151
|
Neve B, Le Bacquer O, Caron S, Huyvaert M, Leloire A, Poulain-Godefroy O, Lecoeur C, Pattou F, Staels B, Froguel P. Alternative human liver transcripts of TCF7L2 bind to the gluconeogenesis regulator HNF4α at the protein level. Diabetologia 2014; 57:785-96. [PMID: 24463962 DOI: 10.1007/s00125-013-3154-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/10/2013] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS Gene polymorphisms of TCF7L2 are associated with increased risk of type 2 diabetes and transcription factor 7-like 2 (TCF7L2) plays a role in hepatic glucose metabolism. We therefore addressed the impact of TCF7L2 isoforms on hepatocyte nuclear factor 4α (HNF4α) and the regulation of gluconeogenesis genes. METHODS Liver TCF7L2 transcripts were analysed by quantitative PCR in 33 non-diabetic and 31 type 2 diabetic obese individuals genotyped for TCF7L2 rs7903146. To analyse transcriptional regulation by TCF7L2, small interfering RNA transfection, luciferase reporter and co-immunoprecipitation assays were performed in human hepatoma HepG2 cells. RESULTS In livers of diabetic compared with normoglycaemic individuals, five C-terminal TCF7L2 transcripts showed increased expression. The type 2 diabetes risk allele of rs7903146 positively correlated with TCF7L2 expression in livers from normoglycaemic individuals only. In HepG2 cells, transcript and TCF7L2 protein levels were increased upon incubation in high glucose and insulin. Of the exon 13 transcripts, six were increased in a glucose dose-responsive manner. TCF7L2 transcriptionally regulated 29 genes related to glucose metabolism, including glucose-6-phosphatase. In cultured HepG2 cells, TCF7L2 did not regulate HNF4Α and FOXO1 transcription, but did affect HNF4α protein expression. The TCF7L2 isoforms T6 and T8 (without exon 13 and with exon 15/14, respectively) specifically interacted with HNF4α. CONCLUSIONS/INTERPRETATION The different levels of expression of alternative C-terminal TCF7L2 transcripts in HepG2 cells, in livers of normoglycaemic individuals carrying the rs7901346 type 2 diabetes risk allele and in livers of diabetic individuals suggest that these transcripts play a role in the pathophysiology of type 2 diabetes. We also report for the first time a protein interaction in HepG2 cells between HNF4α and the T6 and T8 isoforms of TCF7L2, which suggests a distinct role for these specific alternative transcripts.
Collapse
Affiliation(s)
- Bernadette Neve
- European Genomic Institute for Diabetes (EGID), Lille, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Torekov SS, Iepsen E, Christiansen M, Linneberg A, Pedersen O, Holst JJ, Kanters JK, Hansen T. KCNQ1 long QT syndrome patients have hyperinsulinemia and symptomatic hypoglycemia. Diabetes 2014; 63:1315-25. [PMID: 24357532 DOI: 10.2337/db13-1454] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with loss-of-function mutations in KCNQ1 have KCNQ1 long QT syndrome (LQTS). KCNQ1 encodes a voltage-gated K(+) channel located in both cardiomyocytes and pancreatic β-cells. Inhibition of KCNQ1 in β-cells increases insulin secretion. Therefore KCNQ1 LQTS patients may exhibit increased insulin secretion. Fourteen patients, from six families, diagnosed with KCNQ1 LQTS were individually matched to two randomly chosen BMI-, age-, and sex-matched control participants and underwent an oral glucose tolerance test (OGTT), a hypoglycemia questionnaire, and continuous glucose monitoring. KCNQ1 mutation carriers showed increased insulin release (area under the curve 45.6 ± 6.3 vs. 26.0 ± 2.8 min ⋅ nmol/L insulin) and β-cell glucose sensitivity and had lower levels of plasma glucose and serum potassium upon oral glucose stimulation and increased hypoglycemic symptoms. Prolonged OGTT in four available patients and matched control subjects revealed hypoglycemia in carriers after 210 min (range 1.4-3.6 vs. 4.1-5.3 mmol/L glucose), and 24-h glucose profiles showed that the patients spent 77 ± 18 min per 24 h in hypoglycemic states (<3.9 mmol/L glucose) with 36 ± 10 min (<2.8 mmol/L glucose) vs. 0 min (<3.9 mmol/L glucose) for the control participants. The phenotype of patients with KCNQ1 LQTS, caused by mutations in KCNQ1, includes, besides long QT, hyperinsulinemia, clinically relevant symptomatic reactive hypoglycemia, and low potassium after an oral glucose challenge, suggesting that KCNQ1 mutations may explain some cases of "essential" reactive hypoglycemia.
Collapse
Affiliation(s)
- Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014; 10:e1004160. [PMID: 24603685 PMCID: PMC3945174 DOI: 10.1371/journal.pgen.1004160] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023] Open
Abstract
Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3'UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼ 7%) and overrepresented in the open sea (∼ 60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D.
Collapse
|
154
|
Affiliation(s)
- L. Eliasson
- Department of Clinical Sciences Malmö; Lund University Diabetes Centre; Lund University; Malmö Sweden
| |
Collapse
|
155
|
Giannini C, Dalla Man C, Groop L, Cobelli C, Zhao H, Shaw MM, Duran E, Pierpont B, Bale AE, Caprio S, Santoro N. Co-occurrence of risk alleles in or near genes modulating insulin secretion predisposes obese youth to prediabetes. Diabetes Care 2014; 37:475-82. [PMID: 24062323 PMCID: PMC3898754 DOI: 10.2337/dc13-1458] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Paralleling the rise of pediatric obesity, the prevalence of impaired glucose tolerance (IGT) and type 2 diabetes (T2D) is increasing among youth. In this study, we asked whether the co-occurrence of risk alleles in or near five genes modulating insulin secretion (TCF7L2 rs7903146, IGF2BP2 rs4402960, CDKAL1 rs7754840, HHEX rs1111875, and HNF1A rs1169288) is associated with a higher risk of IGT/T2D in obese children and adolescents. RESEARCH DESIGN AND METHODS We studied 714 obese subjects (290 boys and 424 girls; mean age 13.6 ± 3.1 years; mean z score BMI 2.2 ± 0.4) and evaluated the insulin secretion by using the oral minimal model and, in a subgroup of 37 subjects, the hyperglycemic clamp. Also, 203 subjects were followed up for a mean of 2.1 years. RESULTS We observed that the increase of risk alleles was associated with a progressive worsening of insulin secretion (P < 0.001) mainly due to an impairment of the dynamic phase of insulin secretion (P = 0.004); the higher the number of the risk alleles, the higher the chance of progression from normal glucose tolerance (NGT) to IGT/T2D (P = 0.022). Also, for those who were IGT at baseline, a higher risk score was associated with a lower odds to revert to NGT (P = 0.026). CONCLUSIONS Obese children and adolescents developing IGT/T2D have a higher genetic predisposition than those who do not show these diseases, and this predisposition is mainly related to gene variants modulating the early phase of insulin secretion. Although these data are very interesting, they need to be replicated in other cohorts.
Collapse
|
156
|
Abstract
Ion channels are essential for basic cellular function and for processes including sensory perception and intercellular communication in multicellular organisms. Voltage-gated potassium (Kv) channels facilitate dynamic cellular repolarization during an action potential, opening in response to membrane depolarization to facilitate K+ efflux. In both excitable and nonexcitable cells other, constitutively active, K+ channels provide a relatively constant repolarizing force to control membrane potential, ion homeostasis, and secretory processes. Of the forty known human Kv channel pore-forming α subunits that coassemble in various combinations to form the fundamental tetrameric channel pore and voltage sensor module, KCNQ1 is unique. KCNQ1 stands alone in having the capacity to form either channels that are voltage-dependent and require membrane depolarization for activation, or constitutively active channels. In mammals, KCNQ1 regulates processes including gastric acid secretion, thyroid hormone biosynthesis, salt and glucose homeostasis, and cell volume and in some species is required for rhythmic beating of the heart. In this review, the author discusses the unique functional properties, regulation, cell biology, diverse physiological roles, and involvement in human disease states of this chameleonic K+ channel.
Collapse
|
157
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
158
|
Chen X, Green AS, Macko AR, Yates DT, Kelly AC, Limesand SW. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep. Am J Physiol Endocrinol Metab 2014; 306:E58-64. [PMID: 24253046 PMCID: PMC3920003 DOI: 10.1152/ajpendo.00517.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets.
Collapse
Affiliation(s)
- Xiaochuan Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China; and
| | | | | | | | | | | |
Collapse
|
159
|
Locke JM, da Silva Xavier G, Dawe HR, Rutter GA, Harries LW. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia 2014; 57:122-8. [PMID: 24149837 PMCID: PMC3855472 DOI: 10.1007/s00125-013-3089-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. METHODS Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. RESULTS In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- J. M. Locke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW UK
| | - G. da Silva Xavier
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | - H. R. Dawe
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - G. A. Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | - L. W. Harries
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
160
|
Reinbothe TM, Safi F, Axelsson AS, Mollet IG, Rosengren AH. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2. Islets 2014; 6:e28095. [PMID: 25483880 PMCID: PMC4593566 DOI: 10.4161/isl.28095] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Insulin is secreted from the pancreatic β-cells in response to elevated glucose. In intact islets the capacity for insulin release is determined by a complex interplay between different cell types. This has made it difficult to specifically assess the role of β-cell defects to the insulin secretory impairment in type 2 diabetes. Here we describe a new approach, based on optogenetics, that enables specific investigation of β-cells in intact islets. We used transgenic mice expressing the light-sensitive cation channel Channelrhodopsin-2 (ChR2) under control of the insulin promoter. Glucose tolerance in vivo was assessed using intraperitoneal glucose tolerance tests, and glucose-induced insulin release was measured from static batch incubations. ChR2 localization was determined by fluorescence confocal microscopy. The effect of ChR2 stimulation with blue LED light was assessed using Ca(2+) imaging and static islet incubations. Light stimulation of islets from transgenic ChR2 mice triggered prompt increases in intracellular Ca(2+). Moreover, light stimulation enhanced insulin secretion in batch-incubated islets at low and intermediate but not at high glucose concentrations. Glucagon release was not affected. Beta-cells from mice rendered diabetic on a high-fat diet exhibited a 3.5-fold increase in light-induced Ca(2+) influx compared with mice on a control diet. Furthermore, light enhanced insulin release also at high glucose in these mice, suggesting that high-fat feeding leads to a compensatory potentiation of the Ca(2+) response in β-cells. The results demonstrate the usefulness and versatility of optogenetics for studying mechanisms of perturbed hormone secretion in diabetes with high time-resolution and cell-specificity.
Collapse
|
161
|
Abstract
ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
162
|
Kong X, Hong J, Chen Y, Chen L, Zhao Z, Li Q, Ge J, Chen G, Guo X, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Zhou Z, Shan G, Yang W. Association of genetic variants with isolated fasting hyperglycaemia and isolated postprandial hyperglycaemia in a Han Chinese population. PLoS One 2013; 8:e71399. [PMID: 23990951 PMCID: PMC3747192 DOI: 10.1371/journal.pone.0071399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Though multiple single nucleotide polymorphisms (SNPs) associated with type 2 diabetes have been identified, the genetic bases of isolated fasting hyperglycaemia (IFH) and isolated postprandial hyperglycaemia (IPH) were still unclear. In present study, we aimed to investigate the association of genome-wide association study-validated genetic variants and IFH or IPH in Han Chinese. METHODS/PRINCIPAL FINDINGS We genotyped 27 validated SNPs in 6,663 unrelated individuals comprising 341 IFH, 865 IPH, 1,203 combined fasting hyperglycaemia and postprandial hyperglycaemia, and 4,254 normal glycaemic subjects of Han ancestry. The distributions of genotype frequencies of FTO, CDKAL1 and GCKR were significant different between individuals with IFH and those with IPH (SNP(ptrend ): rs8050136(0.0024), rs9939609(0.0049), rs7756992(0.0122), rs780094(0.0037)). Risk allele of FTO specifically increased the risk of IFH (rs8050136: OR 1.403 [95% CI 1.125-1.750], p = 0.0027; rs9939609: 1.398 [1.120-1.744], p = 0.0030). G allele of CDKAL1 specifically increased the risk of IPH (1.217 [1.092-1.355], p = 0.0004). G allele of GCKR increased the risk of IFH (1.167 [0.999-1.362], p = 0.0513), but decreased the risk of IPH (0.891 [0.801-0.991], p = 0.0331). In addition, TCF7L2 and KCNQ1 increased the risk of both IFH and IPH. When combined, each additional risk allele associated with IFH increased the risk for IFH by 1.246-fold (p<0.0001), while each additional risk allele associated with IPH increased the risk for IPH by 1.190-fold (p<0.0001). CONCLUSION/SIGNIFICANCE Our results indicate that genotype distributions of variants from FTO, GCKR, CDKAL1 were different between IPH and IFH in Han Chinese. Variants of genes modulating insulin sensitivity (FTO, GCKR) contributed to the risk of IFH, while variants of genes related to beta cell function (CDKAL1) increase the risk of IPH.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Endocrinology, Key Laboratory of Diabetes Prevention and Control, China-Japan Friendship Hospital, Beijing, China
| | - Jing Hong
- Department of Endocrinology, Key Laboratory of Diabetes Prevention and Control, China-Japan Friendship Hospital, Beijing, China
| | - Ying Chen
- Department of Bioinformatics, Beijing Genetics Institute, Shenzhen, Guangdong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhigang Zhao
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qiang Li
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiapu Ge
- Department of Endocrinology, Xinjiang Uygur Autonomous Region's Hospital, Urmqi, Xinjiang, China
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Juming Lu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jianping Weng
- Department of Endocrinology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiping Jia
- Department of Endocrinology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, China
| | - Jianzhong Xiao
- Department of Endocrinology, Key Laboratory of Diabetes Prevention and Control, China-Japan Friendship Hospital, Beijing, China
| | - Zhongyan Shan
- Department of Endocrinology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Liu
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Haoming Tian
- Department of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiuhe Ji
- Department of Endocrinology, Xijing Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhiguang Zhou
- Department of Endocrinology, Xiangya Second Hospital, Changsha, Hunan, China
| | - Guangliang Shan
- Department of Epidemiology, Peking Union Medical College, Beijing, China
| | - Wenying Yang
- Department of Endocrinology, Key Laboratory of Diabetes Prevention and Control, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
163
|
Meier JJ, Bonadonna RC. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 2013; 36 Suppl 2:S113-9. [PMID: 23882035 PMCID: PMC3920783 DOI: 10.2337/dcs13-2008] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Juris J Meier
- Division of Diabetology and Gastrointestinal Endocrinology, St. Josef-Hospital, Ruhr-University of Bochum, Bochum, Germany.
| | | |
Collapse
|
164
|
Chen LN, Lyu J, Yang XF, Ji WJ, Yuan BX, Chen MX, Ma X, Wang B. Liraglutide ameliorates glycometabolism and insulin resistance through the upregulation of GLUT4 in diabetic KKAy mice. Int J Mol Med 2013; 32:892-900. [PMID: 23877319 DOI: 10.3892/ijmm.2013.1453] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/12/2013] [Indexed: 11/06/2022] Open
Abstract
Liraglutide, a long-lasting glucagon‑like peptide‑1 analogue, has been used for the treatment of patients with type 2 diabetes mellitus since 2009. In this study, we investigated the anti-diabetic effects and mechanisms of action of liraglutide in a spontaneous diabetic animal model, using KK/Upj-Ay/J (KKAy) mice. The KKAy mice were divided into 2 groups, the liraglutide group (mice were treated with 250 µg/kg/day liraglutide) and the model group (treated with an equivalent amount of normal saline). C57BL/6J mice were used as the controls (treated with an equivalent amount of normal saline). The treatment period lasted 6 weeks. During this treatment period, fasting blood glucose (FBG) levels and the body weight of the mice were measured on a weekly basis. Our results revealed that liraglutide significantly decreased FBG levels, the area under the curve following a oral glucose tolerance test and insulin tolerance test, increased serum insulin levels, reduced homeostasis model assessment of insulin resistance and increased the insulin sensitivity index. Furthermore, liraglutide ameliorated glycometabolism dysfunction by increasing glycolysis via hexokinase and glycogenesis via pyruvate kinase activation. An ultrastructural examination of the pancreas revealed that liraglutide improved the damaged state of islet β cells and increased the number of insulin secretory granules. The real-time PCR results revealed that the gene expression of glucose transporter 4 (GLUT4) increased following treatment with liraglutide. Liraglutide also upregulated the protein expression of GLUT4 in liver tissue and skeletal muscle. Our results suggest that liraglutide ameliorates glycometabolism and insulin resistance in diabetic KKAy mice by stimulating insulin secretion, increasing glycogenesis and glycolysis and upregulating the expression of GLUT4.
Collapse
Affiliation(s)
- Li-Na Chen
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
165
|
A role for SPARC in the moderation of human insulin secretion. PLoS One 2013; 8:e68253. [PMID: 23840838 PMCID: PMC3695891 DOI: 10.1371/journal.pone.0068253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/26/2013] [Indexed: 01/03/2023] Open
Abstract
Aims/Hypothesis We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. Methods We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. Results SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). Conclusions Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue.
Collapse
|
166
|
Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 2013; 56:1036-46. [PMID: 23462794 PMCID: PMC3622750 DOI: 10.1007/s00125-012-2815-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/06/2012] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS To date, the molecular function of most of the reported type 2 diabetes-associated loci remains unknown. The introduction or removal of cytosine-phosphate-guanine (CpG) dinucleotides, which are possible sites of DNA methylation, has been suggested as a potential mechanism through which single-nucleotide polymorphisms (SNPs) can affect gene function via epigenetics. The aim of this study was to examine if any of 40 SNPs previously associated with type 2 diabetes introduce or remove a CpG site and if these CpG-SNPs are associated with differential DNA methylation in pancreatic islets of 84 human donors. METHODS DNA methylation was analysed using pyrosequencing. RESULTS We found that 19 of 40 (48%) type 2 diabetes-associated SNPs introduce or remove a CpG site. Successful DNA methylation data were generated for 16 of these 19 CpG-SNP loci, representing the candidate genes TCF7L2, KCNQ1, PPARG, HHEX, CDKN2A, SLC30A8, DUSP9, CDKAL1, ADCY5, SRR, WFS1, IRS1, DUSP8, HMGA2, TSPAN8 and CHCHD9. All analysed CpG-SNPs were associated with differential DNA methylation of the CpG-SNP site in human islets. Moreover, six CpG-SNPs, representing TCF7L2, KCNQ1, CDKN2A, ADCY5, WFS1 and HMGA2, were also associated with DNA methylation of surrounding CpG sites. Some of the type 2 diabetes CpG-SNP sites that exhibit differential DNA methylation were further associated with gene expression, alternative splicing events determined by splice index, and hormone secretion in the human islets. The 19 type 2 diabetes-associated CpG-SNPs are in strong linkage disequilibrium (r² > 0.8) with a total of 295 SNPs, including 91 CpG-SNPs. CONCLUSIONS/INTERPRETATION Our results suggest that the introduction or removal of a CpG site may be a molecular mechanism through which some of the type 2 diabetes SNPs affect gene function via differential DNA methylation and consequently contributes to the phenotype of the disease.
Collapse
Affiliation(s)
- T. A. Dayeh
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - A. H. Olsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - P. Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - P. Almgren
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - T. Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - C. Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| |
Collapse
|
167
|
Intracellular transport of insulin granules is a subordinated random walk. Proc Natl Acad Sci U S A 2013; 110:4911-6. [PMID: 23479621 DOI: 10.1073/pnas.1221962110] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We quantitatively analyzed particle tracking data on insulin granules expressing fluorescent fusion proteins in MIN6 cells to better understand the motions contributing to intracellular transport and, more generally, the means for characterizing systems far from equilibrium. Care was taken to ensure that the statistics reflected intrinsic features of the individual granules rather than details of the measurement and overall cell state. We find anomalous diffusion. Interpreting such data conventionally requires assuming that a process is either ergodic with particles working against fluctuating obstacles (fractional brownian motion) or nonergodic with a broad distribution of dwell times for traps (continuous-time random walk). However, we find that statistical tests based on these two models give conflicting results. We resolve this issue by introducing a subordinated scheme in which particles in cages with random dwell times undergo correlated motions owing to interactions with a fluctuating environment. We relate this picture to the underlying microtubule structure by imaging in the presence of vinblastine. Our results provide a simple physical picture for how diverse pools of insulin granules and, in turn, biphasic secretion could arise.
Collapse
|
168
|
Travers ME, Mackay DJ, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, Johnson PR, Hanley N, Groop LC, McCarthy MI, Gloyn AL. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes 2013; 62:987-92. [PMID: 23139357 PMCID: PMC3581222 DOI: 10.2337/db12-0819] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/19/2012] [Indexed: 01/20/2023]
Abstract
The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ1OT1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ1OT1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development.
Collapse
Affiliation(s)
- Mary E. Travers
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, U.K
| | | | | | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | | | - Andrew Berry
- Endocrinology and Diabetes, Faculty of Medical & Human Sciences, University of Manchester, Manchester, U.K
| | - Paul R. Johnson
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, U.K
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K
| | - Neil Hanley
- Endocrinology and Diabetes, Faculty of Medical & Human Sciences, University of Manchester, Manchester, U.K
| | | | - Mark I. McCarthy
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Anna L. Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| |
Collapse
|
169
|
Ho MM, Yoganathan P, Chu KY, Karunakaran S, Johnson JD, Clee SM. Diabetes genes identified by genome-wide association studies are regulated in mice by nutritional factors in metabolically relevant tissues and by glucose concentrations in islets. BMC Genet 2013; 14:10. [PMID: 23442068 PMCID: PMC3664586 DOI: 10.1186/1471-2156-14-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/21/2013] [Indexed: 01/03/2023] Open
Abstract
Background Genome-wide association studies (GWAS) have recently identified many new genetic variants associated with the development of type 2 diabetes. Many of these variants are in introns of known genes or between known genes, suggesting they affect the expression of these genes. The regulation of gene expression is often tissue and context dependent, for example occurring in response to dietary changes, hormone levels, or many other factors. Thus, to understand how these new genetic variants associated with diabetes risk may act, it is necessary to understand the regulation of their cognate genes. Results We identified fourteen type 2 diabetes-associated genes discovered by the first waves of GWAS for which there was little prior evidence of their potential role in diabetes (Adam30, Adamts9, Camk1d, Cdc123, Cdkal1, Cdkn2a, Cdkn2b, Ext2, Hhex, Ide, Jazf1, Lgr5, Thada and Tspan8). We examined their expression in metabolically relevant tissues including liver, adipose tissue, brain, and hypothalamus obtained from mice under fasted, non-fasted and high fat diet-fed conditions. In addition, we examined their expression in pancreatic islets from these mice cultured in low and high glucose. We found that the expression of Jazf1 was reduced by high fat feeding in liver, with similar tendencies in adipose tissue and the hypothalamus. Adamts9 expression was decreased in the hypothalamus of high fat fed mice. In contrast, the expression of Camk1d, Ext2, Jazf1 and Lgr5 were increased in the brain of non-fasted animals compared to fasted mice. Most notably, the expression levels of most of the genes were decreased in islets cultured in high glucose. Conclusions These data provide insight into the metabolic regulation of these new type 2 diabetes genes that will be important for determining how the GWAS variants affect gene expression and ultimately the development of type 2 diabetes.
Collapse
Affiliation(s)
- Maggie M Ho
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
170
|
Zhang YX, Liu Y, Dong J, Wang YX, Wang J, Zhuang GQ, Han SJ, Guo QQ, Luo YX, Zhang J, Peng XX, Zhang L, Yan YX, Yang XH, Wang H, Han X, Liu GX, Kang YH, Liu YQ, Weng SF, Zhang H, Zhang XQ, Jia KB, Wang L, Zhao L, Xiao ZX, Zhang SH, Wu HH, Lai QX, Qi N, Wang W, Gaisano H, Liu F, He Y. An exploratory study of the association between KCNB1 rs1051295 and type 2 diabetes and its related traits in Chinese Han population. PLoS One 2013; 8:e56365. [PMID: 23431371 PMCID: PMC3576392 DOI: 10.1371/journal.pone.0056365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Since the KCNB1 encoding Kv2.1 channel accounts for the majority of Kv currents modulating insulin secretion by pancreatic islet beta-cells, we postulated that KCNB1 is a plausible candidate gene for genetic variation contributing to the variable compensatory secretory function of beta-cells in type-2 diabetes (T2D). We conducted two studies, a case-control study and a cross-section study, to investigate the association of common single-nucleotide polymorphisms (SNPs) in KCNB1 with T2D and its linking traits. In the case-control study, we first examined the association of 20 tag SNPs of KCNB1 with T2D in a population with 226 T2D patients and non-diabetic subjects (screening study). We then identified the association in an enlarged population of 412 T2D patients and non-diabetic subjects (replication study). In the cross-sectional study, we investigated the linkage between the candidate SNP rs1051295 and T2D by comparing beta-cell function and insulin sensitivity among rs1051295 genotypes in a general population of 1051 subjects at fasting and after glucose loading (oral glucose tolerance tests, OGTT) in 84 fasting glucose impaired subjects, and several T2D-related traits. We found that among the 19 available tag SNPs, only the KCNB1 rs1051295 was associated with T2D (P = 0.027), with the rs1051295 TT genotype associated with an increased risk of T2D compared with genotypes CC (P = 0.009). At fasting, rs1051295 genotype TT was associated with a 9.8% reduction in insulin sensitivity compared to CC (P = 0.008); along with increased plasma triglycerides (TG) levels (TT/CC: P = 0.046) and increased waist/hip (W/H) ratio (TT/CC: P = 0.013; TT/TC: P = 0.002). OGTT confirmed that genotype TT exhibited reduced insulin sensitivity by 16.3% (P = 0.030) compared with genotype TC+CC in a fasting glucose impaired population. The KCNB1 rs1051295 genotype TT in the Chinese Han population is associated with decreased insulin sensitivity and increased plasma TG and W/H ratio, which together contribute to an increased risk for T2D.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Human genetics is revealing ever more variants that influence propensity to common diseases, but progress in translating these discoveries into the biological mechanisms responsible for predisposition continues to lag behind. A recent paper in Cell (Boj et al., 2012) using rodent models to examine how diabetes-associated variants near TCF7L2 perturb metabolic regulation provides surprising results.
Collapse
Affiliation(s)
- Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK.
| | | | | |
Collapse
|
172
|
Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 2013; 5:1-15. [PMID: 23624892 PMCID: PMC3662377 DOI: 10.4161/isl.24166] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca²⁺ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.
Collapse
|
173
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|
174
|
Andersson SA, Olsson AH, Esguerra JLS, Heimann E, Ladenvall C, Edlund A, Salehi A, Taneera J, Degerman E, Groop L, Ling C, Eliasson L. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol 2012; 364:36-45. [PMID: 22939844 DOI: 10.1016/j.mce.2012.08.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 02/06/2023]
Abstract
Reduced insulin release has been linked to defect exocytosis in β-cells. However, whether expression of genes suggested to be involved in the exocytotic process (exocytotic genes) is altered in pancreatic islets from patients with type 2 diabetes (T2D), and correlate to insulin secretion, needs to be further investigated. Analysing expression levels of 23 exocytotic genes using microarray revealed reduced expression of five genes in human T2D islets (χ(2)=13.25; p<0.001). Gene expression of STX1A, SYT4, SYT7, SYT11, SYT13, SNAP25 and STXBP1 correlated negatively to in vivo measurements of HbA1c levels and positively to glucose stimulated insulin secretion (GSIS) in vitro in human islets. STX1A, SYT4 and SYT11 protein levels correspondingly decreased in human T2D islets. Moreover, silencing of SYT4 and SYT13 reduced GSIS in INS1-832/13 cells. Our data support that reduced expression of exocytotic genes contributes to impaired insulin secretion, and suggest decreased expression of these genes as part of T2D pathogenesis.
Collapse
Affiliation(s)
- Sofia A Andersson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Le Bacquer O, Kerr-Conte J, Gargani S, Delalleau N, Huyvaert M, Gmyr V, Froguel P, Neve B, Pattou F. TCF7L2 rs7903146 impairs islet function and morphology in non-diabetic individuals. Diabetologia 2012; 55:2677-2681. [PMID: 22911383 DOI: 10.1007/s00125-012-2660-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/15/2012] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Transcription factor 7-like 2 (TCF7L2) is a Wnt-signalling-associated transcription factor. Genetic studies have clearly demonstrated that DNA polymorphisms within TCF7L2 confer the strongest known association with increased risk of type 2 diabetes. However, the impact of the TCF7L2 type-2-diabetes-associated rs7903146 T allele on biological function and morphology of human pancreatic islets is unknown. METHODS Paraffin sections of pancreases from 187 brain-deceased donors (HbA(1c) <6.5% [48 mmol/mol]) were used to genotype the TCF7L2 variant rs7903146 and evaluate its impact on islet morphology and alpha and beta cell subpopulations following immunostaining for glucagon and C-peptide. Following islet isolation, we investigated the correlation between TCF7L2 genotype and in vitro islet functional variables from our in-house pancreatic database. RESULTS TCF7L2 rs7903146 (T/T) was associated with reduced basal and glucose-stimulated insulin secretion in isolated human islets, and reduced islet density in whole pancreas. Morphological analysis demonstrated islet size was increased in T/T carriers. Furthermore, rs7903146 was associated with an increased glucagon/C-peptide ratio, especially in bigger islets. CONCLUSION/INTERPRETATION The TCF7L2 variant rs7903146 risk allele is associated with impaired insulin secretion, reduction of total islet number and quantitative as well as qualitative morphological changes in human islets. Understanding how the TCF7L2 genotype modulates its activity and how TCF7L2 impacts the islet morphology may aid the design of new therapeutic approaches for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- O Le Bacquer
- Université Lille Nord de France, Lille, France
- Faculty of Medicine, Inserm UMR859, Biotherapies for Diabetes, 1 Place de Verdun, 59000, Lille, France
- CNRS UMR 8199, Institut de Biologie de Lille, 1 Rue du Professeur Calmette, 59021, Lille Cedex, France
| | - J Kerr-Conte
- Université Lille Nord de France, Lille, France.
- Faculty of Medicine, Inserm UMR859, Biotherapies for Diabetes, 1 Place de Verdun, 59000, Lille, France.
| | - S Gargani
- Université Lille Nord de France, Lille, France
- Faculty of Medicine, Inserm UMR859, Biotherapies for Diabetes, 1 Place de Verdun, 59000, Lille, France
| | - N Delalleau
- Université Lille Nord de France, Lille, France
- Faculty of Medicine, Inserm UMR859, Biotherapies for Diabetes, 1 Place de Verdun, 59000, Lille, France
| | - M Huyvaert
- Université Lille Nord de France, Lille, France
- CNRS UMR 8199, Institut de Biologie de Lille, 1 Rue du Professeur Calmette, 59021, Lille Cedex, France
| | - V Gmyr
- Université Lille Nord de France, Lille, France
- Faculty of Medicine, Inserm UMR859, Biotherapies for Diabetes, 1 Place de Verdun, 59000, Lille, France
| | - P Froguel
- Université Lille Nord de France, Lille, France
- CNRS UMR 8199, Institut de Biologie de Lille, 1 Rue du Professeur Calmette, 59021, Lille Cedex, France
- Imperial College London, London, UK
| | - B Neve
- Université Lille Nord de France, Lille, France.
- CNRS UMR 8199, Institut de Biologie de Lille, 1 Rue du Professeur Calmette, 59021, Lille Cedex, France.
| | - F Pattou
- Université Lille Nord de France, Lille, France
- Faculty of Medicine, Inserm UMR859, Biotherapies for Diabetes, 1 Place de Verdun, 59000, Lille, France
- Department of Endocrine Surgery, Centre Hospitalier Universitaire de Lille, Lille, France
| |
Collapse
|
176
|
Abstract
Pancreatic β cells secrete insulin, the body's only hormone capable of lowering plasma glucose levels. Impaired or insufficient insulin secretion results in diabetes mellitus. The β cell is electrically excitable; in response to an elevation of glucose, it depolarizes and starts generating action potentials. The electrophysiology of mouse β cells and the cell's role in insulin secretion have been extensively investigated. More recently, similar studies have been performed on human β cells. These studies have revealed numerous and important differences between human and rodent β cells. Here we discuss the properties of human pancreatic β cells: their glucose sensing, the ion channel complement underlying glucose-induced electrical activity that culminates in exocytotic release of insulin, the cellular control of exocytosis, and the modulation of insulin secretion by circulating hormones and locally released neurotransmitters. Finally, we consider the pathophysiology of insulin secretion and the interactions between genetics and environmental factors that may explain the current diabetes epidemic.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | |
Collapse
|
177
|
Abstract
Polygenic type 2 diabetes mellitus (T2DM) is a multi-factorial disease due to the interplay between genes and the environment. Over the years, several genes/loci have been associated with this type of diabetes, with the majority of them being related to β cell dysfunction. In this review, the available information on how polymorphisms in T2DM-associated genes/loci do directly affect the properties of human islet cells are presented and discussed, including some clinical implications and the role of epigenetic mechanisms.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | | | | | | | | |
Collapse
|