection and with increased gliosis. Our results demonstrate a temporal relationship between matrix metalloproteinase-9 elevation, degeneration of olfactory neurons and gliosis.
Collapse
Affiliation(s)
- Richard M Costanzo
- Department of Physiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551, USA.
| | | | | |
Collapse
|
165
|
Lapchak PA, Araujo DM. Advances in ischemic stroke treatment: neuroprotective and combination therapies. Expert Opin Emerg Drugs 2007; 12:97-112. [PMID: 17355216 DOI: 10.1517/14728214.12.1.97] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thrombolysis with intravenous alteplase (recombinant tissue-type plasminogen activator) continues to be the sole recourse for acute ischemic stroke therapy, provided that patients seek treatment preferably within 3 h of stroke onset. The narrow window of efficacy, coupled with the significant risk of hemorrhage and the high mortality rate, preclude the use of alteplase beyond this time frame. Moreover, in part because of safety concerns, only a small percentage (6-15%) of eligible patients is treated with alteplase. Clearly, safer and more effective treatments that focus on improving the shortcomings of the present thrombolysis for stroke need to be identified. Therefore, newer thrombolytics are being developed with the goal of minimizing side effects, while also shortening the time of cerebral reperfusion and extending the therapeutic window of efficacy. Besides thrombolytics, new and potentially useful drugs and devices are also being studied either as monotherapeutic agents or for use in conjunction with alteplase. In animal models of stroke, neuroprotective agents that affect various components of the ischemic injury cascade that results in neurodegeneration have shown promise for the latter. Examples of such agents include spin traps that block oxidative stress, metalloprotease inhibitors that prevent vascular damage, anti-inflammatory drugs that suppress inflammation and transcranial infrared laser irradiation, which promotes recovery of function. Ideally, a successful combination of neuroprotectant (drug or device) and thrombolytic therapy for stroke would minimize the side effects of thrombolysis followed by supplementary neuroprotection thereafter.
Collapse
Affiliation(s)
- Paul A Lapchak
- Stroke Research Scientist, University of California San Diego, Department of Neuroscience, La Jolla, CA 92093-0624, USA.
| | | |
Collapse
|
166
|
Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 2007; 27:460-8. [PMID: 16788715 DOI: 10.1038/sj.jcbfm.9600354] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We tested the hypothesis that astrocytic matrix metalloproteinase-9 (MMP-9) mediates hemorrhagic brain edema. In a clinical case of hemorrhagic stroke, MMP-9 co-localized with astrocytes and neurons in peri-hematoma areas. In a mouse model where blood was injected into striatum, MMP-9 was colocalized with astrocytes surrounding the hemorrhagic lesion. Because MMP-9 is present in blood as well as brain, we compared four groups of wild type (WT) and MMP-9 knockout (KO) mice: WT blood injected into WT brain, KO blood into KO brain, WT blood into KO brain, and KO blood into WT brain. Gel zymography showed that MMP-9 was elevated in WT hemorrhagic brain tissue but absent from KO hemorrhagic brain tissue. Edematous water content was elevated when WT blood was injected into WT brain. However, edema was ameliorated when MMP-9 was absent in either blood or brain or both. To further assess the mechanisms involved in astrocytic induction of MMP-9, we next examined primary mouse astrocyte cultures. Exposure to hemoglobin rapidly upregulated MMP-9 in conditioned media within 1 to 24 h. Hemoglobin-induced MMP-9 was reduced by the free radical scavenger U83836E. Taken together, these data suggest that although there are large amounts of MMP-9 in blood, hemoglobin-induced oxidative stress can trigger MMP-9 in astrocytes and these parenchymal sources of matrix degradation may also be an important factor in the pathogenesis of hemorrhagic brain edema.
Collapse
Affiliation(s)
- Emiri Tejima
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Baker AH, Sica V, Work LM, Williams-Ignarro S, de Nigris F, Lerman LO, Casamassimi A, Lanza A, Schiano C, Rienzo M, Ignarro LJ, Napoli C. Brain protection using autologous bone marrow cell, metalloproteinase inhibitors, and metabolic treatment in cerebral ischemia. Proc Natl Acad Sci U S A 2007; 104:3597-602. [PMID: 17360688 PMCID: PMC1805552 DOI: 10.1073/pnas.0611112104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite advances in imaging, understanding the underlying pathways, and clinical translation of animal models of disease there remains an urgent need for therapies that reduce brain damage after stroke and promote functional recovery in patients. Blocking oxidant radicals, reducing matrix metalloproteinase-induced neuronal damage, and use of stem cell therapy have been proposed and tested individually in prior studies. Here we provide a comprehensive integrative management approach to reducing damage and promoting recovery by combining biological therapies targeting these areas. In a rat model of transient cerebral ischemia (middle cerebral artery occlusion) gene delivery vectors were used to overexpress tissue inhibitor of matrix metalloproteinase 1 and 2 (TIMP1 and TIMP2) 3 days before ischemia. After occlusion, autologous bone marrow cells alone or in combination with agents to improve NO bioavailability were administered intraarterially. When infarct size, BrdU incorporation, and motor function recovery were determined in the treatment groups the largest beneficial effect was seen in rats receiving the triple combined therapy, surpassing effects of single or double therapies. Our study highlights the utility of combined drug, gene, and cell therapy in the treatment of stroke.
Collapse
Affiliation(s)
- Andrew H. Baker
- *British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Vincenzo Sica
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Lorraine M. Work
- *British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, United Kingdom
| | | | - Filomena de Nigris
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Lilach O. Lerman
- Division of Hypertension, Mayo Clinic Foundation, Rochester, MN 55095
| | - Amelia Casamassimi
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Alessandro Lanza
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Concetta Schiano
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Monica Rienzo
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
| | - Louis J. Ignarro
- Department of Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; and
- To whom correspondence may be addressed. E-mail: or
| | - Claudio Napoli
- Department of General Pathology, Excellence Center on Cardiovascular Diseases, and Research Center on Craniofacial Malformations–MRI, First School of Medicine, Second University of Naples, Naples 80138, Italy
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
168
|
Magnoni S, Baker A, Thomson S, Jordan G, George SJ, McColl BW, McCulloch J, Horsburgh K. Neuroprotective effect of adenoviral-mediated gene transfer of TIMP-1 and -2 in ischemic brain injury. Gene Ther 2007; 14:621-5. [PMID: 17235293 DOI: 10.1038/sj.gt.3302894] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene therapy may be a promising approach for treatment of brain ischemia. We and others previously demonstrated that increased activity of matrix metalloproteinases (MMPs) contributes to the tissue damage that results from ischemic injury. The proteolysis of MMPs is tightly controlled by tissue inhibitors of MMPs (TIMPs). In this study, we examined whether adenoviral-mediated gene transfer of TIMP-1 and TIMP-2 could protect against neuronal damage induced by global cerebral ischemia in mice. An adenovirus expressing TIMP-1 or TIMP-2 (AdTIMP-1 or AdTIMP-2) or a control adenovirus (RAd60) or vehicle was injected into the striatum 3 days before transient global cerebral ischemia. The extent of neuronal damage was quantified 3 days post-ischemia. There was no significant difference in the extent of neuronal damage in vehicle as compared to RAd60-treated mice. In contrast, neuronal damage was reduced, by approximately 50%, after gene transfer of AdTIMP-1 (P<0.001) and AdTIMP-2 (P< 0.01) as compared to controls. This study provides the first in vivo evidence of the protective effects of TIMP-1 and TIMP-2 via gene transfer in global ischemia.
Collapse
Affiliation(s)
- S Magnoni
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Nakaji K, Ihara M, Takahashi C, Itohara S, Noda M, Takahashi R, Tomimoto H. Matrix Metalloproteinase-2 Plays a Critical Role in the Pathogenesis of White Matter Lesions After Chronic Cerebral Hypoperfusion in Rodents. Stroke 2006; 37:2816-23. [PMID: 17008622 DOI: 10.1161/01.str.0000244808.17972.55] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrovascular white matter (WM) lesions contribute to cognitive impairment and motor dysfunction in the elderly. A disruption of the blood-brain barrier (BBB) is believed to be a critical early event leading to these WM lesions. Previous studies have suggested the involvement of matrix metalloproteinase-2 (MMP-2) in BBB disruptions and the upregulation of MMP-2 after chronic cerebral hypoperfusion in a rat model. In the present study, we asked whether MMP-2 is involved in the BBB disruption and the subsequent WM lesions after chronic cerebral hypoperfusion. METHODS We compared the severity of white matter lesions in rats after chronic cerebral hypoperfusion with or without an MMP inhibitor. Then, we also induced the chronic cerebral hypoperfusion in wild-type and MMP-2-null mice. RESULTS In the rats treated with a relatively selective MMP-2 inhibitor, AG3340, the WM lesions after chronic cerebral hypoperfusion were significantly less severe, and the number of activated astroglia and microglia were also significantly lower as compared with the vehicle-treated rats. Gene knockout of MMP-2 also reduced the severity of the WM lesions and the number of activated astroglia and microglia in a mice system. In both rodents, the disruption of BBB function, as assessed by IgM staining and the Evans blue extravasation test, was less severe when MMP-2 activity was attenuated. CONCLUSIONS These findings indicate that MMP-2 plays a critical role in the BBB disruption, glial cell activation, and WM lesions after chronic cerebral hypoperfusion and suggest the potential value of MMP-2 inhibitors as a therapeutic tool in cerebrovascular WM lesions.
Collapse
Affiliation(s)
- Kayoko Nakaji
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
170
|
Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH. Cathepsin and Calpain Inhibitor E64d Attenuates Matrix Metalloproteinase-9 Activity After Focal Cerebral Ischemia in Rats. Stroke 2006; 37:1888-94. [PMID: 16763180 DOI: 10.1161/01.str.0000227259.15506.24] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Matrix metalloproteinases (MMPs) and cysteine proteases (calpain and cathepsin B) play an important role in cell death and are upregulated after focal cerebral ischemia. Because there is a significant interaction between MMP-9 with calpain and cathepsin B, we investigated the role of E64d (a calpain and cathepsin B inhibitor) on MMP-9 activation in the rat focal ischemia model.
Methods—
Male Sprague-Dawley rats were subjected to 2 hours of middle cerebral artery occlusion by using the suture insertion method followed by 22 hours of reperfusion. In the treatment group, a single dose of E64d (5 mg/kg IP) was administrated 30 minutes before the induction of focal ischemia, whereas the nontreatment group received dimethyl sulfoxide only. The neurological deficits, infarct volumes, Evans blue extravasation, brain edema, and MMP-9 activation in the brain were determined.
Results—
Pretreatment with E64d produced a significant reduction in the cerebral infarction volume (353.1±19.8 versus 210.3±23.7 mm
3
) and the neurological deficits. Immunofluorescence studies showed MMP-9, calpain, and cathepsin B activation colocalized to both neurons and the neurovascular endothelial cells after ischemia, which was reduced by E64d.
Conclusion—
These results suggest that E64d treatment provides a neuroprotective effect to rats after transient focal cerebral ischemia by inhibiting the upregulation of MMP-9.
Collapse
Affiliation(s)
- Tamiji Tsubokawa
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, California, USA
| | | | | | | | | | | |
Collapse
|
171
|
Cho JY, Kim IS, Jang YH, Kim AR, Lee SR. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett 2006; 404:330-5. [PMID: 16806698 DOI: 10.1016/j.neulet.2006.06.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 05/30/2006] [Accepted: 06/02/2006] [Indexed: 12/27/2022]
Abstract
Previous studies have demonstrated that quercetin, a bioflavonoid shows the inhibitory effect against ischemia and reperfusion-induced injury in various tissues including neural tissue. Quercetin is also reported to have an inhibitory effect against matrix metalloproteinases (MMPs). Because MMPs are known to play a main role in the pathophysiology of brain ischemic insult, their mechanisms of possible protective effect of quercetin against brain ischemia remain to be clarified. In the present study, C57BL/6 mice were subjected to 20 min transient global brain ischemia. Cerebral blood flow was monitored by laser doppler flowmeter. Animals were sacrificed 72 h after ischemia. Quercetin (50 mg/kg, dissolved in saline) was intraperitoneally administered to mice at 30 min before and immediately after ischemia and from the second day, quercetin was then administered once daily until sacrifice. The present study was undertaken to test the effect of quercetin on neuronal damage after transient cerebral ischemia. Neuronal damages were remarkable in the medial portion of CA1 and CA2 areas after ischemic insult. In quercetin-treated mice, delayed neuronal damage was significantly decreased compared with vehicle-treated mice. Mice treated with quercetin showed attenuated brain MMP-9 activity. Gelatin gel zymography showed an induction of MMP-9 protein after ischemia. Quercetin significantly inhibited ischemia-induced elevation of MMP-9. In situ zymography showed elevations in gelatinase activities after brain ischemia. Quercetin also inhibited TdT-mediated dUTP nick end labeling (TUNEL) staining in CA1 and CA2 areas. These results demonstrate that quercetin, a natural flavonoid reduces global ischemia-induced neuronal damage through inhibition of MMP-9 activity.
Collapse
Affiliation(s)
- Jae-Yong Cho
- Department of Anesthesiology, School of Medicine, Keimyung University, Taegu, South Korea
| | | | | | | | | |
Collapse
|
172
|
|
173
|
Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M, Molina CA, Lo EH, Montaner J. Increased Brain Expression of Matrix Metalloproteinase-9 After Ischemic and Hemorrhagic Human Stroke. Stroke 2006; 37:1399-406. [PMID: 16690896 DOI: 10.1161/01.str.0000223001.06264.af] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Abnormal expression of some matrix metalloproteinases (MMP) has shown to play a deleterious role in brain injury in experimental models of cerebral ischemia. We aimed to investigate MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in brain parenchyma in both ischemic and hemorrhagic strokes.
Methods—
Postmortem fresh brain tissue from 6 ischemic and 8 hemorrhagic stroke patients was obtained within the first 6 hours after death. Finally, 78 brain tissue samples from different areas (infarct, peri-infarct, perihematoma and contralateral hemisphere) were studied. To quantify gelatinase content we performed gelatin zymograms that were confirmed by Western Blot Analysis, immunohistochemistry to localize MMP source, and in situ zymography to detect gelatinase activity.
Results—
Among ischemic cases, gelatin zymography showed increased MMP-9 content in infarct core although peri-infarct tissue presented also higher levels than contralateral hemisphere (
P
<0.0001 and
P
=0.042, respectively). Within infarct core, MMP-9 was mainly located around blood vessels, associated to neutrophil infiltration and activated microglial cells. In peri-infarct areas the major source of MMP-9 were microglial cells. Tissue around intracranial hemorrhage also displayed higher MMP-9 levels than contralateral hemisphere (
P
=0.008) in close relationship with glial cells. MMP-2 was constitutively expressed and remained invariable in different brain areas.
Conclusions—
Our results demonstrate in situ higher levels of MMP-9 in human brain tissue after ischemic and hemorrhagic stroke, suggesting a contribution of MMP-9 to ischemic brain injury and perihematoma edema.
Collapse
Affiliation(s)
- Anna Rosell
- Department of Neurology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 2006; 26:1923-34. [PMID: 16481424 PMCID: PMC4428329 DOI: 10.1523/jneurosci.4359-05.2006] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteases that have well recognized roles in cell signaling and remodeling in many tissues. In the brain, their activation and function are customarily associated with injury or pathology. Here, we demonstrate a novel role for MMP-9 in hippocampal synaptic physiology, plasticity, and memory. MMP-9 protein levels and proteolytic activity are rapidly increased by stimuli that induce late-phase long-term potentiation (L-LTP) in area CA1. Such regulation requires NMDA receptors and protein synthesis. Blockade of MMP-9 pharmacologically prevents induction of L-LTP selectively; MMP-9 plays no role in, nor is regulated during, other forms of short-term synaptic potentiation or long-lasting synaptic depression. Similarly, in slices from MMP-9 null-mutant mice, hippocampal LTP, but not long-term depression, is impaired in magnitude and duration; adding recombinant active MMP-9 to null-mutant slices restores the magnitude and duration of LTP to wild-type levels. Activated MMP-9 localizes in part to synapses and modulates hippocampal synaptic physiology through integrin receptors, because integrin function-blocking reagents prevent an MMP-9-mediated potentiation of synaptic signal strength. The fundamental importance of MMP-9 function in modulating hippocampal synaptic physiology and plasticity is underscored by behavioral impairments in hippocampal-dependent memory displayed by MMP-9 null-mutant mice. Together, these data reveal new functions for MMPs in synaptic and behavioral plasticity.
Collapse
|
175
|
Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 2006; 12:441-5. [PMID: 16565723 DOI: 10.1038/nm1387] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 02/27/2006] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-endopeptidases with multifactorial actions in central nervous system (CNS) physiology and pathology. Accumulating data suggest that MMPs have a deleterious role in stroke. By degrading neurovascular matrix, MMPs promote injury of the blood-brain barrier, edema and hemorrhage. By disrupting cell-matrix signaling and homeostasis, MMPs trigger brain cell death. Hence, there is a movement toward the development of MMP inhibitors for acute stroke therapy. But MMPs may have a different role during delayed phases after stroke. Because MMPs modulate brain matrix, they may mediate beneficial plasticity and remodeling during stroke recovery. Here, we show that MMPs participate in delayed cortical responses after focal cerebral ischemia in rats. MMP-9 is upregulated in peri-infarct cortex at 7-14 days after stroke and is colocalized with markers of neurovascular remodeling. Treatment with MMP inhibitors at 7 days after stroke suppresses neurovascular remodeling, increases ischemic brain injury and impairs functional recovery at 14 days. MMP processing of bioavailable VEGF may be involved because inhibition of MMPs reduces endogenous VEGF signals, whereas additional treatment with exogenous VEGF prevents MMP inhibitor-induced worsening of infarction. These data suggest that, contrary to MMP inhibitor therapies for acute stroke, strategies that modulate MMPs may be needed for promoting stroke recovery.
Collapse
Affiliation(s)
- Bing-Qiao Zhao
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, MGH East 149-2401, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Hua F, Ma J, Li Y, Ha T, Xia Y, Kelley J, Williams DL, Browder IW, Schweitzer JB, Li C. The development of a novel mouse model of transient global cerebral ischemia. Neurosci Lett 2006; 400:69-74. [PMID: 16513265 DOI: 10.1016/j.neulet.2006.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/18/2006] [Accepted: 02/06/2006] [Indexed: 11/22/2022]
Abstract
A reproducible model of global cerebral ischemia in mice is essential for elucidating the molecular mechanism(s) of neuronal damage induced by cerebral ischemia/reperfusion injury. In the present study, we developed a mouse model of transient global ischemia induced by occlusion of the bilateral common carotid arteries and the left subclavian artery together with right subclavian artery (RSA) stenosis (CSOSS) under controlled ventilation in C57BL/10ScSn mice. The mean arterial blood pressure was maintained in the physiological range. The cortical cerebral blood flow was reduced to less than 10% of the pre-ischemic value. Twelve minutes of global ischemia induced brain damage in several brain structures. The neuropathological score in the hippocampus CA1 region was 1.7, 3.5 and 3.7 following reperfusion for 24, 48 and 72 h, respectively. Less extensive damage was seen in the dentate gyrus and cortical regions, compared with the CA1 region. Damage was observed in these regions 24h after ischemia and was not different between 48 and 72 h post-ischemia. Results indicated that this global ischemia model possessed several advantages, including reproducible cerebral ischemic insult, sufficient reperfusion and low mortality rate (10%), and could be used for studies on cerebral ischemia/reperfusion injury in mice.
Collapse
Affiliation(s)
- Fang Hua
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614-0575, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Jourquin J, Tremblay E, Bernard A, Charton G, Chaillan FA, Marchetti E, Roman FS, Soloway PD, Dive V, Yiotakis A, Khrestchatisky M, Rivera S. Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory. Eur J Neurosci 2006; 22:2569-78. [PMID: 16307599 DOI: 10.1111/j.1460-9568.2005.04426.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tissue inhibitor of metalloproteinases-1 (TIMP-1) belongs to a family of multifunctional proteins that inhibit matrix metalloproteinases (MMPs), but also regulate cell growth, proliferation, migration and apoptosis in non-nervous tissues. We had previously reported that kainate (KA)-mediated excitotoxic seizures induce the expression of TIMP-1 in resistant neurons and reactive astrocytes of the rat CNS, but the functional implications of these changes had not been elucidated. In the present work we used a targeted gene null mutation in mice to investigate in vivo the involvement of TIMP-1 in neuronal death and axonal sprouting following KA. We found no differences in seizure behaviour between the wild-type (WT) and the TIMP-1 knock-out (KO) mice, without any compensation by other TIMPs, at least at the mRNA level. However, the TIMP-1 KO mice were resistant to excitotoxicity and did not undergo the typical mossy fibre sprouting observed in WT mice. The lack of TIMP-1 paradoxically hampered the increase in the activity of MMPs observed in the seizing WT mice. In addition, we demonstrate that learning and memory are impaired in untreated KO mice. In conclusion, this study provides the first in vivo evidence for the implication of TIMP-1 in neuronal death and axonal sprouting in a pathological situation, but also suggests the involvement of TIMP-1 in the synaptic mechanisms underlying learning and memory in physiological conditions. More generally, these data support the idea that the control of proteolysis is instrumental for pathological and physiological processes in the brain.
Collapse
Affiliation(s)
- Jérôme Jourquin
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 6184, CNRS, Université de la Méditerranée, Faculté de Médecine de Marseille, IFR Jean Roche, 51 boulevard Pierre Dramard, 13 916 Marseille cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Vukasovic I, Tesija-Kuna A, Topic E, Supanc V, Demarin V, Petrovcic M. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes. Clin Chem Lab Med 2006; 44:428-34. [PMID: 16599837 DOI: 10.1515/cclm.2006.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe aim of the study was to determine serum levels of selected matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs) in the acute phase of different stroke types subdivided according to the Oxfordshire Community Stroke Project (OCSP) classification and the possibility of discriminating stroke types according to their levels. The study included 126 patients with acute stroke within the first 24h of symptom onset, and 124 healthy volunteers. The stroke group had lower MMP-2 concentrations and MMP-2/TIMP-2 ratios (p<0.001) but higher TIMP-2 (p<0.001) than controls. The level of MMP-9 and the MMP-9/TIMP-1 ratio were higher in patients with total anterior circulation infarct (TACI) than in patients with other stroke subtypes according to OCSP classification (p=0.0019, p=0.0065, respectively) or in controls (p<0.0001, p=0.0024, respectively). A negative correlation of MMP-2 levels with MMP-9 and MMP-9/TIMP-1 ratio was recorded in all stroke subtypes except for TACI. Receiver operating characteristic analysis showed similar discriminating power for MMP-9 levels and Barthel index in the differential diagnosis of TACI. High MMP-9/TIMP-1 ratio (odds ratio 3.263) was associated with TACI. Our results demonstrate that the MMP-9/TIMP-1 ratio may provide information to help in assessing stroke patients in the future as a baseline biomarker of infarct extent.
Collapse
Affiliation(s)
- Ines Vukasovic
- Clinical Institute of Chemistry, Sestre milosrdnice University Hospital, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
179
|
Leone L, De Stefano ME, Del Signore A, Petrucci TC, Paggi P. Axotomy of sympathetic neurons activates the metalloproteinase-2 enzymatic pathway. J Neuropathol Exp Neurol 2005; 64:1007-17. [PMID: 16254495 DOI: 10.1097/01.jnen.0000187053.59018.3c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have previously shown that intraganglionic synapse disassembly consequent on superior cervical ganglion (SCG) neuron axotomy was preceded by the loss of the dystroglycan beta subunit (beta-DG) localized at the postsynaptic specializations. Because DG, a transmembrane molecular complex bridging the extracellular matrix to the cortical cytoskeleton, could be a physiological target of metalloproteinases (MMPs) 2 and 9, we investigated their possible involvement in the injury-induced intraganglionic synapse disassembly. In rat SCG, only MMP-2 was present and localized in both neurons and nonneuronal cells. After ganglion neuron axotomy, both MMP-2 activity and protein level increased, whereas the level of its mRNA was unchanged, suggesting prominent MMP-2 posttranslational regulation. mRNA and protein levels of the enzymes involved in the MMP-2 activation pathway, the membrane-type 1-MMP (MT1-MMP), and the tissue inhibitor of metalloproteinase-2 (TIMP-2) also increased after injury with a time course that correlated with that of MMP-2 activation. In addition, postganglionic nerve crush induced an increase in the beta-DG 30-kDa fragment produced by the MMP-dependent degradation of DG. These data suggest that MMP-2 activated during SCG neuron reaction to axotomy may degrade postsynaptic DG, contributing to the disruption of the molecular bridge between pre- and postsynaptic elements and disassembly of the intraganglionic synapses.
Collapse
Affiliation(s)
- Lucia Leone
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
180
|
Truettner JS, Alonso OF, Dietrich WD. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab 2005; 25:1505-16. [PMID: 15959464 DOI: 10.1038/sj.jcbfm.9600150] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent evidence suggests that matrix metalloproteinases (MMPs) contribute to acute edema and lesion formation following ischemic and traumatic brain injuries (TBI). Experimental and clinical studies have also reported the beneficial effects of posttraumatic hypothermia on histopathological and behavioral outcome. The purpose of this study was to determine whether therapeutic hypothermia would affect the activity of MMPs after TBI. Male Sprague-Dawley rats were traumatized by moderate parasagittal fluid-percussion (F-P) brain injury. Seven groups (n=5/group) of animals were investigated: sham-operated, TBI with normothermia (37 degrees C), and TBI with hypothermia (33 degrees C). Normothermia animals were killed at 4, 24, 72 h and 5 days, and hypothermia animals at 24 or 72 h. Brain temperature was reduced to target temperature 30 mins after trauma and maintained for 4 h. Ipsilateral and contralateral cortical, hippocampal, and thalamic regions were analyzed by gelatin and in situ zymography. In traumatized normothermic animals, TBI significantly (P<0.005) increased MMP-9 levels in ipsilateral (right) cortical and hippocampal regions, compared with contralateral or sham animals, beginning at 4 h and persisting to 5 days. At 1, 3, and 5 days after TBI, significant increases in MMP-2 levels were observed. In contrast to these findings observed with normothermia, posttraumatic hypothermia significantly reduced MMP-9 levels. Hypothermic treatment, however, did not affect the delayed activation of MMP-2. Clarifying the mechanisms underlying the beneficial effects of posttraumatic hypothermia is an active area of research. Posttraumatic hypothermia may attenuate the deleterious consequences of brain trauma by reducing MMP activation acutely.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
181
|
Liu R, Wen Y, Perez E, Wang X, Day AL, Simpkins JW, Yang SH. 17β-Estradiol attenuates blood–brain barrier disruption induced by cerebral ischemia–reperfusion injury in female rats. Brain Res 2005; 1060:55-61. [PMID: 16212944 DOI: 10.1016/j.brainres.2005.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 11/26/2022]
Abstract
Disruption of blood-brain barrier (BBB), mediated through matrix metalloproteinases (MMPs), is a critical event during cerebral ischemia. While neuroprotective effects of estrogens have been well established in ischemic stroke models, the effects of estrogens on BBB integrity remain to be elucidated. In the present study, we determined effects of 17beta-estradiol (E2) on BBB disruption induced by transient focal cerebral ischemia and its effects on MMP2 and MMP9 activation. Transient cerebral ischemia was induced by middle cerebral artery (MCA) occlusion for 1 h followed by reperfusion in ovariectomized rats. E2 (100 microg/kg) or vehicle was administered 2 h before MCA occlusion. BBB integrity was determined by fluorescent detection of extravasated Evans blue. In separate experiments, effect of E2 on MMP2 and MMP9 expression and activation was determined by immunoblot and MMPs activity assay. E2 treatment prevented more than 50% and 30% of BBB disruption in the ischemic cortex and subcortex at 4 h after reperfusion, respectively. MMP2 and MMP9 expression was elevated at 2 h and peaked at 4 h after reperfusion in the ischemic cortex, which was markedly reduced by E2 treatment. E2 treatment also attenuated the increase of MMPs activity induced by ischemia-reperfusion injury. In conclusion, estrogens could attenuate BBB disruption induced by transient cerebral ischemia, by inhibition of MMP2 and MMP9 activation. Our results suggest an important role of estrogens as multiple targeting protectants against ischemic stroke on cellular as well as vascular components of central nervous system.
Collapse
Affiliation(s)
- Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas, Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Kahles T, Foerch C, Sitzer M, Schroeter M, Steinmetz H, Rami A, Neumann-Haefelin T. Tissue plasminogen activator mediated blood–brain barrier damage in transient focal cerebral ischemia in rats: Relevance of interactions between thrombotic material and thrombolytic agent. Vascul Pharmacol 2005; 43:254-9. [PMID: 16185938 DOI: 10.1016/j.vph.2005.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 07/29/2005] [Indexed: 11/29/2022]
Abstract
Thrombolysis with tPA for acute ischemic stroke is associated with an increased risk of intracerebral hemorrhage. We investigated the impact of thrombolysis with tPA on the blood-brain barrier in a suture occlusion model in rats. Cerebral ischemia was performed for 2 h followed by 22 h of reperfusion. Treatment groups received either saline (A), 10 mg/kg bw rtPA (B) or "activated" rtPA (ArtPA, C, rtPA with in vitro clot contact). Blood-brain-barrier damage assessed by Evans blue extravasation as a permeability marker was significantly enhanced in basal ganglia of group C compared to groups A or B. Likewise was the upregulation of MMP-9. Interestingly, results of the rtPA and saline group showed only minor and not statistically significant differences. The results of the present study indicate a major role for thrombus-thrombolytic interaction in focal cerebral ischemia with subsequent increased BBB permeability.
Collapse
Affiliation(s)
- Timo Kahles
- Department of Neurology, University Hospital, JW Goethe University Frankfurt, Schleusenweg 2-16, ZNN, 60528 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
183
|
Copin JC, Goodyear MC, Gidday JM, Shah AR, Gascon E, Dayer A, Morel DM, Gasche Y. Role of matrix metalloproteinases in apoptosis after transient focal cerebral ischemia in rats and mice. Eur J Neurosci 2005; 22:1597-608. [PMID: 16197500 DOI: 10.1111/j.1460-9568.2005.04367.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The involvement of matrix metalloproteinases (MMPs) in cerebral ischemia-induced apoptosis was investigated in a model of transient focal cerebral ischemia in rats treated intracerebroventricularly (i.c.v.) with 4-((3-(4-phenoxylphenoxy)propylsulfonyl)methyl)-tetrahydropyran-4-carboxylic acid N-hydroxy amide, a broad spectrum non-peptidic hydroxamic acid MMP inhibitor, and in MMP-9-deficient mice. Our results showed that MMP inhibition reduced DNA fragmentation by 51% (P < 0.001) and cerebral infarct by 60% (P < 0.05) after ischemia. This protection was concomitant with a 29% reduction of cytochrome c release into the cytosol (P < 0.005) and a 54% reduction of calpain-related alpha-spectrin degradation (P < 0.05), as well as with an 84% increase in the immunoreactive signal of the native form of poly(ADP) ribose polymerase (P < 0.01). By contrast, specific targeting of the mmp9 gene in mice did reduce cerebral damage by 34% (P < 0.05) but did not modify the apoptotic response after cerebral ischemia. However, i.c.v. injection of MMP-9-deficient mice with the same broad-spectrum inhibitor used in rats significantly reduced DNA degradation by 32% (P < 0.05) and contributed even further to the protection of the ischemic brain. Together, our pharmacological and genetic results indicate that MMPs other than MMP-9 are actively involved in cerebral ischemia-induced apoptosis.
Collapse
|
184
|
Ahmed MM, Arif M, Chikuma T, Kato T. Pentylenetetrazol-induced seizures affect the levels of prolyl oligopeptidase, thimet oligopeptidase and glial proteins in rat brain regions, and attenuation by MK-801 pretreatment. Neurochem Int 2005; 47:248-59. [PMID: 15985312 DOI: 10.1016/j.neuint.2005.04.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/20/2005] [Accepted: 04/21/2005] [Indexed: 11/27/2022]
Abstract
The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the present study, we examined the involvement of prolyl oligopeptidase (POP), thimet oligopeptidase/neurolysin (EP 24.15/16) and glial proteins in PTZ-treated rat brain regions, and the suppressive effect of MK-801, a non-competitive NMDA receptor antagonist, pretreatment for their proteins. The activity of POP significantly decreased in the hippocampus at 30min and 3h, and in the frontal cortex at 3h after PTZ treatment, and pretreatment with MK-801 recovered the activity in the cortex at 3h. The activity of EP 24.15/16 significantly decreased in the hippocampus at 3h and 1 day, and in the cortex at 3h after the PTZ administration, whereas pretreatment with MK-801 recovered the change of the activity. The Western blot analysis of EP 24.15 showed significant decrease of the protein level in the hippocampus 3h after the PTZ treatment, whereas pretreatment with MK-801 recovered. The expression of GFAP and CD11b immunohistochemically increased in the hippocampus of the PTZ-treated rat as compared with controls. Pretreatment with MK-801 also recovered the GFAP and CD11b expression. These data suggest that PTZ-induced seizures of the rats cause indirect activation of glutamate NMDA receptors, then decrease POP and EP 24.15/16 enzyme activities and EP 24.15 immunoreactivity in the neuronal cells of the hippocampal formation. We speculate that changes of those peptidases in the brain may be related to the levels of the neuropeptides regulating PTZ-induced seizures.
Collapse
Affiliation(s)
- M Mahiuddin Ahmed
- Laboratory of Natural Information Science, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | | | | | | |
Collapse
|
185
|
Zhou YP, Madjidi A, Wilson ME, Nothhelfer DA, Johnson JH, Palma JF, Schweitzer A, Burant C, Blume JE, Johnson JD. Matrix metalloproteinases contribute to insulin insufficiency in Zucker diabetic fatty rats. Diabetes 2005; 54:2612-9. [PMID: 16123349 DOI: 10.2337/diabetes.54.9.2612] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To assess the molecular changes associated with pancreatic beta-cell dysfunction occurring during the onset of type 2 diabetes, we profiled pancreatic islet mRNAs from diabetic male and high-fat-fed female Zucker diabetic fatty (ZDF) rats and their nondiabetic lean counterparts on custom islet-specific oligonucleotide arrays. The most prominent changes in both the male and female models of type 2 diabetes were increases in the mRNAs encoding proteases and extracellular matrix components that are associated with tissue remodeling and fibrosis. The mRNAs for metalloproteinase (MMP)-2, -12, and -14 were sharply increased with the onset of islet dysfunction and diabetes. Zymography of islet extracts revealed a concurrent, >10-fold increase in MMP-2 protease activity in islets from 9-week-old male ZDF rats. Treatment of female ZDF rats receiving a diabetogenic diet with PD166793, a broad-spectrum MMP inhibitor, substantially prevented diabetes. The effect of this compound was due in part to marked beta-cell expansion. These studies indicate that MMPs contribute to islet fibrosis and insulin insufficiency in ZDF rats. Class-targeted protease inhibitors should be explored for their potential therapeutic utility in preservation of beta-cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Yun-Ping Zhou
- Metabolex, 3876 Bay Center Place, Hayward, CA 94583, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 2005; 25:6401-8. [PMID: 16000631 PMCID: PMC6725288 DOI: 10.1523/jneurosci.1563-05.2005] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 05/16/2005] [Indexed: 11/21/2022] Open
Abstract
Neuronal cell death occurs during many neurodegenerative disorders and stroke. The aberrant, excessive activity of matrix metalloproteinases (MMPs), especially MMP-9, contributes directly to neuron apoptosis and brain damage (Rosenberg et al., 1996; Asahi et al., 2001; Gu et al., 2002; Horstmann et al., 2003). We determined that MMP-9 degrades the extracellular matrix protein laminin and that this degradation induces neuronal apoptosis in a transient focal cerebral ischemia model in mice. We also determined that the highly specific thiirane gelatinase inhibitor SB-3CT blocks MMP-9 activity, including MMP-9-mediated laminin cleavage, thus rescuing neurons from apoptosis. We conclude that MMP-9 is a highly promising drug target and that SB-3CT derivatives have significant therapeutic potential in stroke patients.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cerebral Infarction/drug therapy
- Cerebral Infarction/enzymology
- Cerebral Infarction/pathology
- Collagenases/pharmacology
- Drug Administration Schedule
- Drug Evaluation, Preclinical
- Enzyme Precursors/pharmacology
- Heterocyclic Compounds, 1-Ring/administration & dosage
- Heterocyclic Compounds, 1-Ring/pharmacology
- Heterocyclic Compounds, 1-Ring/therapeutic use
- Infusion Pumps, Implantable
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/enzymology
- Ischemic Attack, Transient/pathology
- Kinetics
- Laminin/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/pharmacology
- Matrix Metalloproteinase 9/physiology
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases/pharmacology
- Matrix Metalloproteinases, Membrane-Associated
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/enzymology
- Neurons/pathology
- Protease Inhibitors/administration & dosage
- Protease Inhibitors/pharmacology
- Protease Inhibitors/therapeutic use
- Reperfusion
- Sulfones/administration & dosage
- Sulfones/pharmacology
- Sulfones/therapeutic use
Collapse
Affiliation(s)
- Zezong Gu
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Rosell A, Alvarez-Sabín J, Arenillas JF, Rovira A, Delgado P, Fernández-Cadenas I, Penalba A, Molina CA, Montaner J. A Matrix Metalloproteinase Protein Array Reveals a Strong Relation Between MMP-9 and MMP-13 With Diffusion-Weighted Image Lesion Increase in Human Stroke. Stroke 2005; 36:1415-20. [PMID: 15947272 DOI: 10.1161/01.str.0000170641.01047.cc] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Matrix metalloproteinases (MMPs) are involved in tissue destruction produced by the neuroinflammatory response that follows ischemic stroke. In the present study we use an MMP array to investigate the blood levels of several MMPs in stroke patients and its relation with brain tissue damage and neurological outcome.
Methods—
Twenty-four patients with middle cerebral artery occlusion who received thrombolytic therapy were included. Blood samples were drawn before tissue plasminogen activator treatment and an MMP array (multiplex enzyme-linked immunosorbent assay [ELISA]) was performed including gelatinases (MMP-2 and MMP-9), collagenases (MMP-1, MMP-8, and MMP-13), stromelysines (MMP-3 and MMP-10), and MMP endogen inhibitors (TIMP-1 and TIMP-2). To assess tissue lesion a serial multimodal MRI study was performed (pretreatment and at 24 hours).
Results—
Neither initial diffusion lesion nor hypoperfused volume was associated with metalloproteinase expression within the first 3 hours after stroke onset. Nevertheless, a strong correlation was found between MMP-9 and MMP-13 with diffusion-weighted image (DWI) lesion expansion (
r
=0.54,
P
=0.05 and
r
=0.60,
P
=0.017, respectively). Baseline levels of both MMP-9 (OR, 14;95% CI, 1.5 to 131;
P
=0.019) and MMP-13 (OR, 73; 95% CI, 3.9 to 1388;
P
=0.004) were independent predictors of final increase in brain infarct volume at 24 hours.
Conclusions—
Our results demonstrate that within the neuroinflammatory response, high levels of MMP-9 and MMP-13 are involved in DWI lesion growth despite thrombolytic therapy, suggesting its ultra-early role in brain injury.
Collapse
Affiliation(s)
- Anna Rosell
- Neurology Department, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Matrix metalloproteinases (MMPs) are matrix-degrading enzymes involved in diverse homeostatic and pathological processes. Several MMPs are expressed within the CNS and serve important normal and pathological functions during development and adulthood. An early and major pathological effect of MMP activity after cerebral ischemia is opening of the blood-brain barrier (BBB). More recent work demonstrates emerging roles for MMPs and their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), in the regulation of neuronal cell death. In addition, MMPs and TIMPs are likely to play important roles during the repair phases of cerebral ischemia, particularly during angiogenesis and reestablishment of cerebral blood flow. This review attempts to elucidate how MMPs and TIMPs may provide detrimental or beneficial actions during the injury and repair processes after cerebral ischemia. These processes will have important implications for therapies using MMP inhibitors in stroke.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Departments of Neurosciences and Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Monica Wetzel
- Departments of Neurosciences and Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Gary A Rosenberg
- Departments of Neurosciences and Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
189
|
Takahashi H, Nagai N, Urano T. Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia. Neurosci Lett 2005; 381:189-93. [PMID: 15882815 DOI: 10.1016/j.neulet.2005.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/10/2005] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
We studied the possible involvement of the tissue plasminogen activator (t-PA)/plasmin system on both delayed neuronal death in the hippocampus and the associated enhancement of locomotor activity in rats, after transient forebrain ischemia induced by a four-vessel occlusion (FVO). Seven days after FVO, locomotor activity was abnormally increased and, after 10 days, pyramidal cells were degraded in the CA1 region of the hippocampus. FVO increased the t-PA antigen level and its activity in the hippocampus, which peaked at 4 h. Both the enhanced locomotor activity and the degradation of pyramidal cells were significantly suppressed by intracerebroventricular injection of aprotinin, a plasmin inhibitor, at 4 h but not during FVO. These results suggest the importance of the t-PA/plasmin cascade during the early pathological stages of delayed neuronal death in the hippocampus following transient forebrain ischemia.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Department of Neurosurgery, Fujinomiya City General Hospital, Fujinomiya-shi, Shizuoka-ken 418-0076, Japan
| | | | | |
Collapse
|
190
|
Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. ACTA ACUST UNITED AC 2005; 128:1622-33. [PMID: 15800021 DOI: 10.1093/brain/awh489] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracerebral haemorrhage (ICH) is an acute neurological disorder without effective treatment. Mechanisms of acute brain injury after ICH remain to be clarified. Although a few studies suggested a detrimental role for the gelatinase matrix metalloproteinase (MMP)-9 in ICH, the relationship between MMP-9 activity and acute brain injury after ICH is not determined. In this study, we first examined the expression of gelatinases in vivo using a collagenase-induced mouse model of ICH. Gel zymography revealed that MMP-9 was activated and upregulated after ICH. In situ zymography showed that gelatinase activity was mostly co-localized with neurons and endothelial cells of the blood vessel matrix. Inhibition with a broad-spectrum metalloproteinase inhibitor GM6001 (100 mg/kg) ameliorated dysregulated gelatinase activity, neutrophil infiltration, production of oxidative stress, brain oedema and degenerating neurons. Functional improvement and a decrease in injury volume were also observed. We provide evidence that MMP-9 may play a deleterious role in acute brain injury within the first 3 days after ICH. Blockade of MMP activity during this critical period may have efficacy as a therapeutic strategy for the treatment of acute brain injury after ICH.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
191
|
Kauppinen TM, Swanson RA. Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. THE JOURNAL OF IMMUNOLOGY 2005; 174:2288-96. [PMID: 15699164 DOI: 10.4049/jimmunol.174.4.2288] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated microglia contribute to cell death in ischemic and neurodegenerative disorders of the CNS. Microglial activation is regulated in part by NF-kappaB, and the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) enhances NF-kappaB binding to DNA. In this study, the role of PARP-1 in microglia-mediated neurotoxicity was assessed using microglia from wild-type (wt) and PARP-1-/- mice. Cultured microglia were incubated with TNF-alpha, a cytokine that is up-regulated in many neurological disorders. When stimulated with TNF-alpha, wt microglia proliferated, underwent morphological changes characteristic of activation, and killed neurons placed in coculture. The effects of TNF-alpha were markedly attenuated both in PARP-1-/- microglia and in wt microglia treated with the PARP enzymatic inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2h)-isoquinolinone. These effects were also blocked by (E)-3-(4-methylphenylsulfonyl)-2-propenenenitrile, which inhibits translocation of NF-kappaB to the nucleus. TNF-alpha also up-regulated microglial release of matrix metalloproteinase-9 (MMP-9), an enzyme with potential neurotoxic properties that is transcriptionally regulated by NF-kappaB. This up-regulation was blocked in PARP-1-/- microglia and in wt microglia by the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2h)-isoquinolinone. Microglia from MMP-9-/- mice were used to evaluate the contribution of MMP-9 to microglial neurotoxicity. MMP-9-/- microglia treated with TNF-alpha showed substantially reduced neurotoxicity relative to the wt microglia. TNF-alpha-stimulated wt microglia treated with the MMP inhibitor ilomastat also showed reduced neurotoxicity. These findings suggest that PARP-1 activation is required for both TNF-alpha-induced microglial activation and the neurotoxicity resulting from TNF-alpha-induced MMP-9 release.
Collapse
Affiliation(s)
- Tiina M Kauppinen
- Department of Neurology, University of California, and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | |
Collapse
|
192
|
Ciborowski P, Enose Y, Mack A, Fladseth M, Gendelman HE. Diminished matrix metalloproteinase 9 secretion in human immunodeficiency virus-infected mononuclear phagocytes: modulation of innate immunity and implications for neurological disease. J Neuroimmunol 2005; 157:11-6. [PMID: 15579275 DOI: 10.1016/j.jneuroim.2004.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 12/01/2022]
Abstract
Neurotoxic secretory products from virus-infected mononuclear phagocytes (MP; perivascular macrophages and microglia) orchestrate the neuropathogenesis of human immunodeficiency virus type one (HIV-1) infection. To uncover such MP products and their relationship to disease, we used a proteomics platform consisting of one dimensional polyacrylamide gel electrophoresis (1-DE), mass spectrometry peptide sequencing, and bioinformatics in order to identify from HIV-1-infected monocyte-derived macrophages (MDM) secretions. Matrix metalloproteinase 9 (MMP 9) secreted in abundance in MDM was markedly down-regulated following viral infection. A negative correlation between MMP 9 and HIV-1 reverse transcriptase activity was shown by quantitative Western blot assays. These data further demonstrate immunoregulatory activities of HIV-1-infected MDM providing unique insights into cellular function in disease.
Collapse
Affiliation(s)
- Pawel Ciborowski
- Center for Neurovirology and Neurodegenerative Disorders, 985215 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5215, U SA.
| | | | | | | | | |
Collapse
|
193
|
Magnoni S, Baker A, George SJ, Duncan WC, Kerr LE, McCulloch J, Horsburgh K. Differential alterations in the expression and activity of matrix metalloproteinases 2 and 9 after transient cerebral ischemia in mice. Neurobiol Dis 2004; 17:188-97. [PMID: 15474357 DOI: 10.1016/j.nbd.2004.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 07/09/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022] Open
Abstract
Abnormal expression and activity of matrix metalloproteinases (MMPs) may contribute to the pathophysiology of cerebral disease such as ischemic injury. In this study, we compared the cellular localization, expression, and activity of MMP-2 and -9 in relation to the evolution of neuronal damage 24 and 72 h after transient global ischemia. In response to ischemia, there was a generalized increase in cellular MMP-2 immunoreactivity at 24-h reperfusion (in neurons, glia and vessels) whereas at 72-h reperfusion the increase in MMP-2 was predominantly in glia. These glial alterations contributed to a significant increase in pro MMP-2 levels in ischemic regions (P < 0.01) as measured by zymography. In contrast, MMP-9 was predominantly upregulated in neurons and this was significantly different to shams at 24- and 72-h reperfusion after ischemia (P < 0.05). Notably, a dramatic increase in proteolytic activity in neurons was observed 24 h after ischemia and this response was absent at 72 h post-ischemia. The present data are supportive of a role for MMPs in contributing to neuronal injury after ischemia.
Collapse
Affiliation(s)
- Sandra Magnoni
- Division of Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, UK. smagnoni@
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Tissue plasminogen activator (tPA), a fibrin specific activator for the conversion of plasminogen to plasmin, stimulates thrombolysis and rescues ischemic brain by restoring blood flow. However, emerging data suggests that under some conditions, both tPA and plasmin, which are broad spectrum protease enzymes, are potentially neurotoxic if they reach the extracellular space. Animal models suggest that in severe ischemia with injury to the blood brain barrier (BBB) there is injury attributed to the protease effects of this exogenous tPA. Besides clot lysis per se, tPA may have pleiotropic actions in the brain, including direct vasoactivity, cleaveage of the N-methyl-D-aspartate (NMDA) NR1 subunit, amplification of intracellular Ca++ conductance, and activation of other extracellular proteases from the matrix metalloproteinase (MMP) family, e.g. MMP-9. These effects may increase excitotoxicity, further damage the BBB, and worsen edema and cerebral hemorrhage. If tPA is effective and reverses ischemia promptly, the BBB remains intact and exogenous tPA remains within the vascular space. If tPA is ineffective and ischemia is prolonged, there is the risk that exogenous tPA will injure both the neurovascular unit and the brain. Methods of neuroprotection, which prevent tPA toxicity or additional mechanical means to open cerebral vessels, are now needed.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Stroke Program, Calgary Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
195
|
Frederiks WM, Mook ORF. Metabolic mapping of proteinase activity with emphasis on in situ zymography of gelatinases: review and protocols. J Histochem Cytochem 2004; 52:711-22. [PMID: 15150280 DOI: 10.1369/jhc.4r6251.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteases are essential for protein catabolism, regulation of a wide range of biological processes, and in the pathogenesis of many diseases. Several techniques are available to localize activity of proteases in tissue sections or cell preparations. For localization of the activity of matrix metalloproteinases, in situ zymography was introduced some decades ago. The procedure is based on zymography using SDS polyacrylamide gels containing gelatin, casein, or fibrin as substrate. For in situ zymography, either a photographic emulsion containing gelatin or a fluorescence-labeled proteinaceous macromolecular substrate is brought into contact with a tissue section or cell preparation. After incubation, enzymatic activity is revealed as white spots in a dark background or as black spots in a fluorescent background. However, this approach does not allow precise localization of proteinase activity because of limited sensitivity. A major improvement in sensitivity was achieved with the introduction of dye-quenched (DQ-)gelatin, which is gelatin that is heavily labeled with FITC molecules so that its fluorescence is quenched. After cleavage of DQ-gelatin by gelatinolytic activity, fluorescent peptides are produced that are visible against a weakly fluorescent background. The incubation with DQ-gelatin can be combined with simultaneous immunohistochemical detection of a protein on the same section. To draw valid conclusions from the findings with in situ zymography, specific inhibitors need to be used and the technique has to be combined with immunohistochemistry and zymography. In that case, in situ zymography provides data that extend our understanding of the role of specific proteinases in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Wilma M Frederiks
- Academic Medical Center, University of Amsterdam, Department of Cell Biology and Histology, Amsterdam, The Netherlands.
| | | |
Collapse
|
196
|
Lee SR, Lo EH. Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J Cereb Blood Flow Metab 2004; 24:720-7. [PMID: 15241180 DOI: 10.1097/01.wcb.0000122747.72175.47] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Matrix metalloproteinases (MMPs) may contribute to the pathophysiology of cerebral ischemia by degrading matrix components in the neurovascular unit. In this study, the authors document a pathway by which MMPs interfere with cell-matrix interactions and trigger caspase-mediated cytotoxicity in brain endothelial cells. Hypoxia-reoxygenation induced endothelial cytotoxicity. Cytoprotection with zDEVD-fmk confirmed that cell death was partly caspase mediated. The temporal profile of caspase-3 activation was matched by elevations in MMP-2 and MMP-9. MMP inhibitors significantly decreased caspase-3 activation and reduced endothelial cell death. Degradation of matrix fibronectin confirmed the presence of extracellular proteolysis. Increasing integrin-linked kinase signaling with the beta1 integrin-activating antibody (8A2) ameliorated endothelial cytotoxicity. The results suggest that MMP-9 and MMP-2 contribute to caspase-mediated brain endothelial cell death after hypoxia-reoxygenation by disrupting cell-matrix interactions and homeostatic integrin signaling.
Collapse
Affiliation(s)
- Sun-Ryung Lee
- Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
197
|
Dittmar M, Kiourkenidis G, Horn M, Bollwein S, Bernhardt G. Cerebral ischemia, matrix metalloproteinases, and TNF-alpha: MMP inhibitors may act not exclusively by reducing MMP activity. Stroke 2004; 35:e338-40; author reply e338-40. [PMID: 15192238 DOI: 10.1161/01.str.0000135294.08862.5d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
198
|
Dzwonek J, Rylski M, Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett 2004; 567:129-35. [PMID: 15165905 DOI: 10.1016/j.febslet.2004.03.070] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/03/2004] [Accepted: 03/07/2004] [Indexed: 11/29/2022]
Abstract
More than 20 matrix metalloproteinases (MMPs) and four of their endogenous tissue inhibitors (TIMPs) act together to control tightly temporally restricted, focal proteolysis of extracellular matrix. In the neurons of the adult brain several components of the TIMP/MMP system are expressed and are responsive to changes in neuronal activity. Furthermore, functional studies, especially involving blocking of MMP activities, along with the identification of MMP substrates in the brain strongly suggest that this enzymatic system plays an important physiological role in adult brain neurons, possibly being pivotal for neuronal plasticity.
Collapse
Affiliation(s)
- Joanna Dzwonek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | | | | |
Collapse
|