151
|
Liu X, Ye JC, Li F, Gao RJ, Wang XX, Cheng JL, Liu BL, Xiang L, Li YW, Cai QY, Zhao HM, Mo CH, Li QX. Revealing microcystin-LR ecotoxicity to earthworm (Eisenia fetida) at the intestinal cell level. CHEMOSPHERE 2023; 311:137046. [PMID: 36419272 DOI: 10.1016/j.chemosphere.2022.137046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Potential adverse effects of microcystin-LR (MC-LR) on soil invertebrates have not been studied. Here we investigated the mechanism of MC-LR toxicity to earthworm (Eisenia fetida) intestine at the individual level and at the cellular level. The results showed an inverse relationship between the bodyweight and survival rate of earthworms over exposure time- and MC-LR doses in soil. Dose-dependent intestinal lesions and disturbances of enzymatic activities (e.g., cellulase, Na+/K+-ATPase, and AChE) were observed, which resulted in intestinal dysfunction. Excessive reactive oxygen species generation led to DNA damage and lipid peroxidation of intestinal cells. The oxidative damage to DNA prolonged cell cycle arrest at the G2/M-phase transition in mitosis, thus stimulating and accelerating apoptosis in earthworm intestine. MC-LR target earthworm intestine tissue. MC-LR at low concentrations can damage earthworm intestine regardless of exposure routes (oral or contact). High toxicity of MC-LR to earthworms delineates its ecological risks to terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong-Jun Gao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
152
|
Rogers JT, Cahill CM. Iron Responsiveness to Lysosomal Disruption: A Novel Pathway to Alzheimer's Disease. J Alzheimers Dis 2023; 96:41-45. [PMID: 37781810 DOI: 10.3233/jad-230953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Familial Alzheimer's disease (fAD) mutations in the amyloid-β protein precursor (AβPP) enhance brain AβPP C-Terminal Fragment (CTF) levels to inhibit lysosomal v-ATPase. Consequent disrupted acidification of the endolysosomal pathway may trigger brain iron deficiencies and mitochondrial dysfunction. The iron responsive element (IRE) in the 5'Untranslated-region of AβPP mRNA should be factored into this cycle where reduced bioavailable Fe-II would decrease IRE-dependent AβPP translation and levels of APP-CTFβ in a cycle to adaptively restore iron homeostasis while increases of transferrin-receptors is evident. In healthy younger individuals, Fe-dependent translational modulation of AβPP is part of the neuroprotective function of sAβPPα with its role in iron transport.
Collapse
Affiliation(s)
- Jack T Rogers
- Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Massachusetts General Hospital (East), and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
153
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
154
|
Zhang X, Liu J, Wang H. The cGAS-STING-autophagy pathway: Novel perspectives in neurotoxicity induced by manganese exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120412. [PMID: 36240967 DOI: 10.1016/j.envpol.2022.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chronic high-level heavy metal exposure increases the risk of developing different neurodegenerative diseases. Chronic excessive manganese (Mn) exposure is known to lead to neurodegenerative diseases. In addition, some evidence suggests that autophagy dysfunction plays an important role in the pathogenesis of various neurodegenerative diseases. Over the past decade, the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signal-efficient interferon gene stimulator (STING), as well as the molecular composition and regulatory mechanisms of this pathway have been well understood. The cGAS-STING pathway has emerged as a crucial mechanism to induce effective innate immune responses by inducing type I interferons in mammalian cells. Moreover, recent studies have found that Mn2+ is the second activator of the cGAS-STING pathway besides dsDNA, and inducing autophagy is a primitive function for the activation of the cGAS-STING pathway. However, overactivation of the immune response can lead to tissue damage. This review discusses the mechanism of neurotoxicity induced by Mn exposure from the cGAS-STING-autophagy pathway. Future work exploiting the cGAS-STING-autophagy pathway may provide a novel perspective for manganese neurotoxicity.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
155
|
García-Gutiérrez P, García-Domínguez M. SUMO control of nervous system development. Semin Cell Dev Biol 2022; 132:203-212. [PMID: 34848148 DOI: 10.1016/j.semcdb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
In the last decades, the post-translational modification system by covalent attachment of the SUMO polypeptide to proteins has emerged as an essential mechanism controlling virtually all the physiological processes in the eukaryotic cell. This includes vertebrate development. In the nervous system, SUMO plays crucial roles in synapse establishment and it has also been linked to a variety of neurodegenerative diseases. However, to date, the involvement of the modification of specific targets in key aspects of nervous system development, like patterning and differentiation, has remained largely elusive. A number of recent works confirm the participation of target-specific SUMO modification in critical aspects of nervous system development. Here, we review pioneering and new findings demonstrating the essential role SUMO plays in neurogenesis and other facets of neurodevelopment, which will help to precisely understand the variety of mechanisms SUMO utilizes to control most fundamental processes in the cell.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
156
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
157
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
158
|
Mota PJ, Alonzo HGA, André LC, Câmara VDM, Campolina D, Santos ADSE, Fróes-Asmus CIR, Peixoto SV. Prevalence of metal levels above the reference values in a municipality affected by the collapse of a mining tailings dam: Brumadinho Health Project. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2022; 25:e220014. [PMID: 36327419 DOI: 10.1590/1980-549720220014.supl.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To describe the prevalence of levels of arsenic, cadmium, mercury, lead and manganese above the reference values (RV) in the population of Brumadinho, after the rupture of the mining tailings dam and to verify the factors associated with these levels. METHODS Baseline study of a prospective cohort, in a representative sample of 3,080 residents (aged 12 and over) in Brumadinho, Minas Gerais. Exploratory variables (age, sex, skin color, household income, smoking and place of residence) were collected using a questionnaire and the levels of As, Cd and Hg in urine and Pb and Mn in blood were evaluated using the technique of inductively coupled plasma mass spectrometry. The distribution of prevalence of levels above the reference for metals was made, according to the exploratory variables. Multiple logistic regression analyzes were used to investigate the association between altered levels of metals and characteristics evaluated. RESULTS Concentrations above RV were found in 38.08% of the population for Mn, 33.37% for As, 5.04% for Pb, 0.76% for Hg and 0.17% for Cd. There was a significant association between age group and levels of Mn and Pb; and between place of residence and As level. CONCLUSION The results show a high prevalence of levels above the reference for Mn, As and Pb, with small differences in relation to the other variables, suggesting that it is an exposure distributed throughout the municipality.
Collapse
Affiliation(s)
- Paula Junqueira Mota
- Fundação Oswaldo Cruz, Instituto René Rachou - Belo Horizonte (MG), Brazil
- Instituto Guaicuy - Belo Horizonte (MG), Brazil
| | | | - Leiliane Coelho André
- Universidade Federal de Minas Gerais, School of Pharmacy - Belo Horizonte (MG), Brazil
| | | | - Délio Campolina
- Universidade Federal de Minas Gerais, School of Medicine - Belo Horizonte (MG), Brazil
| | | | | | - Sérgio Viana Peixoto
- Fundação Oswaldo Cruz, Instituto René Rachou - Belo Horizonte (MG), Brazil
- Universidade Federal de Minas Gerais, School of Nursing - Belo Horizonte (MG), Brazil
| |
Collapse
|
159
|
Rodichkin AN, Guilarte TR. Hereditary Disorders of Manganese Metabolism: Pathophysiology of Childhood-Onset Dystonia-Parkinsonism in SLC39A14 Mutation Carriers and Genetic Animal Models. Int J Mol Sci 2022; 23:12833. [PMID: 36361624 PMCID: PMC9653914 DOI: 10.3390/ijms232112833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Over the last decade, several clinical reports have outlined cases of childhood-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss-of-function mutations in the Mn influx transporter gene SLC39A14. These clinical cases have provided a wealth of knowledge on Mn toxicity and homeostasis. However, our current understanding of the underlying neuropathophysiology is severely lacking. The recent availability of Slc39a14 knockout (KO) murine and zebrafish animal models provide a powerful platform to investigate the neurological effects of elevated blood and brain Mn concentrations in vivo. As such, the objective of this review was to organize and summarize the current clinical literature and studies utilizing Slc39a14-KO animal models and assess the validity of the animal models based on the clinical presentation of the disease in human mutation carriers.
Collapse
|
160
|
Bai L, Wu Y, Wang R, Liu R, Liu M, Li Q, Ba Y, Zhang H, Zhou G, Yu F, Huang H. Prepubertal exposure to Pb alters autophagy in the brain of aging mice: A time-series based model. Brain Res Bull 2022; 189:22-33. [PMID: 35987294 DOI: 10.1016/j.brainresbull.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/09/2022]
Abstract
As a ubiquitous toxic heavy metal, lead (Pb) exposure is known to be implicated in the onset and development of neurodegenerative diseases which may cause more serious health hazards with age and the accumulation of Pb in the body. Autophagy is the main degradation route for abnormal aggregated proteins and damaged cell organelles. Here, we aimed to study the effects of adolescent Pb exposure on autophagy at different life nodes. In this study, we developed a time-series model of Pb exposure in mice and randomly divided 4-week-old male C57BL/6 mice into six groups (4 C, 13 C, 16 C, 4Pb, 13Pb and 16Pb). Mice in Pb groups was consumed deionized water containing 0.2 % Pb(Ac)2 for 3 months and then reared to anticipated life nodes, while the control group consumed deionized water. Western blot and Real-time qPCR were used to assess the effects of developmental Pb exposure on individual components of the autophagy machinery and modulation of microtubule-associated protein 1 light chain 3 (LC3) at each age stage. Our results showed that Pb exposure during adolescence reduced the p-mTOR/mTOR ratios with enhanced expression of Beclin-1, Atg12 and Atg7in both the hippocampus (HPC) and prefrontal cortex (PFC) of senescent mice while upregulation of LC3II/LC3I ratios and p62 suggested that autophagy mediates degradation was interrupted. Overall, we confirm that Pb exposure during adolescence promotes autophagic processes in the aged mice brain and that autophagic degradation is hindered, ultimately leading to a failure of autophagic degradation.
Collapse
Affiliation(s)
- Lin Bai
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
161
|
Garg D, Yoganathan S, Shamim U, Mankad K, Gulati P, Bonifati V, Botre A, Kalane U, Saini AG, Sankhyan N, Srivastava K, Gowda VK, Juneja M, Kamate M, Padmanabha H, Panigrahi D, Pachapure S, Udani V, Kumar A, Pandey S, Thomas M, Danda S, Iqbalahmed SA, Subramanian A, Pemde H, Singh V, Faruq M, Sharma S. Clinical Profile and Treatment Outcomes of Hypermanganesemia with Dystonia 1 and 2 among 27 Indian Children. Mov Disord Clin Pract 2022; 9:886-899. [PMID: 36247901 PMCID: PMC9547147 DOI: 10.1002/mdc3.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Hypermanganesemia with dystonia 1 and 2 (HMNDYT1 and 2) are rare, inherited disorders of manganese transport. Objectives We aimed to describe clinical, laboratory features, and outcomes among children with HMNDYT. Methods We conducted a retrospective multicenter study involving tertiary centers across India. We enrolled children between 1 month to 18 years of age with genetically confirmed/clinically probable HMNDYT. Clinical, laboratory profile, genetic testing, treatment details, and outcomes scored by treating physicians on a Likert scale were recorded. Results We enrolled 27 children (19 girls). Fourteen harbored SLC30A10 mutations; nine had SLC39A14 mutations. The SLC39A14 cohort had lower median age at onset (1.3 [interquartile range (IQR), 0.7-5.5] years) versus SLC30A10 cohort (2.0 [IQR, 1.5-5.1] years). The most frequent neurological features were dystonia (100%; n = 27), gait abnormality (77.7%; n = 21), falls (66.7%; n = 18), and parkinsonism (59.3%; n = 16). Median serum manganese (Mn) levels among SLC39A14 (44.9 [IQR, 27.3-147.7] mcg/L) cohort were higher than SLC30A10 (29.4 [17.1-42.0] mcg/L); median hemoglobin was higher in SLC30A10 (16.3 [IQR, 15.2-17.5] g/dL) versus SLC39A14 cohort (12.5 [8.8-13.2] g/dL). Hepatic involvement and polycythaemia were observed exclusively in SLC30A10 variants. A total of 26/27 children underwent chelation with disodium calcium edetate. Nine demonstrated some improvement, three stabilized, two had marked improvement, and one had normalization. Children with SLC39A14 mutations had poorer response. Two children died and nine were lost to follow-up. Conclusions We found female predominance. Children with SLC39A14 mutations presented at younger age and responded less favorably to chelation compared to SLC30A10 mutations. There is emerging need to better define management strategies, especially in low resource settings.
Collapse
Affiliation(s)
- Divyani Garg
- Department of NeurologyLady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | | | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Parveen Gulati
- Department of RadiodiagnosisDoctor Gulati Imaging InstituteNew DelhiIndia
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | | | - Umesh Kalane
- Department of PediatricsDeenanath Mangeshkar HospitalPuneIndia
| | - Arushi Gahlot Saini
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Naveen Sankhyan
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Kavita Srivastava
- Department of PediatricsBharati Vidyapeeth Deemed University Medical CollegePuneIndia
| | - Vykuntaraju K. Gowda
- Division of Pediatric NeurologyIndira Gandhi Institute of Child HealthBangaloreIndia
| | - Monica Juneja
- Department of Pediatrics, Lok Nayak Hospital, Maulana Azad Medical CollegeUniversity of DelhiNew DelhiIndia
| | - Mahesh Kamate
- Child Development and Pediatric Neurology Division, Department of PediatricsKAHER's J N Medical CollegeBelgaumIndia
| | - Hansashree Padmanabha
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | | | - Shaila Pachapure
- Department of Pediatrics, KAHER's J N Medical CollegeBelgaumIndia
| | - Vrajesh Udani
- Department of Child NeurologyPD Hinduja Hospital and Medical Research CentreMumbaiIndia
| | - Atin Kumar
- Department of RadiodiagnosisAll India Institute of Medical SciencesNew DelhiIndia
| | - Sanjay Pandey
- Department of NeurologyGovind Ballabh Pant Institute of Postgraduate medical education and researchNew DelhiIndia
| | - Maya Thomas
- Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Sumita Danda
- Department of Clinical GeneticsChristian Medical CollegeVelloreIndia
| | | | | | - Harish Pemde
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Varinder Singh
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Suvasini Sharma
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| |
Collapse
|
162
|
Wang R, Yang M, Wu Y, Liu R, Liu M, Li Q, Su X, Xin Y, Huo W, Deng Q, Ba Y, Huang H. SIRT1 modifies DNA methylation linked to synaptic deficits induced by Pb in vitro and in vivo. Int J Biol Macromol 2022; 217:219-228. [PMID: 35839949 DOI: 10.1016/j.ijbiomac.2022.07.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.2 % Pb-exposure group. After treatment with resveratrol, the effects of Pb exposure on the expression of the above molecules and pathological features were significantly ameliorated in the hippocampus of rats. In vitro results showed that after the treatment with SRT1720, the expression of SIRT1 was activated and thus reversed the effect on DNMTs, MeCP2, apoptosis and synaptic plasticity-related genes and their DNA methylation levels induced by Pb exposure. In conclusion, we validated the important protective role of SIRT1 in neurotoxicity induced by Pb exposure through in vivo and in vitro experiments, providing potential therapeutic targets for the treatment and prevention of brain damage.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yongjuan Xin
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Wenqian Huo
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
163
|
Rodichkin AN, Edler MK, McGlothan JL, Guilarte TR. Pathophysiological studies of aging Slc39a14 knockout mice to assess the progression of manganese-induced dystonia-parkinsonism. Neurotoxicology 2022; 93:92-102. [PMID: 36152728 DOI: 10.1016/j.neuro.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Over the last decade, several clinical reports have outlined cases of early-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss of function mutations of the Mn transporter gene SLC39A14. Previously, we have performed characterization of the behavioral, neurochemical, and neuropathological changes in 60-day old (PN60) Slc39a14-knockout (KO) murine model of the human disease. Here, we extend our studies to aging Slc39a14-KO mice to assess the progression of the disease. Our results indicate that 365-day old (PN365) Slc39a14-KO mice present with markedly elevated blood and brain Mn levels, similar to those found in the PN60 mice and representative of the human cases of the disease. Furthermore, aging Slc39a14-KO mice consistently manifest a hypoactive and dystonic behavioral deficits, similar to the PN60 animals, suggesting that the behavioral changes are established early in life without further age-associated deterioration. Neurochemical, neuropathological, and functional assessment of the dopaminergic system of the basal ganglia revealed absence of neurodegenerative changes of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), with no changes in DA or metabolite concentrations in the striatum of Slc39a14-KO mice relative to wildtype (WT). Similar to the PN60 animals, aging Slc39a14-KO mice expressed a marked inhibition of potassium-stimulated DA release in the striatum. Together our findings indicate that the pathophysiological changes observed in the basal ganglia of aging Slc39a14-KO animals are similar to those at PN60 and aging does not have a significant effect on these parameters.
Collapse
Affiliation(s)
- Alexander N Rodichkin
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States.
| | - Melissa K Edler
- Department of Anthropology and Brain Health Research Institute, Kent State University, Kent, OH 44242, United States.
| | - Jennifer L McGlothan
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States.
| | - Tomás R Guilarte
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
164
|
Liu H, Zeng X, Wang Y, Losiewicz MD, Chen X, Du X, Wang Y, Zhang B, Guo X, Yuan S, Yang F, Zhang H. Chronic Exposure to Environmentally Relevant Concentrations of Microcystin-Leucine Arginine Causes Lung Barrier Damage through PP2A Activity Inhibition and Claudin1 Ubiquitination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10907-10918. [PMID: 36026589 DOI: 10.1021/acs.jafc.2c05207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microcystin-leucine arginine (MC-LR), ubiquitous in water and food, is a threat to public health. In the present study, after C57BL/6J mice were fed with environmental concentrations of MC-LR (0, 1, 30, 60, 90, and 120 μg/L) for 6, 9, and 12 months, it was found that MC-LR could enter into mouse lung tissues and cause microstructural damage, as shown by western blotting and HE staining. Electron microscopy examination showed that MC-LR could damage the lung barrier by disruption of the tight junctions, which was confirmed by the decreased expression of tight junction markers, including Occludin, Claudin1, and ZO-1. In addition, MC-LR also increased the ubiquitination of Claudin1, indicating that MC-LR could disrupt tight junctions by promoting the degradation of Claudin1. Furthermore, MC-LR increased the levels of TNF-α and IL-6 in mouse lung tissues, leading to pneumonia. Importantly, pretreatment with PP2A activator D-erythro-sphingosine (DES) was found to significantly alleviate MC-LR-induced decrease of Occludin and Claudin1 by inhibiting the P-AKT/Snail pathway in vitro. Together, this study revealed that chronic exposure to MC-LR causes lung barrier damage, which involves PP2A activity inhibition and enhancement of Claudin1 ubiquitination. This study broadens the awareness of the toxic effects of MC-LR on the respiratory system, which has deep implications for public health.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio78228, Texas, United States
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio78228, Texas, United States
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang421001, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha410008, Hunan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou450001, Henan, China
| |
Collapse
|
165
|
Sewberath Misser VH, Hindori-Mohangoo AD, Shankar A, Wickliffe JK, Lichtveld MY, Mans DRA. Prenatal Exposure to Mercury, Manganese, and Lead and Adverse Birth Outcomes in Suriname: A Population-Based Birth Cohort Study. TOXICS 2022; 10:464. [PMID: 36006143 PMCID: PMC9414742 DOI: 10.3390/toxics10080464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Globally, adverse birth outcomes are increasingly linked to prenatal exposure to environmental contaminants, such as mercury, manganese, and lead. This study aims to assess an association between prenatal exposure to mercury, manganese, and lead and the occurrence of adverse birth outcomes in 380 pregnant women in Suriname. The numbers of stillbirths, preterm births, low birth weights, and low Apgar scores were determined, as well as blood levels of mercury, manganese, lead, and relevant covariates. Descriptive statistics were calculated using frequency distributions. The associations between mercury, manganese, and lead blood levels, on the one hand, and adverse birth outcomes, on the other hand, were explored using contingency tables, tested with the χ2-test (Fisher's exact test), and expressed with a p value. Multivariate logistic regression models were computed to explore independent associations and expressed as (adjusted) odds ratios (aOR) with 95% confidence intervals (CI). The findings of this study indicate no statistically significant relationship between blood mercury, manganese, or lead levels and stillbirth, preterm birth, low birth weight, and low Apgar score. However, the covariate diabetes mellitus (aOR 5.58, 95% CI (1.38-22.53)) was independently associated with preterm birth and the covariate hypertension (aOR 2.72, 95% CI (1.081-6.86)) with low birth weight. Nevertheless, the observed high proportions of pregnant women with blood levels of mercury, manganese, and lead above the reference levels values of public health concern warrants environmental health research on risk factors for adverse birth outcomes to develop public health policy interventions to protect pregnant Surinamese women and their newborns from potential long-term effects.
Collapse
Affiliation(s)
- Vinoj H. Sewberath Misser
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Kernkampweg 5-7, Paramaribo, Suriname
| | - Ashna D. Hindori-Mohangoo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Foundation for Perinatal Interventions and Research in Suriname (Perisur), Paramaribo, Suriname
| | - Arti Shankar
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jeffrey K. Wickliffe
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Dennis R. A. Mans
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Kernkampweg 5-7, Paramaribo, Suriname
| |
Collapse
|
166
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
167
|
Fan M, Zhang X, Zhao Y, Zhi J, Xu W, Yang Y, Xu Y, Luo K, Wang D. Mn(II)-Mediated Self-Assembly of Tea Polysaccharide Nanoparticles and Their Functional Role in Mice with Type 2 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30607-30617. [PMID: 35771882 DOI: 10.1021/acsami.2c07488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tea polysaccharide (TPS) is a bioactive compound that has attracted increasing attention for its health effect on regulating the metabolism of glucose and lipid. Moreover, due to their good biocompatibility and biodegradability, TPS-based nanoparticles have emerged as effective nanocarriers for the delivery of bioactive molecules. In this study, we developed a TPS-based biocarrier system for the orally targeted administration of Mn(II) ions and investigated their antidiabetic effects in C57BL/6 mice with HFD/streptozotocin (STZ)-induced T2DM. Mn(II)-loaded TPS-based nanoparticles (MTNPs) were synthesized, in which negatively charged functional groups in protein and uronic acid in TPS conjugates would act as binding sites for Mn(II) ions, which is responsible for the cross-linking reaction of MTNP. The resulting MTNP had a spherical shape and a mean particle size of around 30 nm with a Mn(II) ion content of 2.24 ± 0.13 mg/g. In T2DM mice, we discovered that MTNP treatment significantly lowered blood glucose levels and improved glucose intolerance. Furthermore, the impact of MTNP on the recovery of FINS, the homeostatic index of insulin resistance (HOMA-IR), and the homeostatic index of β-cell (HOMA β-cell) levels was significantly larger (p < 0.05) than TPS alone, demonstrating that Mn(II) ions can enhance TPS's ability to repair HFD/STZ-induced β-cell damage. Mn(II) ions in MTNP not only acted as cofactors to increase the exocytosis of insulin secretory cells by upregulating the expression of Ca(II)/calmodulin-dependent protein kinase II (CaMK II) but also promoted TPS's lipid-lowering effect in T2DM mice by inhibiting glucogenesis and regulating the lipid metabolism. Our findings suggest that Mn(II) ions can be used not only as cross-linkers in the formation of nanoparticulated TPS but also as cofactors in improving the functional role of TPS in regulating the glucose and lipid metabolism, which will provide insights into the development of TPS-based drug delivery systems for the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Minghao Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yi Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jinglei Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Wanying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuqi Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
168
|
Environmental Influences on the Behavioural and Emotional Outcomes of Children: A Network Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148479. [PMID: 35886325 PMCID: PMC9320434 DOI: 10.3390/ijerph19148479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Background: Intellectual developmental disorders are a serious source of health morbidity with negative consequences for adults as well as children. However, there is limited evidence on the environmental, trace element, behavioural, and emotional outcomes in children. Here, we investigated whether there is any association between child behaviour and emotional outcomes and micronutrients using network analysis. Methods: A cross-sectional study was conducted in 9-year-old children within a Pacific Island Families study birth cohort. Elemental concentration was determined in children’s toenails after acid digestion and analysed using inductively coupled plasma mass spectrometry. We used network analysis to identify closely associated trace elements and tested the directions and strength of these trace elements. MANCOVA were used to identify the significant associations between individual elements and the behavioural/emotional function of the children using the children behaviour checklist (CBCL). At the final step, quantile regression analysis was used to assess and quantify the identified associations between CBCL function scores and manganese, adjusted by sex, ethnicity, and standardized BMI. Results: Three major nutrient networks were identified. In the Mn network, Mn was strongly positively associated with Al (0.63) and Fe (r = 0.65) and moderately associated with Pb (r = 0.45) and Sb (r = 0.42). Al was also strongly associated with Fe (r = 0.9). Children in the second or third clinical group, with an elevated externalized CBCL score, had a much higher mean and median level of Mn as compared to the normal range group. The aggression score was significantly associated with Mn concentration and sex. Higher Mn concentrations were associated with a higher aggression score. A 1 ug/g unit increase in Mn was associated with a 2.44-fold increase (95% confidence interval: 1.55–4.21) in aggression score, and boys had higher median aggression score than girls (difference: 1.7, 95% CI: 0.9–2.8). Attention and rule breaking scores were both significantly associated with Mn concentration. Higher Mn concentrations were associated with higher attention behaviour problem and rule breaking scores. A 1 ug/g unit increase in Mn was found to be associated with a 1.80-fold increase (95% confidence interval: 1.37–2.82) in attention score, and a 1.46-fold increase (95% confidence interval: 1.01–1.74) in the rule breaking score. Thought score was not significantly associated with Mn concentration (p = 0.13) but was significantly lower in boys (p = 0.004). Conclusions: Exceeding Mn levels is potentially toxic and has been identified to be associated with worse externalized children’s behavioural health and emotional well-being. Future studies are necessary to find the exposure paths so that advice shall be provided to family and care providers in public health and environmental protection.
Collapse
|
169
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
170
|
Carvalho CF, Santos-Lima C, Souza-Marques B, de Mendonça Filho EJ, Lorenzo RG, França RJAF, Araújo-Dos-Santos B, Veloso TJ, Rodrigues JLG, Araújo CFS, Dos Santos NR, Bandeira MJ, Anjos ALS, Mergler D, Abreu N, Menezes-Filho JA. Executive functions in school-aged children exposed to airborne manganese: A multilevel analysis. ENVIRONMENTAL RESEARCH 2022; 210:112940. [PMID: 35182597 DOI: 10.1016/j.envres.2022.112940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Neuropsychological alterations have been identified in populations heavily exposed to metals with neurotoxic potential, such as manganese (Mn). This study examined the associations between Mn environmental exposure in school-aged children and executive functions, using structural equation modeling. Children, aged between 7 and 12 years (N = 181), were recruited from four elementary schools located in a region that is under the influence of atmospheric emissions from a ferro-manganese alloy plant in the municipality of Simões Filho, Bahia, Brazil. The following cognitive functions were evaluated: Intelligence, Inhibitory Control, Cognitive Flexibility, Verbal and Design Fluency, Verbal and Visual Working Memory and Attention. We performed structural equation modeling to identify the following executive functions latent variables: working memory, inhibitory control and cognitive flexibility. We further analyzed the relations between executive functions and Mn measured in hair (MnH) and toenails (MnTn) with linear mixed models, after controlling for co-variables. A positive effect at the individual level on working memory, inhibition control and cognitive flexibility was observed with MnTn after controlling for co-variables, but no association was found with MnH levels. However, children attending school most environmentally exposed to Mn emissions, which had the highest rate of Mn dust deposition, had the poorest scores on working memory. These findings suggest both benefits and risk of Mn on children's cognitive development.
Collapse
Affiliation(s)
- Chrissie F Carvalho
- Laboratório de Neuropsicologia Cognitiva e Escolar, Department of Psychology, Federal University of Santa Catarina, Brazil; Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil; Graduate Program in Psychology, Federal University of Santa Catarina, Brazil.
| | - Cassio Santos-Lima
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil; Graduate Program in Psychology, Institute of Psychology, Federal University of Bahia, Brazil
| | - Breno Souza-Marques
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil; Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Brazil
| | | | - Rodrigo G Lorenzo
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil
| | - Ricardo J A F França
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil; Graduate Program in Psychobiology, Federal University of São Paulo, Brazil
| | - Bianca Araújo-Dos-Santos
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil
| | - Tainã J Veloso
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil
| | - Juliana L G Rodrigues
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil
| | - Cecília F S Araújo
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil
| | - Nathália R Dos Santos
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil
| | - Matheus J Bandeira
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil
| | - Ana Laura S Anjos
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil
| | - Donna Mergler
- Centre de Recherche Interdisciplinaire sur la Biologie, la Santé, la Société et l'Environnement (CINBIOSE), Université du Québec a Montreal, Canada
| | - Neander Abreu
- Clinical and Cognitive Neuropsychological Research Laboratory, Institute of Psychology, Federal University of Bahia, Brazil; Graduate Program in Psychology, Institute of Psychology, Federal University of Bahia, Brazil
| | - José A Menezes-Filho
- Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil
| |
Collapse
|
171
|
Cheng S, Che L, Yang Q, Sun R, Nie Y, Shi H, Ding Y, Wang L, Du Z, Liu Z. Folic acid ameliorates N-methyl-N′-nitro-N-nitrosoguanidine-induced esophageal inflammation via modulation of the NF-κB pathway. Toxicol Appl Pharmacol 2022; 447:116087. [DOI: 10.1016/j.taap.2022.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/24/2022]
|
172
|
Osca-Verdegal R, Beltrán-García J, Górriz JL, Martínez Jabaloyas JM, Pallardó FV, García-Giménez JL. Use of Circular RNAs in Diagnosis, Prognosis and Therapeutics of Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:879814. [PMID: 35813211 PMCID: PMC9257016 DOI: 10.3389/fcell.2022.879814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis Górriz
- Department of Nephrology, University Clinic Hospital, INCLIVA, University of Valencia, Valencia, Spain
| | | | - Federico V. Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
- *Correspondence: José Luis García-Giménez,
| |
Collapse
|
173
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
174
|
The Combined Inactivation of Intestinal and Hepatic ZIP14 Exacerbates Manganese Overload in Mice. Int J Mol Sci 2022; 23:ijms23126495. [PMID: 35742937 PMCID: PMC9223378 DOI: 10.3390/ijms23126495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
ZIP14 is a newly identified manganese transporter with high levels of expression in the small intestine and the liver. Loss-of-function mutations in ZIP14 can lead to systemic manganese overload, which primarily affects the central nervous system, causing neurological disorders. To elucidate the roles of intestinal ZIP14 and hepatic ZIP14 in maintaining systemic manganese homeostasis, we generated mice with single-tissue or two-tissue Zip14 knockout, including intestine-specific (Zip14-In-KO), liver-specific (Zip14-L-KO), and double (intestine and liver) Zip14-knockout (Zip14-DKO) mice. Zip14flox/flox mice were used as the control. Tissue manganese contents in these mice were compared using inductively coupled plasma mass spectrometry (ICP-MS) analysis. We discovered that although the deletion of intestinal ZIP14 only moderately increased systemic manganese loading, the deletion of both intestinal and hepatic ZIP14 greatly exacerbated the body's manganese burden. Our results provide new knowledge to further the understanding of manganese metabolism, and offer important insights into the mechanisms underlying systemic manganese overload caused by the loss of ZIP14.
Collapse
|
175
|
Asada M, Hayashi H, Takagi N. Possible Involvement of DNA Methylation and Protective Effect of Zebularine on Neuronal Cell Death after Glutamate Excitotoxity. Biol Pharm Bull 2022; 45:770-779. [PMID: 35650104 DOI: 10.1248/bpb.b22-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
176
|
Michalke B. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. Int J Mol Sci 2022; 23:ijms23116109. [PMID: 35682788 PMCID: PMC9181184 DOI: 10.3390/ijms23116109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Element analysis in clinical or biological samples is important due to the essential role in clinical diagnostics, drug development, and drug-effect monitoring. Particularly, the specific forms of element binding, actual redox state, or their spatial distribution in tissue or in single cells are of interest in medical research. This review summarized exciting combinations of sophisticated sample delivery systems hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS), enabling a broadening of information beyond the well-established outstanding detection capability. Deeper insights into pathological disease processes or intracellular distribution of active substances were provided, enabling a better understanding of biological processes and their dynamics. Examples were presented from spatial elemental mapping in tissue, cells, or spheroids, also considering elemental tagging. The use of natural or artificial tags for drug monitoring was shown. In the context of oxidative stress and ferroptosis iron, redox speciation gained importance. Quantification methods for Fe2+, Fe3+, and ferritin-bound iron were introduced. In Wilson’s disease, free and exchangeable copper play decisive roles; the respective paragraph provided information about hyphenated Cu speciation techniques, which provide their fast and reliable quantification. Finally, single cell ICP-MS provides highly valuable information on cell-to-cell variance, insights into uptake of metal-containing drugs, and their accumulation and release on the single-cell level.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
177
|
He J, Fu H, Li C, Deng Z, Chang H. Association between Vitamin B 12 and Risk of Gastric Cancer: A Systematic Review and Meta-Analysis of Epidemiological Studies. Nutr Cancer 2022; 74:3263-3273. [PMID: 35538710 DOI: 10.1080/01635581.2022.2074062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidemiological studies focusing on the association between vitamin B12 and gastric cancer risk reported inconsistent findings. We conducted a systematic review and meta-analysis to assess the relationship. PubMed (Medline), Web of science and EMBASE databases were systematically searched. A total of nine studies involving 3,494 cases of with gastric cancer and 611,638 participants were included. The result showed that there is no significant association between vitamin B12 intake and the risk of gastric cancer (OR = 0.88, 95% CI: 0.69-1.12, P = 0.303). Nevertheless, high intake of vitamin B12 might decrease the risk of gastric cancer in Helicobacter pylori (Hp)-negative people (OR = 0.83, 95% CI: 0.62-0.99, P = 0.044), but increase the cancer risk in Hp-positive populations (OR = 1.66, 95% CI: 1.27-2.16, P = 10-4). Additionally, further analysis indicated that excessive vitamin B12 might increase the risk of non-cardia gastric cancer (OR = 1.15, 95% CI: 1.01-1.33, P = 0.006). A negative association between vitamin B12 intake and gastric cancer risk was found in nonsmokers (OR = 0.83, 95% CI: 0.71-0.96, P = 0.012) but not in smokers (OR = 1.08, 95% CI: 0.71-1.47, P = 0.619). In conclusion, although we found no convincing evidence that vitamin B12 intake is associated with the risk of gastric cancer, it is important to maintain the relative stability of vitamin B12 for people with Hp infection.
Collapse
Affiliation(s)
- Jianbo He
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjuan Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Cancan Li
- College of Food Science, Southwest University, Chongqing, China
| | - Zhihui Deng
- College of Food Science, Southwest University, Chongqing, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
178
|
Aerobic Exercise Improves Type 2 Diabetes Mellitus-Related Cognitive Impairment by Inhibiting JAK2/STAT3 and Enhancing AMPK/SIRT1 Pathways in Mice. DISEASE MARKERS 2022; 2022:6010504. [PMID: 35578689 PMCID: PMC9107038 DOI: 10.1155/2022/6010504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent risk factor for cognitive impairment. Aerobic exercise can improve T2DM-related cognitive impairment; however, the possible mechanisms remain elusive. Thus, we assessed db/m mice and leptin receptor-deficient (db/db) mice that did or did not perform aerobic exercise (8 m/min, 60 min/day, and 5 days/week for 12 weeks). In this study, cognitive function was significantly impaired in the T2DM mice; aerobic exercise improved cognitive impairment through activating the AMPK/SIRT1 signalling pathway and inhibiting the JAK2/STAT3 signalling pathway in T2DM mice. However, after the application of RO8191 (JAK2 activator) or Compound C (AMPK inhibitor), the positive improvement of the exercise was evidently suppressed. Taken together, our data indicated that long-term aerobic exercise improves type 2 diabetes mellitus-related cognitive impairment by inhibiting JAK2/STAT3 and enhancing AMPK/SIRT1 pathways in mice.
Collapse
|
179
|
Jensen N, Terrell R, Ramoju S, Shilnikova N, Farhat N, Karyakina N, Cline BH, Momoli F, Mattison D, Krewski D. Magnetic resonance imaging T1 indices of the brain as biomarkers of inhaled manganese exposure. Crit Rev Toxicol 2022; 52:358-370. [PMID: 36412542 DOI: 10.1080/10408444.2022.2128719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Excessive exposure to manganese (Mn) is linked to its accumulation in the brain and adverse neurological effects. Paramagnetic properties of Mn allow the use of magnetic resonance imaging (MRI) techniques to identify it in biological tissues. A critical review was conducted to evaluate whether MRI techniques could be used as a diagnostic tool to detect brain Mn accumulation as a quantitative biomarker of inhaled exposure. A comprehensive search was conducted in MEDLINE, EMBASE, and PubMed to identify potentially relevant studies published prior to 9 May 2022. Two reviewers independently screened identified references using a two-stage process. Of the 6452 unique references identified, 36 articles were retained for data abstraction. Eligible studies used T1-weighted MRI techniques and reported direct or indirect T1 measures to characterize Mn accumulation in the brain. Findings demonstrate that, in subjects exposed to high levels of Mn, deposition in the brain is widespread, accumulating both within and outside the basal ganglia. Available evidence indicates that T1 MRI techniques can be used to distinguish Mn-exposed individuals from unexposed. Additionally, T1 MRI may be useful for semi-quantitative evaluation of inhaled Mn exposure, particularly when interpreted along with other exposure indices. T1 MRI measures appear to have a nonlinear relationship to Mn exposure duration, with R1 signal only increasing after critical thresholds. The strength of the association varied depending on the regions of interest imaged and the method of exposure measurement. Overall, available evidence suggests potential for future clinical and risk assessment applications of MRI as a diagnostic tool.
Collapse
Affiliation(s)
- N Jensen
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - R Terrell
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - S Ramoju
- Risk Sciences International, Ottawa, Canada
| | - N Shilnikova
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - N Farhat
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | - N Karyakina
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - B H Cline
- International Manganese Institute, Paris, France
| | - F Momoli
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - D Mattison
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - D Krewski
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| |
Collapse
|
180
|
New Insights into TETs in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094909. [PMID: 35563298 PMCID: PMC9103987 DOI: 10.3390/ijms23094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.
Collapse
|
181
|
Relationship of Blood and Urinary Manganese Levels with Cognitive Function in Elderly Individuals in the United States by Race/Ethnicity, NHANES 2011-2014. TOXICS 2022; 10:toxics10040191. [PMID: 35448452 PMCID: PMC9025725 DOI: 10.3390/toxics10040191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/27/2022]
Abstract
Manganese (Mn) is an essential metal with a biphasic relationship with health outcomes. High-level exposure to Mn is associated with manganism, but few data explore the effects of chronic, lower-level Mn on cognitive function in adults. We sought to determine the relationship between blood/urinary manganese levels and cognitive function in elderly individuals using 2011-2014 data from the National Health and Nutrition Examination Survey (NHANES). Weighted multivariate regression models were used to determine correlations, adjusting for several covariates. Blood Mn was inversely associated with the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) immediate learning of new verbal information (p-value = 0.04), but lost significance after adjusting for medical history (p-value = 0.09). In addition, blood Mn was inversely associated with Animal Fluency scores after adjusting for all covariates. Urinary Mn was inversely associated with CERAD immediate learning after adjusting for all covariates (p-value = 0.01) and inversely associated with the Digit Symbol Substitution Test scores (p-value = 0.0002), but lost significance after adjusting for medical history (p-value = 0.13). Upon stratifying by race/ethnicity, other Races and Non-Hispanic (NH)-Blacks had significantly higher blood Mn levels when compared to NH-Whites. Collectively, these findings suggest that increased blood and urinary Mn levels are associated with poorer cognitive function in an elderly US population.
Collapse
|
182
|
Ruiz-Azcona L, Markiv B, Expósito A, Pozueta A, García-Martínez M, Fernández-Olmo I, Santibáñez M. Poorer cognitive function and environmental airborne Mn exposure determined by biomonitoring and personal environmental monitors in a healthy adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152940. [PMID: 35007600 DOI: 10.1016/j.scitotenv.2022.152940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM In the Santander Bay (Cantabria, northern Spain), a ferromanganese alloy plant is located. Our objective was to characterize the Mn personal exposure of adult healthy volunteers living in this highly Mn exposed region, and to determine its association with a poorer cognitive function. METHODS Cross-sectional study analyzing 130 consecutive participants. Cognitive function was assessed by Stroop Color Word, Verbal Fluency tests, Trail Making Test (TMT), Digit Span (WAIS III) and Rey Osterrieth Complex Figure (ROCF) tests and crude scores were standardized according to NEURONORMA norms. Exposure to Mn was assessed in terms of source distance, by Personal Environmental Monitors (PEMs) allowing the separation of fine (PM2.5) and coarse (PM10-2.5) particles (obtaining the bioaccessible fraction by in-vitro bioaccessibility tests), and by biomarkers (blood, hair and fingernails). Age, sex, study level and number of years of residence were predefined as confounding variables and adjusted Mean Differences (MDs) were obtained. RESULTS Statistically significant lower scores (negative MDs) in all test were observed when living near the industrial emission source, after adjusting for the predefined variables. Regarding PEMs results, statistically significant lower scores in all Stroop parts were obtained in participants with higher levels of Total Mn in All fractions (PM10). For Verbal Fluency tests, negative MDs were obtained for both bioaccessible fractions. Digit Span Backward scores were lower for those with higher levels in the bioaccessible coarse fraction, and negative MDs were also observed for the ROCF Delayed part and the non-bioaccessible fine fraction. As regards to Mn in fingernails, adjusted MDs of -1.60; 95%CI (-2.57 to -0.64) and -1.45; 95%CI (-2.29 to -0.61) for Digit Span Forward and Backward parts were observed. CONCLUSIONS Our results support an association between poorer cognitive function and environmental airborne Mn exposure.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Ana Pozueta
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - María García-Martínez
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain.
| |
Collapse
|
183
|
Gonzalez-Alvarez MA, Hernandez-Bonilla D, Plascencia-Alvarez NI, Riojas-Rodriguez H, Rosselli D. Environmental and occupational exposure to metals (manganese, mercury, iron) and Parkinson's disease in low and middle-income countries: a narrative review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:1-11. [PMID: 33768768 DOI: 10.1515/reveh-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES We designed and conducted a narrative review consistent with the PRISMA guidelines (PROSPERO registration number: CRD42018099498) to evaluate the association between environmental metals (manganese, mercury, iron) and Parkinson's Disease (PD) in low and middle-income countries (LMIC). METHODS Data sources: A total of 19 databases were screened, and 2,048 references were gathered. Study selection: Randomized controlled trials, cluster trials, cohort studies, case-control studies, nested case-control studies, ecological studies, cross-sectional studies, case series, and case reports carried out in human adults of LMIC, in which the association between at least one of these three metals and the primary outcome were reported. Data extraction: We extracted qualitative and quantitative data. The primary outcome was PD cases, defined by clinical criteria. A qualitative analysis was conducted. RESULTS Fourteen observational studies fulfilled the selection criteria. Considerable variation was observed between these studies' methodologies for the measurement of metal exposure and outcome assessment. A fraction of studies suggested an association between the exposure and primary outcome; nevertheless, these findings should be weighted and appraised on the studies' design and its implementation limitations, flaws, and implications. CONCLUSIONS Further research is required to confirm a potential risk of metal exposure and its relationship to PD. To our awareness, this is the first attempt to evaluate the association between environmental and occupational exposure to metals and PD in LMIC settings using the social determinants of health as a framework.
Collapse
Affiliation(s)
| | - David Hernandez-Bonilla
- Environmental Health Department, National Institute of Public Health, Ciudad de Mexico, CDMX, Mexico
- Environmental Health Department, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | | | - Horacio Riojas-Rodriguez
- Environmental Health Department, National Institute of Public Health, Ciudad de Mexico, CDMX, Mexico
- Environmental Health Department, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Diego Rosselli
- Clinical Epidemiology and Biostatistics Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
184
|
Differences and Interactions in Placental Manganese and Iron Transfer across an In Vitro Model of Human Villous Trophoblasts. Int J Mol Sci 2022; 23:ijms23063296. [PMID: 35328723 PMCID: PMC8951728 DOI: 10.3390/ijms23063296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.
Collapse
|
185
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
186
|
Merced-Nieves FM, Chelonis J, Pantic I, Schnass L, Téllez-Rojo MM, Braun JM, Paule MG, Wright RJ, Wright RO, Curtin P. Prenatal trace elements mixture is associated with learning deficits on a behavioral acquisition task among young children. New Dir Child Adolesc Dev 2022; 2022:53-66. [PMID: 35429215 PMCID: PMC9492626 DOI: 10.1002/cad.20458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Children are exposed to many trace elements throughout their development. Given their ubiquity and potential to have effects on children's neurodevelopment, these exposures are a public health concern. This study sought to identify trace element mixture-associated deficits in learning behavior using operant testing in a prospective cohort. We included 322 participants aged 6-7 years recruited in Mexico City with complete data on prenatal trace elements measurements (third trimester blood lead and manganese levels, and & urine cadmium and arsenic levels), demographic covariates, and the Incremental Repeated Acquisition (IRA), an associative learning task. Weighted quantile sum (WQS) regression models were used to estimate the joint association of the mixture of all four trace elements and IRA performance. Performance was adversely impacted by the mixture, with different elements relating to different aspects of task performance suggesting that prenatal exposure to trace element mixtures yields a broad dysregulation of learning behavior.
Collapse
Affiliation(s)
- Francheska M Merced-Nieves
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Chelonis
- Division of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas, USA
| | - Ivan Pantic
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnass
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
187
|
Włodarczyk M, Nowicka G, Ciebiera M, Ali M, Yang Q, Al-Hendy A. Epigenetic Regulation in Uterine Fibroids-The Role of Ten-Eleven Translocation Enzymes and Their Potential Therapeutic Application. Int J Mol Sci 2022; 23:2720. [PMID: 35269864 PMCID: PMC8910916 DOI: 10.3390/ijms23052720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Uterine fibroids (UFs) are monoclonal, benign tumors that contain abnormal smooth muscle cells and the accumulation of extracellular matrix (ECM). Although benign, UFs are a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. Many risk factors are involved in the pathogenesis of UFs via genetic and epigenetic mechanisms. The latter involving DNA methylation and demethylation reactions provide specific DNA methylation patterns that regulate gene expression. Active DNA demethylation reactions mediated by ten-eleven translocation proteins (TETs) and elevated levels of 5-hydroxymethylcytosine have been suggested to be involved in UF formation. This review paper summarizes the main findings regarding the function of TET enzymes and their activity dysregulation that may trigger the development of UFs. Understanding the role that epigenetics plays in the pathogenesis of UFs may possibly lead to a new type of pharmacological fertility-sparing treatment method.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- The Center of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| |
Collapse
|
188
|
Xu G, Luo Y, Xu D, Ma Y, Chen Y, Han X. Male reproductive toxicity induced by Microcystin-leucine-arginine (MC-LR). Toxicon 2022; 210:78-88. [DOI: 10.1016/j.toxicon.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
|
189
|
Li N, Jiang J, Guo L. Effects of maternal folate and vitamin B12 on gestational diabetes mellitus: a dose-response meta-analysis of observational studies. Eur J Clin Nutr 2022; 76:1502-1512. [PMID: 35105943 DOI: 10.1038/s41430-022-01076-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
To comprehensively estimate the association of gestational diabetes mellitus (GDM) risk with maternal red blood cell (RBC) folate, plasma/serum folate, dose and duration of folic acid supplement (FAS) intake and vitamin B12 separately. PubMed, Web of science, CNKI, and Wanfang Databases were searched through March 26, 2021. We synthesized data using random-effects model meta-analysis in Stata 12.0. Sensitivity, subgroup and dose-response analyses were also performed. The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE). Twenty six datasets from thirteen eligible observational studies were included in the study. We found a significant increase of GDM risk with the highest versus lowest category of RBC folate (OR = 1.96, 95% CI: 1.48-2.61, I2 = 0.0%, moderate-certainty evidence) and plasma/serum folate (OR = 1.23, 1.02-1.48, I2 = 57.8%, low-certainty evidence). The dose-response analysis revealed that each 200 ng/ml increase in RBC folate was significantly associated with 8% higher GDM risk. No significant association between dose of FAS intake and GDM risk was found with very low cetainty. Meanwhile, longer duration (≥3 months) of FAS conferred 56% significant higher GDM risk (OR = 1.56, 1.02-2.39, very low certainty evidence). No significant association of GDM risk with highest plasma/serum B12 was observed compared to lowest B12 (OR = 0.77, 0.58-1.02, very low-certainty evidence). Moderate-certainty evidence suggests that higher RBC folate appears to significantly increase GDM risk. Higher plasma/serum folate may increase GDM risk but with low certainty. Further well-designed trials or prospective studies are needed.
Collapse
Affiliation(s)
- Nana Li
- Department of Nutrient, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No.195, Tongbai Road, Zhengzhou, China.
| | - Jicheng Jiang
- Department of Big Data Center for Cardiovascular Disease, Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Guo
- Hospital Infection Management Section, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
190
|
Wu R, Li S, Hudlikar R, Wang L, Shannar A, Peter R, Chou PJ, Kuo HCD, Liu Z, Kong AN. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radic Biol Med 2022; 179:328-336. [PMID: 33359432 PMCID: PMC8222414 DOI: 10.1016/j.freeradbiomed.2020.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023]
Abstract
Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
191
|
Resveratrol attenuates methylmercury-induced neurotoxicity by modulating synaptic homeostasis. Toxicol Appl Pharmacol 2022; 440:115952. [DOI: 10.1016/j.taap.2022.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
192
|
Abstract
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia, Poland.
| |
Collapse
|
193
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
194
|
Gurol KC, Aschner M, Smith DR, Mukhopadhyay S. Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. Am J Physiol Gastrointest Liver Physiol 2022; 322:G79-G92. [PMID: 34786983 PMCID: PMC8714252 DOI: 10.1152/ajpgi.00299.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The essential metal manganese (Mn) induces incurable neurotoxicity at elevated levels that manifests as parkinsonism in adults and fine motor and executive function deficits in children. Studies on Mn neurotoxicity have largely focused on the role and mechanisms of disease induced by elevated Mn exposure from occupational or environmental sources. In contrast, the critical role of excretion in regulating Mn homeostasis and neurotoxicity has received less attention although 1) studies on Mn excretion date back to the 1920s; 2) elegant radiotracer Mn excretion assays in the 1940s to 1960s established the routes of Mn excretion; and 3) studies on patients with liver cirrhosis in the 1990s to 2000s identified an association between decreased Mn excretion and the risk of developing Mn-induced parkinsonism in the absence of elevated Mn exposure. Notably, the last few years have seen renewed interest in Mn excretion largely driven by the discovery that hereditary Mn neurotoxicity due to mutations in SLC30A10 or SLC39A14 is caused, at least in part, by deficits in Mn excretion. Quite remarkably, some of the recent results on SLC30A10 and SLC39A14 provide explanations for observations made ∼40-50 years ago. The goal of the current review is to integrate the historic studies on Mn excretion with more contemporary recent work and provide a comprehensive state-of-the-art overview of Mn excretion and its role in regulating Mn homeostasis and neurotoxicity. A related goal is to discuss the significance of some of the foundational studies on Mn excretion so that these highly consequential earlier studies remain influential in the field.
Collapse
Affiliation(s)
- Kerem C. Gurol
- 1Division of Pharmacology & Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Michael Aschner
- 2Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Donald R. Smith
- 3Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Somshuvra Mukhopadhyay
- 1Division of Pharmacology & Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
195
|
Zhang M, Zhu L, Wang H, Hao Y, Zhang Q, Zhao C, Bao X. A novel homozygous SLC39A14 variant in an infant with hypermanganesemia and a review of the literature. Front Pediatr 2022; 10:949651. [PMID: 36733764 PMCID: PMC9886663 DOI: 10.3389/fped.2022.949651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Manganese (Mn) is an essential trace metal necessary for good health; however, excessive amounts in the body are neurotoxic. To date, three genes (SLC30A10, SLC39A8, and SLC39A14) have been discovered to cause inborn errors in Mn metabolism in humans. As very rare diseases, the clinical features require further clarification. METHODS A male Chinese patient who mainly presented with hypermanganesemia and progressive parkinsonism-dystonia was recruited for this study. We collected and analyzed clinical information, performed whole-exome sequencing (WES), and reviewed the relevant literature. RESULTS The motor-developmental milestones of the patient were delayed at the age of 4 months, followed by rapidly progressive dystonia. The patient displayed elevated Mn concentrations in blood and urine, and brain magnetic resonance imaging (MRI) showed symmetrical hyperintensity on T1-weighted images and hypointensity on T2-weighted images in multiple regions. A novel homozygous variant of the SLC39A14 gene (c.1058T > G, p.L353R) was identified. The patient was treated with disodium calcium edetate chelation (Na2CaEDTA). Three months later, mild improvement in clinical manifestation, blood Mn levels, and brain MRI was observed. To date, 15 patients from 10 families have been reported with homozygous mutations of SLC39A14, with a mean age of onset of 14.9 months. The common initial symptom is motor regression or developmental milestone delay, with a disease course for nearly all patients involving development of progressive generalized dystonia and loss of ambulation before treatment. Additionally, hypermanganesemia manifests as Mn values ranging from 4- to 25-fold higher than normal baseline levels, along with brain MRI results similar to those observed in the recruited patient. Nine SLC39A14 variants have been identified. Seven patients have been treated with Na2CaEDTA, and only one patient achieved obvious clinical improvement. CONCLUSION We identified a novel SLC39A14 mutation related to autosomal recessive hypermanganesemia with dystonia-2, which is a very rare disease. Patients present motor regression or delay of developmental milestones and develop progressive generalized dystonia. Chelation therapy with Na2CaEDTA appears to effectively chelate Mn and increase urinary Mn excretion in some cases; however, clinical response varies. The outcome of the disease was unsatisfactory. This study expands the genetic spectrum of this disease.
Collapse
Affiliation(s)
- Meijiao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Liping Zhu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Huiping Wang
- Department of Neurology, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ying Hao
- Department of Pediatrics, Yuhuangding Hospital, Yantai, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chunyan Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
196
|
Fujishiro H, Kambe T. Manganese transport in mammals by zinc transporter family proteins, ZNT and ZIP. J Pharmacol Sci 2021; 148:125-133. [PMID: 34924116 DOI: 10.1016/j.jphs.2021.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is an essential trace element required for various biological processes. However, excess Mn causes serious side effects in humans, including parkinsonism. Thus, elucidation of Mn homeostasis at the systemic, cellular, and molecular levels is important. Many metal transporters and channels can be involved in the transport and homeostasis of Mn, and an increasing body of evidence shows that several zinc (Zn) transporters belonging to the ZIP and ZNT families, specifically, ZNT10, ZIP8, and ZIP14, play pivotal roles in Mn metabolism. Mutations in the genes encoding these transporter proteins are associated with congenital disorders related to dysregulated Mn homeostasis in humans. Moreover, single nucleotide polymorphisms of ZIP8 are associated with multiple clinical phenotypes. In this review, we discuss the recent literature on the structural and biochemical features of ZNT10, ZIP8, and ZIP14, including transport mechanisms, regulation of expression, and pathophysiological functions. Because a disturbance in Mn homeostasis is closely associated with a variety of phenotypes and risk of human diseases, these transporters constitute a significant target for drug development. An understanding of the roles of these key transporters in Mn metabolism should provide new insights into pharmacological applications of their inhibitors and enhancers in human diseases.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
197
|
Han J, Fan Y, Wu P, Huang Z, Li X, Zhao L, Ji Y, Zhu M. Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Front Aging Neurosci 2021; 13:743754. [PMID: 34707492 PMCID: PMC8542689 DOI: 10.3389/fnagi.2021.743754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease dementia (PDD) is a common complication of Parkinson’s disease that seriously affects patients’ health and quality of life. At present, the process and pathological mechanisms of PDD remain controversial, which hinders the development of treatments. An increasing number of clinical studies have shown that alpha-synuclein (α-syn), tau, beta-amyloid (Aβ), and iron are closely associated with PDD severity. Thus, we inferred the vicious cycle that causes oxidative stress (OS), due to the synergistic effects of α-syn, tau, Aβ, and, iron, and which plays a pivotal role in the mechanism underlying PDD. First, iron-mediated reactive oxygen species (ROS) production can lead to neuronal protein accumulation (e.g., α-syn andAβ) and cytotoxicity. In addition, regulation of post-translational modification of α-syn by iron affects the aggregation or oligomer formation of α-syn. Iron promotes tau aggregation and neurofibrillary tangles (NFTs) formation. High levels of iron, α-syn, Aβ, tau, and NFTs can cause severe OS and neuroinflammation, which lead to cell death. Then, the increasing formation of α-syn, Aβ, and NFTs further increase iron levels, which promotes the spread of α-syn and Aβ in the central and peripheral nervous systems. Finally, iron-induced neurotoxicity promotes the activation of glycogen synthase kinase 3β (GSK3β) related pathways in the synaptic terminals, which in turn play an important role in the pathological synergistic effects of α-syn, tau and Aβ. Thus, as the central factor regulating this vicious cycle, GSK3β is a potential target for the prevention and treatment of PDD; this is worthy of future study.
Collapse
Affiliation(s)
- Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
198
|
Hin N, Newman M, Pederson S, Lardelli M. Iron Responsive Element-Mediated Responses to Iron Dyshomeostasis in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1597-1630. [PMID: 34719489 DOI: 10.3233/jad-210200] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron trafficking and accumulation is associated with Alzheimer's disease (AD) pathogenesis. However, the role of iron dyshomeostasis in early disease stages is uncertain. Currently, gene expression changes indicative of iron dyshomeostasis are not well characterized, making it difficult to explore these in existing datasets. OBJECTIVE To identify sets of genes predicted to contain iron responsive elements (IREs) and use these to explore possible iron dyshomeostasis-associated gene expression responses in AD. METHODS Comprehensive sets of genes containing predicted IRE or IRE-like motifs in their 3' or 5' untranslated regions (UTRs) were identified in human, mouse, and zebrafish reference transcriptomes. Further analyses focusing on these genes were applied to a range of cultured cell, human, mouse, and zebrafish gene expression datasets. RESULTS IRE gene sets are sufficiently sensitive to distinguish not only between iron overload and deficiency in cultured cells, but also between AD and other pathological brain conditions. Notably, changes in IRE transcript abundance are among the earliest observable changes in zebrafish familial AD (fAD)-like brains, preceding other AD-typical pathologies such as inflammatory changes. Unexpectedly, while some IREs in the 3' untranslated regions of transcripts show significantly increased stability under iron deficiency in line with current assumptions, many such transcripts instead display decreased stability, indicating that this is not a generalizable paradigm. CONCLUSION Our results reveal IRE gene expression changes as early markers of the pathogenic process in fAD and are consistent with iron dyshomeostasis as an important driver of this disease. Our work demonstrates how differences in the stability of IRE-containing transcripts can be used to explore and compare iron dyshomeostasis-associated gene expression responses across different species, tissues, and conditions.
Collapse
Affiliation(s)
- Nhi Hin
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.,Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Stephen Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
199
|
Fang Y, Wang X, Yang D, Lu Y, Wei G, Yu W, Liu X, Zheng Q, Ying J, Hua F. Relieving Cellular Energy Stress in Aging, Neurodegenerative, and Metabolic Diseases, SIRT1 as a Therapeutic and Promising Node. Front Aging Neurosci 2021; 13:738686. [PMID: 34616289 PMCID: PMC8489683 DOI: 10.3389/fnagi.2021.738686] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The intracellular energy state will alter under the influence of physiological or pathological stimuli. In response to this change, cells usually mobilize various molecules and their mechanisms to promote the stability of the intracellular energy status. Mitochondria are the main source of ATP. Previous studies have found that the function of mitochondria is impaired in aging, neurodegenerative diseases, and metabolic diseases, and the damaged mitochondria bring lower ATP production, which further worsens the progression of the disease. Silent information regulator-1 (SIRT1) is a multipotent molecule that participates in the regulation of important biological processes in cells, including cellular metabolism, cell senescence, and inflammation. In this review, we mainly discuss that promoting the expression and activity of SIRT1 contributes to alleviating the energy stress produced by physiological and pathological conditions. The review also discusses the mechanism of precise regulation of SIRT1 expression and activity in various dimensions. Finally, according to the characteristics of this mechanism in promoting the recovery of mitochondrial function, the relationship between current pharmacological preparations and aging, neurodegenerative diseases, metabolic diseases, and other diseases was analyzed.
Collapse
Affiliation(s)
- Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yimei Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
200
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|