151
|
Yadav S, Baghel NS, Sarkar SK, Subramaniam C. Interplay of Size and Magnetic Effects in Electrocatalytic Water Oxidation Activity of Sub-10 nm NiO x Supported Porous Hard-Carbons. Chem Asian J 2024; 19:e202400631. [PMID: 39034282 DOI: 10.1002/asia.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This report describes a systematic approach for precise engineering of a catalyst-metal oxide interface through combining complementary approaches of chemical vapor deposition and atomic layer deposition. Specifically, Chemical Vapor Deposition (CVD) fabricated nanostructured hard-carbon framework (NCF) is employed as synergistic support for precise deposition of NiOx particles through Atomic Layer Deposition (ALD). The three variants of NCF-NiOx system (dimensions ranging from 3-12 nm, surface coverage ranging from 0.14 %-2 %) achieved exhibit unique electrocatalytic water oxidation activities, that are further strongly influenced by an external magnetic field (Hext). This confluence of size engineering and associated magnetic field effects interplay to produce the largest lowering in Rct at Hext=200 mT. A comprehensive analysis of electrocatalytic parameters including the Tafel slope and double layer capacitance establishes further insights on co-relation of size effect and magnetic properties to understand the role of nanocarbon supported transition metal oxides in water electrolysis.
Collapse
Affiliation(s)
- Subham Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Niranjan S Baghel
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Shaibal K Sarkar
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Chandramouli Subramaniam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| |
Collapse
|
152
|
Minakshi M, Samayamanthry A, Whale J, Aughterson R, Shinde PA, Ariga K, Kumar Shrestha L. Phosphorous - Containing Activated Carbon Derived From Natural Honeydew Peel Powers Aqueous Supercapacitors. Chem Asian J 2024; 19:e202400622. [PMID: 38956831 DOI: 10.1002/asia.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
The introduction of phosphorous (P), and oxygen (O) heteroatoms in the natural honeydew chemical structure is one of the most effective, and practical approaches to synthesizing activated carbon for possible high-performance energy storage applications. The performance metrics of supercapacitors depend on surface functional groups and high-surface-area electrodes that can play a dominant role in areas that require high-power applications. Here, we report a phosphorous and oxygen co-doped honeydew peel-derived activated carbon (HDP-AC) electrode with low surface area for supercapacitor via H3PO4 activation. This activator forms phosphorylation with cellulose fibers in the HDP. The formation of heteroatoms stabilizes the cellulose structure by preventing the formation of levoglucosan (C6H10O5), a cellulose combustion product, which would otherwise offer a pathway for a substantial degradation of cellulose into volatile products. Therefore, heteroatom doping has proved effective, in improving the electrochemical properties of AC-based electrodes for supercapacitors. The specific capacitance of HDP-AC exhibits greatly improved performance with increasing carbon-to-H3PO4 ratio, especially in energy density and power density. The improved performance is attributed to the high phosphorous doping with a hierarchical porous structure, which enables the transportation of ions at higher current rates. The high specific capacitance of 486, and 478 F/g at 0.6, and 1.3 A/g in 1 M H2SO4 electrolyte with a prominent retention of 98.5 % is observed for 2 M H3PO4 having an impregnation ratio of 1 : 4. The higher yield of HDP-AC could only be obtained at an activation temperature of 500 °C with an optimized amount of H3PO4 ratio. The findings suggest that the concentration of heteroatoms as surface functional groups in the synthesized HDP-AC depends on the chosen biomass precursor and the processing conditions. This work opens new avenues for utilizing biomass-derived materials in energy storage, emphasizing the importance of sustainable practices in addressing environmental challenges and advancing toward a greener future.
Collapse
Affiliation(s)
| | | | - Jonathan Whale
- Engineering and Energy, Murdoch University, WA, 6150, Australia
| | - Rob Aughterson
- Australian Nuclear Science and Technology Organization, NSW, 2232, Australia
| | - Pragati A Shinde
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, 305 0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, 305 0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Lok Kumar Shrestha
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, 305 0044, Japan
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1, Tennodai, 305-8573, Tsukuba, Ibaraki, Japan
| |
Collapse
|
153
|
Li J, Liang Z, Jin Y, Yu B, Wang T, Wang T, Zhou L, Xia H, Zhang K, Chen M. A High-Voltage Cathode Material with Ultralong Cycle Performance for Sodium-Ion Batteries. SMALL METHODS 2024; 8:e2301742. [PMID: 38461542 DOI: 10.1002/smtd.202301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Vanadium-based polyanionic materials are promising electrode materials for sodium-ion batteries (SIBs) due to their outstanding advantages such as high voltage, acceptable specific capacity, excellent structural reversibility, good thermal stability, etc. Polyanionic compounds, moreover, can exhibit excellent multiplicity performance as well as good cycling stability after well-designed carbon covering and bulk-phase doping and thus have attracted the attention of multiple researchers in recent years. In this paper, after the modification of carbon capping and bulk-phase nitrogen doping, compared to pristine Na3V2(PO4)3, the well optimized Na3V(PO3)3N/C possesses improved electromagnetic induction strength and structural stability, therefore exhibits exceptional cycling capability of 96.11% after 500 cycles at 2 C (1 C = 80 mA g-1) with an elevated voltage platform of 4 V (vs Na+/Na). Meanwhile, the designed Na3V(PO3)3N/C possesses an exceptionally low volume change of ≈0.12% during cycling, demonstrating its quasi-zero strain property, ensuring an impressive capacity retention of 70.26% after 10,000 cycles at 2 C. This work provides a facial and cost-effective synthesis method to obtain stable vanadium-based phosphate materials and highlights the enhanced electrochemical properties through the strategy of carbon rapping and bulk-phase nitrogen doping.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zixin Liang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuqin Jin
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Binkai Yu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ting Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Wang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hui Xia
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
154
|
Lee H, Lee H, Pyun J, Hong S, Chae MS. Monoclinic Silver Vanadate (Ag 0.33V 2O 5) as a High-Capacity Stable Cathode Material for Aqueous Manganese Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406642. [PMID: 39135537 PMCID: PMC11496989 DOI: 10.1002/advs.202406642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Indexed: 10/25/2024]
Abstract
Aqueous rechargeable metal batteries have recently garnered considerable attention owing to their low cost, sufficient capacity, and the use of non-flammable water-based electrolytes. Among them, manganese batteries are particularly favored because of their stability, abundance, affordability, and high energy density. Despite their advantages, Mn storage host structures remain underexplored. Therefore, developing innovative host materials is crucial for advancing this field. In this paper, the study reports for the first time, the use of Ag0.33V2O5 as a cathode material in aqueous manganese batteries. The study explains the displacement/intercalation behavior of manganese and silver using electrochemical, structural, and spectroscopic analyses. Additionally, it is shown that cation (Ag+, Mn2+, H+) diffusion pathways can be simulated using diffusion-barrier calculations. Finally, the study demonstrates high-performance manganese batteries that exhibit a remarkable reversible capacity of ≈261.9 mAh g-1 at a current of 0.1 A g-1 and an excellent cycle retention of 69.1% after 2000 cycles at a current density of 1.5 A/g. The findings of this study contribute to the advancement of aqueous manganese battery technology, offering a promising pathway for developing safer, more cost-effective, and high-performance energy storage systems.
Collapse
Affiliation(s)
- Hyeonjun Lee
- Department of Nanotechnology EngineeringPukyong National UniversityBusan48547Republic of Korea
| | - Hyungjin Lee
- Department of Energy Science and EngineeringDGISTDaegu42988Republic of Korea
| | - Jangwook Pyun
- Department of Nanotechnology EngineeringPukyong National UniversityBusan48547Republic of Korea
| | - Seung‐Tae Hong
- Department of Energy Science and EngineeringDGISTDaegu42988Republic of Korea
- Department of Chemistry and Chemical BiologyUniversity of New MexicoNew Mexico87131United States
| | - Munseok S. Chae
- Department of Nanotechnology EngineeringPukyong National UniversityBusan48547Republic of Korea
| |
Collapse
|
155
|
Ren N, Li X, Wang L, Si J, Zeng S, Liu H, He H, Chen C. Tailoring Stress-Relieved Structure for SnSe Toward High Performance Potassium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402845. [PMID: 38895955 DOI: 10.1002/smll.202402845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Metal chalcogenides as an ideal family of anode materials demonstrate a high theoretical specific capacity for potassium ion batteries (PIBs), but the huge volume variance and poor cyclic stability hinder their practical applications. In this study, a design of a stress self-adaptive structure with ultrafine SnSe nanoparticles embedded in carbon nanofiber (SnSe@CNF) via the electrospinning technology is presented. Such an architecture delivers a record high specific capacity (272 mAh g-1 at 50 mA g-1) and high-rate performance (125 mAh g-1 at 1 A g-1) as a PIB anode. It is decoded that the fundamental understanding for this great performance is that the ultrafine SnSe particles enhance the full utilization of the active material and achieve stress relief as the stored strain energy from cycling is insufficient to drive crack propagation and thus alleviates the intrinsic chemo-mechanical degradation of metal chalcogenides.
Collapse
Affiliation(s)
- Naiqing Ren
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoying Li
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lifeng Wang
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Juntao Si
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sihan Zeng
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huaibing Liu
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haiyan He
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunhua Chen
- CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
156
|
Lou R, Zhang G, Niu T, He L, Su Y, Wei G. Binary Biomass-Based Electrolyte Films for High-Performance All-Solid-State Supercapacitor. Polymers (Basel) 2024; 16:2772. [PMID: 39408481 PMCID: PMC11478610 DOI: 10.3390/polym16192772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Solid-state electrolytes have received widespread attention for solving the problem of the leakage of liquid electrolytes and effectively improving the overall performance of supercapacitors. However, the electrochemical performance and environmental friendliness of solid-state electrolytes still need to be further improved. Here, a binary biomass-based solid electrolyte film (LSE) was successfully synthesized through the incorporation of lignin nanoparticles (LNPs) with sodium alginate (SA). The impact of the mass ratio of SA to LNPs on the microstructure, porosity, electrolyte absorption capacity, ionic conductivity, and electrochemical properties of the LSE was thoroughly investigated. The results indicated that as the proportion of SA increased from 5% to 15% of LNPs, the pore structure of the LSE became increasingly uniform and abundant. Consequently, enhancements were observed in porosity, liquid absorption capacity, ionic conductivity, and overall electrochemical performance. Notably, at an SA amount of 15% of LNPs, the ionic conductivity of the resultant LSE-15 was recorded at 14.10 mS cm-1, with the porosity and liquid absorption capacity reaching 58.4% and 308%, respectively. LSE-15 was employed as a solid electrolyte, while LNP-based carbon aerogel (LCA) served as the two electrodes in the construction of a symmetric all-solid-state supercapacitor (SSC). The SSC device demonstrated exceptional electrochemical storage capacity, achieving a specific capacitance of 197 F g-1 at 0.5 A g-1, along with a maximum energy and power density of 27.33 W h kg-1 and 4998 W kg-1, respectively. Furthermore, the SSC device exhibited highly stable electrochemical performance under extreme conditions, including compression, bending, and both series and parallel connections. Therefore, the development and application of binary biomass-based solid electrolyte films in supercapacitors represent a promising strategy for harnessing high-value biomass resources in the field of energy storage.
Collapse
Affiliation(s)
- Rui Lou
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (G.Z.); (T.N.); (L.H.)
| | - Guocheng Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (G.Z.); (T.N.); (L.H.)
| | - Taoyuan Niu
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (G.Z.); (T.N.); (L.H.)
| | - Long He
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (G.Z.); (T.N.); (L.H.)
| | - Ying Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.S.); (G.W.)
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.S.); (G.W.)
| |
Collapse
|
157
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
158
|
Kumar N, Arora A, Krishnan A. A simulation-based analysis of optical read-out for electrochemical reactions using composite vortex beams. Sci Rep 2024; 14:22218. [PMID: 39333667 PMCID: PMC11437161 DOI: 10.1038/s41598-024-72701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
We propose an optical read-out method for extracting faradaic current in electrochemical (EC) reactions and analyze its performance using opto-EC simulations. Our approach utilizes structured electrodes to generate composite optical vortex (COV) beams upon optical illumination. Through opto-EC simulations, we demonstrate that the EC reaction of 10 mM potassium ferricyanide induces a refractive index (RI) change, Δ RI, of approximately 10 - 4 RI units, leading to the rotation of the COV beam's intensity profile with a peak rotation of 40 ∘ . This rotation's magnitude is proportional to Δ RI, while the rate correlates with the faradaic current ( I f ) density responsible for Δ RI. As the opto-EC information is from bulk Δ RI, it remains unaffected by interfering non-faradaic components at the interface and is advantageous for studying intermediate species and bulk homogeneous reactions. Furthermore, as rotation depends on I f density rather than I f itself, this method proves beneficial in low I f scenarios, such as when employing micro-electrodes to decrease solution resistance or obtain localized EC data. Even in low I f density scenarios, like monitoring slow EC reactions, our method enables signal amplification by accumulating rotation over time. This interdisciplinary approach holds promise for advancing EC research and addressing critical challenges across various fields, including energy storage, corrosion protection, environmental remediation, and biomedical sciences.
Collapse
Affiliation(s)
- Nirjhar Kumar
- Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Ankit Arora
- Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ananth Krishnan
- Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
159
|
Zhou JE, Li Y, Lin X, Ye J. Prussian Blue Analogue-Templated Nanocomposites for Alkali-Ion Batteries: Progress and Perspective. NANO-MICRO LETTERS 2024; 17:9. [PMID: 39325069 PMCID: PMC11427656 DOI: 10.1007/s40820-024-01517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Lithium-ion batteries (LIBs) have dominated the portable electronic and electrochemical energy markets since their commercialisation, whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries (AIBs) including sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Owing to larger ion sizes of Na+ and K+ compared with Li+, nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage. With enticing open rigid framework structures, Prussian blue analogues (PBAs) remain promising self-sacrificial templates for the preparation of various nanocomposites, whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition. This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication, lithium/sodium/potassium storage mechanism, and applications in AIBs (LIBs, SIBs, and PIBs). To distinguish various PBA derivatives, the working mechanism and applications of PBA-templated metal oxides, metal chalcogenides, metal phosphides, and other nanocomposites are systematically evaluated, facilitating the establishment of a structure-activity correlation for these materials. Based on the fruitful achievements of PBA-derived nanocomposites, perspectives for their future development are envisioned, aiming to narrow down the gap between laboratory study and industrial reality.
Collapse
Affiliation(s)
- Jian-En Zhou
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Yilin Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Xiaoming Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
160
|
Rauf S, Hanif MB, Tayyab Z, Veis M, Yousaf Shah MAK, Mushtaq N, Medvedev D, Tian Y, Xia C, Motola M, Zhu B. Alternative Strategy for Development of Dielectric Calcium Copper Titanate-Based Electrolytes for Low-Temperature Solid Oxide Fuel Cells. NANO-MICRO LETTERS 2024; 17:13. [PMID: 39325255 PMCID: PMC11427654 DOI: 10.1007/s40820-024-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The development of low-temperature solid oxide fuel cells (LT-SOFCs) is of significant importance for realizing the widespread application of SOFCs. This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs. In this context, for the first time, a dielectric material, CaCu3Ti4O12 (CCTO) is designed for LT-SOFCs electrolyte application in this study. Both individual CCTO and its heterostructure materials with a p-type Ni0.8Co0.15Al0.05LiO2-δ (NCAL) semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450-550 °C. The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm-2 and an open-circuit voltage (OCV) of 0.95 V at 550 °C, while the cell with the CCTO-NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm-2 along with a higher OCV over 1.0 V, which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk. It is found that these promising outcomes are due to the interplay of the dielectric material, its structure, and overall properties that led to improve electrochemical mechanism in CCTO-NCAL. Furthermore, density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO-NCAL. Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs.
Collapse
Affiliation(s)
- Sajid Rauf
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova, 684215, Bratislava, Slovakia
| | - Zuhra Tayyab
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Matej Veis
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova, 684215, Bratislava, Slovakia
| | - M A K Yousaf Shah
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Naveed Mushtaq
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Dmitry Medvedev
- Hydrogen Energy Laboratory, Ural Federal University, 620002, Ekaterinburg, Russia.
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, 620066, Ekaterinburg, Russia.
| | - Yibin Tian
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Chen Xia
- School of Microelectronics, Hubei University, Wuhan, 430062, People's Republic of China
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova, 684215, Bratislava, Slovakia
| | - Bin Zhu
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
161
|
Yu J, Wu Y, Peng T, Qi Q, Ma X, Gu Y, Li X, Ding J, Chen S, Hu X, Wang Y, Xiong Q, Yuan Y, Qin H. Controllable amorphization and morphology engineering on mixed-valence MOFs for ultra-fast and high-stability near-pseudocapacitance Li + storage. Chem Commun (Camb) 2024; 60:10898-10901. [PMID: 39253897 DOI: 10.1039/d4cc02692f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Coulombic efficiency (CE) and rate capability are crucial parameters for advanced secondary batteries. Herein, for the first time, we report controllable amorphization and morphology engineering on mixed-valence Fe(II,III)-MOFs from the crystalline to amorphous state and micro-clustered to hollow nano-spherical geometry through valence manipulation by a dissolved oxygen-mediated pathway. The disordered structure and the hollow nanostructure can endow the MOFs with the highest initial CE (>80%) to date for MOF electrodes, and ultrafast and super-stable near-pseudocapacitance lithium storage. These findings can provide new ideas for the engineering of MOF systems for application in LIBs.
Collapse
Affiliation(s)
- Junjie Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Yan Wu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Tianlang Peng
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Qi Qi
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Xinyu Ma
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Yafei Gu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Xinguang Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Jianshen Ding
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Shiang Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Xiaoshi Hu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Yanling Wang
- College of Information Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, P. R. China
| | - Qinqin Xiong
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Yongjun Yuan
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Haiying Qin
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province and New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
162
|
Mostoni S, Mirizzi L, Frigerio A, Zuccante G, Ferrara C, Muhyuddin M, D'Arienzo M, Fernanda Orsini S, Scotti R, Cosenza A, Atanassov P, Santoro C. In-Situ HF Forming Agents for Sustainable Manufacturing of Iron-Based Oxygen Reduction Reaction Electrocatalysis Synthesized Through Sacrificial Support Method. CHEMSUSCHEM 2024:e202401185. [PMID: 39325923 DOI: 10.1002/cssc.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Fe-Nx-Cs being suitable to replace scarce and overpriced platinum group metals (PGMs) for cathodic oxygen reduction reaction (ORR) are gaining significant importance in the fuel cell arena. Although the typical sacrificial support method (SSM) ensures the superior electrocatalytic activity of derived Fe-Nx-C, removing silica hard templates always remains a great challenge due to the hazardous use of highly toxic and not environmentally friendly hydrofluoric acid. Herein, strategic insight was given to modified SSM by exploiting the in-situ formation of HF, deriving from the decomposition of NH4HF2 and NaF, to dissolve silica templates, thus avoiding the direct use of HF. First, the suitable molar ratio between the etching agent and the silica was analyzed, revealing that NH4HF2 efficiently dissolved silica even in a stoichiometric amount, whereas an excess of NaF was required. However, both etching agents exhibited conformal removal of silica while dispersed active moieties within the highly porous architecture of derived electrocatalysts were left behind. Moreover, NH4HF2-washed counterparts demonstrated relatively higher performance both in acidic and alkaline media. Notably, with NH4HF2-washed Fe-Nx-C electrocatalyst, a remarkable onset potential of 970 mV (vs RHE) was achieved with nearly tetra-electronic ORR as the peroxide yield remained less than 10 % in the alkaline medium.
Collapse
Affiliation(s)
- Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Lorenzo Mirizzi
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Alessandra Frigerio
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Giovanni Zuccante
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy
| | - Chiara Ferrara
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Alessio Cosenza
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, United States
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
163
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
164
|
Zhou L, Huang Y, Wang Y, Wen B, Jiang Z, Li F. Mechanistic understanding of CO 2 reduction and evolution reactions in Li-CO 2 batteries. NANOSCALE 2024; 16:17324-17337. [PMID: 39248391 DOI: 10.1039/d4nr02633k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Rechargeable Li-CO2 batteries have attracted extensive attention owing to their high theoretical energy density (1876 W h Kg-1). However, their practical application is hindered by large polarization, low coulombic efficiency, and cathode degradation. The electrochemical performance of Li-CO2 batteries is significantly affected by the thermodynamic stability and reaction kinetics of discharge products. Although advances have been achieved in cathode design and electrolyte optimization over the past decade, the reaction mechanism of the CO2 cathode has not yet been clear. In this review, various reaction mechanisms of CO2 reduction and evolution at the cathode interface are discussed, including different reaction routes under mixed O2/CO2 and pure CO2 environments. Furthermore, the regulating strategies of different discharge products, including Li2CO3, Li2C2O6, and Li2C2O4, are summarized to decrease the polarization and improve the cycling performance of Li-CO2 batteries. Finally, the challenges and perspectives are discussed from three aspects: reaction mechanisms, cathode catalysts, and electrolyte engineering, offering insights for the development of Li-CO2 batteries in the future.
Collapse
Affiliation(s)
- Lang Zhou
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yaohui Huang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuzhe Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bo Wen
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhuoliang Jiang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Fujun Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
165
|
Tang Y, Chen S, Wan M, Li H, You Q, Chen Z, Peng Z, Wang D. Improving the Performance of LiNi 0.925Co 0.065Mn 0.01O 2 via Ti 4+& Nb 5+ Co-Modifications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50811-50817. [PMID: 39270206 DOI: 10.1021/acsami.4c10933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ni-rich layer-structured materials are some of the most promising cathodes owing to their attractive reversible capacity and cost-effectiveness. When the Ni content is increased to 90% and higher, mechanical deterioration becomes serious and leads to accelerated cyclic degradation, since removable Li+ is ∼0.85, accompanied by large lattice variation during operation. Here, we investigate the influences of Ti4+ bulky substitution, Nb5+ surface treatment, and their coutilization on the behavior of LiNi0.925Co0.065Mn0.01O2 (NCM92). In contrast to the limited positive effects of monousage, the coutilization of Ti4+ and Nb5+ obviously suppresses particles' pulverization, relying on their synergistic effects of the shape of lattice variation and the protection of a tough shell layer. As a result, Ti & Nb-LiNi0.925Co0.065Mn0.01O2 (TiNb-NCM92) presents the best capacity retention, as high as 90.2% after 300 cycles, much higher than NCM92 (49.0%), Ti-NCM92 (76.3%), and Nb-NCM92 (72.4%). Our approaches demonstrate that the serious mechanical challenges of ultrahigh nickel cathodes could be alleviated by various remedies coutilized together.
Collapse
Affiliation(s)
- Yihan Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Shuaishuai Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Ming Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Hua Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Qingliang You
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Zhenlian Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Zhe Peng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Deyu Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| |
Collapse
|
166
|
Wang B, Wang J, Zhang L, Chu PK, Yu XF, He R, Bian S. Adsorptive Shield Derived Cathode Electrolyte Interphase Formation with Impregnation on LiNi 0.8Mn 0.1Co 0.1O 2 Cathode: A Mechanism-Guiding-Experiment Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50747-50756. [PMID: 39276333 DOI: 10.1021/acsami.4c10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Lithium difluoro(oxalate) borate (LiDFOB) contributes actively to cathode-electrolyte interface (CEI) formation, particularly safeguarding high-voltage cathode materials. However, LiNixCozMnyO2-based batteries benefit from the LiDFOB and its derived CEI only with appropriate electrolyte design while a comprehensive understanding of the underlying interfacial mechanisms remains limited, which makes the rational design challenging. By performing ab initio calculations, the CEI evolution on the LiNi0.8Co0.1Mn0.1O2 has been investigated. The findings demonstrate that LiDFOB readily adheres to the cathode via semidissociative configuration, which elevates the Li deintercalation voltage and remains stable in solvent. Electrochemical processes are responsible for the subsequent cleavage of B-F and B-O bonds, while the B-F bond cleavage leading to LiF formation is dominant in the presence of adequate Li+ with a substantial Li intercalation energy. Thus, impregnation is established as an effective method to regulate the conversion channel for efficient CEI formation, which not only safeguards the cathode's structure but also counters electrolyte decomposition. Consequently, in comparison to utilizing LiDFOB as an electrolyte additive, employing LiDFOB impregnation in the NCM811/Li cell yields significantly improved cycling stability for over 2000 h.
Collapse
Affiliation(s)
- Binli Wang
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianping Wang
- Intelligent Automobile Industry-Education Integration Innovation Center, Dongguan Polytechnic, Dongguan 523808, China
| | - Lei Zhang
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rui He
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shi Bian
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
167
|
Lin YT, Niu BT, Wang ZH, Li YX, Xu YP, Liu SW, Chen YX, Lin XM. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Molecules 2024; 29:4559. [PMID: 39407489 PMCID: PMC11478298 DOI: 10.3390/molecules29194559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Prussian blue analogs (PBAs) are appealing cathode materials for sodium-ion batteries because of their low material cost, facile synthesis methods, rigid open framework, and high theoretical capacity. However, the poor electrical conductivity, unavoidable presence of [Fe(CN)6] vacancies and crystalline water within the framework, and phase transition during charge-discharge result in inferior electrochemical performance, particularly in terms of rate capability and cycling stability. Here, cobalt-free PBAs are synthesized using a facile and economic co-precipitation method at room temperature, and their sodium-ion storage performance is boosted due to the reduced crystalline water content and improved electrical conductivity via the high-entropy and component stoichiometry tuning strategies, leading to enhanced initial Coulombic efficiency (ICE), specific capacity, cycling stability, and rate capability. The optimized HE-HCF of Fe0.60Mn0.10-hexacyanoferrate (referred to as Fe0.60Mn0.10-HCF), with the chemical formula Na1.156Fe0.599Mn0.095Ni0.092Cu0.109Zn0.105 [Fe(CN)6]0.724·3.11H2O, displays the most appealing electrochemical performance of an ICE of 100%, a specific capacity of around 115 and 90 mAh·g-1 at 0.1 and 1.0 A·g-1, with 66.7% capacity retention observed after 1000 cycles and around 61.4% capacity retention with a 40-fold increase in specific current. We expect that our findings could provide reference strategies for the design of SIB cathode materials with superior electrochemical performance.
Collapse
Affiliation(s)
- Yuan-Ting Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Bai-Tong Niu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen 361005, China
| | - Zi-Han Wang
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Yu-Xi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen 361005, China
| | - Yun-Peng Xu
- Department of Physic, Xiamen University, Xiamen 361005, China
| | - Shi-Wei Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yan-Xin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Xiu-Mei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
168
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
169
|
Li QL, Gong ZT, Gao XG, Ma H, Yao LF, Li XR, Wen JJ, Liu JJ, Guo H, Xia SB. Electrochemical lithium storage of a biactive organic molecule containing cyano and imine groups. Dalton Trans 2024; 53:15608-15617. [PMID: 39233653 DOI: 10.1039/d4dt02148g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
With an electron-deficient rigid planar structure and excellent π-π stacking ability, hexaazatriphenylene (HAT) and its derivatives are widely used as basic building blocks for constructing covalent organic frameworks (COFs), components of organic light-emitting diodes and solar cells, and electrode materials for lithium-ion batteries (LIBs). Here, a HAT derivative, hexaazatriphenylenehexacarbonitrile, is explored as an anode material for LIBs. The HAT anode exhibited high initial reversible capacities of 672 mA h g-1 at 100 mA g-1 and 550 mA h g-1 at 400 mA g-1 and stable cycling with a capacity of 503 mA h g-1 after 1000 cycles at 400 mA g-1 corresponding to a capacity retention of 91.5%. Furthermore, the lithium storage mechanism and the cause of the first irreversible capacity loss of the HAT anode were investigated by X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations. We have carried out a series of analyses on the mechanism of initial capacity loss. This study provides new insight on initial capacity loss and provides valuable insights into the molecular design and the electrochemical properties of HAT-based anode materials.
Collapse
Affiliation(s)
- Qi-Ling Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Zhi-Ting Gong
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Guang Gao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Hang Ma
- Yunnan Yuntianhua Co., Ltd, Kunming 650228, China
| | - Li-Feng Yao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Xin-Ru Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jia-Jia Wen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shu-Biao Xia
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
170
|
Zhu X, Zhang H, Huang Y, He E, Shen Y, Huang G, Yuan S, Dong X, Zhang Y, Chen R, Zhang X, Wang Y. Recent progress of flexible rechargeable batteries. Sci Bull (Beijing) 2024:S2095-9273(24)00683-2. [PMID: 39389866 DOI: 10.1016/j.scib.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The rapid popularization of wearable electronics, soft robots and implanted medical devices has stimulated extensive research in flexible batteries, which are bendable, foldable, knittable, wearable, and/or stretchable. Benefiting from these distinct characteristics, flexible batteries can be seamlessly integrated into various wearable/implantable devices, such as smart home systems, flexible displays, and implantable sensors. In contrast to conventional lithium-ion batteries necessitating the incorporation of stringent current collectors and packaging layers that are typically rigid, flexible batteries require the flexibility of each component to accommodate diverse shapes or sizes. Accordingly, significant advancements have been achieved in the development of flexible electrodes, current collectors, electrolytes, and flexible structures to uphold superior electrochemical performance and exceptional flexibility. In this review, typical structures of flexible batteries are firstly introduced and classified into mono-dimensional, two-dimensional, and three-dimensional structures according to their configurations. Subsequently, five distinct types of flexible batteries, including flexible lithium-ion batteries, flexible sodium-ion batteries, flexible zinc-ion batteries, flexible lithium/sodium-air batteries, and flexible zinc/magnesium-air batteries, are discussed in detail according to their configurations, respectively. Meanwhile, related comprehensive analysis is introduced to delve into the fundamental design principles pertaining to electrodes, electrolytes, current collectors, and integrated structures for various flexible batteries. Finally, the developments and challenges of flexible batteries are summarized, offering viable guidelines to promote the practical applications in the future.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Haoran Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China
| | - Yun Shen
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shouyi Yuan
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China.
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| |
Collapse
|
171
|
Dey S, Saravanan R, Hati S, Goswami S, Suresh A, Jaiswal-Nagar D, Ghosh M, Paul S, Bhattacharya A, Mukhopadhyay M, Mukhopadhyay J. Influence of intrinsic spin ordering in La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ and Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ towards electrocatalysis of oxygen redox reaction in solid oxide cell. RSC Adv 2024; 14:30590-30605. [PMID: 39324039 PMCID: PMC11422708 DOI: 10.1039/d4ra05191b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The redox reaction of oxygen (OER & ORR) forms the rate determining step of important processes like cellular respiration and water splitting. Being a spin relaxed process governed by quantum spin exchange interaction, QSEI (the ground triplet state in O2 is associated with singlet oxygen in H2O/OH-), its kinetics is sluggish and requires inclusion of selective catalyst. Functionality and sustainability of solid oxide cell involving fuel cell (FC) and electrolyzer cell (EC) are also controlled by ORR (oxygen redox reaction) and OER (oxygen evolution reaction). We suggest that, presence of inherent spin polarization within La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482) (15.86 emu g-1) and Ba0.6Sr0.4Co0.8Fe0.2O3-δ (BSCF6482) (3.64 emu g-1) accounts for the excellent selective electrocatalysis towards ORR and OER. QSEI forms the atomic level basis for OER/ORR which is directly proportional to spin ordering (non-zero magnetization) of the active electrocatalyst. LSCF6482 exhibits (21.5 kJ mol-1@0.8 V for ORR compared to 61 kJ mol-1@0.8 V for OER) improved ORR kinetics whereas BSCF6482 (18.79 kJ mol-1@0.8 V for OER compared to 32.19 kJ mol-1 for ORR@-0.8 V) is best suited for OER under the present stoichiometry. The findings establish the presence of inherent spin polarization of catalyst to be an effective descriptor for OER and ORR kinetics in solid oxide cell (SOC).
Collapse
Affiliation(s)
- Shoroshi Dey
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201002 India
| | - Rajasekar Saravanan
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
| | - Suprita Hati
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
| | - Soumyabrata Goswami
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata 700135 India
| | - Athira Suresh
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Deepshikha Jaiswal-Nagar
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Moupiya Ghosh
- Department of Physics, Basic Science & Humanities, Institute of Engineering and Management (IEM), University of Engineering and Management Newtown Kolkata West Bengal 700160 India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College Kolkata 700009 West Bengal India
| | - Abir Bhattacharya
- Department of Physics, The Bhawanipur Education Society College, University of Calcutta 700020 Kolkata India
| | | | - Jayanta Mukhopadhyay
- Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad 201002 India
| |
Collapse
|
172
|
Czerwiński A, Słojewska M, Jurczak J, Dębowski M, Zygadło-Monikowska E. FFF/FDM 3D-Printed Solid Polymer Electrolytes Based on Acrylonitrile Copolymers for Lithium-Ion Batteries. Molecules 2024; 29:4526. [PMID: 39407455 PMCID: PMC11477558 DOI: 10.3390/molecules29194526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Lithium-ion batteries (LIBs) are essential in modern electronics, particularly in portable devices and electric vehicles. However, the limited design flexibility of current battery shapes constrains the development of custom-sized power sources for advanced applications like wearable electronics and medical devices. Additive manufacturing (AM), specifically Fused Filament Fabrication (FFF), presents a promising solution by enabling the creation of batteries with customized shapes. This study explores the use of novel poly(acrylonitrile-co-polyethylene glycol methyl ether acrylate) (poly(AN-co-PEGMEA)) copolymers as solid polymer electrolytes for lithium-ion batteries, optimized for 3D printing using FFF. The copolymers were synthesized with varying AN:PEGMEA ratios, and their physical, thermal, and electrochemical properties were systematically characterized. The study found that a poly(AN-co-PEGMEA) 6:1 copolymer ratio offers an optimal balance between printability and ionic conductivity. The successful extrusion of filaments and subsequent 3D printing of complex shapes demonstrate the potential of these materials for next-generation battery designs. The addition of succinonitrile (SCN) as a plasticizer significantly improved ionic conductivity and lithium cation transference numbers, making these copolymers viable for practical applications. This work highlights the potential of combining polymer chemistry with additive manufacturing to provide new opportunities in lithium-ion battery design and function.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Zygadło-Monikowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.C.); (M.S.); (J.J.); (M.D.)
| |
Collapse
|
173
|
Wang H, Zhan W, Jiang S, Deng K, Wang Z, Xu Y, Yu H, Wang L. Heterointerface-Rich Ni 3N/WO 3 Hierarchical Nanoarrays for Efficient Glycerol Oxidation-Assisted Alkaline Hydrogen Evolution. CHEMSUSCHEM 2024; 17:e202400624. [PMID: 38616165 DOI: 10.1002/cssc.202400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Glycerol oxidation-assisted water electrolysis has emerged as a cost-effective way of co-producing green hydrogen and HCOOH. Still, preparing highly selective and stable nickel-based metal electrocatalysts remains a challenge. Herein, heterostructure Ni3N/WO3 nanosheet arrays of bifunctional catalysts with large specific surface areas loaded on nickel foam (denoted as Ni3N/WO3/NF) were synthesized. This catalyst was for glycerol oxidation reaction (GOR) and hydrogen evolution reaction (HER) with excellent catalytic performance, a voltage saving of 267 mV compared to oxygen evolution reaction (OER), and a HER overpotential of 104 mV at 100 mA cm-2. The cell voltage in the assembled GOR//HER hybrid electrolysis system reaches 100 mA cm-2 at 1.50 V, 296 mV lower than the potential required for overall water splitting. This work demonstrates that replacing GOR with OER using a cost-effective and highly active Ni-based bifunctional electrocatalyst can make hybrid water electrolysis an energy-efficient, sustainable, and green strategy for hydrogen production.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Wenjie Zhan
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Shaojian Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China
| |
Collapse
|
174
|
Fan Z, Li R, Zhang X, Zhao W, Pan Z, Yang X. Defect Engineering: Can it Mitigate Strong Coulomb Effect of Mg 2+ in Cathode Materials for Rechargeable Magnesium Batteries? NANO-MICRO LETTERS 2024; 17:4. [PMID: 39302540 DOI: 10.1007/s40820-024-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Rechargeable magnesium batteries (RMBs) have been considered a promising "post lithium-ion battery" system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market. However, the sluggish diffusion kinetics of bivalent Mg2+ in the host material, related to the strong Coulomb effect between Mg2+ and host anion lattices, hinders their further development toward practical applications. Defect engineering, regarded as an effective strategy to break through the slow migration puzzle, has been validated in various cathode materials for RMBs. In this review, we first thoroughly understand the intrinsic mechanism of Mg2+ diffusion in cathode materials, from which the key factors affecting ion diffusion are further presented. Then, the positive effects of purposely introduced defects, including vacancy and doping, and the corresponding strategies for introducing various defects are discussed. The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized. Finally, the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
Collapse
Affiliation(s)
- Zhengqing Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ruimin Li
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanyu Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
175
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
176
|
Zhang Y, Liu M, Ding R, Li Y, Guo J, Fang Q, Yan M, Xie J. Unveiling the charge storage mechanisms of Co-based perovskite fluoride in a mild aqueous electrolyte. NANOSCALE 2024; 16:16852-16860. [PMID: 39212076 DOI: 10.1039/d4nr02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study is an in-depth exploration of the charge storage mechanisms of KCoF3 in 1 M Na2SO4 mild aqueous electrolytes via an array of ex situ/in situ physicochemical/electrochemical methods, especially the electrochemical quartz crystal microbalance (EQCM) technique, showing a combination of conversion, insertion/extraction and adsorption mechanisms. Specifically, during the first charge phase, Co(OH)2 is formed/oxidized into amorphous CoOOH and Co3O4, and then CoOOH undergoes partial proton extraction to yield CoO2, which is simultaneously accompanied by the transformation of Co3O4 into CoOOH and (hydrated) CoO2. During the first discharge process, the partial insertion of H+ into (hydrated) CoO2 leads to the formation of CoOOH and Co3O4, with the conversion of Co3O4 into CoOOH and both Co3O4 and CoOOH undergoing further transformations into (hydrated) Co(OH)2via the insertion of H+. This work offers valuable references for the development of aqueous energy storage.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Miao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| |
Collapse
|
177
|
Chen Q, Fu Y. Phenyl Tellurosulfides as Cathode Materials for Rechargeable Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48803-48809. [PMID: 38275144 DOI: 10.1021/acsami.3c17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Phenyl ditelluride (PDTe) as a cathode material for rechargeable batteries has a low specific capacity (130.9 mAh g-1) due to limited active sites (two). To increase its capacity, additional active species need to be added to the structure of PDTe, like sulfur. Here, phenyl tellurosulfide (PDTeS) and phenyl tellurodisulfide (PDTeS2) can be formed via addition reactions and have specific capacities of 242.8 and 339.6 mAh g-1, respectively. The products are characterized by mass spectrometry and Raman spectroscopy. The Li/PDTeSn (n = 1-2) cells exhibit high material utilization (>85%) and unique redox mechanism. They can be cycled stably for more than 1000 cycles at an areal mass loading of 1.1 mg cm-2 and maintain capacity retentions of >72% after 100 cycles with PDTeSn loading of ∼6 mg cm-2. Moreover, the Li/PDTeS2 cell achieves a specific energy of up to 695 Wh kg-1 even when the electrolyte/PDTeS2 ratio is as low as 2.5 μL mg-1. The successful synthesis and application of PDTeSn prove that they are promising cathode materials for rechargeable lithium batteries.
Collapse
Affiliation(s)
- Qianhan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
178
|
Kim J, Shirke Y, Milner PJ. Flexible Backbone Effects on the Redox Properties of Perylenediimide-Based Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48713-48721. [PMID: 37581286 PMCID: PMC10867274 DOI: 10.1021/acsami.3c06065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Organic electrode materials are appealing candidates for a wide range of applications, including heterogeneous electrocatalysis and electrochemical energy storage. However, a narrow understanding of the structure-property relationships in these materials hinders the full realization of their potential. Herein, we investigate a family of insoluble perylenediimide (PDI) polymers to interrogate how backbone flexibility affects their thermodynamic and kinetic redox properties. We verify that the polymers generally access the highest percentage of redox-active groups with K+ ions (vs Na+ and Li+) due to its small solvation shell/energy and favorable soft-soft interactions with reduced PDI species. Through cyclic voltammetry, we show that increasing the polymer flexibility does not minimize barriers to ion-insertion processes but rather increases the level of diffusion-limited processes. Further, we propose that the condensation of imides to iminoimides can truncate the imide polymer chain growth for certain diamine monomers, leading to greater polymer solubilization and reduced cycling stability. Together, our results provide insight into how polymer flexibility, ion-electrode interactions, and polymerization side reactions dictate the redox properties of PDI polymers, paving the way for the development of next-generation organic electrode materials.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Yogita Shirke
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
179
|
Uyumaz F, Yerkinbekova Y, Kalybekkyzy S, Kahraman MV. Photo-Crosslinked Polyurethane-Containing Gel Polymer Electrolytes via Free-Radical Polymerization Method. Polymers (Basel) 2024; 16:2628. [PMID: 39339092 PMCID: PMC11435539 DOI: 10.3390/polym16182628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Using a novel technique, crosslinked gel polymer electrolytes (GPEs) designed for lithium-ion battery applications have been created. To form the photo crosslink via free-radical polymerization, a mixture of polyurethane acrylate (PUA), polyurethane methacrylate (PUMA), vinyl phosphonic acid (VPA), and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) was exposed to ultraviolet (UV) radiation during the fabrication process. The unique crosslinked configuration of the membrane increased its stability and made it suitable for use with liquid electrolytes. The resulting GPE has a much higher ionic conductivity (1.83 × 10-3 S cm-1) than the commercially available Celgrad2500 separator. A crosslinked structure formed by the hydrophilic properties of the PUA-PUMA blend and the higher phosphate content from BMEP reduced the leakage of the electrolyte solution while at the same time providing a greater capacity for liquid retention, significantly improving the mechanical and thermal stability of the membrane. GPP2 shows electrochemical stability up to 3.78 V. The coin cell that was assembled with a LiFePO4 cathode had remarkable cycling characteristics and generated a high reversible capacity of 149 mA h g-1 at 0.1 C. It also managed to maintain a consistent Coulombic efficiency of almost 100%. Furthermore, 91.5% of the original discharge capacity was maintained. However, the improved ionic conductivity, superior electrochemical performance, and high safety of GPEs hold great promise for the development of flexible energy storage systems in the future.
Collapse
Affiliation(s)
- Fatmanur Uyumaz
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul 34722, Turkey;
| | | | - Sandugash Kalybekkyzy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan;
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Memet Vezir Kahraman
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul 34722, Turkey;
| |
Collapse
|
180
|
Wang L, Huang F, Song X, Li J, Zhu G, Jin Z, Dai Z. Rational Design of Quasi-1D Multicore-Shell MnSe@N-Doped Carbon Nanorods as High-Performance Anode Material for Sodium-Ion Batteries. NANO LETTERS 2024; 24:11349-11357. [PMID: 39235045 DOI: 10.1021/acs.nanolett.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g-1 at 5 A g-1) and long lifespan (132.7 mA h g-1 after 2000 cycles at 5 A g-1), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic in situ microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Fei Huang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Xinmei Song
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jiayi Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
181
|
Yang J, Wan R, Zhang Z, Tian G, Ju S, Luo H, Peng B, Qiu Y. ScSeI Monolayer for Photocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49454-49464. [PMID: 39235951 DOI: 10.1021/acsami.4c11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
We theoretically identify the ScSeI monolayer as a promising new 2D material for photocatalysis through first-principles calculations. The most notable feature is the significant difference in carrier mobility, with electron mobility in the horizontal direction being 20.66 times higher than hole mobility, minimizing electron-hole recombination. The ScSeI monolayer exhibits a bandgap of 2.51 eV, with the valence band maximum at -6.37 eV and the conduction band minimum at -3.86 eV, meeting the requirements for water splitting. Phosphorus doping lowers the Gibbs free energy by 1.63 eV, enhancing the catalytic activity. The ScSeI monolayer achieves a hydrogen production efficiency of 17%, surpassing the commercial threshold of 10% and shows excellent mechanical, thermal, and dynamic stability, indicating feasibility for experimental synthesis and practical application. Additionally, the monolayer maintains its photocatalytic properties under tensile strain (-6% to 6%) and in aqueous environments, reinforcing its potential as an effective photocatalyst. Based on these findings, we believe the ScSeI monolayer is a highly promising photocatalyst.
Collapse
Affiliation(s)
- Jingfu Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Rundong Wan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhengfu Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Guocai Tian
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shaohua Ju
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Huilong Luo
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Biaolin Peng
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Yan Qiu
- Shenyang Aluminum Magnesium Design and Research Institute, Shenyang 110011, China
| |
Collapse
|
182
|
Kwak H, Kim JS, Han D, Kim JS, Park J, Kim C, Seo DH, Nam KW, Jung YS. Tuning the Properties of Halide Nanocomposite Solid Electrolytes with Diverse Oxides for All-Solid-State Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49328-49336. [PMID: 39230579 DOI: 10.1021/acsami.4c08915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Herein, we report halide nanocomposite solid electrolytes (HNSEs) that integrate diverse oxides with alterations that allow tuning of their ionic conductivity, (electro)chemical stability, and specific density. A two-step mechanochemical process enabled the synthesis of multimetal (or nonmetal) HNSEs, MO2-2Li2ZrCl6, as verified by pair distribution function and X-ray diffraction analyses. The multimetal (or nonmetal) HNSE strategy increases the ionic conductivity of Li2ZrCl6 from 0.40 to 0.82 mS cm-1. Additionally, cyclic voltammetry test findings corroborated the enhanced passivating properties of the HNSEs. Notably, incorporating SiO2 into HNSEs leads to a substantial reduction in the specific density of HNSEs, demonstrating their strong potential for achieving a high energy density and lowering costs. Fluorinated SiO2-2Li2ZrCl5F HNSEs exhibited enhanced interfacial compatibility with Li6PS5Cl and LiCoO2 electrodes. Cells employing SiO2-2Li2ZrCl5F with LiCoO2 exhibit superior electrochemical performance delivering the initial discharge capacity of 162 mA h g-1 with 93.7% capacity retention at the 100th cycle at 60 °C.
Collapse
Affiliation(s)
- Hiram Kwak
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Seok Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Daseul Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jae-Seung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhyoun Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Changhoon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Yoon Seok Jung
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Department of Battery Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
183
|
Zhao Q, Zhang Z, Song D, Sun X, Zhang Y, Gao J, Takeo O, Futoshi M, Wu J. Stabilizing the Interphase in an Ultra-High-Nickel Cathode Enabling High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49227-49235. [PMID: 39235950 DOI: 10.1021/acsami.4c06570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
High-nickel (Ni ≥ 90%) cathodes which have a high specific capacity hold great potential for next-generation lithium-ion batteries (LIBs). However, their practical application is restricted by their high interfacial reactivity because of the presence of residual lithium (Li) compounds on the surface. Herein, the LiNi0.9Co0.06Mn0.04O2 (NCM90) cathode is surface-modified with sulfur (S) via a simple and feasible dry mixing and low-temperature heat treatment, converting the residual lithium compound on the surface into inactive lithium sulfate (Li2SO4). This induces the formation of a stable inorganic enriched electrode-electrolyte interface on the cathode surface and inhibits the occurrence of side reactions, ultimately inhibiting lattice collapse and the dissolution of transition metal ions. After modifying, the capacity retention rates of NCM90/Li and NCM90/graphite cells are both greatly enhanced after long cycling. This work provides a new idea for the rational design of the electrode-electrolyte interface of high-nickel cathodes.
Collapse
Affiliation(s)
- Qing Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Depeng Song
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaolin Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yuan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jing Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ohsaka Takeo
- Research Institute for Engineering, Kanagawa University, Kanagawa-Ku, Yokohama 221-8686, Japan
| | - Matsumoto Futoshi
- Department of Material and Life Chemistry, Kanagawa University, Kanagawa-Ku, Yokohama 221-8686, Japan
| | - Jianfei Wu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
184
|
Zhao Y, Lu D, Yun X, Wang J, Song W, Xie W, Zuo L, Zheng C, Xiao P, Chen Y. Surface Reconstruction Enhanced Li-Rich Cathode Materials for Durable Lithium-Ion Batteries. SMALL METHODS 2024:e2401221. [PMID: 39291906 DOI: 10.1002/smtd.202401221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Regulating the distribution of surface elements in lithium-rich cathode materials can effectively change the electrochemical performance of cathode materials. Considering that the enrichment of Mn element on the surface is the main reason for the irreversible phase transition and dissolution of its surface structure, which in turn is the main reason for performance degradation. Based on the molten salt-assisted sintering method, a lithium rich cathode material with surface rich Ni and Co is designed and prepared. The surface enrichment of Ni and Co effectively reduces the dissolution of Mn, promotes the occurrence of irreversible collapse of surface structure from layered phase to rock salt phase on the material surface, improves the stability of surface crystal phase structure, and improves the cycling stability of positive electrode materials. Notably, after 500 cycles at 1 C current density, the discharge-specific capacity attained 189.8 mAh g -1, with a capacity retention rate of 88.9%, indicating a 42.1% improvement in capacity retention. Molten salt treatment is widely used in the modification of positive electrode materials. The research work will provide new ideas for improving the stability of lithium rich materials and promoting their commercial applications.
Collapse
Affiliation(s)
- Yanshuang Zhao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Di Lu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - XiaoRu Yun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Jinhui Wang
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Wenjin Song
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Wei Xie
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - LanLan Zuo
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Chunman Zheng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
185
|
Wang W, Zou J, Ni Y, Yu K, Yan X, Yin J, Gao W, Chen D, Jin Q, Jian J. Structural Optimization of Polyimide-Film Humidity Sensors for New Energy Vehicles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49733-49744. [PMID: 39231365 DOI: 10.1021/acsami.4c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This paper presents a comprehensive study of the structural optimization of polyimide-film (PI-film) capacitive humidity sensors, with a focus on enhancing their performance for application in new energy vehicles (NEVs). Given the critical role of humidity sensors in ensuring the safety and efficiency of vehicle operations─particularly in monitoring lithium-ion battery systems─the study explores the intricate relationship between the interdigitated electrode (IDE) dimensions and the PI-film thickness to optimize sensor responsiveness and reliability. Through a combination of COMSOL Multiphysics simulations (a powerful finite element analysis, solver, and simulation software) and experimental validation, the research identifies the optimal geometrical combination that maximizes the sensitivity and minimizes the response time. The fabrication process is streamlined for batch preparation, leveraging the spin-coating process to achieve consistent and reliable PI films. Extensive characterizations confirm the superior morphology, chemical composition, and humidity-sensing capabilities of the developed sensors. Practical performance tests further validate their exceptional repeatability, long-term stability, low hysteresis, and excellent selectivity, underpinning their suitability for automotive applications. The final explanation of the sensing mechanism provides a solid theoretical foundation for observed performance improvements. This work not only advances the field of humidity sensing for vehicle safety but also offers a robust theoretical and practical framework for the batch preparation of PI-film humidity sensors, promising enhanced safety and reliability for NEVs.
Collapse
Affiliation(s)
- Wentian Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Jie Zou
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Yongjian Ni
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Kaige Yu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Xinxin Yan
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Jiawen Yin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Daidai Chen
- Ningbo Joyson Advanced Energy Research Institute Co., Ltd., Ningbo 315211, China
| | - Qinghui Jin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiawen Jian
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
186
|
Chen Q, Kang H, Gao Y, Zhang L, Wang R, Zhang S, Zhou T, Li H, Mao J, Zhang C, Guo Z. Nanostructured Porous Polymer with Low Volume Expansion, Structural Distortion, and Gradual Activation for High and Durable Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48736-48747. [PMID: 37874797 DOI: 10.1021/acsami.3c11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Organic compounds exhibit great potential as sustainable, tailorable, and environmentally friendly electrode materials for rechargeable batteries. However, the intrinsic defects of organic electrodes, including solubility, low ionic conductivity, and restricted electroactivity sites, will inevitably decrease the cycling life and capacity. We herein designed and prepared nanostructured porous polymers (NPP) with a simple one-pot method to overcome the above defects. Theoretical calculations and experimental results demonstrate that the as-synthesized NPP exhibited low volume expansion, molecular-structural distortion, and a gradual function activation process during cycling, thus exhibiting superior, high, and durable lithium storage. The gradual molecular distortion during the lithium storage processes provides more redox-active sites for Li storage, increasing the Li-storage capacity. Ex situ spectrum studies reveal the redox reaction mechanism of Li storage and demonstrate a gradual activation process during the repeated charging/discharging until the full storage of 18 Li ions is achieved. Additionally, a real-time observation on the NPP anode by in situ transmission electron microscope reveals a slight volume expansion during the repeating lithiation and delithiation processes, ensuring its structural integrity during cycling. This quantitative work for high-durability lithium storage could be of immediate benefit for designing organic electrode materials.
Collapse
Affiliation(s)
- Qi Chen
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Hongwei Kang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China
| | - Yuchen Gao
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Shilin Zhang
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Jianfeng Mao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
187
|
Ning M, Wang S, Wan J, Xi Z, Chen Q, Sun Y, Li H, Ma T, Jin H. Dynamic Active Sites in Electrocatalysis. Angew Chem Int Ed Engl 2024:e202415794. [PMID: 39291302 DOI: 10.1002/anie.202415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
In-depth understanding of the real-time behaviors of active sites during electrocatalysis is essential for the advancement of sustainable energy conversion. Recently, the concept of dynamic active sites has been recognized as a potent approach for creating self-adaptive electrocatalysts that can address a variety of electrocatalytic reactions, outperforming traditional electrocatalysts with static active sites. Nonetheless, the comprehension of the underlying principles that guide the engineering of dynamic active sites is presently insufficient. In this review, we systematically analyze the fundamentals of dynamic active sites for electrocatalysis and consider important future directions for this emerging field. We reveal that dynamic behaviors and reversibility are two crucial factors that influence electrocatalytic performance. By reviewing recent advances in dynamic active sites, we conclude that implementing dynamic electrocatalysis through variable reaction environments, correlating the model of dynamic evolution with catalytic properties, and developing localized and ultrafast in situ/operando techniques are keys to designing high-performance dynamic electrocatalysts. This review paves the way to the development of the next-generation electrocatalyst and the universal theory for both dynamic and static active sites.
Collapse
Affiliation(s)
- Minghui Ning
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC-3000, Australia
| | - Sangni Wang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jun Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Zichao Xi
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Qiao Chen
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yuanmiao Sun
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC-3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC-3000, Australia
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC-3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC-3000, Australia
| | - Huanyu Jin
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
188
|
Zhao W, Zhang Y, Liu Q, Song Y, Li X, Ren L, Yin G, Lou S, Wang J. Entropy-Modulated Short-Chain Cathode for Low-Temperature All-Solid-State Li-S Batteries. Angew Chem Int Ed Engl 2024:e202413670. [PMID: 39295281 DOI: 10.1002/anie.202413670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
All-solid-state Li-S batteries (ASSLSBs) due to high theoretical energy density and exceptional safety are highly desirable for electric aircraft. However, as the flight altitude rises, the low-temperature performance is hampered by inadequate practical capacity. Here, we discover that low-temperature sulfur utilization is constrained by the multi-step endothermic conversion reaction. By introducing multi-chalcogen to modulate the local entropy, a short-chain molecule cathode is designed to shorten the reduction pathways and enhance low-temperature discharge capacity. Furthermore, the mismatched lithiation lattice of the short-chain cathode reduces the decomposition energy barriers, thus enhancing low-temperature charge/discharge reversibility. The designed short-chain cathode exhibits high cathode utilization (99.4 %) and cycling stability (400 cycles, 92.2 % retention) at room temperature, as well as delivers excellent discharge capacity (579.6 mAh g-1, -40 °C) and cycling performance (100 cycles, 98.4 % retention, 394.9 Wh kg-1electrode, -20 °C) at low temperature. This study presents new opportunities to stimulate the development of low-temperature ASSLSBs.
Collapse
Affiliation(s)
- Wei Zhao
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qingsong Liu
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yajie Song
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xu Li
- State Key Laboratory of Robotics and Systems (HIT), Harbin Institute of Technology, Harbin, 150001, China
- Suzhou Research Institute of HIT, Suzhou, 215104, P. R. China
| | - Liping Ren
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Geping Yin
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuaifeng Lou
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiajun Wang
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and Systems (HIT), Harbin Institute of Technology, Harbin, 150001, China
- Suzhou Research Institute of HIT, Suzhou, 215104, P. R. China
| |
Collapse
|
189
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
190
|
Koshy SS, Rath J, Kiani A. Fabrication of binder-less metal electrodes for electrochemical water splitting - A review. Heliyon 2024; 10:e37188. [PMID: 39296055 PMCID: PMC11409087 DOI: 10.1016/j.heliyon.2024.e37188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The escalating demand for green hydrogen (H2) as a sustainable energy carrier has attracted intensive research into efficient water electrolysis methods. Promising candidates have emerged as binder-less metal electrodes, which enhance electrochemical performance and durability by reducing electron hindrance and avoiding binder degradation. Despite their potential, a comprehensive understanding of various binder-less fabrication techniques remains limited in the existing literature. As the main objective, this review paper aims to bridge this gap by providing an in-depth analysis of state-of-the-art fabrication methods for binder-less metal electrodes utilized in electrochemical water splitting. Recognizing the critical need for sustainable hydrogen production, the advantages of binder-less electrodes over conventional binder-based counterparts are elucidated, with emphasis placed on their role in promoting cost-effectiveness, improved stability, and enhanced catalytic activity. Techniques such as Hydrothermal/Solvothermal, Electrodeposition, Chemical/Vapor Deposition, and Laser-based fabrication are systematically examined, with their respective advantages, drawbacks, and comparison being highlighted. Drawing upon relevant examples from literature, insights on other aspects and recent trends are also provided, such as the performance of binder-less metal electrodes at industrial-scale current densities (0.1-1 A/cm2) or their potential as photoactive catalysts. Additionally, future directions in the field of binder-less electrode fabrication and the exploration of innovative techniques are also discussed, ensuring that the trajectory of research aligns with the evolving demands of sustainable energy production. The "what's next" section highlights areas of further investigation and potential avenues for technological advancement.
Collapse
Affiliation(s)
- Sandra Susan Koshy
- Silicon Hall: Micro/Nano Manufacturing Facility, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
- Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
| | - Jyotisman Rath
- Silicon Hall: Micro/Nano Manufacturing Facility, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai - IndianOil Odisha Campus, Bhubaneswar, 751013, India
| | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
- Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
| |
Collapse
|
191
|
Wei J, Ye G, Lin H, Li Z, Zhou J, Li YY. Enhanced electrochemical nitrate reduction on copper nitride with moderate intermediates adsorption. J Colloid Interface Sci 2024; 670:798-807. [PMID: 38789354 DOI: 10.1016/j.jcis.2024.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Nitrate in surface and underground water caused systematic risk to the ecological environment. The electrochemically reduction of nitrate into ammonia (NO3RR), offering a sustainable route for nitrate containing wastewater treatment and ammonia fertilizer conversion. Exploration of catalyst with improved catalytic activity with lower energy barriers is still challenging. Here, we report a copper nitride (Cu3N) catalyst with moderate *NOx and *H2O intermediates adsorptions showed enhanced NO3RR performance. Density functional theory calculations reveals that the unique electronic structure of Cu3N provides efficient active sites for NO3RR, thus enabled balanced adsorption of *NO3 and *H2O (ΔE descriptor), sufficient active hydrogen, and moderate intermediate (*NO3 → HNO3, *NH2→*NH3) adsorption energy. Notably, the in-situ analysis technology revealed potential-driven reconstruction and rehabilitation of Cu3N, forming possible nitrogen vacancy, thus implied for better mechanism understanding. The NO3RR activity of Cu3N surpasses that of most recent catalysts and demonstrates superior stability and implies the application for NH4+ fertilizer recovery, which maintaining an NH3 Faradaic efficiency of 93.1 % and high yield rate of 2.9 mg cm2h-1 at -0.6 V versus RHE. These findings broaden the application scenarios of Cu3N catalyst for ammonia synthesis and provide strategy on improving NO3RR performance.
Collapse
Affiliation(s)
- Jinshan Wei
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Hexing Lin
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhiming Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ya-Yun Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
192
|
Cao J, Chen W, Gao A, Muhtar D, Du G, Qian G, Lu X, Xie F, Sun Y, Lu X. Li 2ZnCu 3 Modified Cu Current Collector to Regulate Li Deposition. Angew Chem Int Ed Engl 2024:e202413065. [PMID: 39275906 DOI: 10.1002/anie.202413065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Rationally designing a current collector that can maintain low lithium (Li) porosity and smooth morphology while enduring high-loading Li deposition is crucial for realizing the high energy density of Li metal batteries, but it is still challengeable. Herein, a Li2ZnCu3 alloy-modified Cu foil is reported as a stable current collector to fulfill the stable high-loading Li deposition. Benefiting from the in situ alloying, the generated numerous Li2ZnCu3@Cu heterojunctions induce a homogeneous Li nucleation and dense growth even at an ultrahigh capacity of 12 mAh cm-2. Such a spatial structure endows the overall Li2ZnCu3@Cu electrode with the manipulated steric hindrance and outmost surface electric potential to suppress the side reactions during Li stripping and plating. The resultant Li||Li2ZnCu3@Cu asymmetric cell preserves an ultrahigh average Coulombic efficiency of 99.2 % at 3 mA cm-2/6 mAh cm-2 over 200 cycles. Moreover, the Li-Li2ZnCu3@Cu||LiFePO4 cell maintains a cycling stability of 87.5 % after 300 cycles. After coupling with the LiCoO2 cathode (4 mAh cm-2), the cell exhibits a high energy density of 407.4 Wh kg-1 with remarkable cycling reversibility at an N/P ratio of 3. All these findings present a doable way to realize the high-capacity, dendrite-free, and dense Li deposition for high-performance Li metal batteries.
Collapse
Affiliation(s)
- Jiaqi Cao
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Weixin Chen
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Aosong Gao
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Dilxat Muhtar
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Guangyuan Du
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Guoyu Qian
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xueyi Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yang Sun
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P.R. China
| |
Collapse
|
193
|
Petersen D, Gronenberg M, Lener G, Leiva EPM, Luque GL, Rostami S, Paolella A, Hwang BJ, Adelung R, Abdollahifar M. Anode-free post-Li metal batteries. MATERIALS HORIZONS 2024. [PMID: 39268565 DOI: 10.1039/d4mh00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Anode-free metal batteries (AFMBs) are a new architecture of battery technology that relies solely on current collectors (CCs) at the anode side, eliminating the need for traditional metal anodes. This approach can pave the way for higher energy densities, lower manufacturing costs, and lower environmental footprints associated with metal batteries. This comprehensive review provides an in-depth exploration of AFMB technology, extending its scope beyond lithium and into a broader range of metals (sodium Na, potassium K, magnesium Mg, zinc Zn and aluminum Al). The concept of "metal-philicity" is discussed, which plays a pivotal role in understanding and controlling metal plating behavior within AFMBs, and also computational studies that employ first-principles calculations. This novel notion offers valuable insights into the interactions between metals and CC surfaces, which are essential for designing efficient battery systems. Moreover, the review explores various materials and experimental methods to enhance metal plating efficiency while mitigating issues such as dendrite formation through the realm of surface modifications and coatings on CCs. By providing a deeper understanding of strategies for optimizing anode-free post-Li metal battery technologies, this review aims to contribute to developing more efficient, sustainable, and cost-effective energy storage for the near future.
Collapse
Affiliation(s)
- Deik Petersen
- Chair for Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany.
| | - Monja Gronenberg
- Chair for Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany.
| | - German Lener
- Departamento de Química Teórica y Computacional, INFIQC, Av Medina Allende y Haya de la Torre, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina.
| | - Ezequiel P M Leiva
- Departamento de Química Teórica y Computacional, INFIQC, Av Medina Allende y Haya de la Torre, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina.
| | - Guillermina L Luque
- Departamento de Química Teórica y Computacional, INFIQC, Av Medina Allende y Haya de la Torre, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina.
| | - Sasan Rostami
- Department of Physics and Energy Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| | - Andrea Paolella
- Dipartimento di Scienze Chimiche e Geologich eUniversità degli Studi di Modena e Reggio EmiliaVia Campi 103, Modena 41125, Italy
| | - Bing Joe Hwang
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Rainer Adelung
- Chair for Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany.
| | - Mozaffar Abdollahifar
- Chair for Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany.
| |
Collapse
|
194
|
Cuevas I, Elbouazzaoui K, Valvo M, Mindemark J, Brandell D, Edström K. Boron Surface Treatment of Li 7La 3Zr 2O 12 Enabling Solid Composite Electrolytes for Li-Metal Battery Applications. CHEMSUSCHEM 2024:e202401304. [PMID: 39265054 DOI: 10.1002/cssc.202401304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Despite being promoted as a superior Li-ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer-ceramic solid electrolytes for rechargeable all-solid-state lithium metal batteries. One of the main limitations is the detrimental presence of Li2CO3 on the surface of LLZO particles, restricting Li-ion transport at the polymer-ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for a better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that a surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt % of boron-treated LLZO particles compared to the analogous CPE with non-treated LLZO. Ultimately, an improved cycling performance and stability in Li//LiFePO4 cells was also demonstrated for the modified material.
Collapse
Affiliation(s)
- Ignacio Cuevas
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Kenza Elbouazzaoui
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Mario Valvo
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Jonas Mindemark
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Kristina Edström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| |
Collapse
|
195
|
Xu H, Wang L, Chen L, Ma X, Hu W, Zhao J, Tan S, Wang B. Stabilizing Fe Single Atoms on Rutile-TiO 2(110) Surface Via Atomic Substitution. J Phys Chem Lett 2024; 15:9272-9279. [PMID: 39234986 DOI: 10.1021/acs.jpclett.4c02189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Stable anchoring of dispersed metal atoms through either surface adsorption or lattice substitution on support surfaces is a prerequisite for highly efficient catalytic performance. Atomic-level insights into these processes are necessary to understand the metal-support interactions. Here, we identify multiple Fe single-atom configurations on the rutile-TiO2(110) surface using scanning tunneling microscopy (STM) and density functional theory (DFT). Our results show that an Fe atom can either adsorb on a surface O site (configuration I) or stably substitute a surface lattice Ti atom (configuration II). A transformation from configuration I to configuration II can be induced by STM manipulation. Furthermore, the substitutional Fe atom can capture an additional Fe atom to form a dual Fe-Fe complex (configuration III). DFT calculations reveal that these Fe species contribute different states in either the bandgap or the conduction band. These atomistic insights pave the way for interrogating the integrated performance of nonprecious, TiO2-supported Fe single-atom catalysts.
Collapse
Affiliation(s)
- Huimin Xu
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linjie Chen
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaochuan Ma
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Jin Zhao
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
196
|
Lu C, Hong QL, Zhang HX, Zhang J. Enhancing CO 2 electroreduction to ethylene via microenvironment regulation in boron-imidazolate frameworks. Chem Commun (Camb) 2024; 60:10204-10207. [PMID: 39196608 DOI: 10.1039/d4cc02928c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Using the structure-induced effect of KBH(mim)3 ligand, four 2-dimensional (2D) boron imidazolate frameworks with identical body framework and different dangling monocarboxylate ligands, have been synthesized. Electrocatalytic results indicate that the surrounding microenvironment regulation could effectively affect the activity and selectivity towards C2H4. BIF-151 showed the highest electrocatalytic performances with the Faraday efficiency (FE) of 25.94% for C2H4 at -1.4 V vs. RHE.
Collapse
Affiliation(s)
- Chen Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
197
|
Li S, Wang L, Liu C, Liu Y, Li Z, Liu B, Sun Z, Hu W. Lithium-Rich Porous Aromatic Framework Doped Quasi-Solid Polymer Electrolyte for Lithium Battery with High Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47590-47598. [PMID: 39189934 DOI: 10.1021/acsami.4c09287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lithium-ion batteries (LIBs) have revolutionized the energy storage landscape and are the preferred power source for various applications, ranging from portable electronics to electric vehicles. The constant drive and growth in battery research and development aim to enhance their performance, energy density, and safety. Advanced lithium batteries (LIBs) are considered to be the most promising electrochemical storage devices, which can provide high specific energy, volumetric energy density, and power density. However, the trade-off between ionic conductivity and cycling stability is still a major contradiction for SPEs. In this work, a novel hydroxylated PAF-1 was designed and synthesized through post-modification, and the lithium-rich single-ion porous aromatic framework PAF-1-OLi was thereafter prepared by lithiation, achieved with a specific surface area to be 155 m2 g-1 and a lithium content of 2.01 mmol g-1. PAF-1-OLi, lithium bis(trifluoromethanesulfony)limine (LiTFSI), and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) were compounded to obtain PAF-1-OLi/PVDF by solution casting, which had good mechanical, thermodynamic, and electrochemical properties. The ion conductivity of PAF-1-OLi/PVDF infiltrated with plasticizer was 2.93 × 10-4 S cm-1 at 25 °C. The tLi+ was 0.77, which was much higher than that of the traditional dual-ion polymer electrolytes. The electrochemical window of PAF-1-OLi/PVDF can reach 4.9 V. The Li//PAF-1-OLi/PVDF//LiFePO4 battery initial discharge specific capacity was 147 mAh g-1 and reached 134.9 mAh g-1 after 600 cycles with a capacity retention rate of 91.2%, demonstrating its good cycling stability. The anionic part of lithium salt was fixed on the framework of PAF-1 to increase the Li+ transfer number of PAF-1-OLi/PVDF. The lithium-rich PAF-1-OLi and the LiTFSI provided abundant Li+ sources to transfer, while PAF-1-OLi helped to form a continuous Li+ transport channel, effectively promoting the migration of Li+ in the PAF-1-OLi/PVDF and effectively improving the Li+ conductivity. This study afforded a novel polymer electrolyte based on lithium-rich PAF-1-OLi, which has excellent electrochemical performance, providing a new choice for the polymer electrolyte of lithium batteries.
Collapse
Affiliation(s)
- Shenyuan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China
| | - Liying Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China
| | - Chengzhe Liu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China
| | - Yuhan Liu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China
| | - Zhangnan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China
| | - Baijun Liu
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Wei Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China
| |
Collapse
|
198
|
Zhou L, Wu C, Yu F, Li Y, Liu H, Zheng C, Shen F, Wen A, Wang B. Dislocation Effect Boosting the Electrochemical Properties of Prussian Blue Analogues for 2.6 V High-Voltage Aqueous Zinc-Based Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47454-47463. [PMID: 39223694 DOI: 10.1021/acsami.4c07693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Prussian blue analogues (PBAs) have attracted increasing attention in aqueous zinc-based batteries (AZBs) with the advantages of an open framework, adjustable redox potential, and easy synthesis. However, they exhibited a low specific capacity and a poor cycle performance. In this work, crystalline potassium iron hexacyanoferrate (FeHCF) with dislocation was designed and prepared by a poly(vinylpyrrolidone) (PVP) additive. The metastable state provided by PVP would cause an electrostatic interaction between cyanogen and water molecules. The reduced force increases the steric resistance of the water molecules entering the crystal. The low content of crystal water in FeHCF is associated with the formation of dislocation. The dislocation effect effectively improves the electrochemical reactivity and reaction kinetics of FeHCF. Thus, it presents a high reversible capacity of 131 mAh g-1 with a superior capacity retention of 85% after 550 cycles at 0.5 A g-1. When used as a cathode, the AZBs display a high voltage of 2.6 V, a fast charging capability (<5 min), and a satisfactory cycle stability with a capacity retention of 82% after 400 cycles at 0.2 A g-1 in decoupling electrolytes. This work provides an effective strategy for the design of high-performance PBA-based cathodes for 2.6 V AZBs.
Collapse
Affiliation(s)
- Lei Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Sciences and Technology of China, Chengdu 611731, China
| | - Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Feng Yu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yun Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Huan Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Chaoyue Zheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Fengli Shen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - An Wen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Sciences and Technology of China, Chengdu 611731, China
| |
Collapse
|
199
|
Conter G, Monti S, Barcaro G, Goddard WA, Fortunelli A. Functionalized Amorphous Carbon Materials via Reactive Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48043-48057. [PMID: 39205653 DOI: 10.1021/acsami.4c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We derive a database of atomistic structural models of amorphous carbon materials endowed with exohedral functional groups. We start from phases previously derived using the DynReaxMas method for reactive molecular dynamics simulations, which exhibit atomistic and medium-length-scale features in excellent agreement with available experimental data. Given a generic input structure/phase, we develop postprocessing simulation algorithms mimicking experimental preparation protocols aimed at: (1) "curing" the phase to decrease the defect concentration; (2) automatically selecting the most reactive carbon atoms via interaction with a probe molecular species, and (3) stabilizing the phase by saturating the valence of carbon atoms with single-bond functional groups. Although we focus on oxygen-bearing functionalities, they can be replaced with other monovalent groups, such as -H, -COOH, -CHO, so that the protocol is quite general. We finally classify reactive sites in terms of their location within the structural framework and coordination environment (edges, tunnels, rings, aromatic carbons becoming aliphatic) and try to single out descriptors that correlate with tendency to functionalization.
Collapse
Affiliation(s)
- Giorgio Conter
- Consiglio Nazionale delle Ricerche, CNR-ICCOM, Pisa 56124, Italy
- Scuola Normale Superiore, Pisa 56126, Italy
| | - Susanna Monti
- Consiglio Nazionale delle Ricerche, CNR-ICCOM, Pisa 56124, Italy
| | | | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Alessandro Fortunelli
- Consiglio Nazionale delle Ricerche, CNR-ICCOM, Pisa 56124, Italy
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
200
|
Tang Z, Liu R, Jiang D, Cai S, Li H, Sun D, Tang Y, Wang H. Regulating the Pore Structure of Biomass-Derived Hard Carbon for an Advanced Sodium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47504-47512. [PMID: 39189306 DOI: 10.1021/acsami.4c08082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Biomass-derived hard carbon materials are attractive for sodium-ion batteries due to their abundance, sustainability, and cost-effectiveness. However, their widespread use is hindered by their limited specific capacity. Herein, a type of bamboo-derived hard carbon with adjustable pore structures is developed by employing a ball milling technique to modify the carbon chain length in the precursor. It is observed that the length of the carbon chain in the precursor can effectively control the rearrangement behavior of the carbon layers during the high-temperature carbonization process, resulting in diverse pore structures ranging from closed pores to open pores, which significantly impact the electrochemical properties. The optimized hard carbon with abundant closed pores exhibits a high specific capacity of 356 mAh g-1 at 20 mA g-1, surpassing that of bare hard carbon (243 mAh g-1) and hard carbon with abundant open pores (129 mAh g-1 at 20 mA g-1). However, the kinetic analysis reveals that hard carbon with open pores shows better sodium-ion diffusion kinetics, indicating that a balance between the closed and open pores should be considered. This research offers valuable insights into pore design and presents a promising approach for enhancing the performance of hard carbon anode materials derived from biomass precursors.
Collapse
Affiliation(s)
- Zheng Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Rui Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dan Jiang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Siqi Cai
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huanhuan Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dan Sun
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|