201
|
García-Jiménez I, Cervantes-Villagrana RD, Del-Río-Robles JE, Castillo-Kauil A, Beltrán-Navarro YM, García-Román J, Reyes-Cruz G, Vázquez-Prado J. Gβγ mediates activation of Rho guanine nucleotide exchange factor ARHGEF17 that promotes metastatic lung cancer progression. J Biol Chem 2021; 298:101440. [PMID: 34808208 PMCID: PMC8703085 DOI: 10.1016/j.jbc.2021.101440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gβγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression–based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein–coupled LPA receptors via the Gβγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gβγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer.
Collapse
|
202
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Copelli V, Bernardelli G, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int J Mol Sci 2021; 22:12330. [PMID: 34830209 PMCID: PMC8618001 DOI: 10.3390/ijms222212330] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) includes immune (T, B, NK, dendritic), stromal, mesenchymal, endothelial, adipocytic cells, extracellular matrix, and cytokines/chemokines/soluble factors regulating various intracellular signaling pathways (ISP) in tumor cells. TME influences the survival/progression of prostate cancer (PC), enabling tumor cell immune-evasion also through the activation of the PD-1/PD-L1 axis. We have performed a systematic literature review according to the PRISMA guidelines, to investigate how the PD-1/PD-L1 pathway is influenced by TME and ISPs. Tumor immune-escape mechanisms include suppression/exhaustion of tumor infiltrating cytotoxic T lymphocytes, inhibition of tumor suppressive NK cells, increase in immune-suppressive immune cells (regulatory T, M2 macrophagic, myeloid-derived suppressor, dendritic, stromal, and adipocytic cells). IFN-γ (the most investigated factor), TGF-β, TNF-α, IL-6, IL-17, IL-15, IL-27, complement factor C5a, and other soluble molecules secreted by TME components (and sometimes increased in patients' serum), as well as and hypoxia, influenced the regulation of PD-L1. Experimental studies using human and mouse PC cell lines (derived from either androgen-sensitive or androgen-resistant tumors) revealed that the intracellular ERK/MEK, Akt-mTOR, NF-kB, WNT and JAK/STAT pathways were involved in PD-L1 upregulation in PC. Blocking the PD-1/PD-L1 signaling by using immunotherapy drugs can prevent tumor immune-escape, increasing the anti-tumor activity of immune cells.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Centre, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Valerio Copelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giuditta Bernardelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
203
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
204
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
205
|
Manigat LC, Granade ME, Taori S, Miller CA, Vass LR, Zhong XP, Harris TE, Purow BW. Loss of Diacylglycerol Kinase α Enhances Macrophage Responsiveness. Front Immunol 2021; 12:722469. [PMID: 34804012 PMCID: PMC8603347 DOI: 10.3389/fimmu.2021.722469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.
Collapse
Affiliation(s)
- Laryssa C. Manigat
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mitchell E. Granade
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suchet Taori
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| | - Charlotte Anne Miller
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| | - Luke R. Vass
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Thurl E. Harris
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Benjamin W. Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
206
|
Shoemaker R, Kim J. Urobiome: An outlook on the metagenome of urological diseases. Investig Clin Urol 2021; 62:611-622. [PMID: 34729961 PMCID: PMC8566783 DOI: 10.4111/icu.20210312] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
The urinary tract likely plays a role in the development of various urinary diseases due to the recently recognized notion that urine is not sterile. In this mini review, we summarize the current literature regarding the urinary microbiome and mycobiome and its relationship to various urinary diseases. It has been recently discovered that the healthy urinary tract contains a host of microorganisms, creating a urinary microbiome. The relative abundance and type of bacteria varies, but generally, deviations in the standard microbiome are observed in individuals with urologic diseases, such as bladder cancer, benign prostatic hyperplasia, urgency urinary incontinence, overactive bladder syndrome, interstitial cystitis, bladder pain syndrome, and urinary tract infections. However, whether this change is causative, or correlative has yet to be determined. In summary, the urinary tract hosts a complex microbiome. Changes in this microbiome may be indicative of urologic diseases and can be tracked to predict, prevent, and treat them in individuals. However, current analytical and sampling collection methods may present limitations to the development in the understanding of the urinary microbiome and its relationship with various urinary diseases. Further research on the differences between healthy and diseased microbiomes, the long-term effects of antibiotic treatments on the urobiome, and the effect of the urinary mycobiome on general health will be important in developing a comprehensive understanding of the urinary microbiome and its relationship to the human body.
Collapse
Affiliation(s)
- Rachel Shoemaker
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA.,Department of Urology, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
207
|
FARP1, ARHGEF39, and TIAM2 are essential receptor tyrosine kinase effectors for Rac1-dependent cell motility in human lung adenocarcinoma. Cell Rep 2021; 37:109905. [PMID: 34731623 PMCID: PMC8627373 DOI: 10.1016/j.celrep.2021.109905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.
Collapse
|
208
|
CCCH-zinc finger antiviral protein relieves immunosuppression of T cell induced by avian leukosis virus subgroup J via NLP-PKC-δ-NFAT pathway. J Virol 2021; 96:e0134421. [PMID: 34705559 DOI: 10.1128/jvi.01344-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCCH-zinc finger antiviral protein (ZAP) can recognize and induce the degradation of mRNAs and proteins of certain viruses, as well as exert its antiviral activity by activating T cell. However, the mechanism of ZAP mediating T cell activation during virus infection remains unclear. Here, we found a potential function of ZAP that relieves immunosuppression of T cell induced by avian leukosis virus subgroup J (ALV-J) via a novel signaling pathway that involves norbin like protein (NLP), protein kinase C delta (PKC-δ) and nuclear factor of activated T cell (NFAT). Specifically, ZAP expression activated T cells by promoting the dephosphorylation and nuclear translocation of NFAT. Furthermore, knockdown of ZAP weakened the reactivity and antiviral response of T cells. Mechanistically, ZAP reduced PKC-δ activity by up-regulating and reactivating NLP through competitively binding with viral protein. Knockdown of NLP decreased the dephosphorylation of PKC-δ by ZAP expression. Moreover, we showed that knockdown of PKC-δ reduced the phosphorylation levels of NFAT and enhanced its nuclear translocation. Taken together, these data revealed that ZAP relieves immunosuppression caused by ALV-J and mediates T cell activation through NLP-PKC-δ-NFAT pathway. Importance The evolution of host defense system is driven synchronously in the process of resisting virus invasion. Accordingly, host innate defense factors exert effectively work in suppressing virus replication. However, it remains unclear that whether the host innate defense factors are involved in antiviral immune response against the invasion of immunosuppressive viruses. Here, we found that CCCH-type zinc finger antiviral protein (ZAP) effectively worked in resistance on immunosuppression caused by avian leukosis virus subgroup J (ALV-J), a classic immunosuppressive virus. Evidence showed that ZAP released the phosphatase activity of NLP inhibited by ALV-J and further activated NFAT by inactivating PKC-δ. This novel molecular mechanism that ZAP regulates antiviral immune response by mediating NLP-PKC-δ-NFAT pathway has greatly enriched the understanding of the functions of host innate defense factors and provided important scientific ideas and theoretical basis for the research of immunosuppressive virus and antiviral immunity.
Collapse
|
209
|
Abstract
Compared to the major histocompatibility complex (MHC) of typical mammals, the chicken BF/BL region is small and simple, with most of the genes playing central roles in the adaptive immune response. However, some genes of the chicken MHC are almost certainly involved in innate immunity, such as the complement component C4 and the lectin-like receptor/ligand gene pair BNK and Blec. The poorly expressed classical class I molecule BF1 is known to be recognised by natural killer (NK) cells and, analogous to mammalian immune responses, the classical class I molecules BF1 and BF2, the CD1 homologs and the butyrophilin homologs called BG may be recognised by adaptive immune lymphocytes with semi-invariant receptors in a so-called adaptate manner. Moreover, the TRIM and BG regions next to the chicken MHC, along with the genetically unlinked Y and olfactory/scavenger receptor regions on the same chromosome, have multigene families almost certainly involved in innate and adaptate responses. On this chicken microchromosome, the simplicity of the adaptive immune gene systems contrasts with the complexity of the gene systems potentially involved in innate immunity.
Collapse
|
210
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
211
|
Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13111748. [PMID: 34834162 PMCID: PMC8621927 DOI: 10.3390/pharmaceutics13111748] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinase, is classed into three subfamilies based on their structural and activation characteristics: conventional or classic PKC isozymes (cPKCs; α, βI, βII, and γ), novel or non-classic PKC isozymes (nPKCs; δ, ε, η, and θ), and atypical PKC isozymes (aPKCs; ζ, ι, and λ). PKC inhibitors and activators are used to understand PKC-mediated intracellular signaling pathways and for the diagnosis and treatment of various PKC-associated diseases, such as cancers, neurological diseases, cardiovascular diseases, and infections. Many clinical trials of PKC inhibitors in cancers showed no significant clinical benefits, meaning that there is a limitation to design a cancer therapeutic strategy targeting PKC alone. This review will focus on the activators and inhibitors of PKC and their applications in clinical trials.
Collapse
|
212
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
213
|
Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, Lee YC, Yang SF. A novel melatonin-regulated lncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res 2021; 71:e12760. [PMID: 34339541 DOI: 10.1111/jpi.12760] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/20/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
The inhibitory effect of melatonin on cancer cell dissemination is well established, yet the functional involvement of lncRNAs in melatonin signaling remains poorly understood. In this study, we identified a melatonin-attenuated lncRNA acting as a potential melatonin-regulated oral cancer stimulator (MROS-1). Downregulation of MROS-1 by melatonin suppressed TPA-induced oral cancer migration through replenishing the protein expression of prune homolog 2 (PRUNE2), which functioned as a tumor suppressor in oral cancer. Melatonin-mediated MROS-1/PRUNE2 expression and cell motility in oral cancer were regulated largely through the activation of JAK-STAT pathway. In addition, MROS-1, preferentially localized in the nuclei, promoted oral cancer migration in an epigenetic mechanism in which it modulates PRUNE2 expression by interacting with a member of the DNA methylation machinery, DNA methyltransferase 3A (DNMT3A). Higher methylation levels of PRUNE2 promoter were associated with nodal metastases and inversely correlated with PRUNE2 expression in head and neck cancer. Collectively, these findings suggest that MROS-1, serving as a functional mediator of melatonin signaling, could predispose patients with oral cancer to metastasize and may be implicated as a potential target for antimetastatic therapies.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
214
|
The complement cascade in Alzheimer's disease: a systematic review and meta-analysis. Mol Psychiatry 2021; 26:5532-5541. [PMID: 31628417 DOI: 10.1038/s41380-019-0536-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022]
Abstract
Genetic evidence implicates a causal role for the complement pathway in Alzheimer's disease (AD). Since studies have shown inconsistent differences in cerebrospinal fluid (CSF) and peripheral blood complement protein concentrations between AD patients and healthy elderly, this study sought to summarize the clinical data. Original peer-reviewed articles measuring CSF and/or blood concentrations of complement or complement regulator protein concentrations in AD and healthy elderly control (HC) groups were included. Of 2966 records identified, means and standard deviations from 86 studies were summarized as standardized mean differences (SMD) by random effects meta-analyses. In CSF, concentrations of clusterin (NAD/NHC = 625/577, SMD = 0.53, Z8 = 8.81, p < 0.005; I2 < 0.005%) and complement component 3 (C3; NAD/NHC = 299/522, SMD = 0.45, Z3 = 3.21, p < 0.005; I2 = 68.40%) were significantly higher in AD, but differences in C1q, C-reactive protein (CRP), serum amyloid protein (SAP), and factor H concentrations were not significant. In peripheral blood, concentrations of CRP were elevated in AD (NAD/NHC = 3404/3332, SMD = 0.44, Z43 = 3.43, p < 0.005; I2 = 93.81%), but differences between groups in C3, C4, C1-inhibitor, SAP, factor H and clusterin concentrations were not significant, and inconsistent between studies. Of 64 complement pathway proteins or regulators in the quantitative synthesis, trends in C1q, factor B, C4a, and late-stage complement pathway components (e.g. C9) in blood, C4 in CSF, and the membrane attack complex in blood and CSF, might be investigated further. The results collectively support elevated complement pathway activity in AD, which was best characterized by increased CSF clusterin concentrations and less consistently by CSF C3 concentrations. Complement activity related to an AD diagnosis was not reflected consistently by the peripheral blood proteins investigated.
Collapse
|
215
|
Li Z, Zheng J, Feng Y, Li Y, Liang Y, Liu Y, Wang X, Yang Q. Integrated analysis identifies a novel lncRNA prognostic signature associated with aerobic glycolysis and hub pathways in breast cancer. Cancer Med 2021; 10:7877-7892. [PMID: 34581026 PMCID: PMC8559482 DOI: 10.1002/cam4.4291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play a crucial role in cancer aerobic glycolysis. However, glycolysis‐related lncRNAs are still underexplored in breast cancer. In this study, we identified the five most glycolysis‐related lncRNAs in breast cancer to construct a prognostic signature, which could distinguish between patients with unfavorable and favorable prognoses. To investigate the role of signature lncRNAs in breast cancer, we profiled their expression levels in breast cancer progression cell line model. Real‐time PCR revealed that the five lncRNAs could contribute to breast cancer initiation or progression. Furthermore, we observed that the levels of four lncRNAs expression had a significant trend of gradient upregulation with the addition of glycolysis inhibitor in breast cancer cells. Afterward, random forest and logistic regression were conducted to assess the model's performance in stratifying glycolysis status. Finally, a nomogram including the lncRNA signature and clinical features was developed, and its efficacy in predicting the survival time and clinical utility was evaluated using a calibration curve, concordance index, and decision curve analysis. In this study, gene set enrichment analysis showed that the mTOR pathway, a central pathway in tumor initiation and progression, was significantly enriched in the high‐risk group. In addition, gene set variation analysis was performed to validate our findings in two independent datasets. Subsequent weighted gene co‐expression network analysis, followed by enrichment analysis, indicated that downstream cell growth‐related signaling was strikingly activated in the high‐risk group, and may directly promote tumor progression and escalate mortality risk in patients with high‐risk scores. Overall, our findings may provide novel insight into lncRNA‐related metabolic regulation, and help to develop promising prognostic indicators and therapeutic targets for breast cancer patients.
Collapse
Affiliation(s)
- Zheng Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Zheng
- Department of Ultrasound, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Yang Feng
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China
| |
Collapse
|
216
|
Kalinowski A, Liliental J, Anker LA, Linkovski O, Culbertson C, Hall JN, Pattni R, Sabatti C, Noordsy D, Hallmayer JF, Mellins ED, Ballon JS, O'Hara R, Levinson DF, Urban AE. Increased activation product of complement 4 protein in plasma of individuals with schizophrenia. Transl Psychiatry 2021; 11:486. [PMID: 34552056 PMCID: PMC8458380 DOI: 10.1038/s41398-021-01583-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Structural variation in the complement 4 gene (C4) confers genetic risk for schizophrenia. The variation includes numbers of the increased C4A copy number, which predicts increased C4A mRNA expression. C4-anaphylatoxin (C4-ana) is a C4 protein fragment released upon C4 protein activation that has the potential to change the blood-brain barrier (BBB). We hypothesized that elevated plasma levels of C4-ana occur in individuals with schizophrenia (iSCZ). Blood was collected from 15 iSCZ with illness duration < 5 years and from 14 healthy controls (HC). Plasma C4-ana was measured by radioimmunoassay. Other complement activation products C3-ana, C5-ana, and terminal complement complex (TCC) were also measured. Digital-droplet PCR was used to determine C4 gene structural variation state. Recombinant C4-ana was added to primary brain endothelial cells (BEC) and permeability was measured in vitro. C4-ana concentration was elevated in plasma from iSCZ compared to HC (mean = 654 ± 16 ng/mL, 557 ± 94 respectively, p = 0.01). The patients also carried more copies of the C4AL gene and demonstrated a positive correlation between plasma C4-ana concentrations and C4A gene copy number. Furthermore, C4-ana increased the permeability of a monolayer of BEC in vitro. Our findings are consistent with a specific role for C4A protein in schizophrenia and raise the possibility that its activation product, C4-ana, increases BBB permeability. Exploratory analyses suggest the novel hypothesis that the relationship between C4-ana levels and C4A gene copy number could also be altered in iSCZ, suggesting an interaction with unknown genetic and/or environmental risk factors.
Collapse
Affiliation(s)
- Agnieszka Kalinowski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Joanna Liliental
- Translational Applications Service Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Translational Research and Applied Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren A Anker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Omer Linkovski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Collin Culbertson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jacob N Hall
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- The Neurology Center of Southern California, Temecula, CA, 92592, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chiara Sabatti
- Department of Biomedical Data Science and Statistics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Douglas Noordsy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jacob S Ballon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Douglas F Levinson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
217
|
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells. Cells 2021; 10:cells10092474. [PMID: 34572121 PMCID: PMC8469755 DOI: 10.3390/cells10092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.
Collapse
|
218
|
Floerchinger A, Murphy KJ, Latham SL, Warren SC, McCulloch AT, Lee YK, Stoehr J, Mélénec P, Guaman CS, Metcalf XL, Lee V, Zaratzian A, Da Silva A, Tayao M, Rolo S, Phimmachanh M, Sultani G, McDonald L, Mason SM, Ferrari N, Ooms LM, Johnsson AKE, Spence HJ, Olson MF, Machesky LM, Sansom OJ, Morton JP, Mitchell CA, Samuel MS, Croucher DR, Welch HCE, Blyth K, Caldon CE, Herrmann D, Anderson KI, Timpson P, Nobis M. Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Rep 2021; 36:109689. [PMID: 34525350 DOI: 10.1016/j.celrep.2021.109689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.
Collapse
Affiliation(s)
- Alessia Floerchinger
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sharissa L Latham
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew T McCulloch
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Cris S Guaman
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Xanthe L Metcalf
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Victoria Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sonia Rolo
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Monica Phimmachanh
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ghazal Sultani
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Susan M Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | | | - Heather J Spence
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto ON, M5B 2K3, Canada
| | - Laura M Machesky
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia; and the School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Cambridge CB223AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - C Elizabeth Caldon
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kurt I Anderson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Francis Crick Institute, London NW11AT, UK
| | - Paul Timpson
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| | - Max Nobis
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| |
Collapse
|
219
|
TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2100784118. [PMID: 34433666 DOI: 10.1073/pnas.2100784118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing attention has been paid to roles of tripartite motif-containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor-positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB-activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27-linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.
Collapse
|
220
|
El-Ashmawy NE, El-Zamarany EA, Khedr NF, Selim HM, Khedr EG. Inhibition of PKC/MEK pathway suppresses β1-integrin and mitigates breast cancer cells proliferation. Toxicol Rep 2021; 8:1530-1537. [PMID: 34408972 PMCID: PMC8361284 DOI: 10.1016/j.toxrep.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PGE2 enhanced β1- integrin expression via EP1 receptor, PKC, MEK and NfҡB. FOXC2, E2F1 and survivin play a role in PGE2 mediated effect in MCF7 cells. PGE2 enhances breast cancer cell cycle through E2F1, FOXC2, survivin and β integrin. Biochemical mediators of PKC/MEK pathway could be considered as targets for breast cancer treatment.
Prostaglandin E2 (PGE2) and β1-integrin have been correlated with breast cancer, where both could enhance progression and metastasis. Protein kinase C (PKC) and MEK have played a vital role in breast cancer development. Our study was conducted to elucidate the effect of inhibition of E-prostanoid receptor 1 (EP1)/ PKC/ MEK/ β1-integrin pathway in mitigating breast cancer progression and to evaluate the role of the intermediate signals FOXC2, E2F1, NF-ҡB and survivin. MCF7 cells were treated with 17 -PT-PGE2, an EP1 agonist, for 24 h, and β1-integrin was measured. To MCF7 cells treated with 17-PT-PGE2, inhibitors of either EP1, MEK, PKC or NF-ҡB were added followed by measurement of β1-integrin gene expression and cell proliferation in each case. Addition of 17- PT-PGE2 to MCF7 cells showed enhancement of both cell proliferation, and cell cycle transition from G1 to S phase. In addition, activation of EP1 receptor increased β1-integrin expression. On the contrary, inhibition of EP1 receptor showed a decrease in the cell proliferation, β1-integrin expression and cells transition to S phase, but increased cell count in apoptotic phase. Selective inhibition of each of MEK, PKC, and NF-ҡB suppressed 17 -PT-PGE2-mediated β1-integrin expression as well as cell proliferation. Furthermore, FOXC2, phosphorylated NF-ҡB, E2F1, and survivin levels were upregulated with 17- PT-PGE2 and suppressed by MEK, PKC and NF-ҡB inhibitors. Targeting the biochemical mediators of PKC/MEK pathway may be of value in developing new chemical entities for cancer treatment.
Collapse
Affiliation(s)
| | - Enas A El-Zamarany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Hend M Selim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
221
|
Wei S, Zhao T, Wang J, Zhai X. Approach in Improving Potency and Selectivity of Kinase Inhibitors: Allosteric Kinase Inhibitors. Mini Rev Med Chem 2021; 21:991-1003. [PMID: 33355051 DOI: 10.2174/1389557521666201222144355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have a distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for the treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structure-activity relationships, ligand-protein interactions, and in vitro and in vivo activity. Additionally, challenges, as well as opportunities, are also presented.
Collapse
Affiliation(s)
- Shangfei Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianming Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
222
|
Chew LY, Zhang H, He J, Yu F. The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling. Cell Rep 2021; 36:109466. [PMID: 34348164 DOI: 10.1016/j.celrep.2021.109466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
The evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established. Here we demonstrate a cell-autonomous role of the Nrf2-Keap1 pathway, composed of CncC/Nrf2, Keap1, and MafS, in governing neuronal remodeling during Drosophila metamorphosis. Nrf2-Keap1 signaling is activated downstream of the steroid hormone ecdysone. Mechanistically, the Nrf2-Keap1 pathway is activated via cytoplasmic-to-nuclear translocation of CncC in an importin- and ecdysone-signaling-dependent manner. Moreover, Nrf2-Keap1 signaling regulates dendrite pruning independent of its canonical antioxidant response pathway, acting instead through proteasomal degradation. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling and demonstrates an antioxidant-independent but proteasome-dependent role of the Nrf2-Keap1 pathway in neuronal remodeling.
Collapse
Affiliation(s)
- Liang Yuh Chew
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jianzheng He
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
223
|
Faam B, Ghaffari MA, Khorsandi L, Ghadiri AA, Totonchi M, Amouzegar A, Fanaei SA, Azizi F, Shahbazian HB, Hashemi Tabar M. RAP1GAP Functions as a Tumor Suppressor Gene and Is Regulated by DNA Methylation in Differentiated Thyroid Cancer. Cytogenet Genome Res 2021; 161:227-235. [PMID: 34311462 DOI: 10.1159/000516122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Inactivation of tumor suppressor genes, such as RAP1GAP, by hypermethylation of their regulatory region can give rise to thyroid tumors. The aim of this study was to investigate the expression of the RAP1GAP gene and the DNA methylation patterns of its CpG74a, CpG74b, and CpG24 in an Iranian population with differentiated thyroid cancer (DTC). In this study, 160 individuals who underwent thyroidectomy in the Tehran Erfan Hospital between 2018 and 2020 were selected. DNA methylation patterns of selected CpG islands (CpG74a, CpG74b, and CpG24) were determined using methylation-specific PCR. The mRNA expression and protein level of -RAP1GAP were also evaluated. SW1736 and B-CPAP cells were treated with 5-aza-2'-deoxycytidine (5-Aza) to demethylate these regions. The hypermethylation rates of CpG74a and CpG24 in DTC samples were significantly higher than in the control. The mRNA expression and protein level of -RAP1GAP were significantly decreased in the DTC group. In the DTC group, hypermethylation in CpG74a was correlated with decreasing RAP1GAP expression (R2: 0.34; p = 0.043). CpG74a with a specificity of 86.4% has significant prediction power to distinguish between DTC and normal thyroid tissues. Additionally, hypermethylation of CpG74a was significantly associated with higher tumor stages (stage III-IV: 77%; stage I-II: 23%; p = 0.012). Increasing expression of RAP1GAP after demethylation with 15 µM of 5-Aza was observed in both cell lines. These results indicate that DNA hypermethylation in CpG74a can be considered as an epigenetic biomarker in DTC.
Collapse
Affiliation(s)
- Bita Faam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mohammad A Ghaffari
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Totonchi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajeih B Shahbazian
- Chronic Diseases Care Research Center, School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemi Tabar
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
224
|
Lei J, Yan S, Guo X, Wang F, Zhang G, Kan Q, Guo R. Identification of Distinct Molecular Subtypes of Endometrioid Adenocarcinoma. Front Genet 2021; 12:568779. [PMID: 34367229 PMCID: PMC8334731 DOI: 10.3389/fgene.2021.568779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological cancers worldwide. Endometrioid adenocarcinoma (EAC) is the major form of EC, accounting for 75–80% of cases. Currently, there is no molecular classification system for EAC, so there are no corresponding targeted treatments. In this study, we identified two distinct molecular subtypes of EAC with different gene expression patterns and clinicopathologic characteristics. Subtype I EAC cases, accounting for the majority of cases (56%), were associated with an earlier stage, a more well-differentiated grade, a lower tumor invasion rate, and a more favorable prognosis, and the median tumor necrosis percent (15%) was also significantly higher in subtype I EAC. In contrast, subtype II EAC represents high-grade EAC, with a higher tumor invasion rate and tumor weight. The up-regulated genes in subtype I EAC were associated with the immune response, defense response, cell motion, and cell motility pathway, whereas the up-regulated genes in subtype II EAC were associated with the cell cycle, DNA replication, and RNA processing pathways. Additionally, we identified three potential subtype-specific biomarkers, comprising MDM2 (MDM2 proto-oncogene) for subtype I, and MSH2 (mutS homolog 2) and MSH6 (mutS homolog 6) for subtype II.
Collapse
Affiliation(s)
- Jia Lei
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuping Yan
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangqian Guo
- Joint National Laboratory for Antibody Drug Engineering, Cell Signal Transduction Laboratory, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Fengling Wang
- Joint National Laboratory for Antibody Drug Engineering, Cell Signal Transduction Laboratory, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Guosen Zhang
- Joint National Laboratory for Antibody Drug Engineering, Cell Signal Transduction Laboratory, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Quancheng Kan
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Guo
- Department of Gynecologic Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
225
|
Yang D, He Y, Wu B, Liu R, Wang N, Wang T, Luo Y, Li Y, Liu Y. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma. Cancer Biomark 2021; 29:399-416. [PMID: 32741804 DOI: 10.3233/cbm-200133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer worldwide. Until now, the molecular mechanisms underlying LUAD progression have not been fully explained. This study aimed to construct a competing endogenous RNA (ceRNA) network to predict the progression in LUAD. METHODS Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs) were identified from The Cancer Genome Atlas (TCGA) database with a |log2FC|> 1.0 and a false discovery rate (FDR) < 0.05. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network, and survival analyses were performed to analyse these DEGs involved in the ceRNA network. Subsequently, the drug-gene interaction database (DGIdb) was utilized to select candidate LUAD drugs interacting with significant DEGs. Then, lasso-penalized Cox regression and multivariate Cox regression models were used to construct the risk score system. Finally, based on the correlations between DELs and DEGs involved in the risk score system, the final ceRNA network was identified. Meanwhile, the GEPIA2 database and immunohistochemical (IHC) results were utilized to validate the expression levels of selected DEGs. RESULTS A total of 340 DELs, 29 DEMs, and 218 DEGs were selected to construct the initial ceRNA network. Functional enrichment analyses indicated that 218 DEGs were associated with the KEGG pathway terms "microRNAs in cancer", "pathways in cancer", "cell cycle", "HTLV-1 infection", and the "PI3K-Akt signalling pathway". K-M survival analysis of all differentially expressed genes involved in the ceRNA network identified 24 DELs, 4 DEMs, and 29 DEGs, all of which were significantly correlated with LUAD progression (P< 0.05). Furthermore, 15 LUAD drugs interacting with 29 significant DEGs were selected. After lasso-penalized Cox regression and multivariate Cox regression modelling, PRKCE, DLC1, LATS2, and DPY19L1 were incorporated into the risk score system, and the results suggested that LUAD patients who had the high-risk score always suffered from a poorer overall survival. Additionally, the correlation coefficients between these 4 DEGs and their corresponding DELs involved in the ceRNA network suggested that there were 2 significant DEL-DEG pairs, NAV2-AS2 - PRKCE (r= 0.430, P< 0.001) and NAV2-AS2 - LATS2 (r= 0.338, P< 0.001). And NAV2-AS2 - mir-31 - PRKCE and NAV2-SA2 - mir-31 - LATS2 were finally identified as ceRNA network involved in the progression of LUAD. CONCLUSIONS The lncRNA-miRNA-mRNA ceRNA network plays an essential role in predicting the progression of LUAD. These results may improve our understanding and provide novel mechanistic insights to explore prognosis and therapeutic drugs for LUAD patients.
Collapse
Affiliation(s)
- Dan Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China.,Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yang He
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.,Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Bo Wu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ruxi Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Nan Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Tieting Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yannan Luo
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yunda Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
226
|
Wilkinson ML, Gow AJ. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immun 2021; 27:353-364. [PMID: 34375151 PMCID: PMC8419298 DOI: 10.1177/17534259211015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles that are endogenously detectable at nM concentrations and display anti-inflammatory, pro-survival actions. These actions are elicited through the alteration of signal transduction proteins via a Michael addition on nucleophilic cysteine thiols. Nitrated fatty acids (NO2-FAs), like 9- or 10-nitro-octadec-9-enolic acid, will act on signal transduction proteins directly or on key regulatory proteins to cause an up-regulation or down-regulation of the protein's expression, yielding an anti-inflammatory response. These responses have been characterized in many organ systems, such as the cardiovascular system, with the pulmonary system less well defined. Macrophages are one of the most abundant immune cells in the lung and are essential in maintaining lung homeostasis. Despite this, macrophages can play a role in both acute and chronic lung injury due to up-regulation of anti-inflammatory signal transduction pathways and down-regulation of pro-inflammatory pathways. Through their propensity to alter signal transduction pathways, NO2-FAs may be able to reduce macrophage activation during pulmonary injury. This review will focus on the implications of NO2-FAs on macrophage activation in the lung and the signal transduction pathways that may be altered, leading to reduced pulmonary injury.
Collapse
Affiliation(s)
- Melissa L Wilkinson
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| |
Collapse
|
227
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
228
|
Westphal D, Garzarolli M, Sergon M, Horak P, Hutter B, Becker JC, Wiegel M, Maczey E, Blum S, Grosche-Schlee S, Rütten A, Ugurel S, Stenzinger A, Glimm H, Aust D, Baretton G, Beissert S, Fröhling S, Redler S, Surowy H, Meier F. High tumour mutational burden and EGFR/MAPK pathway activation are therapeutic targets in metastatic porocarcinoma. Br J Dermatol 2021; 185:1186-1199. [PMID: 34185311 DOI: 10.1111/bjd.20604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Eccrine porocarcinoma (EPC) is a rare skin cancer arising from the eccrine sweat glands. Due to the lack of effective therapies, metastasis is associated with a high mortality rate. OBJECTIVES To investigate the drivers of EPC progression. METHODS We carried out genomic and transcriptomic profiling of metastatic EPC (mEPC), validation of the observed alterations in an EPC patient-derived cell line, confirmation of relevant observations in a large patient cohort of 30 tumour tissues, and successful treatment of a patient with mEPC under the identified treatment regimens. RESULTS mEPC was characterized by a high tumour mutational burden (TMB) with an ultraviolet signature, widespread copy number alterations and gene expression changes that affected cancer-relevant cellular processes such as cell cycle regulation and proliferation, including a pathogenic TP53 (tumour protein 53) mutation, a copy number deletion in the CDKN2A (cyclin dependent kinase inhibitor 2A) region and a CTNND1/PAK1 [catenin delta 1/p21 (RAC1) activated kinase 1] gene fusion. The overexpression of EGFR (epidermal growth factor receptor), PAK1 and MAP2K1 (mitogen-activated protein kinase kinase 1; also known as MEK1) genes translated into strong protein expression and respective pathway activation in the tumour tissue. Furthermore, a patient-derived cell line was sensitive to EGFR and MEK inhibition, confirming the functional relevance of the pathway activation. Immunohistochemistry analyses in a large patient cohort showed the relevance of the observed changes to the pathogenesis of EPC. Our results indicate that mEPC should respond to immune or kinase inhibitor therapy. Indeed, the advanced disease of our index patient was controlled by EGFR-directed therapy and immune checkpoint inhibition for more than 2 years. CONCLUSIONS Molecular profiling demonstrated high TMB and EGFR/MAPK pathway activation to be novel therapeutic targets in mEPC.
Collapse
Affiliation(s)
- D Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - M Garzarolli
- Department of Dermatology, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, Germany
| | - M Sergon
- Institute of Pathology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - P Horak
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany
| | - B Hutter
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Computational Oncology, Molecular Diagnostics Program, NCT Heidelberg and DKFZ, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ, Heidelberg, Germany
| | - J C Becker
- Department of Dermatology, University Hospital Essen, Essen, Germany.,Translational Skin Cancer Research, DKTK, Partner Site Essen, Essen, Germany
| | - M Wiegel
- Department of Dermatology, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, Germany
| | - E Maczey
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | - S Blum
- Institute and Policlinic of Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - S Grosche-Schlee
- Clinic and Policlinic of Nuclear Medicine, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - A Rütten
- Dermatopathology Friedrichshafen, Friedrichshafen, Germany
| | - S Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - A Stenzinger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - H Glimm
- Translational Functional Cancer Genomics, NCT Heidelberg and DKFZ, Heidelberg, Germany.,Department of Translational Medical Oncology NCT Dresden and DKFZ, Dresden, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany.,DKTK, Dresden, Germany
| | - D Aust
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Institute of Pathology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany.,Tumor and Normal Tissue Bank of the UCC/NCT Site Dresden, NCT Dresden and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - G Baretton
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Institute of Pathology, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany.,Tumor and Normal Tissue Bank of the UCC/NCT Site Dresden, NCT Dresden and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| | - S Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - S Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany
| | - S Redler
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - F Meier
- Department of Dermatology, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Skin Cancer Center at the University Cancer Center Dresden, University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
| |
Collapse
|
229
|
Genome-wide association study of stimulant dependence. Transl Psychiatry 2021; 11:363. [PMID: 34226506 PMCID: PMC8257618 DOI: 10.1038/s41398-021-01440-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022] Open
Abstract
Stimulant dependence is heritable, but specific genetic factors underlying the trait have not been identified. A genome-wide association study for stimulant dependence was performed in a discovery cohort of African- (AA) and European-ancestry (EA) subjects ascertained for genetic studies of alcohol, opioid, and cocaine use disorders. The sample comprised individuals with DSM-IV stimulant dependence (393 EA cases, 5288 EA controls; 155 AA cases, 5603 AA controls). An independent cohort from the family-based Collaborative Study on the Genetics of Alcoholism (532 EA cases, 7635 EA controls; 53 AA cases, AA 3352 controls) was used for replication. One variant in SLC25A16 (rs2394476, p = 3.42 × 10-10, odds ratio [OR] = 3.70) was GWS in AAs. Four other loci showed suggestive evidence, including KCNA4 in AAs (rs11500237, p = 2.99 × 10-7, OR = 2.31) which encodes one of the potassium voltage-gated channel protein that has been linked to several other substance use disorders, and CPVL in the combined population groups (rs1176440, p = 3.05 × 10-7, OR = 1.35), whose expression was previously shown to be upregulated in the prefrontal cortex from users of cocaine, cannabis, and phencyclidine. Analysis of the top GWAS signals revealed a significant enrichment with nicotinic acetylcholine receptor genes (adjusted p = 0.04) and significant pleiotropy between stimulant dependence and alcohol dependence in EAs (padj = 3.6 × 10-3), an anxiety disorder in EAs (padj = 2.1 × 10-4), and ADHD in both AAs (padj = 3.0 × 10-33) and EAs (padj = 6.7 × 10-35). Our results implicate novel genes and pathways as having roles in the etiology of stimulant dependence.
Collapse
|
230
|
Dias Gomes M, Iden S. Orchestration of tissue-scale mechanics and fate decisions by polarity signalling. EMBO J 2021; 40:e106787. [PMID: 33998017 PMCID: PMC8204866 DOI: 10.15252/embj.2020106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic development relies on dynamic cell shape changes and segregation of fate determinants to achieve coordinated compartmentalization at larger scale. Studies in invertebrates have identified polarity programmes essential for morphogenesis; however, less is known about their contribution to adult tissue maintenance. While polarity-dependent fate decisions in mammals utilize molecular machineries similar to invertebrates, the hierarchies and effectors can differ widely. Recent studies in epithelial systems disclosed an intriguing interplay of polarity proteins, adhesion molecules and mechanochemical pathways in tissue organization. Based on major advances in biophysics, genome editing, high-resolution imaging and mathematical modelling, the cell polarity field has evolved to a remarkably multidisciplinary ground. Here, we review emerging concepts how polarity and cell fate are coupled, with emphasis on tissue-scale mechanisms, mechanobiology and mammalian models. Recent findings on the role of polarity signalling for tissue mechanics, micro-environmental functions and fate choices in health and disease will be summarized.
Collapse
Affiliation(s)
- Martim Dias Gomes
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
| | - Sandra Iden
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
- CMMCUniversity of CologneCologneGermany
| |
Collapse
|
231
|
Modelling and Refining Neuronal Circuits with Guidance Cues: Involvement of Semaphorins. Int J Mol Sci 2021; 22:ijms22116111. [PMID: 34204060 PMCID: PMC8201269 DOI: 10.3390/ijms22116111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.
Collapse
|
232
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
233
|
Erin N, Tavşan E, Akdeniz Ö, Isca VMS, Rijo P. Rebound increases in chemokines by CXCR2 antagonist in breast cancer can be prevented by PKCδ and PKCε activators. Cytokine 2021; 142:155498. [PMID: 33773907 DOI: 10.1016/j.cyto.2021.155498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Activation of CXCR2 by chemokines such as CXCL1 and CXCL2 increases aggressiveness of breast cancer, inducing chemoresistance, hence CXCR2 antagonists are in clinical trials. We previously reported that inhibition of CXCR2 increases MIP-2 (CXCL2), which may inhibit anti-tumoral effects of CXCR2 antagonists. This seems to be due to inhibition of protein kinase C (PKC) by CXCR2 antagonist since specific inhibitor of PKC also enhances MIP-2 secretion. We here examined whether CXCR2 inhibitor also increases KC (CXCL1) secretion, ligand for CXCR2 involved in metastasis and PKC activators can prevent increases in chemokine secretion. We used SB 225002, which is a specific CXCR2 antagonist. The effects of PKC activators that have documented anti-tumoral effects and activates multiple isozymes of PKC such as Ingenol-3-angelate (I3A) and bryostatin-1 were examined here. In addition, FR236924, PKCε selective and 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), PKCδ selective activators were also tested. The effects of activators were determined using brain metastatic (4TBM) and heart metastatic (4THM) subset of 4T1 breast carcinoma cells because these aggressive carcinoma cells with cancer stem cell features secrete high levels of KC and MIP-2. Inhibition of CXCR-2 activity increased KC (CXCL1) secretion. PKC activators prevented SB225002-induced increases in KC and MIP-2 secretion. Different activators/modulators induce differential changes in basal and SB225002-induced chemokine secretion as well as cell proliferation and the activators that act on PKCδ and/or PKCε such as bryostatin 1, FR236924 and Roy-Bz are the most effective. These activators alone also decrease cell proliferation or chemokine secretion or both. Given the role of KC and MIP-2 in drug resistance including chemotherapeutics, activators of PKCε and PKCδ may prevent emerging of resistance to CXCR2 inhibitors as well as other chemotherapeutics.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey.
| | - Esra Tavşan
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey
| | - Özlem Akdeniz
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Vera M S Isca
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Patricia Rijo
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
234
|
Soerensen M, Debrabant B, Halekoh U, Møller JE, Hassager C, Frydland M, Hjelmborg J, Beck HC, Rasmussen LM. Does diabetes modify the effect of heparin on plasma proteins? - A proteomic search for plasma protein biomarkers for diabetes-related endothelial dysfunction. J Diabetes Complications 2021; 35:107906. [PMID: 33785251 DOI: 10.1016/j.jdiacomp.2021.107906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
AIM Heparin administration affects the concentrations of many plasma proteins through their displacement from the endothelial glycocalyx. A differentiated protein response in diabetes will therefore, at least partly, reflect glycocalyx changes. This study aims at identifying biomarkers of endothelial dysfunction in diabetes by statistical exploration of plasma proteome data for interactions between diabetes status and heparin treatment. METHODS Diabetes-by-heparin interactions in relation to protein levels were inspected by regression modelling in plasma proteome data from 497 patients admitted for acute angiography. Analyses were conducted separately for all 273 proteins and as set-based analyses of 44 heparin-relevant proteins identified by gene ontology analysis and 42 heparin-influenced proteins previously reported. RESULTS Seventy-five patients had diabetes and 361 received heparin before hospitalization. The proteome-wide analysis displayed no proteins with diabetes-heparin interaction to pass correction for multiple testing. The overall set-based analyses revealed significant association for both protein sets (p-values<2*10-4), while constraining on opposite directions of effect in diabetics and none-diabetics was insignificant (p-values = 0.11 and 0.17). CONCLUSIONS Our plasma proteome-wide interaction approach supports that diabetes influences heparin effects on protein levels, however the direction of effects and individual proteins could not be definitively pinpointed, likely reflecting a complex protein-basis for glycocalyx dysfunction in diabetes.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark; Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Birgit Debrabant
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Ulrich Halekoh
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Jacob Eifer Møller
- Department of Clinical Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Martin Frydland
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Lars Melholt Rasmussen
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| |
Collapse
|
235
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
236
|
Kang J, Li Y, Zhao Z, Zhang H. Differentiation between thyroid-associated orbitopathy and Graves' disease by iTRAQ-based quantitative proteomic analysis. FEBS Open Bio 2021; 11:1930-1940. [PMID: 33934566 PMCID: PMC8255837 DOI: 10.1002/2211-5463.13172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
Graves' ophthalmopathy, also known as thyroid-associated orbitopathy (TAO), is the most common inflammatory eye disease in adults. The most common etiology for TAO is Graves' disease (GD); however, proteomic research focusing on differences between GD and TAO is limited. This study aimed to identify differentially expressed proteins between thyroid-associated orbitopathy (TAO) and GD. Furthermore, we sought to explore the pathogenesis of TAO and elucidate the differentiation process via specific markers. Serum samples of three patients with TAO, GD, and healthy controls, respectively, were collected. These samples were measured using the iTRAQ technique coupled with mass spectrometry. Differentially expressed proteins in TAO and GD were identified by proteomics; 3172 quantified proteins were identified. Compared with TAO, we identified 110 differential proteins (27 proteins were upregulated and 83 were downregulated). In addition, these differentially expressed proteins were closely associated with cellular processes, metabolic processes, macromolecular complexes, signal transduction, and the immune system. The corresponding functions were protein, calcium ion, and nucleic acid binding. Among the differential proteins, MYH11, P4HB, and C4A were markedly upregulated in TAO patients and have been reported to participate in apoptosis, autophagy, the inflammatory response, and the immune system. A protein-protein interaction network analysis was performed. Proteomics demonstrated valuable large-scale protein-related information for expounding the pathogenic mechanism underlying TAO. This research provides new insights and potential targets for studying GD with TAO.
Collapse
Affiliation(s)
- Jianshu Kang
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, The Fourth Affiliated Hospital of Kunming Medical University, China.,Yunnan Eye Institute, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmologya, Kunming, China.,Yunnan Eye Disease Clinical Medical Center, Kunming, China.,Yunnan Eye Disease Clinical Medical Research Center, Kunming, China
| | - Yunqin Li
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, The Fourth Affiliated Hospital of Kunming Medical University, China.,Yunnan Eye Institute, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmologya, Kunming, China.,Yunnan Eye Disease Clinical Medical Center, Kunming, China.,Yunnan Eye Disease Clinical Medical Research Center, Kunming, China
| | - Zhijian Zhao
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, The Fourth Affiliated Hospital of Kunming Medical University, China.,Yunnan Eye Institute, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmologya, Kunming, China.,Yunnan Eye Disease Clinical Medical Center, Kunming, China.,Yunnan Eye Disease Clinical Medical Research Center, Kunming, China
| | - Hong Zhang
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, The Fourth Affiliated Hospital of Kunming Medical University, China.,Yunnan Eye Institute, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmologya, Kunming, China.,Yunnan Eye Disease Clinical Medical Center, Kunming, China.,Yunnan Eye Disease Clinical Medical Research Center, Kunming, China
| |
Collapse
|
237
|
Tognetti M, Gabor A, Yang M, Cappelletti V, Windhager J, Rueda OM, Charmpi K, Esmaeilishirazifard E, Bruna A, de Souza N, Caldas C, Beyer A, Picotti P, Saez-Rodriguez J, Bodenmiller B. Deciphering the signaling network of breast cancer improves drug sensitivity prediction. Cell Syst 2021; 12:401-418.e12. [PMID: 33932331 DOI: 10.1016/j.cels.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 12/16/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
One goal of precision medicine is to tailor effective treatments to patients' specific molecular markers of disease. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF in the presence or absence of five kinase inhibitors. These data-on more than 80 million single cells from 4,000 conditions-were used to fit mechanistic signaling network models that provide insight into how cancer cells process information. Our dynamic single-cell-based models accurately predicted drug sensitivity and identified genomic features associated with drug sensitivity, including a missense mutation in DDIT3 predictive of PI3K-inhibition sensitivity. We observed similar trends in genotype-drug sensitivity associations in patient-derived xenograft mouse models. This work provides proof of principle that patient-specific single-cell measurements and modeling could inform effective precision medicine strategies.
Collapse
Affiliation(s)
- Marco Tognetti
- Department of Quantitative Biomedicine, University of Zürich, 8057 Zurich, Switzerland; Institute of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland; Molecular Life Science PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zurich, Switzerland
| | - Attila Gabor
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, 69117 Heidelberg, Germany; Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Mi Yang
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | | | - Jonas Windhager
- Department of Quantitative Biomedicine, University of Zürich, 8057 Zurich, Switzerland; Institute of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland; Systems Biology PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8093 Zürich, Switzerland
| | - Oscar M Rueda
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Konstantina Charmpi
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty and Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Elham Esmaeilishirazifard
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Bioscience, R&D Oncology, Astra Zeneca, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Alejandra Bruna
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zürich, 8057 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Cambridge Breast Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre at Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Andreas Beyer
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), Medical Faculty and Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50923 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, 69117 Heidelberg, Germany; Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zürich, 8057 Zurich, Switzerland; Institute of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland.
| |
Collapse
|
238
|
Dagdelen DN, Akkulak A, Donmez Yalcin G. The investigation of glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma cells. Mol Biol Rep 2021; 48:3495-3502. [PMID: 34003424 DOI: 10.1007/s11033-021-06407-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Glioblastoma multiform is a primary brain tumor derived from glial cells. The aim of this study is to investigate how glutamate metabolism is regulated by glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma and glial cell lines. The protein expression levels of GLT-1, total ubiquitin, protein kinase C (PKC) proteins involved in the GLT-1 degradation pathway were measured by the western blot technique. Additionally, in glial and glioblastoma cells, the level of glutamate accumulated in the medium and the lysates was measured with the glutamate assay. GLT-1 protein expression was increased significantly in glioblastoma cells. The expression levels of the PKC protein and total ubiquitin were found to be decreased in glioblastoma cells although not significantly. The glutamate accumulated in the medium and lysates of glioblastoma cells is reduced compared to glial cells. Further research regarding excitotoxicity in glioblastoma focusing on GLT-1 degradation or activation pathway may create new opportunities of drug and treatment development.
Collapse
Affiliation(s)
- Duriye Nur Dagdelen
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Aysenur Akkulak
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gizem Donmez Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
239
|
Protein Kinase C Activation Drives a Differentiation Program in an Oligodendroglial Precursor Model through the Modulation of Specific Biological Networks. Int J Mol Sci 2021; 22:ijms22105245. [PMID: 34063504 PMCID: PMC8156399 DOI: 10.3390/ijms22105245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) activation induces cellular reprogramming and differentiation in various cell models. Although many effectors of PKC physiological actions have been elucidated, the molecular mechanisms regulating oligodendrocyte differentiation after PKC activation are still unclear. Here, we applied a liquid chromatography–mass spectrometry (LC–MS/MS) approach to provide a comprehensive analysis of the proteome expression changes in the MO3.13 oligodendroglial cell line after PKC activation. Our findings suggest that multiple networks that communicate and coordinate with each other may finally determine the fate of MO3.13 cells, thus identifying a modular and functional biological structure. In this work, we provide a detailed description of these networks and their participating components and interactions. Such assembly allows perturbing each module, thus describing its physiological significance in the differentiation program. We applied this approach by targeting the Rho-associated protein kinase (ROCK) in PKC-activated cells. Overall, our findings provide a resource for elucidating the PKC-mediated network modules that contribute to a more robust knowledge of the molecular dynamics leading to this cell fate transition.
Collapse
|
240
|
Sun G, Shvab A, Leclerc GJ, Li B, Beckedorff F, Shiekhattar R, Barredo JC. Protein Kinase D-Dependent Downregulation of Immediate Early Genes through Class IIA Histone Deacetylases in Acute Lymphoblastic Leukemia. Mol Cancer Res 2021; 19:1296-1307. [PMID: 33980612 DOI: 10.1158/1541-7786.mcr-20-0808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a leading cause of cancer-related death in children and adolescents, and cure rates for relapsed/refractory ALL remain dismal, highlighting the need for novel targeted therapies. To identify genome-wide metabolic-stress regulated genes, we used RNA-sequencing in ALL cells treated with AICAR, an AMPK activator. RNA-sequencing identified the immediate early genes (IEGs) as a subset of genes downregulated by AICAR. We show that AICAR-induced IEGs downregulation was blocked by an adenosine uptake inhibitor indicating AICAR was responsible for IEGs reprogramming. Using pharmacologic and genetic models we established this mechanism was AMPK-independent. Further investigations using kinase assays, PKD/PKC inhibitors and rescue experiments, demonstrated that AICAR directly inhibited PKD kinase activity and identified PKD as responsible for IEGs downregulation. Mechanistically, PKD inhibition suppressed phosphorylation and nuclear export of class IIa HDACs, which lowered histone H3 acetylation and decreased NFκB(p65) recruitment to IEGs promoters. Finally, PKD inhibition induced apoptosis via DUSP1/DUSP6 downregulation eliciting a DNA damage response. More importantly, ALL patient cells exhibited the same PKD-HDACs-IEGs-mediated mechanism. As proof of principle of the therapeutic potential of targeting PKD, we established the in vivo relevance of our findings using an NSG ALL mouse model. In conclusion, we identified a previously unreported PKD-dependent survival mechanism in response to AICAR-induced cellular stress in ALL through regulation of DUSPs and IEGs' expression. IMPLICATIONS: PKD mediates early transcriptional responses in ALL cells as an adaptive survival mechanism to overcome cellular stress.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Anna Shvab
- Cancer Biology Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Bin Li
- Stemsynergy Therapeutics, Inc, Miami, Florida
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C Barredo
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
241
|
PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 2021; 478:341-355. [PMID: 33502516 DOI: 10.1042/bcj20190765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Collapse
|
242
|
Glutathione S-Transferases in Cancer. Antioxidants (Basel) 2021; 10:antiox10050701. [PMID: 33946704 PMCID: PMC8146591 DOI: 10.3390/antiox10050701] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
In humans, the glutathione S-transferases (GST) protein family is composed of seven members that present remarkable structural similarity and some degree of overlapping functionalities. GST proteins are crucial antioxidant enzymes that regulate stress-induced signaling pathways. Interestingly, overactive GST proteins are a frequent feature of many human cancers. Recent evidence has revealed that the biology of most GST proteins is complex and multifaceted and that these proteins actively participate in tumorigenic processes such as cell survival, cell proliferation, and drug resistance. Structural and pharmacological studies have identified various GST inhibitors, and these molecules have progressed to clinical trials for the treatment of cancer and other diseases. In this review, we discuss recent findings in GST protein biology and their roles in cancer development, their contribution in chemoresistance, and the development of GST inhibitors for cancer treatment.
Collapse
|
243
|
Senyuz S, Jang H, Nussinov R, Keskin O, Gursoy A. Mechanistic Differences of Activation of Rac1 P29S and Rac1 A159V. J Phys Chem B 2021; 125:3790-3802. [PMID: 33848152 PMCID: PMC8154616 DOI: 10.1021/acs.jpcb.1c00883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Rac1 is a small GTPase that plays key roles in actin reorganization, cell motility, and cell survival/growth as well as in various cancer types and neurodegenerative diseases. Similar to other Ras superfamily GTPases, Rac1 switches between active GTP-bound and inactive GDP-bound states. Switch I and II regions open and close during GDP/GTP exchange. P29S and A159V (paralogous to K-RasA146) mutations are the two most common somatic mutations of Rac1. Rac1P29S is a known hotspot for melanoma, whereas Rac1A159V most commonly occurs in head and neck cancer. To investigate how these substitutions induce the Rac1 dynamics, we used atomistic molecular dynamics simulations on the wild-type Rac1 and two mutant systems (P29S and A159V) in the GTP bound state, and on the wild-type Rac1 and P29S mutated system in the GDP bound state. Here, we show that P29S and A159V mutations activate Rac1 with different mechanisms. In Rac1P29S-GTP, the substitution increases the flexibility of Switch I based on RMSF and dihedral angle calculations and leads to an open conformation. We propose that the open Switch I conformation is one of the underlying reasons for rapid GDP/GTP exchange of Rac1P29S. On the other hand, in Rac1A159V-GTP, some of the contacts of the guanosine ring of GTP with Rac1 are temporarily lost, enabling the guanosine ring to move toward Switch I and subsequently close the switch. Rac1A159V-GTP adopts a Ras state 2 like conformation, where both switch regions are in closed conformation and Thr35 forms a hydrogen bond with the nucleotide.
Collapse
Affiliation(s)
- Simge Senyuz
- Computational
Science and Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ozlem Keskin
- Chemical
and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Attila Gursoy
- Computer
Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
244
|
Lu P, Ma Y, Wei S, Liang X. The dual role of complement in cancers, from destroying tumors to promoting tumor development. Cytokine 2021; 143:155522. [PMID: 33849765 DOI: 10.1016/j.cyto.2021.155522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Complement is an important branch of innate immunity; however, its biological significance goes far beyond the scope of simple nonspecific defense and involves a variety of physiological functions, including the adaptive immune response. In this review, to unravel the complex relationship between complement and tumors, we reviewed the high diversity of complement components in cancer and the heterogeneity of their production and activation pathways. In the tumor microenvironment, complement plays a dual regulatory role in the occurrence and development of tumors, affecting the outcomes of the immune response. We explored the differential expression levels of various complement components in human cancers via the Oncomine database. The gene expression profiling interactive analysis (GEPIA) tool and Kaplan-Meier plotter (K-M plotter) confirmed the correlation between differentially expressed complement genes and tumor prognosis. The tumor immune estimation resource (TIMER) database was used to statistically analyze the effect of complement on tumor immune infiltration. Finally, with a view to the role of complement in regulating T cell metabolism, complement could be a potential target for immunotherapies. Targeting complement to regulate the antitumor immune response seems to have potential for future treatment strategies. However, there are still many complex problems, such as who will benefit from this therapy and how to select the right therapeutic target and determine the appropriate drug concentration. The solutions to these problems depend on a deeper understanding of complement generation, activation, and regulatory and control mechanisms.
Collapse
Affiliation(s)
- Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Yifei Ma
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, the Seventh Clinical School Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, the Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Colorectal Cancer Clinical Research Center of HuBei Province, Wuhan, China; Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, China.
| |
Collapse
|
245
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
246
|
Overexpression of microRNA-205-5p exerts suppressive effects on stem cell drug resistance in gallbladder cancer by down-regulating PRKCE. Biosci Rep 2021; 40:226278. [PMID: 32869841 PMCID: PMC7533283 DOI: 10.1042/bsr20194509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Some microRNAs (miRs or miRNAs) have been reported to function as tumor suppressors in gallbladder cancer (GBC). However, the specific effect of miR-205-5p on GBC remains unclear. The objective of the present study was to unravel the effects of miR-205-5p on the drug resistance in GBC. For this purpose, the expression of miR-205-5p and protein kinase C ϵ (PRKCE) was quantified in the peripheral blood sample harvested from GBC patients and healthy volunteers. Then the relationship between miR-205-5p and PRKCE was validated. After isolating the GBC stem cells, ectopic expression and depletion experiments were conducted to analyze the effect of miR-205-5p and PRKCE on cell proliferation, drug resistance, apoptosis, and colony formation rate as well as the expression of apoptotic factors (Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and cleaved caspase 3). Finally, the mouse xenograft model of GBC was established to verify the function of miR-205-5p in vivo. Intriguingly, our results manifested that miR-205-5p was down-regulated, while PRKCE was up-regulated in peripheral blood samples and stem cells of patients with GBC. Moreover, miR-205-5p targeted PRKCE and negatively regulated its expression. The overexpression of miR-205-5p or silencing of PRKCE inhibited the drug resistance, proliferation, and colony formation rate while promoting apoptosis of GBC stem cells. Additionally, the overexpression of miR-205-5p attenuated drug resistance to gemcitabine but promoted the gemcitabine-induced cell apoptosis by inhibiting the PRKCE in vivo. Overall, an intimate correlation between miR-205-5p and PRKCE is a key determinant of drug resistance of GBC stem cells, thus, suggesting a novel miR-205-5p-based clinical intervention target for GBC patients.
Collapse
|
247
|
Dong W, Lu J, Zhang X, Wu Y, Lettieri K, Hammond GR, Hong Y. A polybasic domain in aPKC mediates Par6-dependent control of membrane targeting and kinase activity. J Cell Biol 2021; 219:151883. [PMID: 32580209 PMCID: PMC7337507 DOI: 10.1083/jcb.201903031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/04/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanisms coupling the atypical PKC (aPKC) kinase activity to its subcellular localization are essential for cell polarization. Unlike other members of the PKC family, aPKC has no well-defined plasma membrane (PM) or calcium binding domains, leading to the assumption that its subcellular localization relies exclusively on protein–protein interactions. Here we show that in both Drosophila and mammalian cells, the pseudosubstrate region (PSr) of aPKC acts as a polybasic domain capable of targeting aPKC to the PM via electrostatic binding to PM PI4P and PI(4,5)P2. However, physical interaction between aPKC and Par-6 is required for the PM-targeting of aPKC, likely by allosterically exposing the PSr to bind PM. Binding of Par-6 also inhibits aPKC kinase activity, and such inhibition can be relieved through Par-6 interaction with apical polarity protein Crumbs. Our data suggest a potential mechanism in which allosteric regulation of polybasic PSr by Par-6 couples the control of both aPKC subcellular localization and spatial activation of its kinase activity.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Juan Lu
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Xuejing Zhang
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Yan Wu
- Jiangsu University, Zhengjiang, Jiangsu, People's Republic of China
| | - Kaela Lettieri
- First Experience in Research Program, University of Pittsburgh, Pittsburgh, PA
| | - Gerald R Hammond
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, PA
| |
Collapse
|
248
|
Molecular Dambusters: What Is Behind Hyperpermeability in Bradykinin-Mediated Angioedema? Clin Rev Allergy Immunol 2021; 60:318-347. [PMID: 33725263 PMCID: PMC7962090 DOI: 10.1007/s12016-021-08851-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
In the last few decades, a substantial body of evidence underlined the pivotal role of bradykinin in certain types of angioedema. The formation and breakdown of bradykinin has been studied thoroughly; however, numerous questions remained open regarding the triggering, course, and termination of angioedema attacks. Recently, it became clear that vascular endothelial cells have an integrative role in the regulation of vessel permeability. Apart from bradykinin, a great number of factors of different origin, structure, and mechanism of action are capable of modifying the integrity of vascular endothelium, and thus, may participate in the regulation of angioedema formation. Our aim in this review is to describe the most important permeability factors and the molecular mechanisms how they act on endothelial cells. Based on endothelial cell function, we also attempt to explain some of the challenging findings regarding bradykinin-mediated angioedema, where the function of bradykinin itself cannot account for the pathophysiology. By deciphering the complex scenario of vascular permeability regulation and edema formation, we may gain better scientific tools to be able to predict and treat not only bradykinin-mediated but other types of angioedema as well.
Collapse
|
249
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
250
|
Kim S, Han Y, Kim SI, Lee J, Jo H, Wang W, Cho U, Park WY, Rando TA, Dhanasekaran DN, Song YS. Computational modeling of malignant ascites reveals CCL5-SDC4 interaction in the immune microenvironment of ovarian cancer. Mol Carcinog 2021; 60:297-312. [PMID: 33721368 DOI: 10.1002/mc.23289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Fluid accumulation in the abdominal cavity is commonly found in advanced-stage ovarian cancer patients, which creates a specialized tumor microenvironment for cancer progression. Using single-cell RNA sequencing (scRNA-seq) of ascites cells from five patients with ovarian cancer, we identified seven cell types, including heterogeneous macrophages and ovarian cancer cells. We resolved a distinct polarization state of macrophages by MacSpectrum analysis and observed subtype-specific enrichment of pathways associated with their functions. The communication between immune and cancer cells was predicted through a putative ligand-receptor pair analysis using NicheNet. We found that CCL5, a chemotactic ligand, is enriched in immune cells (T cells and NK cells) and mediates ovarian cancer cell survival in the ascites, possibly through SDC4. Moreover, SDC4 expression correlated with poor overall survival in ovarian cancer patients. Our study highlights the potential role of T cells and NK cells in long-term survival patients with ovarian cancer, indicating SDC4 as a potential prognostic marker in ovarian cancer patients.
Collapse
Affiliation(s)
- Soochi Kim
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, California, USA
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul, Republic of Korea
| | - Untack Cho
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, California, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|