151
|
Cenalmor A, Pascual E, Gil-Manso S, Correa-Rocha R, Suárez JR, García-Álvarez I. Evaluation of Anti-Neuroinflammatory Activity of Isatin Derivatives in Activated Microglia. Molecules 2023; 28:4882. [PMID: 37375437 DOI: 10.3390/molecules28124882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation plays a crucial role in the progression of Alzheimer's disease and other neurodegenerative disorders. Overactivated microglia cause neurotoxicity and prolong the inflammatory response in many neuropathologies. In this study, we have synthesised a series of isatin derivatives to evaluate their anti-neuroinflammatory potential using lipopolysaccharide activated microglia as a cell model. We explored four different substitutions of the isatin moiety by testing their anti-neuroinflammatory activity on BV2 microglia cells. Based on the low cytotoxicity and the activity in reducing the release of nitric oxide, pro-inflammatory interleukin 6 and tumour necrosis factor α by microglial cells, the N1-alkylated compound 10 and the chlorinated 20 showed the best results at 25 µM. Taken together, the data suggest that 10 and 20 are promising lead compounds for developing new neuroprotective agents.
Collapse
Affiliation(s)
- Alejandro Cenalmor
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Elena Pascual
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Sergio Gil-Manso
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), 28009 Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), 28009 Madrid, Spain
| | - José Ramón Suárez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel García-Álvarez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
152
|
Kumar S, Akopian A, Bloomfield SA. Neuroprotection of Retinal Ganglion Cells Suppresses Microglia Activation in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:24. [PMID: 37318444 DOI: 10.1167/iovs.64.7.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Purpose Microglial activation has been implicated in many neurodegenerative eye diseases, but the interrelationship between cell loss and microglia activation remains unclear. In glaucoma, there is no consensus yet whether microglial activation precedes or is a consequence of retinal ganglion cell (RGC) degeneration. We therefore investigated the temporal and spatial appearance of activated microglia in retina and their correspondence to RGC degeneration in glaucoma. Methods We used an established microbead occlusion model of glaucoma in mouse whereby intraocular pressure (IOP) was elevated. Specific antibodies were used to immunolabel microglia in resting and activated states. To block retinal gap junction (GJ) communication, which has been shown previously to provide significant neuroprotection of RGCs, the GJ blocker meclofenamic acid was administered or connexin36 (Cx36) GJ subunits were ablated genetically. We then studied microglial activation at different time points after microbead injection in control and neuroprotected retinas. Results Histochemical analysis of flatmount retinas revealed major changes in microglia morphology, density, and immunoreactivity in microbead-injected eyes. An early stage of microglial activation followed IOP elevation, as indicated by changes in morphology and cell density, but preceded RGC death. In contrast, the later stage of microglia activation, associated with upregulation of major histocompatibility complex class II expression, corresponded temporally to the initial loss of RGCs. However, we found that protection of RGCs afforded by GJ blockade or genetic ablation largely suppressed microglial changes at all stages of activation in glaucomatous retinas. Conclusions Together, our data strongly suggest that microglia activation in glaucoma is a consequence, rather than a cause, of initial RGC degeneration and death.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
153
|
Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer MP, van Woerden GM, Besnard T, Papendorf JJ, Studencka-Turski M, Wang T, Hsieh TC, Golnik R, Baldridge D, Forster C, de Konink C, Teurlings SM, Vignard V, van Jaarsveld RH, Ades L, Cogné B, Mignot C, Deb W, Jongmans MC, Sessions Cole F, van den Boogaard MJH, Wambach JA, Wegner DJ, Yang S, Hannig V, Brault JA, Zadeh N, Bennetts B, Keren B, Gélineau AC, Powis Z, Towne M, Bachman K, Seeley A, Beck AE, Morrison J, Westman R, Averill K, Brunet T, Haasters J, Carter MT, Osmond M, Wheeler PG, Forzano F, Mohammed S, Trakadis Y, Accogli A, Harrison R, Guo Y, Hakonarson H, Rondeau S, Baujat G, Barcia G, Feichtinger RG, Mayr JA, Preisel M, Laumonnier F, Kallinich T, Knaus A, Isidor B, Krawitz P, Völker U, Hammer E, Droit A, Eichler EE, Elgersma Y, Hildebrand PW, Bolduc F, Krüger E, Bézieau S. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci Transl Med 2023; 15:eabo3189. [PMID: 37256937 PMCID: PMC10506367 DOI: 10.1126/scitranslmed.abo3189] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Victoria Most
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
| | | | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Richard Golnik
- Klinik für Pädiatrie I, Universitätsklinikum Halle (Saale), 06120 Halle (Saale)
| | - Dustin Baldridge
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Cara Forster
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Charlotte de Konink
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Selina M.W. Teurlings
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | | | - Lesley Ades
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Cyril Mignot
- APHP, Hôpital Pitié-Salpêtrière, Département de Génétique, Centre de Reference Déficience Intellectuelle de Causes Rares, GRC UPMC «Déficience Intellectuelle et Autisme», 75013 Paris, France
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, 75013, Paris, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Marjolijn C.J. Jongmans
- Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - F. Sessions Cole
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | | | - Jennifer A. Wambach
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Daniel J. Wegner
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130-4899, USA
| | - Sandra Yang
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Vickie Hannig
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Ann Brault
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neda Zadeh
- Genetics Center, Orange, CA 92868, USA; Division of Medical Genetics, Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - Bruce Bennetts
- Disciplines of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Anne-Claire Gélineau
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Zöe Powis
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Meghan Towne
- Department of Clinical Research, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | - Andrea Seeley
- Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA
| | - Anita E. Beck
- Department of Pediatrics, Division of Genetic Medicine, University of Washington & Seattle Children’s Hospital, Seattle, WA 98195-6320, USA
| | - Jennifer Morrison
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Rachel Westman
- Division of Genetics, St. Luke’s Clinic, Boise, ID 83712, USA
| | - Kelly Averill
- Department of Pediatrics, Division of Pediatric Neurology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Judith Haasters
- Klinikum der Universität München, Integriertes Sozial- pädiatrisches Zentrum, 80337 Munich, Germany
| | - Melissa T. Carter
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, ON K1H 8L1, Canada
| | - Patricia G. Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL 32806, USA
| | - Francesca Forzano
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Shehla Mohammed
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Yannis Trakadis
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Andrea Accogli
- Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Rachel Harrison
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, City Hospital Campus, The Gables, Gate 3, Hucknall Road, Nottingham NG5 1PB, UK
| | - Yiran Guo
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Geneviève Baujat
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - René Günther Feichtinger
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes Adalbert Mayr
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Martin Preisel
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, 37032 Tours, France
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin; 13353 Berlin, Germany
- Deutsches Rheumaforschungszentrum, An Institute of the Leibniz Association, Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Uwe Völker
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Elke Hammer
- Universitätsmedizin Greifswald, Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung für Funktionelle Genomforschung, 17487 Greifswald, Germany
| | - Arnaud Droit
- Research Center of Quebec CHU-Université Laval, Québec, QC PQ G1E6W2, Canada
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ype Elgersma
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter W. Hildebrand
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Medizinische Fakultät, Härtelstr. 16-18, 04107 Leipzig, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - François Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB CT6G 1C9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 44000 Nantes, France
| |
Collapse
|
154
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
155
|
Abi-Ghanem C, Salinero AE, Kordit D, Mansour FM, Kelly RD, Venkataganesh H, Kyaw NR, Gannon OJ, Riccio D, Fredman G, Poitelon Y, Belin S, Kopec AM, Robison LS, Zuloaga KL. Sex differences in the effects of high fat diet on underlying neuropathology in a mouse model of VCID. Biol Sex Differ 2023; 14:31. [PMID: 37208759 PMCID: PMC10199629 DOI: 10.1186/s13293-023-00513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias). METHODS We compared the effects of mid-life metabolic disease between males and females in a chronic cerebral hypoperfusion mouse model of VCID. C57BL/6J mice were fed a control or high fat (HF) diet starting at ~ 8.5 months of age. Three months after diet initiation, sham or unilateral carotid artery occlusion surgery (VCID model) was performed. Three months later, mice underwent behavior testing and brains were collected to assess pathology. RESULTS We have previously shown that in this VCID model, HF diet causes greater metabolic impairment and a wider array of cognitive deficits in females compared to males. Here, we report on sex differences in the underlying neuropathology, specifically white matter changes and neuroinflammation in several areas of the brain. White matter was negatively impacted by VCID in males and HF diet in females, with greater metabolic impairment correlating with less myelin markers in females only. High fat diet led to an increase in microglia activation in males but not in females. Further, HF diet led to a decrease in proinflammatory cytokines and pro-resolving mediator mRNA expression in females but not males. CONCLUSIONS The current study adds to our understanding of sex differences in underlying neuropathology of VCID in the presence of a common risk factor (obesity/prediabetes). This information is crucial for the development of effective, sex-specific therapeutic interventions for VCID.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Harini Venkataganesh
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Gabrielle Fredman
- Department Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Yannick Poitelon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Sophie Belin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Ashley M Kopec
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Lisa S Robison
- Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL, 33314, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
156
|
Chassé M, Vasdev N. Synthesis and Preclinical Positron Emission Tomography Imaging of the p38 MAPK Inhibitor [ 11C]Talmapimod: Effects of Drug Efflux and Sex Differences. ACS Chem Neurosci 2023. [PMID: 37186961 DOI: 10.1021/acschemneuro.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Stress-activated kinases are targets of interest in neurodegenerative disease due to their involvement in inflammatory signaling and synaptic dysfunction. The p38α kinase has shown clinical and preclinical promise as a druggable target in several neurodegenerative conditions. We report the radiosynthesis and evaluation of the first positron emission tomography (PET) radiotracer for imaging MAPK p38α/β through radiolabeling of the inhibitor talmapimod (SCIO-469) with carbon-11. [11C]Talmapimod was reliably synthesized by carbon-11 methylation with non-decay corrected radiochemical yields of 3.1 ± 0.7%, molar activities of 38.9 ± 13 GBq/μmol, and >95% radiochemical purity (n = 20). Preclinical PET imaging in rodents revealed a low baseline brain uptake and retention with standardized uptake values (SUV) of ∼0.2 over 90 min; however, pretreatment with the P-glycoprotein (P-gp) drug efflux transporter inhibitor elacridar enabled [11C]talmapimod to pass the blood-brain barrier (>1.0 SUV) with distinct sex differences in washout kinetics. Blocking studies with a structurally dissimilar p38α/β inhibitor, neflamapimod (VX-745), and displacement imaging studies with talmapimod were attempted in elacridar-pretreated rodents, but neither compound displaced radiotracer uptake in the brain of either sex. Ex vivo radiometabolite analysis revealed substantial differences in the composition of radioactive species present in blood plasma but not in brain homogenates at 40 min post radiotracer injection. Digital autoradiography in fresh-frozen rodent brain tissue confirmed that the radiotracer signal was largely non-displaceable in vitro, where self-blocking and blocking with neflamapimod marginally decreased the total signal by 12.9 ± 8.8% and 2.66 ± 2.1% in C57bl/6 healthy controls and 29.3 ± 2.7% and 26.7 ± 12% in Tg2576 rodent brains, respectively. An MDCK-MDR1 assay suggests that talmapimod is likely to suffer from drug efflux in humans as well as rodents. Future efforts should focus on radiolabeling p38 inhibitors from other structural classes to avoid P-gp efflux and non-displaceable binding.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
157
|
de Sousa JAC, Azul FVCS, de Araújo AB, Tomé RC, Silva FRM, de Vasconcelos SMM, Rios FJ, Leal LKAM. Epiisopiloturine, an Alkaloid from Pilocarpus microphyllus, Attenuates LPS-Induced Neuroinflammation by Interfering in the TLR4/NF- κB-MAPK Signaling Pathway in Microglial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4752502. [PMID: 37151606 PMCID: PMC10162877 DOI: 10.1155/2023/4752502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/18/2023] [Indexed: 05/09/2023]
Abstract
Neuroinflammation is present in the pathophysiological mechanisms of several diseases that affect the central nervous system (CNS). Microglia have a prominent role in initiating and sustaining the inflammatory process. Epiisopiloturine (EPI) is an imidazole alkaloid obtained as a by-product of pilocarpine extracted from Pilocarpus microphyllus (jaborandi) and has shown promising anti-inflammatory and antinociceptive properties. In the present study, we investigated the effects of EPI on the inflammatory response in microglial cells (BV-2 cells) induced by lipopolysaccharide (LPS) and explored putative underlying molecular mechanisms. Cell viability was not affected by EPI (1-100 μg/mL) as assessed by both LDH activity and the MTT test. Pretreatment with EPI (25, 50, and 100 μg/mL) significantly reduced the proinflammatory response induced by LPS, as observed by a decrease in nitrite oxide production and iNOS protein expression. EPI (25 μg/mL) reduced IL-6 and TNF-α production, by 40% and 34%, respectively. However, no changes were observed in the anti-inflammatory IL-10 production. Mechanistically, EPI inhibited the TLR4 expression and phosphorylation of NF-κB p65 and MAPKs (JNK and ERK1/2) induced by LPS, but no changes were observed in TREM2 receptor expression in LPS-stimulated cells. In conclusion, our data demonstrated the potent anti-inflammatory properties of EPI in microglial cells. These effects are associated with the reduction of TLR4 expression and inhibition of intracellular signaling cascades, including NF-κB and MAPKs (JNK and ERK1/2).
Collapse
Affiliation(s)
- João Antônio Costa de Sousa
- Center of Cosmetics and Pharmaceutical Studies, CEFAC, Faculty of Pharmacy, Odontology, and Nursing, Department of Pharmacy, Federal University of Ceará, CEFAC, Fortaleza, CE, Brazil
| | - Francisco Vinícius Clemente Serra Azul
- Center of Cosmetics and Pharmaceutical Studies, CEFAC, Faculty of Pharmacy, Odontology, and Nursing, Department of Pharmacy, Federal University of Ceará, CEFAC, Fortaleza, CE, Brazil
| | - Ana Bruna de Araújo
- Center of Cosmetics and Pharmaceutical Studies, CEFAC, Faculty of Pharmacy, Odontology, and Nursing, Department of Pharmacy, Federal University of Ceará, CEFAC, Fortaleza, CE, Brazil
| | - Rebeca Colares Tomé
- Center of Cosmetics and Pharmaceutical Studies, CEFAC, Faculty of Pharmacy, Odontology, and Nursing, Department of Pharmacy, Federal University of Ceará, CEFAC, Fortaleza, CE, Brazil
| | - Francisca Raysse Mesquita Silva
- Center of Cosmetics and Pharmaceutical Studies, CEFAC, Faculty of Pharmacy, Odontology, and Nursing, Department of Pharmacy, Federal University of Ceará, CEFAC, Fortaleza, CE, Brazil
| | | | - Francisco José Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Luzia Kalyne Almeida Moreira Leal
- Center of Cosmetics and Pharmaceutical Studies, CEFAC, Faculty of Pharmacy, Odontology, and Nursing, Department of Pharmacy, Federal University of Ceará, CEFAC, Fortaleza, CE, Brazil
| |
Collapse
|
158
|
CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Mol Aspects Med 2023; 90:101111. [PMID: 35940942 DOI: 10.1016/j.mam.2022.101111] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and is considered the main cause of dementia worldwide. Genome-wide association studies combined with integrated analysis of functional datasets support a critical role for microglia in AD pathogenesis, identifying them as important potential therapeutic targets. The ability of immunomodulatory receptors on microglia to control the response to pathogenic amyloid-β aggregates has gained significant interest. Siglec-3, also known as CD33, is one of these immunomodulatory receptors expressed on microglia that has been identified as an AD susceptibility factor. Here, we review recent advances made in understanding the multifaceted roles that CD33 plays in microglia with emphasis on two human-specific CD33 isoforms that differentially correlate with AD susceptibility. We also describe several different therapeutic approaches for targeting CD33 that have been advanced for the purpose of skewing microglial cell responses.
Collapse
|
159
|
Taing K, Chen L, Weng HR. Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain. Neural Regen Res 2023; 18:763-768. [PMID: 36204834 PMCID: PMC9700108 DOI: 10.4103/1673-5374.354514] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathological process of multiple neurological disorders and pathological pain conditions. GPR109A, a Gi protein-coupled receptor, has emerged as an important therapeutic target for controlling inflammation in various tissues and organs. In this review, we summarized current data about the role of GPR109A in neuroinflammation. Specifically, we focused on the pharmacological features of GPR109A and signaling pathways used by GPR109A to ameliorate neuroinflammation and symptoms in Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and pathological pain conditions.
Collapse
Affiliation(s)
- Kyle Taing
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Lawrence Chen
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
160
|
Rouvroye MD, Bontkes HJ, Bol JGJM, Lissenberg-Witte B, Byrnes V, Bennani F, Jordanova ES, Wilhelmus MMM, Mulder CJ, van der Valk P, Rozemuller AJM, Bouma G, Van Dam AM. Cerebellar presence of immune cells in patients with neuro-coeliac disease. Acta Neuropathol Commun 2023; 11:51. [PMID: 36966322 PMCID: PMC10040112 DOI: 10.1186/s40478-023-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/27/2023] Open
Abstract
Although various neurodegenerative disorders have been associated with coeliac disease (CD), the underlying neuropathological link between these brain and gut diseases remains unclear. We postulated that the neuronal damage sporadically observed in CD patients is immune-mediated. Our aim was to determine if the loss of neurons, especially Purkinje cells, coincides with microglia activation and T- and B-cell infiltration in the cerebellum of patients with CD and a concomitant idiopathic neurological disease affecting the cerebellum (NeuroCD). Post-mortem cerebellar tissue was collected of validated NeuroCD cases. Gender- and age-matched genetic spinocerebellar ataxia (SCA) controls and non-neurological controls (NNC) were selected based on clinical reports and pathological findings. Cerebellar tissue of seventeen patients was included (6 NeuroCD, 5 SCA, 6 NNC). In SCA cases we found that the Purkinje cell layer was 58.6% reduced in comparison with NNC. In NeuroCD cases this reduction was even more prominent with a median reduction of 81.3% compared to NNC. Marked increased numbers of both CD3+ and CD8+ cells were observed in the NeuroCD but not in SCA patients. This coincided with significantly more microglial reactivity in NeuroCD patients. These findings demonstrate that the massive loss of Purkinje cells in the cerebellum of neuro CD patients is accompanied by local innate and T-cell mediated immune responses.
Collapse
Affiliation(s)
- Maxine D Rouvroye
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Spaarne Gasthuis, Boerhavelaan 22, 2035 RC, Haarlem, The Netherlands
| | - Hetty J Bontkes
- Medical Immunology Laboratory, Department of Clinical Chemistry, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John G J M Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Birgit Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Valerie Byrnes
- Department of Gastroenterology and Hepatology, Galway University Hospitals, Galway, Ireland
| | - Fadel Bennani
- Department of Pathology, Mayo University Hospital, National University of Ireland Galway Affiliated Hospital, Galway, Ireland
| | - Ekaterina S Jordanova
- Department of Gynecology and Obstetrics, Center for Gynecologic Oncology Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Chris J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie Van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
161
|
Zorina SA, Jurja S, Mehedinti M, Stoica AM, Chita DS, Floris SA, Axelerad A. Infectious Microorganisms Seen as Etiologic Agents in Parkinson’s Disease. Life (Basel) 2023; 13:life13030805. [PMID: 36983960 PMCID: PMC10053287 DOI: 10.3390/life13030805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Infections represent a possible risk factor for parkinsonism and Parkinson’s disease (PD) based on information from epidemiology and fundamental science. The risk is unclear for the majority of agents. Moreover, the latency between infection and PD seems to be very varied and often lengthy. In this review, the evidence supporting the potential involvement of infectious microorganisms in the development of Parkinson’s disease is examined. Consequently, it is crucial to determine the cause and give additional treatment accordingly. Infection is an intriguing suggestion regarding the cause of Parkinson’s disease. These findings demonstrate that persistent infection with viral and bacterial microorganisms might be a cause of Parkinson’s disease. As an initiating factor, infection may generate a spectrum of gut microbiota dysbiosis, engagement of glial tissues, neuroinflammation, and alpha-synuclein accumulation, all of which may trigger and worsen the onset in Parkinson’s disease also contribute to its progression. Still uncertain is the primary etiology of PD with infection. The possible pathophysiology of PD infection remains a matter of debate. Furthermore, additional study is required to determine if PD patients develop the disease due to infectious microorganisms or solely since they are more sensitive to infectious causes.
Collapse
Affiliation(s)
- Stuparu Alina Zorina
- Department of Neurology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania; (S.A.Z.)
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Sanda Jurja
- Department of Ophthalmology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
- Department of Ophthalmology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Correspondence:
| | - Mihaela Mehedinti
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, “Dunarea de Jos”, 800017 Galati, Romania
| | - Ana-Maria Stoica
- Department of Ophthalmology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
- Department of Ophthalmology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Dana Simona Chita
- Department of Neurology, Faculty of General Medicine and Pharmacy, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania
| | - Stuparu Alexandru Floris
- Department of Orthopedy and Traumatology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Any Axelerad
- Department of Neurology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania; (S.A.Z.)
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| |
Collapse
|
162
|
Patlola SR, Donohoe G, McKernan DP. The relationship between inflammatory biomarkers and cognitive dysfunction in patients with schizophrenia: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110668. [PMID: 36283512 DOI: 10.1016/j.pnpbp.2022.110668] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Schizophrenia is a complex psychiatric disorder that includes positive and negative symptoms but also debilitating cognitive deficits. Current pharmacological interventions do not target these deficits. Recent evidence suggests a connection between some inflammatory markers (including C-reactive protein) and cognitive impairment, but did not address other inflammatory markers. In the current study, we try to fill the gap by focusing on the association of Interleukin-6 (IL-6), IL-1β, Tumor Necrosis Factor-α and CRP with cognitive dysfunction. METHODS PUBMED and Web of Science databases were searched for all studies published until July 2022. A total of 25 studies were included in an analysis of the association between cognitive performance and variation in IL-6, IL-1β, TNF-α and CRP. RESULTS A total of 2398 patients were included in this study. Meta-analyses results showed a significant inverse relationship between performance in five cognitive domains (attention-processing speed, executive function, working memory, verbal and visual learning and memory) and systemic IL-6, IL-1β, TNF-α and CRP plasma levels in patients with schizophrenia. The meta-analyses results showed a significant decline in the cognitive performances with the evaluated inflammatory markers with effect sizes ranging from -0.136 to -0.181 for IL-6, -0.188 to -0.38 for TNF-α -0.372 to -0.476 for IL-1β and - 0.168 to -0.311 for CRP. CONCLUSION Findings from the current study shows that cognitive deficits are reflective of elevated proinflammatory biomarkers (IL-6, IL-1β, TNF-α and CRP) levels. The results obtained indicate relatedness between inflammation and cognitive decline in patients with schizophrenia. Understanding the underlying pathways between them could have a significant impact on the disease progression and quality of life in schizophrenia patients.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland Galway, Ireland
| | - Gary Donohoe
- School of Psychology, National University of Ireland Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland Galway, Ireland.
| |
Collapse
|
163
|
Chadarevian JP, Lombroso SI, Peet GC, Hasselmann J, Tu C, Marzan DE, Capocchi J, Purnell FS, Nemec KM, Lahian A, Escobar A, England W, Chaluvadi S, O'Brien CA, Yaqoob F, Aisenberg WH, Porras-Paniagua M, Bennett ML, Davtyan H, Spitale RC, Blurton-Jones M, Bennett FC. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J Exp Med 2023; 220:e20220857. [PMID: 36584406 DOI: 10.1084/jem.20220857] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Pharmacology Graduate Group, Biomedical Graduate Studies Program, University of Pennsylvania , Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania , Philadelphia, PA, USA
| | - Graham C Peet
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Program and Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Jonathan Hasselmann
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Dave E Marzan
- Department of Biology, The College of New Jersey , Ewing, NJ, USA
| | - Joia Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
| | - Freddy S Purnell
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Alina Lahian
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mariko L Bennett
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| |
Collapse
|
164
|
Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Res 2023; 1807:148315. [PMID: 36878343 DOI: 10.1016/j.brainres.2023.148315] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Microglia are the resident immune cells of the brain which regulate both the innate and adaptive neuroimmune responses in health and disease. In response to specific endogenous and exogenous stimuli, microglia transition to one of their reactive states characterized by altered morphology and function, including their secretory profile. A component of the microglial secretome is cytotoxic molecules capable of causing damage and death to nearby host cells, thus contributing to the pathogenesis of neurodegenerative disorders. Indirect evidence from secretome studies and measurements of mRNA expression using diverse microglial cell types suggest different stimuli may induce microglia to secrete distinct subsets of cytotoxins. We demonstrate the accuracy of this hypothesis directly by challenging murine BV-2 microglia-like cells with eight different immune stimuli and assessing secretion of four potentially cytotoxic molecules, including nitric oxide (NO), tumor necrosis factor α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), and glutamate. Lipopolysaccharide (LPS) and a combination of interferon (IFN)-γ plus LPS induced secretion of all toxins studied. IFN-β, IFN-γ, polyinosinic:polycytidylic acid (poly I:C), and zymosan A upregulated secretion of subsets of these four cytotoxins. LPS and IFN-γ, alone or in combination, as well as IFN-β induced toxicity of BV-2 cells towards murine NSC-34 neuronal cells, while ATP, N-formylmethionine-leucyl-phenylalanine (fMLP), and phorbol 12-myristate 13-acetate (PMA) did not affect any parameters studied. Our observations contribute to a growing body of knowledge on the regulation of the microglial secretome, which may inform future development of novel therapeutics for neurodegenerative diseases, where dysregulated microglia are key contributors to pathogenesis.
Collapse
|
165
|
Paciello F, Pisani A, Rinaudo M, Cocco S, Paludetti G, Fetoni AR, Grassi C. Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiol Dis 2023; 178:106024. [PMID: 36724860 DOI: 10.1016/j.nbd.2023.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Several studies identified noise-induced hearing loss (NIHL) as a risk factor for sensory aging and cognitive decline processes, including neurodegenerative diseases, such as dementia and age-related hearing loss (ARHL). Although the association between noise- and age-induced hearing impairment has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood as it is not known how these risk factors (aging and noise) can interact, affecting memory processes. We recently found that early noise exposure in an established animal model of ARHL (C57BL/6 mice) accelerates the onset of age-related cochlear dysfunctions. Here, we extended our previous data by investigating what happens in central brain structures (auditory cortex and hippocampus), to assess the relationship between hearing and memory impairment and the possible combined effect of noise and sensory aging on the cognitive domain. To this aim, we exposed juvenile C57BL/6 mice of 2 months of age to repeated noise sessions (60 min/day, pure tone of 100 dB SPL, 10 kHz, 10 consecutive days) and we monitored auditory threshold by measuring auditory brainstem responses (ABR), spatial working memory, by using the Y-maze test, and basal synaptic transmission by using ex vivo electrophysiological recordings, at different time points (1, 4 and 7 months after the onset of noise exposure, corresponding to 3, 6 and 9 months of age). We found that hearing loss, along with accelerated presbycusis onset, can induce persistent synaptic alterations in the auditory cortex. This was associated with decreased memory performance and oxidative-inflammatory injury in the hippocampus, the extra-auditory structure involved in memory processes. Collectively, our data confirm the critical relationship between auditory and memory circuits, suggesting that the combined detrimental effect of noise and sensory aging on hearing function can be considered a high-risk factor for both sensory and cognitive degenerative processes, given that early noise exposure accelerates presbycusis phenotype and induces hippocampal-dependent memory dysfunctions.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
166
|
Wang HL, Cheng YC, Yeh TH, Liu HF, Weng YH, Chen RS, Chen YC, Lu JC, Hwang TL, Wei KC, Liu YC, Wang YT, Hsu CC, Chiu TJ, Chiu CC. HCH6-1, an antagonist of formyl peptide receptor-1, exerts anti-neuroinflammatory and neuroprotective effects in cellular and animal models of Parkinson’s disease. Biochem Pharmacol 2023; 212:115524. [PMID: 37001680 DOI: 10.1016/j.bcp.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Microglial activation-induced neuroinflammation contributes to onset and progression of sporadic and hereditary Parkinson's disease (PD). Activated microglia secrete pro-inflammatory and neurotoxic IL-1β, IL-6 and TNF-α, which subsequently promote neurodegeneration. Formyl peptide receptor-1 (FPR1) of CNS microglia functions as pattern recognition receptor and is activated by N-formylated peptides, leading to microglial activation, induction of inflammatory responses and resulting neurotoxicity. In this study, it was hypothesized that FPR1 activation of microglia causes loss of dopaminergic neurons by activating inflammasome and upregulating IL-1β, IL-6 or TNF-α and that FPR1 antagonist HCH6-1 exerts neuroprotective effect on dopaminergic neurons. FPR1 agonist fMLF induced activation of microglia cells by causing activation of NLRP3 inflammasome and upregulation and secretion of IL-1β, IL-6 or TNF-α. Conditioned medium (CM) of fMLF-treated microglia cells, which contains neurotoxic IL-1β, IL-6 and TNF-α, caused apoptotic death of differentiated SH-SY5Y dopaminergic neurons by inducing mitochondrial oxidative stress and activating pro-apoptotic signaling. FPR1 antagonist HCH6-1 prevented fMLF-induced activation of inflammasome and upregulation of pro-inflammatory cytokines in microglia cells. HCH6-1 co-treatment reversed CM of fMLF-treated microglia-induced apoptotic death of dopaminergic neurons. FPR1 antagonist HCH6-1 inhibited rotenone-induced upregulation of microglial marker Iba-1 protein level, cell death of dopaminergic neurons and motor impairment in zebrafish. HCH6-1 ameliorated rotenone-induced microglial activation, upregulation of FPR1 mRNA, activation of NLRP3 inflammasome, cell death of SN dopaminergic neurons and PD motor deficit in mice. Our results suggest that FPR1 antagonist HCH6-1 possesses anti-neuroinflammatory and neuroprotective effects on dopaminergic neurons by inhibiting microglial activation and upregulation of inflammasome activity and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Han-Fang Liu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Ting Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Ju Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
167
|
Lignans from the genus Piper L. and their pharmacological activities: An updated review. Fitoterapia 2023; 165:105403. [PMID: 36577457 DOI: 10.1016/j.fitote.2022.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The genus Piper, a member of the Piperaceae family, comprises >2000 species, of which many are well known to possess considerable economic and medicinal values. Lignans are essential ingredients and are rich in Piper plants. Although many phytochemical studies have reported many lignans identified from Piper plants, comprehensive research has not reviewed these compounds. Hence, the present review reports on natural lignans from the genus Piper and their pharmacological activities. At least 275 lignans have been discovered from the Piper genus until October 2022, including traditional lignans, neolignans, oxyneolignans, norlignans, secolignans, and polyneolignans, especially some neolignans and norlignans with novel and complex scaffolds. In addition, these lignans have been reported to show various pharmacological activities, such as antimicrobial, anti-inflammatory, neuroprotective, antioxidative, anti-platelet aggregation, cytotoxic, anti-parasitic, CYP3A4 inhibitory activities, and so on. The current work presents an up-to-date critical review and a systematic summary of publications on lignans from the genus Piper to lay the groundwork and show better insights for further investigations.
Collapse
|
168
|
TOMM40 Genetic Variants Cause Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24044085. [PMID: 36835494 PMCID: PMC9962462 DOI: 10.3390/ijms24044085] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1β, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.
Collapse
|
169
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
170
|
Yuan X, Han S, Manyande A, Gao F, Wang J, Zhang W, Tian X. Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain 2023; 27:289-302. [PMID: 36440534 DOI: 10.1002/ejp.2059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUD Studies have shown that the activation of microglia is the main mechanism of neuropathic pain. Kv1.3 channel is a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of microglial cells. As such, it may be involved in the processes of neuropathic pain, however, whether Kv1.3 plays a role in neuroinflammation following peripheral nerve injury is unclear. METHOD The spared nerve injury model (SNI) was used to establish neuropathic pain. Western blot and immunofluorescence were used to examine the effect of Kv1.3 in the SNI rats. PAP-1, a Kv1.3 specific blocker was administered to alleviate neuropathic pain in the SNI rats. RESULTS Neuropathic pain and allodynia occurred after SNI, the levels of M1 (CD68, iNos) and M2 (CD206, Arg-1) phenotypes were up-regulated in the spinal cord, and the protein levels of NLRP3, caspase-1 and IL-1β were also increased. Pharmacological blocking of Kv1.3 with PAP-1 alleviated hyperpathia induced by SNI. Meanwhile, intrathecal injection of PAP-1 reduced M1 polarization and decreased NLRP3, caspase-1 and IL-1β expressions of protein levels. CONCLUSION Our research indicates that the Kv1.3 channel in the spinal cord contributes to neuropathic pain by promoting microglial M1 polarization and activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Siyi Han
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
171
|
SAJI R, UCHIO R, FUWA A, OKUDA-HANAFUSA C, KAWASAKI K, MUROYAMA K, MUROSAKI S, YAMAMOTO Y, HIROSE Y. Turmeronols (A and B) from Curcuma longa have anti-inflammatory effects in lipopolysaccharide-stimulated BV-2 microglial cells by reducing NF-κB signaling. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:172-179. [PMID: 37404570 PMCID: PMC10315188 DOI: 10.12938/bmfh.2022-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 07/06/2023]
Abstract
Turmeronols (A and B), bisabolane-type sesquiterpenoids found in turmeric, reduce inflammation outside the brain in animals; however, their effects on neuroinflammation, a common pathology of various neurodegenerative diseases, are not understood. Inflammatory mediators produced by microglial cells play a key role in neuroinflammation, so this study evaluated the anti-inflammatory effects of turmeronols in BV-2 microglial cells stimulated with lipopolysaccharide (LPS). Pretreatment with turmeronol A or B significantly inhibited LPS-induced nitric oxide (NO) production; mRNA expression of inducible NO synthase; production of interleukin (IL)-1β, IL-6, and tumor necrosis factor α and upregulation of their mRNA expression; phosphorylation of nuclear factor-κB (NF-κB) p65 proteins and inhibitor of NF-κB kinase (IKK); and nuclear translocation of NF-κB. These results suggest that these turmeronols may prevent the production of inflammatory mediators by inhibiting the IKK/NF-κB signaling pathway in activated microglial cells and can potentially treat neuroinflammation associated with microglial activation.
Collapse
Affiliation(s)
- Ryosuke SAJI
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Ryusei UCHIO
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Arisa FUWA
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Chinatsu OKUDA-HANAFUSA
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Kengo KAWASAKI
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Koutarou MUROYAMA
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Shinji MUROSAKI
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Yoshihiro YAMAMOTO
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| | - Yoshitaka HIROSE
- Research & Development Institute, House Wellness Foods
Corporation, 3-20 Imoji, Itami-shi, Hyogo 664-0011, Japan
| |
Collapse
|
172
|
Pathak D, Sriram K. Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants. Int J Mol Sci 2023; 24:2272. [PMID: 36768596 PMCID: PMC9917383 DOI: 10.3390/ijms24032272] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as 'reactive gliosis'. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
Collapse
Affiliation(s)
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
173
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
174
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
175
|
Nam MK, Seong Y, Jeong GH, Yoo SA, Rhim H. HtrA2 regulates α-Synuclein-mediated mitochondrial reactive oxygen species production in the mitochondria of microglia. Biochem Biophys Res Commun 2023; 638:84-93. [PMID: 36442236 DOI: 10.1016/j.bbrc.2022.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Aggregation and misfolding of α-Synuclein (α-Syn), a causative agent for Parkinson's disease (PD), and oxidative stress are tightly implicated in the pathogenesis of PD. Although more than 20 genes including HtrA2 have been identified as causative genes for PD, the molecular mechanisms underlying the pathophysiological functions between HtrA2 and α-Syn in the pathogenesis of PD remain unclear. This study shows that HtrA2 serine protease selectively recognizes and interacts with the NAC region of α-Syn. Interestingly, we found that HtrA2 causes proteolysis of α-Syn to prevent mitochondrial accumulation of α-Syn, thereby inhibiting the production of reactive oxygen species (ROS) in the mitochondria. We have further demonstrated that HtrA2 knockdown promotes α-Syn-mediated mitochondrial ROS production, thereby activating microglial cells. This study is the first to demonstrate that the HtrA2/α-Syn cellular partner may play a crucial role in the pathogenesis of PD and provide new insights into the pathological processes and effective therapeutic strategies for PD.
Collapse
Affiliation(s)
- Min-Kyung Nam
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngmo Seong
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Gi Heon Jeong
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ah Yoo
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Hyangshuk Rhim
- Department of Biomedicine & Health Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
176
|
Bolon B. Toxicologic Pathology Forum Opinion: Interpretation of Gliosis in the Brain and Spinal Cord Observed During Nonclinical Safety Studies. Toxicol Pathol 2023; 51:68-76. [PMID: 37057409 DOI: 10.1177/01926233231164557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.
Collapse
|
177
|
Bandala C, Cárdenas-Rodríguez N, Reyes-Long S, Cortés-Algara A, Contreras-García IJ, Cruz-Hernández TR, Alfaro-Rodriguez A, Cortes-Altamirano JL, Perez-Santos M, Anaya-Ruiz M, Lara-Padilla E. Estrogens as a Possible Therapeutic Strategy for the Management of Neuroinflammation and Neuroprotection in COVID-19. Curr Neuropharmacol 2023; 21:2110-2125. [PMID: 37326113 PMCID: PMC10556364 DOI: 10.2174/1570159x21666230616103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) affects several tissues, including the central and peripheral nervous system. It has also been related to signs and symptoms that suggest neuroinflammation with possible effects in the short, medium, and long term. Estrogens could have a positive impact on the management of the disease, not only due to its already known immunomodulator effect, but also activating other pathways that may be important in the pathophysiology of COVID-19, such as the regulation of the virus receptor and its metabolites. In addition, they can have a positive effect on neuroinflammation secondary to pathologies other than COVID-19. The aim of this study is to analyze the molecular mechanisms that link estrogens with their possible therapeutic effect for neuroinflammation related to COVID-19. Advanced searches were performed in scientific databases as Pub- Med, ProQuest, EBSCO, the Science Citation index, and clinical trials. Estrogens have been shown to participate in the immune modulation of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to this mechanism, we propose that estrogens can regulate the expression and activity of the Angiotensin-converting enzyme 2 (ACE2), reestablishing its cytoprotective function, which may be limited by its interaction with SARS-CoV-2. In this proposal, estrogens and estrogenic compounds could increase the synthesis of Angiotensin-(1-7) (Ang-(1-7)) that acts through the Mas receptor (MasR) in cells that are being attacked by the virus. Estrogens can be a promising, accessible, and low-cost treatment for neuroprotection and neuroinflammation in patients with COVID-19, due to its direct immunomodulatory capacity in decreasing cytokine storm and increasing cytoprotective capacity of the axis ACE2/Ang (1-7)/MasR.
Collapse
Affiliation(s)
- Cindy Bandala
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
| | - Noemí Cárdenas-Rodríguez
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
- Neuroscience Laboratory, National Institute of Pediatrics, Mexico City, 04530, Mexico
| | - Samuel Reyes-Long
- Basic Neurosciences, National Institute of Rehabilitation LGII, Mexico City, 14389, Mexico
| | - Alfredo Cortés-Algara
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
- Department of Robotic Surgery and Laparoscopy in Gynecology, Centro Médico Nacional 20 de Noviembre, Mexico City, CP, Mexico
| | | | | | | | - José Luis Cortes-Altamirano
- Basic Neurosciences, National Institute of Rehabilitation LGII, Mexico City, 14389, Mexico
- Research Department, Ecatepec Valley State University, Valle de Anahuac, Ecatepec, 55210, Mexico State, Mexico
| | - Martín Perez-Santos
- Directorate of Innovation and Knowledge Transfer, Meritorious Autonomous University of Puebla, 72570, Puebla
| | - Maricruz Anaya-Ruiz
- Cell Biology Laboratory, Oriente Biomedical Research Center, Mexican Social Security Institute, Metepec, 74360, Puebla
| | - Eleazar Lara-Padilla
- Higher School of Medicine, National Polytechnic Institute, Mexico City, 11340, Mexico
| |
Collapse
|
178
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
179
|
Maejima Y, Yokota S, Ono T, Yu Z, Yamachi M, Hidema S, Nollet KE, Nishimori K, Tomita H, Yaginuma H, Shimomura K. Identification of oxytocin expression in human and murine microglia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110600. [PMID: 35842075 DOI: 10.1016/j.pnpbp.2022.110600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Oxytocin is a neuropeptide synthesized in the hypothalamus. In addition to its role in parturition and lactation, oxytocin mediates social behavior and pair bonding. The possibility of using oxytocin to modify behavior in neurodevelopmental disorders, such as autism spectrum disorder, is of clinical interest. Microglia are tissue-resident macrophages with roles in neurogenesis, synapse pruning, and immunological mediation of brain homeostasis. Recently, oxytocin was found to attenuate microglial secretion of proinflammatory cytokines, but the source of this oxytocin was not established. This prompted us to investigate whether microglia themselves were the source. METHODS We examined oxytocin expression in human and murine brain tissue in both sexes using immunohistochemistry. Oxytocin mRNA expression and secretion were examined in isolated murine microglia from wild type and oxytocin-knockout mice. Also, secretion of oxytocin and cytokines was measured in cultured microglia (MG6) stimulated with lipopolysaccharide (LPS). RESULTS We identified oxytocin expression in microglia of human brain tissue, cultured microglia (MG6), and primary murine microglia. Furthermore, LPS stimulation increased oxytocin mRNA expression in primary murine microglia and MG6 cells, and oxytocin secretion as well. A positive correlation between oxytocin and IL-1β, IL-10 secretion emerged, respectively. CONCLUSION This may be the first demonstration of oxytocin expression in microglia. Functionally, oxytocin might regulate inflammatory cytokine release from microglia in a paracrine/autocrine manner.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Megumi Yamachi
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
180
|
Elizalde-Díaz JP, Miranda-Narváez CL, Martínez-Lazcano JC, Martínez-Martínez E. The relationship between chronic immune response and neurodegenerative damage in long COVID-19. Front Immunol 2022; 13:1039427. [PMID: 36591299 PMCID: PMC9800881 DOI: 10.3389/fimmu.2022.1039427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In the past two years, the world has faced the pandemic caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), which by August of 2022 has infected around 619 million people and caused the death of 6.55 million individuals globally. Although SARS-CoV-2 mainly affects the respiratory tract level, there are several reports, indicating that other organs such as the heart, kidney, pancreas, and brain can also be damaged. A characteristic observed in blood serum samples of patients suffering COVID-19 disease in moderate and severe stages, is a significant increase in proinflammatory cytokines such as interferon-α (IFN-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6) and interleukin-18 (IL-18), as well as the presence of autoantibodies against interferon-α (IFN-α), interferon-λ (IFN-λ), C-C motif chemokine ligand 26 (CCL26), CXC motif chemokine ligand 12 (CXCL12), family with sequence similarity 19 (chemokine (C-C motif)-like) member A4 (FAM19A4), and C-C motif chemokine ligand 1 (CCL1). Interestingly, it has been described that the chronic cytokinemia is related to alterations of blood-brain barrier (BBB) permeability and induction of neurotoxicity. Furthermore, the generation of autoantibodies affects processes such as neurogenesis, neuronal repair, chemotaxis and the optimal microglia function. These observations support the notion that COVID-19 patients who survived the disease present neurological sequelae and neuropsychiatric disorders. The goal of this review is to explore the relationship between inflammatory and humoral immune markers and the major neurological damage manifested in post-COVID-19 patients.
Collapse
Affiliation(s)
- José Pedro Elizalde-Díaz
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Clara Leticia Miranda-Narváez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| |
Collapse
|
181
|
Hamamah S, Gheorghita R, Lobiuc A, Sirbu IO, Covasa M. Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Front Med (Lausanne) 2022; 9:1060581. [PMID: 36569149 PMCID: PMC9773399 DOI: 10.3389/fmed.2022.1060581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplant (FMT) is a therapeutic method that aims to restore normal gut microbial composition in recipients. Currently, FMT is approved in the USA to treat recurrent and refractory Clostridioides difficile infection and has been shown to have great efficacy. As such, significant research has been directed toward understanding the potential role of FMT in other conditions associated with gut microbiota dysbiosis such as obesity, type 2 diabetes mellitus, metabolic syndrome, neuropsychiatric disorders, inflammatory bowel disease, irritable bowel syndrome, decompensated cirrhosis, cancers and graft-versus-host disease. This review examines current updates and efficacy of FMT in treating conditions other than Clostridioides difficile infection. Further, protocols for administration of FMT are also discussed including storage of fecal samples in stool banks, inclusion/exclusion criteria for donors, fecal sample preparation and methods of treatment administration. Overall, understanding the mechanisms by which FMT can manipulate gut microbiota to provide therapeutic benefit as well as identifying potential adverse effects is an important step in clarifying its long-term safety and efficacy in treating multiple conditions in the future.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Gheorghita
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania,Center for Complex Network Science, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States,Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,*Correspondence: Mihai Covasa,
| |
Collapse
|
182
|
Molecular and spatial heterogeneity of microglia in Rasmussen encephalitis. Acta Neuropathol Commun 2022; 10:168. [PMID: 36411471 PMCID: PMC9677917 DOI: 10.1186/s40478-022-01472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used single-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory markers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.
Collapse
|
183
|
Zhu X, Schrader JM, Irizarry BA, Smith SO, Van Nostrand WE. Impact of Aβ40 and Aβ42 Fibrils on the Transcriptome of Primary Astrocytes and Microglia. Biomedicines 2022; 10:2982. [PMID: 36428550 PMCID: PMC9688026 DOI: 10.3390/biomedicines10112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrillar amyloid β-protein (Aβ) deposits in the brain, which are primarily composed of Aβ40 or Aβ42 peptides, are key pathological features of Alzheimer's disease (AD) and related disorders. Although the underlying mechanisms are still not clear, the Aβ fibrils can trigger a number of cellular responses, including activation of astrocytes and microglia. In addition, fibril structures of the Aβ40 and Aβ42 peptides are known to be polymorphic, which poses a challenge for attributing the contribution of different Aβ sequences and structures to brain pathology. Here, we systematically treated primary astrocytes and microglia with single, well-characterized polymorphs of Aβ40 or Aβ42 fibrils, and performed bulk RNA sequencing to assess cell-specific changes in gene expression. A greater number of genes were up-regulated by Aβ42 fibril-treated glial cells (251 and 2133 genes in astrocyte and microglia, respectively) compared with the Aβ40 fibril-treated glial cells (191 and 251 genes in astrocytes and microglia, respectively). Immunolabeling studies in an AD rat model with parenchymal fibrillar Aβ42 plaques confirmed the expression of PAI-1, MMP9, MMP12, CCL2, and C1r in plaque-associated microglia, and iNOS, GBP2, and C3D in plaque-associated astrocytes, validating markers from the RNA sequence data. In order to better understand these Aβ fibril-induced gene changes, we analyzed gene expression patterns using the Ingenuity pathway analysis program. These analyses further highlighted that Aβ42 fibril treatment up-regulated cellular activation pathways and immune response pathways in glial cells, including IL1β and TNFα in astrocytes, and microglial activation and TGFβ1 in microglia. Further analysis revealed that a number of disease-associated microglial (DAM) genes were surprisingly suppressed in Aβ40 fibril treated microglia. Together, the present findings indicate that Aβ42 fibrils generally show similar, but stronger, stimulating activity of glial cells compared with Aβ40 fibril treatment.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Joseph M. Schrader
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Brandon A. Irizarry
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven O. Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - William E. Van Nostrand
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
184
|
Cossu D, Yokoyama K, Sato S, Noda S, Sakanishi T, Sechi LA, Hattori N. Age related immune modulation of experimental autoimmune encephalomyelitis in PINK1 knockout mice. Front Immunol 2022; 13:1036680. [PMID: 36466826 PMCID: PMC9714542 DOI: 10.3389/fimmu.2022.1036680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Recent research has shown that Parkin, an E3 ubiquitin ligase, modulates peripheral immune cells-mediated immunity during experimental autoimmune encephalomyelitis (EAE). Because the PTEN-induced putative kinase 1 (PINK1) protein acts upstream of Parkin in a common mitochondrial quality control pathway, we hypothesized that the systemic deletion of PINK1 could also modify the clinical course of EAE, altering the peripheral and central nervous systems' immune responses. METHODS EAE was induced in female PINK1-/- mice of different age groups by immunization with myelin oligodendrocyte glycoprotein peptide. RESULTS Compared to young wild-type controls, PINK1-/- mice showed earlier disease onset, albeit with a slightly less severe disease, while adult PINK1-/- mice displayed early onset and more severe acute symptoms than controls, showing persistent disease during the recovery phase. In adult mice, EAE severity was associated with significant increases in frequency of dendritic cells (CD11C+, IAIE+), lymphocytes (CD8+), neutrophils (Ly6G+, CD11b+), and a dysregulated cytokine profile in spleen. Furthermore, a massive macrophage (CD68+) infiltration and microglia (TMEM119+) and astrocyte (GFAP+) activation were detected in the spinal cord of adult PINK1-/- mice. CONCLUSIONS PINK1 plays an age-related role in modulating the peripheral inflammatory response during EAE, potentially contributing to the pathogenesis of neuroinflammatory and other associated conditions.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan
- Biomedical Research Core Facilities, Juntendo University, Tokyo, Japan
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | | | - Shigeto Sato
- Department of Neurology, Juntendo University, Tokyo, Japan
| | - Sachiko Noda
- Department of Neurology, Juntendo University, Tokyo, Japan
| | | | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
- SC Microbiologia Azienda Ospedaliero Universitaria (AOU) Sassari, Sassari, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
185
|
Fox HS, Niu M, Morsey BM, Lamberty BG, Emanuel K, Periyasamy P, Callen S, Acharya A, Kubik G, Eudy J, Guda C, Dyavar SR, Fletcher CV, Byrareddy SN, Buch S. Morphine suppresses peripheral responses and transforms brain myeloid gene expression to favor neuropathogenesis in SIV infection. Front Immunol 2022; 13:1012884. [PMID: 36466814 PMCID: PMC9709286 DOI: 10.3389/fimmu.2022.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.
Collapse
Affiliation(s)
- Howard S. Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Howard S. Fox,
| | - Meng Niu
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda M. Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin G. Lamberty
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katy Emanuel
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gregory Kubik
- The Genomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Eudy
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shetty Ravi Dyavar
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Courtney V. Fletcher
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
186
|
Hattori Y. The Multiple Roles of Pericytes in Vascular Formation and Microglial Functions in the Brain. Life (Basel) 2022; 12:1835. [PMID: 36362989 PMCID: PMC9699346 DOI: 10.3390/life12111835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 10/15/2023] Open
Abstract
In the capillary walls, vascular endothelial cells are covered with mural cells, such as smooth muscle cells and pericytes. Although pericytes had been thought to play simply a structural role, emerging evidence has highlighted their multiple functions in the embryonic, postnatal, and adult brain. As the central nervous system (CNS) develops, the brain's vascular structure gradually matures into a hierarchical network, which is crucial for the proper development of neural lineage cells by providing oxygen and nutrients. Pericytes play an essential role in vascular formation and regulate blood‒brain barrier (BBB) integrity as a component of the neurovascular unit (NVU), in collaboration with other cells, such as vascular endothelial cells, astrocytes, neurons, and microglia. Microglia, the resident immune cells of the CNS, colonize the brain at embryonic day (E) 9.5 in mice. These cells not only support the development and maturation of neural lineage cells but also help in vascular formation through their extensive migration. Recent studies have demonstrated that pericytes directly contact microglia in the CNS, and their interactions have a profound effect on physiological and pathological aspects. This review summarizes the function of pericytes, focusing on the interplay between pericytes and microglia.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
187
|
Giofrè S, Renda A, Sesana S, Formicola B, Vergani B, Leone BE, Denti V, Paglia G, Groppuso S, Romeo V, Muzio L, Balboni A, Menegon A, Antoniou A, Amenta A, Passarella D, Seneci P, Pellegrino S, Re F. Dual Functionalized Liposomes for Selective Delivery of Poorly Soluble Drugs to Inflamed Brain Regions. Pharmaceutics 2022; 14:pharmaceutics14112402. [PMID: 36365220 PMCID: PMC9698607 DOI: 10.3390/pharmaceutics14112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Dual functionalized liposomes were developed to cross the blood−brain barrier (BBB) and to release their cargo in a pathological matrix metalloproteinase (MMP)-rich microenvironment. Liposomes were surface-functionalized with a modified peptide deriving from the receptor-binding domain of apolipoprotein E (mApoE), known to promote cargo delivery to the brain across the BBB in vitro and in vivo; and with an MMP-sensitive moiety for an MMP-triggered drug release. Different MMP-sensitive peptides were functionalized at both ends with hydrophobic stearate tails to yield MMP-sensitive lipopeptides (MSLPs), which were assembled into mApoE liposomes. The resulting bi-functional liposomes (i) displayed a < 180 nm diameter with a negative ζ-potential; (ii) were able to cross an in vitro BBB model with an endothelial permeability of 3 ± 1 × 10−5 cm/min; (iii) when exposed to functional MMP2 or 9, efficiently released an encapsulated fluorescein dye; (iv) showed high biocompatibility when tested in neuronal cultures; and (v) when loaded with glibenclamide, a drug candidate with poor aqueous solubility, reduced the release of proinflammatory cytokines from activated microglial cells.
Collapse
Affiliation(s)
- Sabrina Giofrè
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Antonio Renda
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Beatrice Formicola
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Serena Groppuso
- San Raffaele Scientific Institute, INSPE-Institute of Experimental Neurology, 20132 Milan, Italy
| | - Valentina Romeo
- San Raffaele Scientific Institute, INSPE-Institute of Experimental Neurology, 20132 Milan, Italy
| | - Luca Muzio
- San Raffaele Scientific Institute, INSPE-Institute of Experimental Neurology, 20132 Milan, Italy
| | - Andrea Balboni
- San Raffaele Scientific Institute, Experimental Imaging Centre, 20132 Milan, Italy
| | - Andrea Menegon
- San Raffaele Scientific Institute, Experimental Imaging Centre, 20132 Milan, Italy
| | - Antonia Antoniou
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Arianna Amenta
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze farmaceutiche, DISFARM, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence: (S.P.); (F.R.); Tel.: +39-0250314467 (S.P.); +39-0264488311 (F.R.)
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Correspondence: (S.P.); (F.R.); Tel.: +39-0250314467 (S.P.); +39-0264488311 (F.R.)
| |
Collapse
|
188
|
Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022; 110:3534-3548. [PMID: 35882229 DOI: 10.1016/j.neuron.2022.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Microglia are implicated in all stages of multiple sclerosis (MS). Microglia alterations are detected by positron emission tomography in people living with MS prior to the formation of structural lesions determined through magnetic resonance imaging. In histological specimens, clusters of microglia form in normal-appearing tissue likely predating the development of lesions. Features of degeneration-associated/pro-inflammatory states of microglia increase with chronicity of MS. However, microglia play many beneficial roles including the removal of neurotoxins and in fostering repair. The protector-gone-rogue microglia in MS is featured herein. We consider mechanisms of microglia neurotoxicity and discuss factors, including aging, osteopontin, and iron metabolism, that cause microglia to lose their protective states and become injurious. We evaluate medications to affect microglia in MS, such as the emerging class of Bruton's tyrosine kinase inhibitors. The framework of microglia-turned-destroyers may instigate new approaches to counter microglia-driven neurodegeneration in MS.
Collapse
Affiliation(s)
- V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
189
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
190
|
Zhang C, Kan X, Zhang B, Ni H, Shao J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol Brain 2022; 15:84. [PMID: 36273145 PMCID: PMC9588203 DOI: 10.1186/s13041-022-00969-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Xugang Kan
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Baole Zhang
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Jianfeng Shao
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| |
Collapse
|
191
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
192
|
Mafba and Mafbb regulate microglial colonization of zebrafish brain via controlling chemotaxis receptor expression. Proc Natl Acad Sci U S A 2022; 119:e2203273119. [PMID: 36122226 PMCID: PMC9522419 DOI: 10.1073/pnas.2203273119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microglia are a subpopulation of macrophages residing in the central nervous system (CNS). Because microglial precursors/peripheral macrophages are born in peripheral hematopoietic tissues, the establishment of a microglia pool in the CNS involves two processes: colonization, the homing of macrophages from peripheral tissues to the CNS, and maturation, the differentiation of brain-colonizing macrophages into microglia. This study aims to investigate the molecular mechanisms underlying microglial colonization during early development. Utilizing a zebrafish model system, we show that Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB essential for macrophage differentiation and phagocytosis, regulate microglial colonization of the brain via modulating the lysoPS-Gpr34a signaling pathway during early embryogenesis. Our findings reveal a previously unappreciated genetic mechanism involved in microglial colonization of the brain. Microglia are the central nervous system (CNS)–resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein–coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.
Collapse
|
193
|
Lo J, Liu CC, Li YS, Lee PY, Liu PL, Wu PC, Lin TC, Chen CS, Chiu CC, Lai YH, Chang YC, Wu HE, Chen YR, Huang YK, Huang SP, Wang SC, Li CY. Punicalagin Attenuates LPS-Induced Inflammation and ROS Production in Microglia by Inhibiting the MAPK/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. J Inflamm Res 2022; 15:5347-5359. [PMID: 36131784 PMCID: PMC9484772 DOI: 10.2147/jir.s372773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1β was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1β, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yueh-Shan Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tzu-Chieh Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
194
|
Kim JK, Yang HJ, Go Y. Quercus acuta Thunb. Suppresses LPS-Induced Neuroinflammation in BV2 Microglial Cells via Regulating MAPK/NF-κB and Nrf2/HO-1 Pathway. Antioxidants (Basel) 2022; 11:antiox11101851. [PMID: 36290574 PMCID: PMC9598750 DOI: 10.3390/antiox11101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Microglial activation-mediated neuroinflammation is associated with the pathogenesis of neurodegenerative disorders. Therefore, the management of microglial cell activation and their inflammatory response is an important therapeutic approach for preventing neurodegenerative diseases. Quercus acuta Thunb. (QA) (Fagaceae) is a tree found in Korea, China, and Japan. The current study investigated the anti-neuroinflammatory effects of QA and its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment with a methanol extract of dried QA stems (QAE) inhibited the production of nitric oxide and proinflammatory cytokines and decreased the expression of inducible nitric oxide synthase, cyclooxygenase-2 in LPS-stimulated BV2 microglial cells. Furthermore, it inhibited the phosphorylation and degradation of inhibitory κBα and decreased the nuclear translocation and phosphorylation of nuclear factor-κB (NF-κB). Moreover, QAE inhibited the phosphorylation of extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase, which is known as mitogen-activated protein kinase (MAPK). Additionally, QAE treatment increased heme oxygenase-1 (HO-1) expression by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, thereby ameliorating LPS-induced intracellular hydrogen peroxide production. Finally, it was found that catechin and taxifolin, two phytochemicals of QAE, also reduced the expression of inflammatory mediators. These findings suggest that QA is beneficial for preventing microglia-mediated neuroinflammatory response through the inhibition of NF-κB, MAPK and the activation of Nrf2/HO-1 signaling pathways.
Collapse
|
195
|
Schreiner TG, Creangă-Murariu I, Tamba BI, Lucanu N, Popescu BO. In Vitro Modeling of the Blood–Brain Barrier for the Study of Physiological Conditions and Alzheimer’s Disease. Biomolecules 2022; 12:biom12081136. [PMID: 36009030 PMCID: PMC9405874 DOI: 10.3390/biom12081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential structure for the maintenance of brain homeostasis. Alterations to the BBB are linked with a myriad of pathological conditions and play a significant role in the onset and evolution of neurodegenerative diseases, including Alzheimer’s disease. Thus, a deeper understanding of the BBB’s structure and function is mandatory for a better knowledge of neurodegenerative disorders and the development of effective therapies. Because studying the BBB in vivo imposes overwhelming difficulties, the in vitro approach remains the main possible way of research. With many in vitro BBB models having been developed over the last years, the main aim of this review is to systematically present the most relevant designs used in neurological research. In the first part of the article, the physiological and structural–functional parameters of the human BBB are detailed. Subsequently, available BBB models are presented in a comparative approach, highlighting their advantages and limitations. Finally, the new perspectives related to the study of Alzheimer’s disease with the help of novel devices that mimic the in vivo human BBB milieu gives the paper significant originality.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
- Correspondence:
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Nicolae Lucanu
- Department of Applied Electronics and Intelligent Systems, Faculty of Electronics, Telecommunications and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
196
|
Wang SY, Lo YF, Shih HP, Ho MW, Yeh CF, Peng JJ, Ting HT, Lin KH, Huang WC, Chen YC, Chiu YH, Hsu CW, Tseng YT, Wang LS, Lei WY, Lin CY, Aoh Y, Chou CH, Wu TY, Ding JY, Lo CC, Lin YN, Tu KH, Lei WT, Kuo CY, Chi CY, Ku CL. Cryptococcus gattii Infection as the Major Clinical Manifestation in Patients with Autoantibodies Against Granulocyte-Macrophage Colony-Stimulating Factor. J Clin Immunol 2022; 42:1730-1741. [PMID: 35947322 DOI: 10.1007/s10875-022-01341-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are a predisposing factor for pulmonary alveolar proteinosis (PAP) and Cryptococcus gattii cryptococcosis. This study aimed to investigate clinical manifestations in anti-GM-CSF Ab-positive patients with C. gattii cryptococcosis and analyze the properties of anti-GM-CSF Abs derived from these patients and patients with PAP. METHODS Thirty-nine patients diagnosed with cryptococcosis (caused by C. neoformans or C. gattii) and 6 with PAP were enrolled in the present study. Clinical information was obtained from medical records. Blood samples were collected for analysis of autoantibody properties. We also explored the National Health Insurance Research Database (NHIRD) of Taiwan to investigate the epidemiology of cryptococcosis and PAP. RESULTS High titers of neutralizing anti-GM-CSF Abs were identified in 15 patients with cryptococcosis (15/39, 38.5%). Most anti-GM-CSF Ab-positive cryptococcosis cases had central nervous system (CNS) involvement (14/15, 93.3%). Eleven out of 14 (78.6%) anti-GM-CSF Ab-positive CNS cryptococcosis patients were confirmed to be infected with C. gattii, and PAP did not occur synchronously or metachronously in a single patient from our cohort. Exploration of an association between HLA and anti-GM-CSF Ab positivity or differential properties of autoantibodies from cryptococcosis patients and PAP yielded no significant results. CONCLUSION Anti-GM-CSF Abs can cause two diseases, C. gattii cryptococcosis and PAP, which seldom occur in the same subject. Current biological evidence regarding the properties of anti-GM-CSF Abs cannot provide clues regarding decisive mechanisms. Further analysis, including more extensive cohort studies and investigations into detailed properties, is mandatory to better understand the pathogenesis of anti-GM-CSF Abs.
Collapse
Affiliation(s)
- Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - He-Ting Ting
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Hsi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chi Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Hsin Chiu
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chien-Wei Hsu
- Department of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Tseng
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Disease, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chen-Yuan Lin
- Department of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan.,School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yu Aoh
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan city, Taiwan
| | - Chih-Yu Chi
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan. .,Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Center for Clinical and Medical Immunology, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
197
|
Fernández-Arjona MDM, León-Rodríguez A, Grondona JM, López-Ávalos MD. Microbial neuraminidase induces TLR4-dependent long-term immune priming in the brain. Front Cell Neurosci 2022; 16:945229. [PMID: 35966200 PMCID: PMC9366060 DOI: 10.3389/fncel.2022.945229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immune memory explains the plasticity of immune responses after repeated immune stimulation, leading to either enhanced or suppressed immune responses. This process has been extensively reported in peripheral immune cells and also, although modestly, in the brain. Here we explored two relevant aspects of brain immune priming: its persistence over time and its dependence on TLR receptors. For this purpose, we used an experimental paradigm consisting in applying two inflammatory stimuli three months apart. Wild type, toll-like receptor (TLR) 4 and TLR2 mutant strains were used. The priming stimulus was the intracerebroventricular injection of neuraminidase (an enzyme that is present in various pathogens able to provoke brain infections), which triggers an acute inflammatory process in the brain. The second stimulus was the intraperitoneal injection of lipopolysaccharide (a TLR4 ligand) or Pam3CSK4 (a TLR2 ligand). One day after the second inflammatory challenge the immune response in the brain was examined. In wild type mice, microglial and astroglial density, as well as the expression of 4 out of 5 pro-inflammatory genes studied (TNFα, IL1β, Gal-3, and NLRP3), were increased in mice that received the double stimulus compared to those exposed only to the second one, which were initially injected with saline instead of neuraminidase. Such enhanced response suggests immune training in the brain, which lasts at least 3 months. On the other hand, TLR2 mutants under the same experimental design displayed an enhanced immune response quite similar to that of wild type mice. However, in TLR4 mutant mice the response after the second immune challenge was largely dampened, indicating the pivotal role of this receptor in the establishment of immune priming. Our results demonstrate that neuraminidase-induced inflammation primes an enhanced immune response in the brain to a subsequent immune challenge, immune training that endures and that is largely dependent on TLR4 receptor.
Collapse
Affiliation(s)
- María del Mar Fernández-Arjona
- Laboratorio de Medicina Regenerativa, Grupo de investigación en Neuropsicofarmacología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Ana León-Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús M. Grondona
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - María Dolores López-Ávalos
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- *Correspondence: María Dolores López-Ávalos
| |
Collapse
|
198
|
Mijailović NR, Vesic K, Arsenijevic D, Milojević-Rakić M, Borovcanin MM. Galectin-3 Involvement in Cognitive Processes for New Therapeutic Considerations. Front Cell Neurosci 2022; 16:923811. [PMID: 35875353 PMCID: PMC9296991 DOI: 10.3389/fncel.2022.923811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment may be a consequence of the normal aging process, but it may also be the hallmark of various neurodegenerative and psychiatric diseases. Early identification of individuals at particular risk for cognitive decline is critical, as it is imperative to maintain a cognitive reserve in these neuropsychiatric entities. In recent years, galectin-3 (Gal-3), a member of the galectin family, has received considerable attention with respect to aspects of neuroinflammation and neurodegeneration. The mechanisms behind the putative relationship between Gal-3 and cognitive impairment are not yet clear. Intrigued by this versatile molecule and its unique modular architecture, the latest data on this relationship are presented here. This mini-review summarizes recent findings on the mechanisms by which Gal-3 affects cognitive functioning in both animal and human models. Particular emphasis is placed on the role of Gal-3 in modulating the inflammatory response as a fine-tuner of microglia morphology and phenotype. A review of recent literature on the utility of Gal-3 as a biomarker is provided, and approaches to strategically exploit Gal-3 activities with therapeutic intentions in neuropsychiatric diseases are outlined.
Collapse
Affiliation(s)
- Nataša R. Mijailović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- *Correspondence: Nataša R. Mijailović,
| | - Katarina Vesic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Milica M. Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
199
|
Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Adv Drug Deliv Rev 2022; 188:114418. [PMID: 35787390 DOI: 10.1016/j.addr.2022.114418] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota came into focus within the last years regarding being associated with or even underlying neuropsychiatric diseases. The existence of the gut-brain-axis makes it highly plausible that bacterial metabolites or toxins that escape the intestinal environment or approach the vagal connections towards the brain, exert devastating effects on the central nervous system. In Alzheimer's disease (AD), growing evidence for dysbiotic changes in the gut microbiota is obtained, even though the question for cause or consequence remains open. Nevertheless, using modulation of microbiota to address inflammatory processes seems an attractive therapeutic approach as certain microbial products such as short chain fatty acids have been proven to exert beneficial cognitive effects. In this review, we summarize, contemporary knowledge on neuroinflammation and inflammatory processes within the brain and even more detailed in the gut in AD, try to conclude whom to target regarding human microbial commensals and report on current interventional trials.
Collapse
Affiliation(s)
- Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany.
| |
Collapse
|
200
|
Lima MN, Barbosa-Silva MC, Maron-Gutierrez T. Microglial Priming in Infections and Its Risk to Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:878987. [PMID: 35783096 PMCID: PMC9240317 DOI: 10.3389/fncel.2022.878987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious diseases of different etiologies have been associated with acute and long-term neurological consequences. The primary cause of these consequences appears to be an inflammatory process characterized primarily by a pro-inflammatory microglial state. Microglial cells, the local effectors' cells of innate immunity, once faced by a stimulus, alter their morphology, and become a primary source of inflammatory cytokines that increase the inflammatory process of the brain. This inflammatory scenario exerts a critical role in the pathogenesis of neurodegenerative diseases. In recent years, several studies have shown the involvement of the microglial inflammatory response caused by infections in the development of neurodegenerative diseases. This has been associated with a transitory microglial state subsequent to an inflammatory response, known as microglial priming, in which these cells are more responsive to stimuli. Thus, systemic inflammation and infections induce a transitory state in microglia that may lead to changes in their state and function, making priming them for subsequent immune challenges. However, considering that microglia are long-lived cells and are repeatedly exposed to infections during a lifetime, microglial priming may not be beneficial. In this review, we discuss the relationship between infections and neurodegenerative diseases and how this may rely on microglial priming.
Collapse
Affiliation(s)
- Maiara N. Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Maria C. Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|