151
|
Kiemer AK, Müller C, Vollmar AM. Inhibition of LPS-induced nitric oxide and TNF-alpha production by alpha-lipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunol Cell Biol 2002; 80:550-7. [PMID: 12406389 DOI: 10.1046/j.1440-1711.2002.01124.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of Kupffer cells represents a central mechanism of inflammatory liver injury involving the production of two important inflammatory mediators, nitric oxide and TNF-alpha. The aim of this study was to investigate the effect of the hepatoprotective compound alpha-lipoic acid (thioctic acid) on the production of nitric oxide and TNF-alpha in isolated rat Kupffer cells and RAW 264.7 macrophages. Isolated rat Kupffer cells or RAW 264.7 were either untreated, treated with alpha-lipoic acid (500 micro g/mL), or activated with 1 micro g/mL of lipopolysaccharide in the presence or absence of alpha-lipoic acid (0.2-500 micro g/mL). After 20 h the accumulation of nitrite was measured by the Griess assay. Tumour necrosis factor-alpha secretion was quantified after 4 h by L929 bioassay. Cell viability was determined by mitochondrial reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test, nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) DNA binding activity by gelshift assays. Treatment of Kupffer cells and RAW 264.7 with alpha-lipoic acid alone had no effect on basal nitric oxide production. However, alpha-lipoic acid significantly inhibited lipopolysaccharide-induced nitrite accumulation. alpha-Lipoic acid did not alter basal TNF-alpha secretion in Kupffer cells, whereas it significantly inhibited lipopolysaccharide-induced TNF-alpha production. alpha-Lipoic acid attenuated the activation of nuclear factor-kappaB and AP-1, two transcription factors pivotal in induction of inducible nitric oxide synthase and TNF-alpha. alpha-Lipoic acid significantly inhibits lipopolysaccharide-induced macrophage production of nitric oxide and TNF-alpha via an attenuated activation of NF-kappaB and activator protein-1. The reduced production of nitric oxide and TNF-alpha in Kupffer cells may be involved in the hepatoprotective action conveyed by alpha-lipoic acid.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, Germany.
| | | | | |
Collapse
|
152
|
Bishara NB, Dunlop ME, Murphy TV, Darby IA, Sharmini Rajanayagam MA, Hill MA. Matrix protein glycation impairs agonist-induced intracellular Ca2+ signaling in endothelial cells. J Cell Physiol 2002; 193:80-92. [PMID: 12209883 DOI: 10.1002/jcp.10153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies have shown diabetes to be associated with alterations in composition of extracellular matrix and that such proteins modulate signal transduction. The present studies examined if non-enzymatic glycation of fibronectin or a mixed matrix preparation (EHS) alters endothelial cell Ca(2+) signaling following agonist stimulation. Endothelial cells were cultured from bovine aorta and rat heart. To glycate proteins, fibronectin (10 microg/ml), or EHS (2.5 mg/ml) were incubated (37 degrees C, 30 days) with 0.5 M glucose-6-phosphate. Matrix proteins were coated onto cover slips after which cells (10(5) cells/ml) were plated and allowed to adhere for 16 h. For measurement of intracellular Ca(2+), cells were loaded with fura 2 (2 microM) and fluorescence intensity monitored. Bovine cells on glycated EHS showed decreased ability for either ATP (10(-6) M) or bradykinin (10(-7) M) to increase Ca(2+) (i). In contrast, glycated fibronectin did not impair agonist-induced increases in Ca(2+) (i). In the absence of extracellular Ca(2+), ATP elicited a transient increase in Ca(2+) (i) consistent with intracellular release. Re-addition of Ca(2+) resulted in a secondary rise in Ca(2+) (i) indicative of store depletion-mediated Ca(2+) entry. Both phases of Ca(2+) mobilization were reduced in cells on glycated mixed matrix; however, as the ratio of the two components was similar in all cells, glycation appeared to selectively impair Ca(2+) release from intracellular stores. Thapsigargin treatment demonstrated an impaired ability of cells on glycated EHS to increase cytoplasmic Ca(2+) consistent with decreased endoplasmic reticulum Ca(2+) stores. Further support for Ca(2+) mobilization was provided by increased baseline IP(3) levels in cells plated on glycated EHS. Impaired ATP-induced Ca(2+) release could be induced by treating native EHS with laminin antibody or exposing cells to H(2)O(2) (20-200 microM). Glycated EHS impaired Ca(2+) signaling was attenuated by treatment with aminoguanidine or the antioxidant alpha-lipoic acid. The results demonstrate that matrix glycation impairs agonist-induced Ca(2+) (i) increases which may impact on regulatory functions of the endothelium and implicate possible involvement of oxidative stress.
Collapse
Affiliation(s)
- Nour B Bishara
- Microvascular Biology Group, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
153
|
Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23:599-622. [PMID: 12372842 DOI: 10.1210/er.2001-0039] [Citation(s) in RCA: 1432] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In both type 1 and type 2 diabetes, the late diabetic complications in nerve, vascular endothelium, and kidney arise from chronic elevations of glucose and possibly other metabolites including free fatty acids (FFA). Recent evidence suggests that common stress-activated signaling pathways such as nuclear factor-kappaB, p38 MAPK, and NH2-terminal Jun kinases/stress-activated protein kinases underlie the development of these late diabetic complications. In addition, in type 2 diabetes, there is evidence that the activation of these same stress pathways by glucose and possibly FFA leads to both insulin resistance and impaired insulin secretion. Thus, we propose a unifying hypothesis whereby hyperglycemia and FFA-induced activation of the nuclear factor-kappaB, p38 MAPK, and NH2-terminal Jun kinases/stress-activated protein kinases stress pathways, along with the activation of the advanced glycosylation end-products/receptor for advanced glycosylation end-products, protein kinase C, and sorbitol stress pathways, plays a key role in causing late complications in type 1 and type 2 diabetes, along with insulin resistance and impaired insulin secretion in type 2 diabetes. Studies with antioxidants such as vitamin E, alpha-lipoic acid, and N-acetylcysteine suggest that new strategies may become available to treat these conditions.
Collapse
Affiliation(s)
- Joseph L Evans
- University of California at San Francisco, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
154
|
Koo JR, Ni Z, Oviesi F, Vaziri ND. Antioxidant therapy potentiates antihypertensive action of insulin in diabetic rats. Clin Exp Hypertens 2002; 24:333-44. [PMID: 12109774 DOI: 10.1081/ceh-120004795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Poorly controlled longstanding diabetes frequently results in sustained hypertension (HTN) which plays a major role in the pathogenesis of diabetic nephropathy. In addition, hyperglycemia, per se, causes a reversible rise in blood pressure (BP) and increases production of reactive oxygen species (ROS). Increased ROS activity may raise BP by promoting inactivation of nitric oxide (NO) and/or nonenzymatic generation of vasoconstrictive prostaglandins from peroxidation of arachidonic acid. Therefore, we hypothesized that antioxidant therapy may enhance the BP-lowering effect of glycemia control with insulin replacement in diabetes. METHODS Male Sprague-Dawley rats were rendered diabetic by streptozotocin administration and randomized to untreated, antioxidant-treated (vitamin E-fortified food, tocopherol 5000 U/kg chow and vitamin C-fortified H2O, 1000 mg/L), insulin-treated and insulin plus antioxidant-treated groups. Normal rats fed a regular diet or antioxidant-fortified diet served as controls and monitored for 4 weeks. RESULTS The diabetic animals showed marked hyperglycemia, HTN, proteinuria, depressed tissue glutathione level and elevated plasma lipid peroxidation product, malondialdehyde (MDA) denoting increased ROS activity. Insulin therapy alone resulted in significant, but incomplete reduction in BP and plasma MDA but not proteinuria. Antioxidant therapy alone had no effect on the measured parameters in either the diabetic or control animals. However, combined insulin and antioxidant therapies normalized BP, plasma MDA and urinary protein in the diabetic animals. As expected, uncontrolled diabetes resulted in glomerular hyperfiltration which was partially reversed by insulin therapy, but was unaffected by antioxidant therapy. CONCLUSION Uncontrolled hyperglycemia in the early phase of diabetes was associated with elevated plasma MDA, HTN and proteinuria. Insulin therapy alone resulted in significant but incomplete reduction of plasma MDA and BP. Antioxidant therapy which was ineffective when given alone, normalized plasma MDA, BP and reduced urinary protein excretion when combined with insulin treatment.
Collapse
Affiliation(s)
- Ja-Ryong Koo
- Department of Medicine, University of California-Irvine, 92697, USA
| | | | | | | |
Collapse
|
155
|
Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 2002; 51:2241-8. [PMID: 12086956 DOI: 10.2337/diabetes.51.7.2241] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To reconstruct the events that may contribute to the accelerated death of retinal vascular cells in diabetes, we investigated in situ and in vitro the activation of nuclear factor-kappaB (NF-kappaB), which is triggered by cellular stress and controls several programs of gene expression. The retinal capillaries of diabetic eye donors showed an increased number of pericyte nuclei positive for NF-kappaB, when compared with nondiabetic donors, whereas endothelial cells were negative. Microvascular cell apoptosis and acellular capillaries were increased only in the diabetic donors with numerous NF-kappaB-positive pericytes. Likewise, high glucose in vitro activated NF-kappaB in retinal pericytes but not in endothelial cells, and increased apoptosis only in pericytes. Studies with NF-kappaB inhibitors suggested that in pericytes, basal NF-kappaB has prosurvival functions, whereas NF-kappaB activation induced by high glucose is proapoptotic. Pericytes exposed to high glucose showed increased expression of Bax and of tumor necrosis factor-alpha, which were prevented by the NF-kappaB inhibitors and mimicked by transfection with the p65 subunit of NF-kappaB, and failed to increase the levels of the NF-kappaB-dependent inhibitors of apoptosis. Colocalization of activated NF-kappaB and Bax overexpression was observed in the retinal pericytes of diabetic donors. A proapoptotic program triggered by NF-kappaB selectively in retinal pericytes in response to hyperglycemia is a possible mechanism for the early demise of pericytes in diabetic retinopathy.
Collapse
Affiliation(s)
- Giulio Romeo
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
156
|
Mamputu JC, Renier G. Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of gliclazide. J Diabetes Complications 2002; 16:284-93. [PMID: 12126787 DOI: 10.1016/s1056-8727(01)00229-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence points to a causal role for advanced glycation end products (AGEs) in the development of diabetic vascular complications, including retinopathy. Possible pathogenic mechanisms linking AGEs to diabetic retinopathy include protein kinase C (PKC) activation, oxidative stress, and vascular endothelial growth factor (VEGF) expression. In the present study, we investigated the effect of AGEs on VEGF expression in bovine retinal endothelial cells (BRECs) and determined the role of PKC and oxidative stress in this effect. Incubation of BRECs with AGEs led to enhanced VEGF mRNA and protein expression. This treatment also induced PKC translocation in these cells. The AGE-induced increases in VEGF expression and PKC activation were inhibited by the pan-specific PKC inhibitor, calphostin C, and by the antioxidant drug and compounds, gliclazide, N-acetylcysteine, and vitamin E. In contrast, glyburide which does not exhibit antioxidant properties, did not affect the AGE-induced VEGF expression. Exposure of BRECs to AGEs resulted in a significant increase of nuclear protein binding to the NF-kappa B consensus sequence of the VEGF promoter region. Induction of DNA binding activity for NF-kappa B by AGEs was prevented by gliclazide. Treatment of BRECs with AGEs also increased the proliferation of these cells. This effect was abrogated by incubating the cells with an anti-VEGF antibody and was inhibited in the presence of gliclazide. Overall, these data demonstrate that AGEs increase VEGF expression in retinal endothelial cells through generation of oxidative stress and downstream activation of the PKC pathway. Targeting VEGF expression with specific pharmacological agents, such as antioxidants and PKC inhibitors, may prove efficacious for the treatment of diabetic retinopathy.
Collapse
|
157
|
Lal MA, Brismar H, Eklöf AC, Aperia A. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int 2002; 61:2006-14. [PMID: 12028441 DOI: 10.1046/j.1523-1755.2002.00367.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Levels of advanced glycation end products (AGE) are elevated in individuals with advancing age, renal failure, and diabetes, and accumulation of these molecules may contribute to disease progression. The mechanism by which AGE proteins alter glomerular mesangial cell function, however, is not completely understood. The present study assessed the involvement of oxidative stress in AGE-dependent mesangial cell signaling events. METHODS Primary cultures of rat renal mesangial cells were exposed to in vitro AGE-BSA and H2O2. Nuclear factor-kappaB (NF-kappaB) and protein kinase C (PKC) isoform activation were studied using confocal microscopy and Western blotting. Quantitative polymerase chain reaction (PCR) was used to measure transforming growth factor-beta1 (TGF-beta1) levels. The involvement of oxidative stress was assessed by supplementing or compromising cellular antioxidant capacity. RESULTS NF-kappaB was dose-dependently activated by AGE. PKC activation was not involved in this response, but analysis of PKC-beta1 activation showed a stimulatory effect of AGE proteins on this isoform. Transcription of TGF-beta1 was stimulated by AGE and was prevented by PKC inhibition. Challenge with H2O2 had similar downstream effects on mesangial cell signaling. Antioxidants, vitamin E and nitecapone, prevented AGE-dependent NF-kappaB activation and normalized PKC activity and associated TGF-beta1 transcription. Depletion of the intracellular antioxidant, glutathione, effectively lowered the AGE concentration needed for mesangial cell activation of NF-kappaB and PKC-beta1. Treatment with a suboptimal AGE dose, under glutathione-depleted conditions, revealed a synergistic effect on both parameters. CONCLUSION The results support a central role for oxidative stress in AGE-dependent mesangial cell signaling and emphasize the importance of ROS in determining cell responsiveness.
Collapse
Affiliation(s)
- Mark A Lal
- Department of Woman and Child Health, Pediatric Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
158
|
Wu L, Juurlink BHJ. Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 2002; 39:809-14. [PMID: 11897769 DOI: 10.1161/hy0302.105207] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylglyoxal can yield advanced glycation end products via nonenzymatic glycation of proteins. Whether methylglyoxal contributes to the pathogenesis of hypertension has not been clear. The aim of the present study was to investigate whether the levels of methylglyoxal and methylglyoxal-induced advanced glycation end products were enhanced and whether methylglyoxal increased oxidative stress, activated nuclear factor-kappaB (NF-kappaB), and increased intracellular adhesion molecule-1 (ICAM-1) content in vascular smooth muscle cells from spontaneously hypertensive rats. Basal cellular levels of methylglyoxal and advanced glycation end products were more than 2-fold higher (P<0.05) in cells from hypertensive rats than from normotensive Wistar-Kyoto rats. This correlated with levels of oxidative stress and oxidized glutathione that were significantly higher in cells from hypertensive rats, whereas levels of glutathione and activities of glutathione reductase and glutathione peroxidase were significantly lower. Basal levels of nuclearly localized NF-kappaB p65 and ICAM-1 protein expression were higher in cells from hypertensive rats than from normotensive rats. Addition of exogenous methylglyoxal to the cultures induced a greater increase in oxidative stress and advanced glycation end products in cells from hypertensive rats compared with normotensive rats and significantly decreased the activities of glutathione reductase and glutathione peroxidase in cells of both rat strains. Methylglyoxal activated NF-kappaB p65 and increased ICAM-1 expression in hypertensive cells, which was inhibited by N-acetylcysteine. Our study demonstrates an elevated methylglyoxal level and advanced glycation end products in cells from hypertensive rats, and methylglyoxal increases oxidative stress, activates NF-kappaB, and enhances ICAM-1 expression. Our findings suggest that that elevated methylglyoxal and associated oxidative stress possibly contribute to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
159
|
Takaoka M, Ohkita M, Kobayashi Y, Yuba M, Matsumura Y. Protective effect of alpha-lipoic acid against ischaemic acute renal failure in rats. Clin Exp Pharmacol Physiol 2002; 29:189-94. [PMID: 11906481 DOI: 10.1046/j.1440-1681.2002.03624.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present study, we investigated whether treatment with alpha-lipoic acid (LA), a powerful and universal anti-oxidant, has renal protective effects in rats with ischaemic acute renal failure (ARF). 2. Ischaemic ARF was induced by occlusion of the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Blood urea nitrogen (BUN), plasma concentrations of creatinine (Pcr) and urinary osmolality (Uosm) were measured for the assessment of renal dysfunction. Creatinine clearance (Ccr) and fractional excretion of Na+ (FENa) were used as indicators of glomerular and tubular function, respectively. 3. Renal function in ARF rats decreased markedly 24 h after reperfusion. Intraperitoneal injection of LA at a dose of 10 mg/kg before the occlusion tended to attenuate the deterioration of renal function. A higher dose of LA (100 mg/kg) significantly (P < 0.01) attenuated the ischaemia/reperfusion-induced increases in BUN (19.1 +/- 0.7 vs 7.2 +/- 0.7 mmol/L before and after treatment, respectively), Pcr (290 +/- 36 vs 78.1 +/- 4.2 micromol/L before and after treatment, respectively) and FENa (1.39 +/- 0.3 vs 0.33 +/- 0.09% before and after treatment, respectively). Treatment with 100 mg/kg LA significantly (P < 0.01) increased Ccr (0.70 +/- 0.13 vs 2.98 +/- 0.27 mL/min per kg before and after treatment, respectively) and Uosm (474 +/- 39 vs 1096 +/- 80 mOsmol/kg before and after treatment, respectively). 4. Histopathological examination of the kidney of ARF rats revealed severe lesions. Tubular necrosis (P < 0.01), proteinaceous casts in tubuli (P < 0.01) and medullary congestion (P < 0.05) were significantly suppressed by the higher dose of LA. 5. A marked increase in endothelin (ET)-1 content in the kidney after ischaemia/reperfusion was evident in ARF rats (0.43 +/- 0.02 ng/g tissue) compared with findings in sham- operated rats (0.20 +/- 0.01 ng/g tissue). Significant attenuation (P < 0.01) of this increase occurred in ARF rats treated with the higher dose of LA (0.24 +/- 0.03 ng/g tissue). 6. These results suggest that administration of LA to rats prior to development of ischaemic ARF prevents renal dysfunction and tissue injury, possibly through the suppression of overproduction of ET-1 in the postischaemic kidney.
Collapse
Affiliation(s)
- Masanori Takaoka
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | | | | | | | | |
Collapse
|
160
|
Abstract
In the past decade or so, a convincing link between oxidative stress and degenerative conditions has been made and with the knowledge that oxidatiye changes may actually trigger deterioration in cell function, a great deal of energy has focussed on identifying agents which may have possible therapeutic value in combating oxidative changes. One agent which has received attention, because of its powerful antioxidative effects, particularly in neuronal tissue, is lipoic acid.
Collapse
Affiliation(s)
- M A Lynch
- Department of Physiology, Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland.
| |
Collapse
|
161
|
Ohkita M, Takaoka M, Kobayashi Y, Itoh E, Uemachi H, Matsumura Y. Involvement of proteasome in endothelin-1 production in cultured vascular endothelial cells. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:197-205. [PMID: 11928721 DOI: 10.1254/jjp.88.197] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We examined whether the proteasome could regulate endothelin (ET)-1 production in vascular endothelial cells (ECs). A proteasome inhibitor N-benzyloxycarbonyl-Ile-Glu (O-t-Bu)-Ala-leucinal (PSI) significantly decreased ET-1 release from ECs by about 25% of the basal release. PSI also suppressed tumor necrosis factor (TNF)-alpha-induced ET-1 release from ECs in a dose-dependent manner. Similar inhibitory effects were observed using another proteasome inhibitor lactacystin, whereas a calpain inhibitor calpeptin had no apparent effect on ET-1 release. Furthermore, PSI significantly attenuated prepro ET-1 mRNA expression under basal and TNF-alpha-stimulated conditions. Electrophoretic mobility shift assay showed that proteasome inhibitors diminished TNF-alpha-stimulated nuclear factor-kappa B (NF-kappaB) activation in ECs. Pretreatment with antioxidants, pyrrolidine dithiocarbamate and alpha-lipoic acid, both of which are known to be suppressors of NF-kappaB activation, effectively attenuated basal and TNF-alpha-induced ET-1 release. Thus, a proteasome-dependent proteolytic pathway is at least partly involved in ET-1 production under basal conditions, and this proteolytic pathway seems to have a crucial role in ET-1 production enhanced by TNF-alpha. The reduction of NF-kappaB activation may be involved in the mechanisms for suppressive effects of proteasome inhibitors on ET-1 gene transcription and the consequent decrease in ET-1 mRNA expression and ET-1 release.
Collapse
Affiliation(s)
- Mamoru Ohkita
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | | | | | | | | | | |
Collapse
|
162
|
Koçak G, Karasu C. Elimination of *O(2)(-)/H(2)O(2) by alpha-lipoic acid mediates the recovery of basal EDRF/NO availability and the reversal of superoxide dismutase-induced relaxation in diabetic rat aorta. Diabetes Obes Metab 2002; 4:69-74. [PMID: 11874445 DOI: 10.1046/j.1463-1326.2002.00174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The aims of this study were to ascertain the mechanism(s) of relaxant action of exogenous superoxide dismutase (SOD) in aortic rings obtained from 12-week, streptozotocin(STZ)-diabetic and age-matched control rats, and to examine the effects of alpha-lipoic acid (ALA) treatment (for 6 weeks, after 6 weeks of untreated diabetes) on SOD-induced relaxations. MATERIALS AND METHODS Thoracic aorta rings were suspended to isolated tissue chamber, and the changes in isometric tension were recorded. RESULTS SOD produced a greater relaxation in untreated-diabetic rings compared with control rings. ALA treatment partially reversed SOD-induced relaxation in diabetic aorta. Pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microm) inhibited SOD-induced relaxation. This effect of L-NAME was markedly observed in control and ALA-treated-diabetic rings compared with untreated-diabetic rings. SOD-induced relaxation was also inhibited by catalase (60 U/ml) in untreated-diabetic rings but not in ALA-treated-diabetic and control rings. Pretreatment with the cyclooxygenase inhibitor, indomethacin, or the catalase inhibitor, aminotriazole, had no effect on SOD-induced relaxation in any ring. CONCLUSION Findings suggested that: (i) in normal physiological conditions, the relaxant effect of SOD is related to the inhibition of superoxide anion radicals (*O(2)(-))-induced endothelium-derived relaxing factor/nitric oxide (EDRF/NO) destruction in the rat aorta; (ii) in diabetic state, excess *O(2)(-) increasingly inhibits basal EDRF/NO, and the dismutation of excess *O(2)(-) to H(2)O(2) is enhanced by exogenous SOD. H(2)O(2) a vasorelaxant molecule, which probably accounts for the increased responsiveness of diabetic rings to exogenous SOD; and (iii) the reversal effect of in vivo ALA treatment on SOD-induced relaxation in diabetic aorta is probably linked with the elimination of *O(2)(-)/H(2)O(2), which mediates the recovery of basal EDRF/NO availability.
Collapse
Affiliation(s)
- G Koçak
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | |
Collapse
|
163
|
Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 2001. [PMID: 11672430 DOI: 10.1042/0264-6021: 3590567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial cell (EC) junctions regulate in large part the integrity and barrier function of the vascular endothelium. Advanced glycation end-products (AGEs), the irreversibly formed reactive derivatives of non-enzymic glucose-protein condensation reactions, are strongly implicated in endothelial dysfunction that distinguishes diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether AGEs affect EC lateral junction proteins, with particular regard to the vascular endothelial cadherin (VE-cadherin) complex. Our results indicate that AGE-modified BSA (AGE-BSA), a prototype of advanced glycated proteins, disrupts the VE-cadherin complex when administered to ECs. AGE-BSA, but not unmodified BSA, was found to induce decreases in the levels of VE-cadherin, beta-catenin and gamma-catenin in the complex and in total cell extracts, as well as a marked reduction in the amount of VE-cadherin present at the cell surface. In contrast, the level of platelet endothelial cell adhesion molecule-1 (PECAM-1), which is located at lateral junctions, was not altered. Supplementation of the cellular antioxidative defences abolished these effects. Finally, the loss of components of the VE-cadherin complex was correlated with increases in vascular permeability and in EC migration. These findings suggest that some of the AGE-induced biological effects on the endothelium could be mediated, at least in part, by the weakening of intercellular contacts caused by decreases in the amount of VE-cadherin present.
Collapse
|
164
|
Arnalich F, Hernanz A, López-Maderuelo D, De la Fuente M, Arnalich FM, Andres-Mateos E, Fernández-Capitán C, Montiel C. Intracellular glutathione deficiency is associated with enhanced nuclear factor-kappaB activation in older non-insulin dependent diabetic patients. Free Radic Res 2001; 35:873-84. [PMID: 11811538 DOI: 10.1080/10715760100301371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diabetes mellitus may be associated with intracellular glutathione (GSH) deficiency. Since in vivo studies have shown that plasma intracellular GSH plays a key role in regulating the activation of nuclear factor kappaB (NF-kappaB), we have investigated the relationship between intracellular thiols (GSH, homocysteine, cysteine and cysteinyglycine) and NF-kappaB activity in the peripheral blood mononuclear cells (PBMC) of 63 elderly non-insulin dependent diabetes mellitus (NIDDM) patients (28 microalbuminurics and 35 normoalbuminurics) and 30 healthy age- and sex-matched subjects. In addition, we have measured plasma concentrations of these thiol compounds, serum concentrations of interleukin-6 (IL-6) and vascular cell adhesion molecule-1 (sVCAM-1), that are partly dependent on the NF-kappaB activation, as well as the serum levels of thiobarbituric acid reacting substances (TBARS), as index of lipid peroxidation. Diabetic patients with microalbuminuria (MAB) and normoalbuminuria had NF-kappaB activity 2.1- and 1.5-fold greater, respectively, than the control group. As compared to normoalbuminuric patients, patients with MAB had significantly higher levels of glycemia, plasma homocysteine, and serum concentrations of TBARS, IL-6 and sVCAM-1 (in all cases, p < 0.01), and significantly lower GSH content in the PBMC (p < 0.05). The intracellular GSH in PBMC correlated with NF-kappaB activation (r = -0.82; p < 0.0001), serum TBARS (r = -0.60; p < 0.001), and with fasting glycemia (r = -0.56; p < 0.001) in patients with MAB, whereas a weaker association between GSH levels in PBMC and NF-kappaB activation (r = -0.504, p < 0.001) was seen in patients without MAB. These results suggest that the decrease of intracellular GSH content in elderly NIDDM patients with MAB is strongly associated with enhanced NF-kappaB activation, which could contribute to the development of increased glomerular capillary permeability and its rapid progression.
Collapse
Affiliation(s)
- F Arnalich
- Department of Medicine, Hospital La Paz, School of Medicine, Autonomous University of Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Oxidative stress has been known to play an important role in the development and progression of diabetic nephropathy, but the intracellular signal transduction pathways regulated by reactive oxygen species (ROS) have not been clearly defined. High glucose (HG) induces intracellular ROS directly via glucose metabolism and auto-oxidation and indirectly through the formation of advanced glycation end products and their receptor binding. ROS mimic the stimulatory effects of HG and upregulate transforming growth factor-beta 1, plasminogen activator inhibitor-1, and extracellular matrix (ECM) proteins by glomerular mesangial cells, thus leading to mesangial expansion. ROS activate other signaling molecules, such as protein kinase C and mitogen-activated protein kinases and transcription factors, such as nuclear factor-kappa B, activator protein-1, and specificity protein 1 leading to transcription of genes encoding cytokines, growth factors, and ECM proteins. Finally, various antioxidants inhibit mesangial cell activation by HG and ameliorate features of diabetic nephropathy. These findings qualify ROS as intracellular messengers and as integral glucose-signaling molecules in glomerular mesangial cells in diabetic nephropathy. With this new concept, ROS assume a greater importance in the pathogenesis of diabetic nephropathy. Future studies elucidating other downstream-signaling molecules activated by ROS in mesangial and other renal cells will allow us to understand the final cellular responses to HG, such as proliferation, differentiation, apoptosis, and ECM accumulation. With this new information, we should be able to develop strategies for a more rational treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- H Ha
- Hyonam Kidney Laboratory, Soon Chun Hyang University, 657 Hannam-dong, Yongsan-ku, Seoul 140-743, Korea
| | | |
Collapse
|
166
|
Wong A, Dukic-Stefanovic S, Gasic-Milenkovic J, Schinzel R, Wiesinger H, Riederer P, Münch G. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. Eur J Neurosci 2001; 14:1961-7. [PMID: 11860491 DOI: 10.1046/j.0953-816x.2001.01820.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Advanced glycation endproducts (AGEs) accumulate on long-lived protein deposits including beta-amyloid plaques in Alzheimer's disease (AD). AGE-modified amyloid deposits contain oxidized and nitrated proteins as markers of a chronic neuroinflammatory condition and are surrounded by activated microglial and astroglial cells. We show in this study that AGEs increase nitric oxide production by induction of the inducible nitric oxide synthase (iNOS) on the mRNA and protein level in the murine microglial cell line N-11. Membrane permeable antioxidants including oestrogen derivatives (e.g. 17beta-oestradiol) thiol antioxidants (e.g. (R+)-alpha-lipoic acid) and Gingko biloba extract EGb 761, but not phosphodiesterase inhibitors such as propentophylline, prevent the up-regulation of AGE-induced iNOS expression and NO production. These results indicate that oxygen free radicals serve as second messengers in AGE-induced pro-inflammatory signal transduction pathways. As this pharmacological mechanism is not only relevant for Alzheimer's disease, but also for many chronic inflammatory conditions, such membrane-permeable antioxidants could be regarded not only as antioxidant, but also as potent therapeutic anti-inflammatory drugs.
Collapse
Affiliation(s)
- A Wong
- Neuroimmunological Cell Biology, IZKF Leipzig, Johannisallee 30a, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
167
|
Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Klöting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Häring HU, Schleicher E, Nawroth PP. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001; 50:2792-808. [PMID: 11723063 DOI: 10.2337/diabetes.50.12.2792] [Citation(s) in RCA: 627] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activation of the transcription factor nuclear factor-kappaB (NF-kappaB) has been suggested to participate in chronic disorders, such as diabetes and its complications. In contrast to the short and transient activation of NF-kappaB in vitro, we observed a long-lasting sustained activation of NF-kappaB in the absence of decreased IkappaBalpha in mononuclear cells from patients with type 1 diabetes. This was associated with increased transcription of NF-kappaBp65. A comparable increase in NF-kappaBp65 antigen and mRNA was also observed in vascular endothelial cells of diabetic rats. As a mechanism, we propose that binding of ligands such as advanced glycosylation end products (AGEs), members of the S100 family, or amyloid-beta peptide (Abeta) to the transmembrane receptor for AGE (RAGE) results in protein synthesis-dependent sustained activation of NF-kappaB both in vitro and in vivo. Infusion of AGE-albumin into mice bearing a beta-globin reporter transgene under control of NF-kappaB also resulted in prolonged expression of the reporter transgene. In vitro studies showed that RAGE-expressing cells induced sustained translocation of NF-kappaB (p50/p65) from the cytoplasm into the nucleus for >1 week. Sustained NF-kappaB activation by ligands of RAGE was mediated by initial degradation of IkappaB proteins followed by new synthesis of NF-kappaBp65 mRNA and protein in the presence of newly synthesized IkappaBalpha and IkappaBbeta. These data demonstrate that ligands of RAGE can induce sustained activation of NF-kappaB as a result of increased levels of de novo synthesized NF-kappaBp65 overriding endogenous negative feedback mechanisms and thus might contribute to the persistent NF-kappaB activation observed in hyperglycemia and possibly other chronic diseases.
Collapse
MESH Headings
- Adult
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/pharmacology
- Animals
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Endothelium, Vascular/metabolism
- Feedback
- Female
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/pharmacology
- Humans
- I-kappa B Proteins/metabolism
- Immunohistochemistry
- Leukocytes, Mononuclear/metabolism
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- NF-kappa B/analysis
- NF-kappa B/genetics
- NF-kappa B/metabolism
- NF-kappa B/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/metabolism
- S100 Proteins/metabolism
- Serum Albumin, Bovine/pharmacology
- Transcription Factor RelA
Collapse
Affiliation(s)
- A Bierhaus
- Department of Medicine I and Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Otero K, Martínez F, Beltrán A, González D, Herrera B, Quintero G, Delgado R, Rojas A. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 2001; 359:567-74. [PMID: 11672430 PMCID: PMC1222177 DOI: 10.1042/0264-6021:3590567] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cell (EC) junctions regulate in large part the integrity and barrier function of the vascular endothelium. Advanced glycation end-products (AGEs), the irreversibly formed reactive derivatives of non-enzymic glucose-protein condensation reactions, are strongly implicated in endothelial dysfunction that distinguishes diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether AGEs affect EC lateral junction proteins, with particular regard to the vascular endothelial cadherin (VE-cadherin) complex. Our results indicate that AGE-modified BSA (AGE-BSA), a prototype of advanced glycated proteins, disrupts the VE-cadherin complex when administered to ECs. AGE-BSA, but not unmodified BSA, was found to induce decreases in the levels of VE-cadherin, beta-catenin and gamma-catenin in the complex and in total cell extracts, as well as a marked reduction in the amount of VE-cadherin present at the cell surface. In contrast, the level of platelet endothelial cell adhesion molecule-1 (PECAM-1), which is located at lateral junctions, was not altered. Supplementation of the cellular antioxidative defences abolished these effects. Finally, the loss of components of the VE-cadherin complex was correlated with increases in vascular permeability and in EC migration. These findings suggest that some of the AGE-induced biological effects on the endothelium could be mediated, at least in part, by the weakening of intercellular contacts caused by decreases in the amount of VE-cadherin present.
Collapse
Affiliation(s)
- K Otero
- Laboratorio de Farmacología, Centro de Química Farmacéutica, Apartado Postal 6990, La Habana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 2001; 15:2471-9. [PMID: 11689472 DOI: 10.1096/fj.01-0006com] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several molecules were shown to bind advanced glycation end products (AGEs) in vitro, but it is not known whether they all serve as AGE receptors and which functional role they play in vivo. We investigated the role of galectin-3, a multifunctional lectin with (anti)adhesive and growth-regulating properties, as an AGE receptor and its contribution to the development of diabetic glomerular disease, using a knockout mouse model. Galectin-3 knockout mice obtained by gene ablation and the corresponding wild-type mice were rendered diabetic with streptozotocin and killed 4 months later, together with age-matched nondiabetic controls. Despite a comparable degree of metabolic derangement, galectin-3-deficient mice developed accelerated glomerulopathy vs. the wild-type animals, as evidenced by the more pronounced increase in proteinuria, extracellular matrix gene expression, and mesangial expansion. This was associated with a more marked renal/glomerular AGE accumulation, indicating it was attributable to the lack of galectin-3 AGE receptor function. The galectin-3-deficient genotype was associated with reduced expression of receptors implicated in AGE removal (macrophage scavenger receptor A and AGE-R1) and increased expression of those mediating cell activation (RAGE and AGE-R2). These results show that the galectin-3-regulated AGE receptor pathway is operating in vivo and protects toward AGE-induced tissue injury in contrast to that through RAGE.
Collapse
Affiliation(s)
- G Pugliese
- Department of Clinical Sciences, 'La Sapienza' University, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Salazar R, Brandt R, Krantz S. Binding of Amadori glucose-modified albumin by the monocytic cell line MonoMac 6 activates protein kinase C epsilon protein tyrosine kinases and the transcription factors AP-1 and NF-kappaB. Glycoconj J 2001; 18:769-77. [PMID: 12441666 DOI: 10.1023/a:1021151417556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An affinity purification procedure is employed for the isolation of FL-specific binding proteins from MM6 cell membranes using magnetobeads coated with glycated polylysine and elution with FL and glycated 6-aminocaproic acid. Two main binding proteins were identified as membrane-bound nucleolin and cellular myosin heavy chain, which are glycosylated. This study shows that in these cells binding of short-term glycated albumin leads to activation of PKC, especially its isoform epsilon and this is linked to translocation of AP-1 and NF-kappaB into the nucleus. Consequently, an increased formation of IL-1ss mRNA is observed. The PKC inhibitor GO6976 prevents all these effects. Glycated albumin also stimulates activation of PTK. The PTK inhibitor genistein prevents activation of AP-1 indicating that PTK is also involved in this process, whereas NF-kappaB translocation is only dependent on PKC activation.
Collapse
Affiliation(s)
- R Salazar
- Institute of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University, Klinikum/Sauerbruch Street, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
171
|
Kumar A, Hawkins KS, Hannan MA, Ganz MB. Activation of PKC-beta(I) in glomerular mesangial cells is associated with specific NF-kappaB subunit translocation. Am J Physiol Renal Physiol 2001; 281:F613-9. [PMID: 11553507 DOI: 10.1152/ajprenal.2001.281.4.f613] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Changes in expression and activity of protein kinase C (PKC) isoforms and early transcription factors may account for alterations in cell behavior seen in diabetes. We studied the expression of PKC-beta(I) in rat glomerular mesangial cells (MCs) cultured in normal or high glucose and compared it with the temporal and spatial expression of dimeric transcription factor (NF-kappaB) p50 and p65. The results show that in unstimulated cells PKC-beta(I) and NF-kappaB p50 are distributed in the cytosol and, on stimulation, their distribution is perinuclear and they are localized to the membrane. Serum-starved MCs cultured in high-glucose medium exhibit a predominantly cytosolic localization of PKC-beta(I) and both p50 and p65 NF-kappaB. However, phorbol 12-myristate 13-acetate (PMA) stimulation of cells grown in the presence of high glucose resulted in membrane translocation of PKC-beta(I) that was associated with nuclear translocation of NF-kappaB p65, but not NF-kappaB p50. Moreover, the translocation to the nucleus for NF-kappaB p65 was significantly higher in MCs exposed to high glucose compared with those exposed to normal glucose. These observations indicate that the NF-kappaB p65, but not NF-kappaB p50, expression and translocation pattern mirrors that of PKC-beta(I), which may be one important pathway by which signaling is enhanced in the high-glucose state.
Collapse
Affiliation(s)
- A Kumar
- Division of Nephrology, Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
172
|
Advanced Glycation Endproducts: Activators of Cardiac Remodeling in Primary Fibroblasts From Adult Rat Hearts. Mol Med 2001. [DOI: 10.1007/bf03401860] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
173
|
IDO YASUO, CHANG KATHERINEC, LEJEUNE WANDAS, BJERCKE ROBERTJ, REISER KARENM, WILLIAMSON JOSEPHR, TILTON RONALDG. Vascular Dysfunction Induced by AGE is Mediated by VEGF via Mechanisms Involving Reactive Oxygen Species, Guanylate Cyclase, and Protein Kinase C. Microcirculation 2001. [DOI: 10.1111/j.1549-8719.2001.tb00174.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Takaoka M, Kobayashi Y, Yuba M, Ohkita M, Matsumura Y. Effects of alpha-lipoic acid on deoxycorticosterone acetate-salt-induced hypertension in rats. Eur J Pharmacol 2001; 424:121-9. [PMID: 11476758 DOI: 10.1016/s0014-2999(01)01120-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the potential of natural occurring antioxidant alpha-lipoic acid to prevent hypertension and hypertensive tissue injury induced by deoxycorticosterone acetate (DOCA) and salt in rats. Two weeks after the start of DOCA-salt treatment, the rats were given alpha-lipoic acid (10 or 100 mg/kg/day, s.c.) or its vehicle for 2 weeks. Uninephrectomized rats without DOCA-salt treatment served as sham-operated controls. In vehicle-treated DOCA-salt rats, systolic blood pressure increased markedly after 3-4 weeks. Daily administration of 100 mg/kg alpha-lipoic acid for 2 weeks suppressed the increase in systolic blood pressure, whereas 10 mg/kg alpha-lipoic acid did not affect the progression of DOCA-salt-induced hypertension. When the degree of vascular hypertrophy of the aorta was morphometrically evaluated at 4 weeks, there were significant increases in media cross-sectional area in vehicle-treated DOCA-salt rats compared with sham-operated rats. The development of vascular hypertrophy was markedly suppressed by alpha-lipoic acid at 100 mg/kg but not at 10 mg/kg. Histopathological examination of the kidney in vehicle-treated DOCA-salt rats revealed fibrinoid-like necrosis in glomeruli and thickening of small arteries. In these animals, creatinine clearance decreased, and fractional excretion of Na(+), urinary excretion of protein and N-acetyl-beta-glucosaminidase increased. Such renal lesions and dysfunctions were ameliorated in DOCA-salt rats given alpha-lipoic acid. In addition, a marked increase in endothelin-1 content in both the aorta and kidney was evident in vehicle-treated DOCA-salt rats compared with findings in sham-operated rats. Significant attenuation of this increase occurred in alpha-lipoic acid-treated DOCA-salt rats. These results suggest that administration of alpha-lipoic acid to DOCA-salt hypertensive rats lessens the increased blood pressure and protects against renal and vascular injuries, possibly through the suppression of renal and vascular endothelin-1 overproduction.
Collapse
Affiliation(s)
- M Takaoka
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | |
Collapse
|
175
|
Kähler J, Ewert A, Weckmüller J, Stobbe S, Mittmann C, Köster R, Paul M, Meinertz T, Münzel T. Oxidative stress increases endothelin-1 synthesis in human coronary artery smooth muscle cells. J Cardiovasc Pharmacol 2001; 38:49-57. [PMID: 11444502 DOI: 10.1097/00005344-200107000-00006] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelins, nitric oxide, and oxygen-derived free radicals decisively regulate vascular tone. An imbalance in the biosynthesis of these substances in pathophysiologic conditions may trigger vasospasm and promote the development of atherosclerosis. Previous studies have shown that oxygen-derived free radicals can increase the synthesis of endothelin-1 in cultured endothelial cells. Interestingly, conditions of increased oxidative stress within smooth muscle cells as induced by angiotensin II infusion or hypercholesterolemia have been shown to be associated with increased autocrine synthesis of endothelin-1. Because endothelin-1 formed in smooth muscle cells can trigger hypersensitivity to vasoconstrictors, we tested whether oxidative stress per se may affect endothelin expression in vascular smooth muscle cells. Cultured human coronary artery smooth muscle cells were exposed to oxidative stress generated by the xanthine/xanthine oxidase reaction or by hydrogen peroxide. Preproendothelin-1 mRNA content was quantitated by means of quantitative polymerase chain reaction and endothelin-1 protein was measured by radioimmunoassay. Incubation with xanthine/xanthine oxidase significantly increased preproendothelin-1 mRNA synthesis, whereas GAPDH remained unchanged. Likewise, xanthine/xanthine oxidase also led to a dose-dependent increase of intracellular endothelin-1. The increase in ET-1 expression induced by xanthine/xanthine oxidase was significantly inhibited by superoxide dismutase but not by catalase. We conclude that oxygen-derived free radicals can stimulate the synthesis of endothelin-1 in endothelial and vascular smooth muscle cells by increasing preproendothelin-1 mRNA content and that this effect is mediated predominantly by superoxide anions. We therefore have identified a new mechanism in the interaction of oxidative stress and endothelin-1 expression in smooth muscle cells that may have important implications in diseases such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- J Kähler
- Department of Cardiology, University Hospital Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Köhler HB, Huchzermeyer B, Martin M, De Bruin A, Meier B, Nolte I. TNF-alpha dependent NF-kappa B activation in cultured canine keratinocytes is partly mediated by reactive oxygen species. Vet Dermatol 2001; 12:129-37. [PMID: 11420928 DOI: 10.1046/j.1365-3164.2001.00237.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokine TNF-alpha plays a major role in inflammatory and immunological reactions of canine skin. With respect to a possible therapeutic modulation, we investigated the role of the transcription factor NF-kappa B and the involvement of reactive oxygen species (ROS) in the TNF-alpha signalling pathway in cultured canine keratinocytes. TNF-alpha treatment resulted in activation of NF-kappa B which was partially inhibited by the antioxidant alpha-lipoic acid. Using the cytochrome c reduction test no superoxide production could be detected in the supernatant of TNF-alpha stimulated keratinocytes. However, TNF-alpha dependent intracellular hydrogen peroxide production was demonstrated spectroscopically. With electron energy loss spectroscopy (EELS) significant hydrogen peroxide formation was detected in the mitochondria, the endoplasmic reticulum, the cytosol and partially on the plasma membrane of the keratinocytes. Hence, ROS possibly play an important role in the TNF-alpha signalling pathway leading to NF-kappa B activation in canine skin. An adjunctive therapy with natural potent antioxidants modulating NF-kappa B overactivation in canine cutaneous inflammation may be of therapeutic benefit.
Collapse
Affiliation(s)
- H B Köhler
- Klinik für kleine Haustiere, Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
177
|
Morcos M, Borcea V, Isermann B, Gehrke S, Ehret T, Henkels M, Schiekofer S, Hofmann M, Amiral J, Tritschler H, Ziegler R, Wahl P, Nawroth PP. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res Clin Pract 2001; 52:175-83. [PMID: 11323087 DOI: 10.1016/s0168-8227(01)00223-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidative stress plays a central role in the pathogenesis and progression of late microangiopathic complications (diabetic nephropathy) in diabetes mellitus. Previous studies suggested that treatment of diabetic patients with the antioxidant alpha-lipoic acid reduce oxidative stress and urinary albumin excretion. In this prospective, open and non-randomized study, the effect of alpha-lipoic acid on the progression of endothelial cell damage and the course of diabetic nephropathy, as assessed by measurement of plasma thrombomodulin and urinary albumin concentration (UAC), was evaluated in 84 patients with diabetes mellitus over 18 months. Forty-nine patients (34 with Type 1 diabetes, 15 with Type 2 diabetes) had no antioxidant treatment and served as a control group. Thirty-five patients (20 with Type 1 diabetes, 15 with Type 2 diabetes) were treated with 600 mg alpha-lipoic acid per day. Only patients with an urinary albumin concentration <200 mg/l were included into the study. After 18 months of follow up, the plasma thrombomodulin level increased from 35.9+/-9.5 to 39.7+/-9.9 ng/ml (P<0.05) in the control group. In the alpha-lipoic acid treated group the plasma thrombomodulin level decreased from 37.5+/-16.2 to 30.9+/-14.5 ng/ml (P<0.01). The UAC increased in patients without alpha-lipoic acid treatment from 21.2+/-29.5 to 36.9+/-60.6 ng/l (P<0.05), but was unchanged with alpha-lipoic acid. It is postulated that the significant decrease in plasma thrombomodulin and failure of UAC to increase observed in the alpha-lipoic acid treated group is due to antioxidative effects of alpha-lipoic acid, and if so that oxidative stress plays a central role in the pathogenesis of diabetic nephropathy. Furthermore, progression of the disease might be inhibited by antioxidant drugs. A placebo-controlled study is needed.
Collapse
Affiliation(s)
- M Morcos
- Department of Internal Medicine I, University of Heidelberg, Bergheimerstr. 58, 69115 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001; 17:189-212. [PMID: 11424232 DOI: 10.1002/dmrr.196] [Citation(s) in RCA: 627] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarises the results and discussions of an UNESCO-MCBN supported symposium on oxidative stress and its role in the onset and progression of diabetes. There is convincing experimental and clinical evidence that the generation of reactive oxygen species (ROI) is increased in both types of diabetes and that the onset of diabetes is closely associated with oxidative stress. Nevertheless there is controversy about which markers of oxidative stress are most reliable and suitable for clinical practice. There are various mechanisms that contribute to the formation of ROI. It is generally accepted that vascular cells and especially the endothelium become one major source of ROI. An important role of oxidative stress for the development of vascular and neurological complications is suggested by experimental and clinical studies. The precise mechanisms by which oxidative stress may accelerate the development of complications in diabetes are only partly known. There is however evidence for a role of protein kinase C, advanced glycation end products (AGE) and activation of transcription factors such as NF kappa B, but the exact signalling pathways and the interactions with ROI remain a matter of discussion. Additionally, results of very recent studies suggest a role for ROI in the development of insulin resistance. ROI interfere with insulin signalling at various levels and are able to inhibit the translocation of GLUT4 in the plasma membrane. Evidence for a protective effect of antioxidants has been presented in experimental studies, but conclusive evidence from patient studies is missing. Large-scale clinical trials such as the DCCT Study or the UKPDS Study are needed to evaluate the long-term effects of antioxidants in diabetic patients and their potential to reduce the medical and socio-economic burden of diabetes and its complications.
Collapse
Affiliation(s)
- P Rösen
- Deutsches Diabetesforschungsinstitut, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
179
|
Juurlink BHJ. Therapeutic potential of dietary phase 2 enzyme inducers in ameliorating diseases that have an underlying inflammatory component. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y00-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many diseases associated with ageing have an underlying oxidative stress and accompanying inflammatory component, for example, Alzheimer's disease or atherosclerosis. Reviewed in this manuscript are: the role of oxidative stress in activating the transcription factor nuclear factor kappa B (NFκB), the role of NFκB in activating pro-inflammatory gene transcription, strong oxidants produced by cells, anti-oxidant defense systems, the central role of phase 2 enzymes in the anti-oxidant defense, dietary phase 2 enzyme inducers and evidence that dietary phase 2 enzymes decrease oxidative stress. It is likely that a diet containing phase 2 enzyme inducers may ameliorate or even prevent diseases that have a prominent inflammatory component to them. Research should be directed into the potential therapeutic effects of dietary phase 2 enzyme inducers in ameliorating diseases with an underlying oxidative stress and inflammatory component to them.Key words: Alzheimer's disease, atherosclerosis, diet, glutathione, inflammation, stroke.
Collapse
|
180
|
Xiang G, Schinzel R, Simm A, Sebekova K, Heidland A. Advanced glycation end products impair protein turnover in LLC-PK1: amelioration by trypsin. KIDNEY INTERNATIONAL. SUPPLEMENT 2001; 78:S53-7. [PMID: 11168983 DOI: 10.1046/j.1523-1755.2001.59780053.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are assumed to play a key role in the pathogenesis of diabetic nephropathy (DN) and other diabetic complications. While AGEs have been shown to exert marked effects on mesangial and endothelial cells as well as on monocytes/macrophages, little is known about their effects on tubule cells. Therefore, we addressed the questions of (1) whether AGE-bovine serum albumin (AGE-BSA) impairs the protein metabolism in the tubule cells, and if so, (2) whether the AGE-induced effects are mediated via a protease sensitive mechanism. METHODS Arrested LLC-PK1 cells were exposed to a medium containing the vehicle (control, serum free), AGE-BSA (38 micromol/L), or BSA (38 micromol/L) in the presence or absence of trypsin (2.5 microg/mL) for 24 hours. We evaluated cell number, cell size, and cell protein content, as well as protein synthesis and protein degradation. RESULTS After an incubation period of 24 hours, AGE-BSA decreased the cell number to 84.5 +/- 5.5% of control and 82.5 +/- 5.6% of BSA-treated cells (P < 0.05). [3H]-thymidine incorporation declined to 66% of control (P < 0.05), while BSA was without any effect. The same AGE-BSA dose reduced protein degradation (P < 0.05) and stimulated total protein synthesis slightly, as determined by L-[14C]Phe incorporation into acidic-insoluble proteins. These effects resulted in a rise in cell protein content (AGE-BSA vs. control, 21.9 +/- 6.7%; AGE-BSA vs. BSA, 11.1 +/- 6.0%, P < 0.05) and cell volume (AGE-BSA vs. control 9.4 +/- 3.2%, AGE-BSA vs. BSA 18.4 +/- 3.7%, P < 0.05). Coincubation with AGE-BSA and trypsin was associated with an amelioration of all investigated parameters concerning cell number, cell proliferation, raised cell protein content, decreased protein degradation, and enhanced protein synthesis. CONCLUSION These data indicate that AGE-BSA impairs cell proliferation and protein turnover in LLC-PK1 cells with a consequent rise in cell protein. Since these alterations were abrogated by coincubation with trypsin, an interference of this serine protease with the AGE-binding proteins on cell surfaces is assumed.
Collapse
Affiliation(s)
- G Xiang
- Department of Internal Medicine, Institute of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
181
|
Deuther-Conrad W, Franke S, Sommer M, Henle T, Stein G. Differences in the modulating potential of advanced glycation end product (AGE) peptides versus AGE proteins. KIDNEY INTERNATIONAL. SUPPLEMENT 2001; 78:S63-6. [PMID: 11168985 DOI: 10.1046/j.1523-1755.2001.59780063.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differences in the modulating potential of advanced glycation end product (AGE) peptides versus AGE proteins. Advanced glycation end products (AGEs), identified as irreversible products of a complex reaction of carbonyl groups of reducing sugars with free protein amino groups, are characterized by resistance to proteolytic degradation. The incomplete digestion of AGEs results in low molecular weight AGEs accumulating in the blood of diabetic and uremic patients. We hypothesized that the accumulation of these compounds may contribute to the dysfunction and/or degeneration of tubular epithelial cells. Our study examined whether low-molecular-weight AGE peptides and high-molecular-weight AGE proteins affect the functional cellular properties of two tubular epithelial cell lines: immortalized human kidney tubular epithelial (IHKE) and immortalized rat renal proximal tubular cells (IRPTCs). Parameters of cellular damage and growth behavior were cell counting, analysis of the cellular metabolic activity (MTT assay), as well as cellular proliferation (3[H]-thymidine-incorporation). IHKE treated with bovine serum albumin-AGE (BSA-AGE 50) or BSA-AGE-Pep 50 revealed a decrease in cellular metabolic activity as compared with controls after 48 hours of incubation (73 +/- 9% for BSA-AGE 50 and 62 +/- 11% for BSA-AGE-Pep 50 vs. 89 +/- 8% for BSA Co 50). Low molecular weight BSA-AGE-Pep 50 induced a significantly greater cellular damage in IRPTCs as compared with high molecular weight BSA-AGE 50 after 144 hours of incubation (59 +/- 15% for BSA-AGE 50 vs. 31 +/- 13% for BSA-AGE-Pep 50). The decrease in metabolic activity correlated well with a decrease in cellular proliferation. The results suggest a higher toxic potential of low molecular weight AGE peptides compared with high molecular weight AGE proteins in IRPTC and IHKE. This may provide evidence that low molecular weight degradation products of AGE-modified proteins have an important risk potential.
Collapse
Affiliation(s)
- W Deuther-Conrad
- Department of Internal Medicine IV, Friedrich Schiller University-Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
182
|
Kiuchi K, Nejima J, Takano T, Ohta M, Hashimoto H. Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart 2001; 85:87-91. [PMID: 11119472 PMCID: PMC1729572 DOI: 10.1136/heart.85.1.87] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To assess whether the concentrations of serum advanced glycation end products (AGE) in diabetic patients with obstructive coronary artery disease differ from those in type 2 diabetic patients without obstructive coronary artery disease. DESIGN Serum AGE concentrations were measured in type 2 diabetic patients and in non-diabetic patients, both with and without obstructive coronary artery disease, and the relation between these values and coronary disease severity was evaluated. RESULTS Mean (SD) serum AGE concentrations were higher (p < 0.0125) in type 2 diabetic patients with obstructive coronary artery disease (5.5 (2.5) mU/ml, n = 30) than in patients without obstructive coronary artery disease (2.8 (0. 5) mU/ml, n = 12), and higher than in non-diabetic patients with (3. 4 (1.0) mU/ml, n = 28) and without (3.2 (0.4) mU/ml, n = 13) obstructive coronary artery disease. Serum AGE was associated with the degree of coronary arteriosclerosis in type 2 diabetic patients with obstructive coronary artery disease (single vessel: n = 13, 3.4 (0.9) mU/m; two vessel: n = 6, 5.7 (1.6) mU/m; three vessel: n = 11, 7.2 (2.5) mU/ml). Serum AGE was positively correlated with serum mean four year HbA(1C) (r = 0.46, p < 0.01), but not with recent serum HbA(1C) (r = 0.24). The four groups did not differ in the other coronary risk factors. CONCLUSIONS Serum AGE concentrations may be associated with long term poor glycaemic control and reflect the severity of coronary arteriosclerosis in type 2 diabetic patients.
Collapse
Affiliation(s)
- K Kiuchi
- Intensive and Coronary Care Unit and the First Department of Internal Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | | | | | | | | |
Collapse
|
183
|
Abstract
In this article we will review the clinical signs and symptoms of diabetic somatic polyneuropathy (DPN), its prevalence and clinical management. Staging and classification of DPN will be exemplified by various staging paradigms of varied sophistication. The results of therapeutic clinical trials will be summarized. The pathogenesis of diabetic neuropathy reviews an extremely complex issue that is still not fully understood. Various recent advances in the understanding of the disease will be discussed, particularly with respect to the differences between neuropathy in the two major types of diabetes. The neuropathology and natural history of diabetic neuropathy will be discussed pointing out the heterogeneities of the disease. Finally, the various prospective therapeutic avenues will be dealt with and discussed.
Collapse
Affiliation(s)
- K Sugimoto
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | | | | |
Collapse
|
184
|
Vaskuläre Veränderungen bei der diabetischen Retinopathie: Die zellulären und humoralen Interaktionsmechanismen in Antwort auf die Stoffwechselveränderungen. SPEKTRUM DER AUGENHEILKUNDE 2000. [DOI: 10.1007/bf03162830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
185
|
Abstract
Successful management of cardiovascular (CV) disease and associated metabolic syndromes, such as diabetes, is a major challenge to the clinician. Reducing CV risk factors, such as abnormal lipid profiles, insulin resistance or hypertension is the foundation of such therapy. A relatively new class of therapeutic agent, activators of peroxisome proliferator-activated receptors (PPAR), is poised to make a major impact with regard to several areas of risk factor management. However, there is growing evidence that PPAR agonists may also influence the CV system directly by modulating vessel wall function. These observations suggest that additional benefit, in the treatment of CV disease, may derive not only from the ability of agents to modify risk factors but also to influence directly the cellular mechanisms of disease within the vessel wall. A precedent for this dual action comes from examination of the effects of inhibitors of HMG CoA reductase (statins), where risk factor modulation is accompanied by direct actions on the vessel wall. In this review, we summarize the evidence suggesting that PPAR agonists may directly modulate vessel wall function, and that these may parallel those effects reported recently for the statins.
Collapse
Affiliation(s)
- K W Buchan
- Department of Cardiovascular Systems, Glaxo Wellcome, Stevenage, Herts, UK.
| | | |
Collapse
|
186
|
Ha H, Lee HB. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. KIDNEY INTERNATIONAL. SUPPLEMENT 2000; 77:S19-25. [PMID: 10997686 DOI: 10.1046/j.1523-1755.2000.07704.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Oxidative stress is one of the important mediators of vascular complications in diabetes including nephropathy. High glucose (HG) generates reactive oxygen species (ROS) as a result of glucose auto-oxidation, metabolism, and formation of advanced glycosylation end products. The concept of ROS-induced tissue injury has recently been revised with the appreciation of new roles for ROS in signaling pathways and gene expression. METHODS AND RESULTS High glucose rapidly generated dichlorofluorescein-sensitive cytosolic ROS in rat and mouse mesangial cells. Neither L-glucose nor 3-O-methyl-D-glucose increased cytosolic ROS and cytochalasin B, an inhibitor of glucose transporter, effectively inhibited HG-induced ROS generation, suggesting that glucose uptake and subsequent metabolism are required in HG-induced cytosolic ROS generation. H2O2 up-regulated fibronectin mRNA expression and protein synthesis; this up-regulation was effectively inhibited by protein kinase C (PKC) inhibitor or by depletion of PKC. The HG-induced generation of ROS was, in turn, related to activation of PKC and transcription factors nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) as well as to the up-regulation of transforming growth factor-beta1 (TGF-beta1), fibronectin mRNA expression and protein synthesis, because antioxidants effectively inhibited HG-induced PKC, NF-kappaB, AP-1 activation, and TGF-beta1 and fibronectin expression in mesangial cells cultured under HG. CONCLUSIONS Although signal transduction pathways linking HG, ROS, PKC, transcription factors, and extracellular matrix (ECM) protein synthesis in mesangial cells have not been fully elucidated, the current data provide evidence that ROS generated by glucose metabolism may act as integral signaling molecules under HG as in other membrane receptor signaling.
Collapse
Affiliation(s)
- H Ha
- Department of Pharmacology, Yonsei University College of Medicine and Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | | |
Collapse
|
187
|
Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Cordone S, Gradini R, Barsotti P, Liu FT, Di Mario U, Pugliese G. Role of galectin-3 as a receptor for advanced glycosylation end products. KIDNEY INTERNATIONAL. SUPPLEMENT 2000; 77:S31-9. [PMID: 10997688 DOI: 10.1046/j.1523-1755.2000.07706.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The advanced glycosylation end product (AGE)-binding proteins identified so far include the components of the AGE-receptor complex p60, p90 and galectin-3, receptor for advanced glycosylation end products (RAGE), and the macrophage scavenger receptor types I and II. Galectin-3 interacts with beta-galactoside residues of several cell surface and matrix glycoproteins through the carbohydrate recognition domain and is also capable of peptide-peptide associations mediated by its N-terminus domain. These structural properties enable galectin-3 to exert multiple functions, including the modulation of cell adhesion, the control of cell cycle, and the mRNA splicing activity. Moreover, in macrophages, astrocytes, and endothelial cells, galectin-3 has been shown to exhibit a high-affinity binding for AGEs; the lack of a transmembrane anchor sequence or signal peptide suggests that it associates with other AGE-receptor components rather than playing an independent role as AGE-receptor. In tissues that are targets of diabetic vascular complications, such as the mesangium and the endothelium, galectin-3 is not expressed or only weakly expressed under basal conditions, at variance with p90 and p60 but becomes detectable with aging and is induced or up-regulated by the diabetic milieu, which only slightly affects the expression of p90 or p60. This (over)expression of galectin-3 may in turn modulate AGE-receptor-mediated events by modifying the function of the AGE-receptor complex, which could play a role in the pathogenesis of target tissue injury. Up-regulated galectin-3 expression may also exert direct effects on tissue remodeling, independently of AGE ligands, by virtue of its adhesive and growth regulating properties.
Collapse
Affiliation(s)
- F Pricci
- Department of Clinical Sciences, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Kähler J, Mendel S, Weckmüller J, Orzechowski HD, Mittmann C, Köster R, Paul M, Meinertz T, Münzel T. Oxidative stress increases synthesis of big endothelin-1 by activation of the endothelin-1 promoter. J Mol Cell Cardiol 2000; 32:1429-37. [PMID: 10900169 DOI: 10.1006/jmcc.2000.1178] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of the biosynthesis of the vasoconstrictor peptide endothelin-1 by oxygen-derived free radicals generated by xanthine oxidase or hydrogen peroxide was studied in cultured endothelial cells. Endothelin-1 metabolism was investigated at the level of endothelin-1 promoter, preproendothelin-1 mRNA and intracellular big endothelin-1. Endothelin-1 mRNA, as characterized by Northern blotting, was increased both time- and dose-dependently by xanthine oxidase to up to 500% above baseline. Analysis of endothelin-1 promoter activity using a construct containing 1329 bp of the endothelin-1 promoter revealed that promoter activity was increased up to eight-fold by incubation with xanthine oxidase. Specificity was ascertained by co-incubation with superoxide dismutase and catalase leading to inhibition of the effect of xanthine oxidase. A significant contribution of nitric oxide was ruled out, since NOS III-mRNA transcription remained unchanged and l -NAME did not significantly alter endothelin-1 promoter activity. Synthesis of intracellular big endothelin-1 protein was increased dose-dependently by xanthine oxidase. Our results indicate that oxidative stress leads to increased endothelial synthesis of big endothelin-1, which is a previously unknown mechanism and may help to understand the detrimental association of increased oxidative stress and elevated endothelin-1 levels in pathophysiological conditions promoting atherosclerosis.
Collapse
Affiliation(s)
- J Kähler
- Department of Cardiology, University Hospital Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Kohan DE. Reactive oxygen species and endothelins in diabetic nephropathy. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 135:300-2. [PMID: 10779044 DOI: 10.1067/mlc.2000.105972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
190
|
Abstract
The endothelium plays a crucial dynamic role as a protective interface between blood and the underlying tissues during the haemostatic process, which maintains blood flow in the circulation and prevents life-threatening blood loss. Following vessel wall injury with initial platelet adhesion and aggregation to exposed subendothelial extracellular matrix, the initiation, amplification, and control of haemostasis depend on structurally unrelated membrane-associated receptors for blood coagulation proteases including tissue factor, G-protein-coupled protease-activatable receptors, thrombomodulin, and protein C receptor, respectively. In addition to their regulatory role in haemostasis, the respective (pro-)enzyme ligands such as Factors VIIa and Xa, thrombin or protein C mediate specific signalling pathways in vascular cells related to migration, proliferation or adhesion. The functional importance of these receptors beyond haemostasis has been manifested by various lethal and pathological phenotypes in knock-out mice. These protease receptors thereby provide important molecular links in the vascular system and serve to integrate haemostasis with endothelial cell functions which are relevant for the (patho-)physiological responses to injury or inflammatory challenges.
Collapse
Affiliation(s)
- K T Preissner
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
191
|
Makino A, Kamata K. Time-course changes in plasma endothelin-1 and its effects on the mesenteric arterial bed in streptozotocin-induced diabetic rats. Diabetes Obes Metab 2000; 2:47-55. [PMID: 11220354 DOI: 10.1046/j.1463-1326.2000.00024.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM To examine the mechanisms underlying the elevated plasma endothelin-1 (ET-1) in diabetes and its vascular effects. RESULTS Relationships between the plasma ET-1 level and the levels of other plasma constituents (glucose, cholesterol, and triglyceride) were found in 10-week streptozotocin (STZ)-induced diabetic rats. In contrast, at 1 week after the STZ injection only plasma ET-1 and glucose levels were elevated, suggesting that the hyperglycaemia might trigger the excess production of ET-1. Incubation with high glucose promoted the release of ET-1 from the isolated mesenteric arterial bed. In STZ-induced diabetic rats, the maximum contractile response of the mesenteric arterial bed to ET-1 was significantly reduced, and the vasoconstriction and vasodilation induced by the ET(B)-receptor agonist IRL-1620 in this bed were significantly impaired. The vascular responses induced by these ET receptor agonists were restored to normal by chronic treatment of diabetic rats with insulin for 7 or 4 weeks. CONCLUSIONS These results suggest: (1) that the marked increase in plasma glucose in STZ-induced diabetic rats elevates the plasma ET-1; and (2) that the decreased contractile and vasodilator responses of the mesenteric arterial bed to ET-1 receptor agonists may be due to desensitization of not only ET(A), but also ET(B) receptors, an effect secondary to the elevation of plasma ET-1.
Collapse
Affiliation(s)
- A Makino
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | |
Collapse
|
192
|
Juurlink BH. Management of oxidative stress in the CNS: the many roles of glutathione. Neurotox Res 1999; 1:119-40. [PMID: 12835108 DOI: 10.1007/bf03033276] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An outline is given of mechanisms that generate oxidative stress and inflammation. Considered are the metabolic mechanisms that give rise to peroxides, the source of strong oxidants; the production of dicarbonyls that interact with macromolecules to form advanced glycation endproducts; and the role that activation of the transcription factor NF(Kappa)B has in the expression of pro-inflammatory genes. Management of oxidative stress is considered by outlining the central role of reduced glutathione (GSH) in peroxide scavenging, dicarbonyl scavenging and activation of NF(Kappa)B. Cellular GSH levels are dictated by the balance between consumption, oxidation of GSH, reduction of oxidized-glutathione, and synthesis. The rate-limiting enzyme in GSH synthesis is L-gamma-glutamyl-L-cysteine synthase, a phase II enzyme. Phase II enzyme inducers are found in many fruits and vegetables. It is suggested that dietary phase II enzyme inducers be investigated for their potential for preventing or retarding the development of degenerative diseases that have an underlying oxidative stress and inflammatory component.
Collapse
Affiliation(s)
- B H Juurlink
- Department of Anatomy and Cell Biology, The Cameco Multiple Sclerosis and Neuroscience Research Centre, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, SK, S7N 5E5 Canada.
| |
Collapse
|
193
|
Abstract
Oxidative stress and the production of intracellular reactive oxygen species (ROS) have been implicated in the pathogenesis of a variety of diseases. In excess, ROS and their byproducts that are capable of causing oxidative damage may be cytotoxic to cells. However, it is now well established that moderate amounts of ROS play a role in signal transduction processes such as cell growth and posttranslational modification of proteins. Oxidants, antioxidants, and other determinants of the intracellular reduction-oxidation (redox) state play an important role in the regulation of gene expression. Recent insights into the etiology and pathogenesis of atherosclerosis suggest that this disease may be viewed as an inflammatory disease linked to an abnormality in oxidation-mediated signals in the vasculature. In this review, we summarize the evidence supporting the notion that oxidative stress and the production of ROS function as physiological regulators of vascular gene expression mediated via specific redox-sensitive signal transduction pathways and transcriptional regulatory networks. Elucidating, at the molecular level, the regulatory processes involved in redox-sensitive vascular gene expression represents a foundation not only for understanding the pathogenesis of atherosclerosis and other inflammatory diseases but also for the development of novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- C Kunsch
- AtheroGenics, Inc, Alpharetta, GA 30004, USA
| | | |
Collapse
|
194
|
Pugliese G, Pricci F, Romeo G, Leto G, Amadio L, Iacobini C, Di Mario U. Autocrine and paracrine mechanisms in the early stages of diabetic nephropathy. J Endocrinol Invest 1999; 22:708-35. [PMID: 10595837 DOI: 10.1007/bf03343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- G Pugliese
- Dipartimento di Scienze Cliniche, Endocrinologia III, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
195
|
McCarty MF. The reported clinical utility of taurine in ischemic disorders may reflect a down-regulation of neutrophil activation and adhesion. Med Hypotheses 1999; 53:290-9. [PMID: 10608263 DOI: 10.1054/mehy.1998.0760] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The first publications regarding clinical use of taurine were Italian reports claiming therapeutic efficacy in angina, intermittent claudication and symptomatic cerebral arteriosclerosis. A down-regulation of neutrophil activation and endothelial adhesion might plausibly account for these observations. Endothelial platelet-activating factor (PAF) is a crucial stimulus to neutrophil adhesion and activation, whereas endothelial nitric oxide (NO) suppresses PAF production and acts in various other ways to antagonize binding and activation of neutrophils. Hypochlorous acid (HOCl), a neutrophil product which avidly oxidizes many sulfhydryl-dependent proteins, can be expected to inhibit NO synthase while up-regulating PAF generation; thus, a vicious circle can be postulated whereby HOCl released by marginating neutrophils acts on capillary or venular endothelium to promote further neutrophil adhesion and activation. Taurine is the natural detoxicant of HOCl, and thus has the potential to intervene in this vicious circle, promoting a less adhesive endothelium and restraining excessive neutrophil activation. Agents which inhibit the action of PAF on neutrophils, such as ginkgolides and pentoxifylline, have documented utility in ischemic disorders and presumably would complement the efficacy of taurine in this regard. Fish oil, which inhibits endothelial expression of various adhesion factors and probably PAF as well, and which suppresses neutrophil leukotriene production, may likewise be useful in ischemia. These agents may additionally constitute a non-toxic strategy for treating inflammatory disorders in which activated neutrophils play a prominent pathogenic role. Double-blind studies to confirm the efficacy of taurine in symptomatic chronic ischemia are needed.
Collapse
|
196
|
Reljanovic M, Reichel G, Rett K, Lobisch M, Schuette K, Möller W, Tritschler HJ, Mehnert H. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res 1999; 31:171-9. [PMID: 10499773 DOI: 10.1080/10715769900300721] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Short-term trials with the antioxidant thioctic acid (TA) appear to improve neuropathic symptoms in diabetic patients, but the long-term response remains to be established. Therefore, Type 1 and Type 2 diabetic patients with symptomatic polyneuropathy were randomly assigned to three treatment regimens: (1) 2 x 600(mg of TA (TA 1200), (2) 600)mg of TA plus placebo (PLA) (TA 600) or (3) placebo and placebo (PLA). A trometamol salt solution of TA of 1200 or 600 mg or PLA was intravenously administered once daily for five consecutive days before enrolling the patients in the oral treatment phase. The study was prospective, PLA-controlled, randomized, double-blind and conducted for two years. Severity of diabetic neuropathy was assessed by the Neuropathy Disability Score (NDS) and electrophysiological attributes of the sural (sensory nerve conduction velocity (SNCV), sensory nerve action potential (SNAP)) and the tibial (motor nerve conduction velocity (MNCV), motor nerve distal latency (MNDL)) nerve. Statistical analysis was performed after independent reviewers excluded all patients with highly variable data allowing a final analysis of 65 patients (TA 1200: n = 18, TA 600: n = 27; PLA: n = 20). At baseline no significant differences were noted between the groups regarding the demographic variables and peripheral nerve function parameters for these 65 patients. Statistically significant changes after 24 months between TA and PLA were observed (mean +/- SD) for sural SNCV: +3.8 +/- 4.2 m/s in TA 1200, +3.0+/-3.0m/s in TA 600, -0.1+/-4.8m/s in PLA (p < 0.05 for TA 1200 and TA 600 vs. PLA); sural SNAP: +0.6+/-2.5 microV in TA 1200, +0.3+/-1.4 microV in TA 600, -0.7 +/- 1.5 microV in PLA (p = 0.076 for TA 1200 vs. PLA and p < 0.05 for TA 600 vs. PLA), and in tibial MNCV: +/- 1.2 +/- 3.8 m/s in TA 1200, -0.3 +/- 5.2 m/s in TA 600, 1.5 +/- 2.9 m/s in PLA (p < 0.05 for TA 1200 vs. PLA). No significant differences between the groups after 24 months were noted regarding the tibial MNDL and the NDS. We conclude that in a subgroup of patients after exclusion of patients with excessive test variability throughout the trial, TA appeared to have a beneficial effect on several attributes of nerve conduction.
Collapse
Affiliation(s)
- M Reljanovic
- University of Clinic for Diabetes, Endocrinology and Metabolic Diseases Vuk Vrhovac, Medical faculty, University of Zagreb, Coratia
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Neumann A, Schinzel R, Palm D, Riederer P, Münch G. High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett 1999; 453:283-7. [PMID: 10405161 DOI: 10.1016/s0014-5793(99)00731-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advanced glycation endproducts (AGEs), which accumulate on long-lived proteins and protein deposits (amyloids), induce the expression of proinflammatory cytokines through NF-kappaB-dependent pathways. Hyaluronic acid with a molecular weight above 1.2 MDa (HMW-HA) inhibits the AGE-induced activation of the transcription factor NF-kappaB and the NF-kappaB-regulated cytokines interleukin-1alpha, interleukin-6 and tumor necrosis factor-alpha. Since the molecular weight of hyaluronic acid in humans decreases with age and under conditions of oxidative stress, it is likely that the protective effect of HMW-HA against AGE-induced cellular activation is lost at sites of chronic inflammation and in older age.
Collapse
Affiliation(s)
- A Neumann
- Physiological Chemistry I, Biocenter, Würzburg, Germany
| | | | | | | | | |
Collapse
|
198
|
Fischer S, Clauss M, Wiesnet M, Renz D, Schaper W, Karliczek GF. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C812-20. [PMID: 10199811 DOI: 10.1152/ajpcell.1999.276.4.c812] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, an in vitro model of the blood-brain barrier, consisting of porcine brain-derived microvascular endothelial cells (BMEC), was used to evaluate the mechanism of hypoxia-induced hyperpermeability. We show that hypoxia-induced permeability in BMEC was completely abolished by a neutralizing antibody to vascular endothelial growth factor (VEGF). In contrast, under normoxic conditions, addition of VEGF up to 100 ng/ml did not alter monolayer barrier function. Treatment with either hypoxia or VEGF under normoxic conditions induced a twofold increase in VEGF binding sites and VEGF receptor 1 (Flt-1) mRNA expression in BMEC. Hypoxia-induced permeability also was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine, suggesting that NO is involved in hypoxia-induced permeability changes, which was confirmed by measurements of the cGMP level. During normoxia, treatment with VEGF (5 ng/ml) increased permeability as well as cGMP content in the presence of several antioxidants. These results suggest that hypoxia-induced permeability in vitro is mediated by the VEGF/VEGF receptor system in an autocrine manner and is essentially dependent on reducing conditions stabilizing the second messenger NO as the mediator of changes in barrier function of BMEC.
Collapse
Affiliation(s)
- S Fischer
- Department of Anesthesiology and Intensive Care, Max Planck Institute for Physiological and Clinical Research, 61231 Bad Nauheim, Germany.
| | | | | | | | | | | |
Collapse
|
199
|
Nawroth PP, Bierhaus A, Vogel GE, Hofmann MA, Zumbach M, Wahl P, Ziegler R. [Non-enzymatic glycation and oxidative stress in chronic illnesses and diabetes mellitus]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:29-38. [PMID: 10081287 DOI: 10.1007/bf03044692] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
UNLABELLED New approaches in biochemistry and molecular biology have increased the knowledge on the pathophysiology of chronic diseases as late diabetic complications, Alzheimer's disease, arteriosclerosis and vascular disease by defining the concept of "AGE-formation and oxidative stress." Nonenzymatic glycation, in which reducing sugars are covalently bound to free aminogroups of macromolecules, results in the formation of Advanced Glycation End products (AGEs) which accumulate during aging and at accelerated rate during the course of diabetes. Glycation accompanying oxidation processes support AGE-formation. AGE-formation changes the physicochemical properties of proteins, lipids and nucleic acids. In addition, binding of AGEs to specific surface receptors induces cellular signalling and cell activation. Interaction of AGEs with one of the receptors, RAGE, generates intracellular oxidative stress, which results in activation of the transcription factor NF-kappa B and subsequent gene expression, which might be relevant in late diabetic complications. CONCLUSION Knowledge of the basis molecular mechanisms allows to understand the interplay of different inducers such as redicals, cytokines, AGE-proteins and amyloid-beta-peptids and to define oxidative stress as a "common endpoint" of cell dysfunction. With respect to therapeutic options it is now possible not only to optimize blood glycemic control, but also to design drugs such as AGE-inhibitors and AGE-"cross-link" breakers. In addition patients with chronic disease associated with increased oxidative stress ay benefit from an antioxidant rich (and AGE protein poor?) nutrition.
Collapse
Affiliation(s)
- P P Nawroth
- Abteilung Innere Medizin I, Endokrinologie und Stoffwechsel, Universität Heidelberg.
| | | | | | | | | | | | | |
Collapse
|
200
|
Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 1999; 10:157-67. [PMID: 10609877 DOI: 10.1002/biof.5520100211] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A common endpoint of hyperglycemia dependent cellular changes is the generation of reactive oxygen intermediates (ROIs) and the presence of elevated oxidative stress. Therefore, oxidative stress is supposed to play an important role in the development of late diabetic complications. Formation of advanced glycation end products (AGE's) due to elevated nonenzymatic glycation of proteins, lipids and nucleic acids is accompanied by oxidative, radical-generating reactions and thus represents a major source for oxygen free radicals under hyperglycemic conditions. Once formed, AGE's can influence cellular function by binding to several binding sites including the receptor for AGE's, RAGE. Binding of AGE's (and other ligands) to RAGE results in generation of intracellular oxidative stress and subsequent activation of the redox-sensitive transcription factor NF-kappaB in vitro and in vivo. Consistently, activation of NF-kappaB in diabetic patients correlates with the quality of glycemic control and can be reduced by treatment with the antioxidant alpha-lipoic acid. The development of techniques allowing for a tissue culture independent measurement of NF-kappaB activation in patients with diabetes mellitus gives insights into the molecular mechanisms linking diabetes mellitus and hyperglycemia with formation of advanced glycated endproducts and generation of oxidative stress finally resulting in oxidative stress mediated cellular activation.
Collapse
Affiliation(s)
- A K Mohamed
- Medizinische Klinik I der Universitat Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|