201
|
Xie Q, Li Q, Fang H, Zhang R, Tang H, Chen L. Gut-Derived Short-Chain Fatty Acids and Macrophage Modulation: Exploring Therapeutic Potentials in Pulmonary Fungal Infections. Clin Rev Allergy Immunol 2024; 66:316-327. [PMID: 38965168 DOI: 10.1007/s12016-024-08999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, modulate immune cell functions, particularly macrophages. This review explores the potential therapeutic applications of SCFAs in pulmonary fungal infections, a critical concern due to their high mortality rates and antifungal resistance. SCFAs enhance macrophage functions by promoting phagosome-lysosome fusion, increasing reactive oxygen species production, and balancing cytokine responses. Pulmonary fungal infections, caused by pathogens like Aspergillus fumigatus, are prevalent in immunocompromised patients, including those with diabetes, chronic obstructive pulmonary disease, and those on high-dose corticosteroids. SCFAs have shown promise in improving macrophage function in these contexts. However, the application of SCFAs must be balanced against potential side effects, including gut microbiota disruption and metabolic disorders. Further research is needed to optimize SCFA therapy for managing pulmonary fungal infections.
Collapse
Affiliation(s)
- Qian Xie
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Qinhui Li
- Medical Services Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Hong Fang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Rong Zhang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Huan Tang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
202
|
Lee DH, Kim MT, Han JH. GPR41 and GPR43: From development to metabolic regulation. Biomed Pharmacother 2024; 175:116735. [PMID: 38744220 DOI: 10.1016/j.biopha.2024.116735] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors are a diverse class of cell surface receptors that orchestrate numerous physiological functions. The G-protein-coupled receptors, GPR41 and GPR43, sense short-chain fatty acids (SCFAs), which are metabolites of dietary fermentation by the host's intestinal bacteria. These receptors have gained attention as potential therapeutic targets against various diseases because of their SCFA-mediated beneficial effects on the host's intestinal health. Mounting evidence has associated the activity of these receptors with chronic metabolic diseases, including obesity, diabetes, inflammation, and cardiovascular disease. However, despite intensive research using various strategies, including gene knockout (KO) mouse models, evidence about the precise roles of GPR41 and GPR43 in disease treatment remains inconsistent. Here, we comprehensively review the latest findings from functional studies of the signaling mechanisms that underlie the activities of GPR41 and GPR43, as well as highlight their multifaceted roles in health and disease. We anticipate that this knowledge will guide future research priorities and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Do-Hyung Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, the Republic of Korea
| | - Min-Tae Kim
- Department of Pharmaceutical Research, KyongBo Pharmaceutical Co., Ltd, 174, Sirok-ro, Asan-si, Chungcheongnam-do 31501, the Republic of Korea
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, the Republic of Korea.
| |
Collapse
|
203
|
Wu Y, Peng W, Chen S, Zeng X, Zhu J, Zhu P. CAV1 Protein Encapsulated in Mouse BMSC-Derived Extracellular Vesicles Alleviates Myocardial Fibrosis Following Myocardial Infarction by Blocking the TGF-β1/SMAD2/c-JUN Axis. J Cardiovasc Transl Res 2024; 17:523-539. [PMID: 38092988 DOI: 10.1007/s12265-023-10472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 07/03/2024]
Abstract
Extracellular vesicles (EVs) derived from mouse bone marrow mesenchymal stem cells (mBMSCs) convey the CAV1 protein, influencing the TGF-β1/SMAD2/c-JUN pathway and thus the molecular mechanisms underlying myocardial fibrosis (MF) post-myocardial infarction (MI). Through various experimental methods, including transmission electron microscopy, Nanosight analysis, Western blot, ELISA, and qRT-PCR, we isolated, purified, and identified EVs originating from mBMSCs. Bioinformatics and experimental findings show a reduced expression of CAV1 in myocardial fibrosis tissue. Furthermore, our findings suggest that mBMSC-EVs can deliver CAV1 to cardiac fibroblasts (CFs) and that silencing CAV1 in mBMSC-EVs promotes CF fibrosis. In vivo studies further corroborated these findings. In conclusion, mBMSC-EVs mitigate myocardial fibrosis in MI mice by delivering the CAV1 protein, inhibiting the TGF-β1/SMAD2/c-JUN pathway.
Collapse
Affiliation(s)
- Yijin Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China
| | - Wenying Peng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Siyao Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Xiaodong Zeng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Jiade Zhu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China
| | - Ping Zhu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China.
| |
Collapse
|
204
|
Shalaby M, Sahni R, Hamilton R. Local anesthetic systemic toxicity: awareness, recognition, and risk mitigation in the emergency department. Clin Exp Emerg Med 2024; 11:121-126. [PMID: 38778495 PMCID: PMC11237253 DOI: 10.15441/ceem.24.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Michael Shalaby
- Department of Emergency Medicine and Critical Care, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Emergency Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Raghav Sahni
- Department of Emergency Medicine, Crozer-Chester Medical Center, Upland, PA, USA
| | - Richard Hamilton
- Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Emergency Medicine, Crozer-Keystone Health System, Upland, PA, USA
| |
Collapse
|
205
|
Al Sulaiman K, Alkofide HA, AlFaifi ME, Aljohani SS, Al Harthi AF, Alqahtani RA, Alanazi AM, Nazer LH, Al Shaya AI, Aljuhani O. The concomitant use of ultra short beta-blockers with vasopressors and inotropes in critically ill patients with septic shock: A systematic review and meta-analysis of randomized controlled trials. Saudi Pharm J 2024; 32:102094. [PMID: 38812943 PMCID: PMC11135033 DOI: 10.1016/j.jsps.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Background Septic shock is associated with systemic inflammatory response, hemodynamic instability, impaired sympathetic control, and the development of multiorgan dysfunction that requires vasopressor or inotropic support. The regulation of immune function in sepsis is complex and varies over time. However, activating Beta-2 receptors and blocking Beta-1 receptors reduces the proinflammatory response by influencing cytokine production. Evidence that supports the concomitant use of ultra short beta-blockers with inotropes and vasopressors in patients with septic shock is still limited. This study aimed to evaluate the use of ultra short beta-blockers and its impact on the ICU related outcomes such as mortality, length of stay, heart rate control, shock resolution, and vasopressors/inotropes requirements. Methods A systematic review and meta-analysis of randomized controlled trials including critically ill patients with septic shock who received inotropes and vasopressors. Patients who received either epinephrine or norepinephrine without beta-blockers "control group" were compared to patients who received ultra short beta-blockers concomitantly with either epinephrine or norepinephrine "Intervention group". MEDLINE and Embase databases were utilized to systematically search for studies investigating the use of ultra short beta-blockers in critically ill patients on either epinephrine or norepinephrine from inception to October 10, 2023. The primary outcome was the 28-day mortality. While, length of stay, heart rate control, and inotropes/ vasopressors requirements were considered secondary outcomes. Results Among 47 potentially relevant studies, nine were included in the analysis. The 28-day mortality risk was lower in patients with septic shock who used ultra short beta-blockers concomitantly with either epinephrine or norepinephrine compared with the control group (RR (95%CI): 0.69 (0.53, 0.89), I2=26%; P=0.24). In addition, heart rate was statistically significantly lower with a standardized mean difference (SMD) of -22.39 (95% CI: -24.71, -20.06) among the beta-blockers group than the control group. The SMD for hospital length of stay and the inotropes requirement were not statistically different between the two groups (SMD (95%CI): -0.57 (-2.77, 1.64), and SMD (95%CI): 0.08 (-0.02, 0.19), respectively). Conclusion The use of ultra short beta-blockers concomitantly with either epinephrine or norepinephrine in critically ill patients with septic shock was associated with better heart rate control and survival benefits without increment in the inotropes and vasopressors requirement.
Collapse
Affiliation(s)
- Khalid Al Sulaiman
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- Saudi Society for Multidisciplinary Research Development and Education (SCAPE Society), Riyadh, Saudi Arabia
| | - Hadeel A. Alkofide
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Drug Regulation Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashael E. AlFaifi
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- Pharmaceutical Services Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Sarah S. Aljohani
- Pharmaceutical Care Services, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah F. Al Harthi
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Rahaf A. Alqahtani
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ashwaq M. Alanazi
- Pharmaceutical Services Administration, King Fahad Medical City, Second Health Cluster, Riyadh, Saudi Arabia
| | - Lama H. Nazer
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| | - Abdulrahman I. Al Shaya
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
206
|
Lu JS, Wang JH, Han K, Li N. Nicorandil Regulates Ferroptosis and Mitigates Septic Cardiomyopathy via TLR4/SLC7A11 Signaling Pathway. Inflammation 2024; 47:975-988. [PMID: 38159178 PMCID: PMC11147835 DOI: 10.1007/s10753-023-01954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
This study mainly explored the role of nicorandil in regulating ferroptosis and alleviating septic cardiomyopathy through toll-like receptor (TLR) 4/solute carrier family 7 member 11 (SLC7A11) signaling pathway. Twenty-four male SD rats were randomly divided into control, Nic (nicorandil), LPS (lipopolysaccharide), and LPS + Nic groups and given echocardiography. A detection kit was applied to measure the levels of lactic dehydrogenase (LDH), cardiac troponin I (cTnI), and creatine kinase-MB (CK-MB); HE staining and the levels of glutathione (GSH), malondialdehyde (MDA), total iron, and Fe2+ of myocardial tissues were detected. Moreover, the expression of TLR4 and SLC7A11 were measured by qRT-PCR and the proteins regulating ferroptosis (TLR4, SLC7A11, GPX4, ACSL4, DMT1, Fpn, and TfR1) were checked by western blot. Myocardial cells (H9C2) were induced with lipopolysaccharide (LPS) and transfected with si-TLR4 or SLC7A11-OE. Then, the viability, ferroptosis, and TLR4/SLC7A11 signaling pathway of cells were examined. Nicorandil could significantly increase left ventricular (LV) ejection fraction (LVEF) while reduce LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV). Also, it greatly reduced the levels of LDH, cTnI, and CK-MB; alleviated the pathological changes of myocardial injury; notably decreased MDA, total iron, and Fe2+ levels in myocardial tissues; and significantly increased GSH level. Besides, nicorandil obviously raised protein levels of GPX4, Fpn, and SLC7A11, and decreased protein levels of ACSL4, DMT1, TfR1, and TLR4. After knockdown of TLR4 or overexpression of SLC7A11, the inhibition effect of nicorandil on ferroptosis was strengthened in LPS-induced H9C2 cells. Therefore, nicorandil may regulate ferroptosis through TLR4/SLC7A11 signaling, thereby alleviating septic cardiomyopathy.
Collapse
Affiliation(s)
- Jin-Shuai Lu
- Departments of Emergency, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang, 830001, China
| | - Jian-Hao Wang
- Postgraduate School, Xinjiang Medical University, Urumqi City, Xinjiang, 830017, China
| | - Kun Han
- Postgraduate School, Xinjiang Medical University, Urumqi City, Xinjiang, 830017, China
| | - Nan Li
- Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang, 830001, China.
| |
Collapse
|
207
|
Mousavi Ghahfarrokhi SS, Mohamadzadeh M, Samadi N, Fazeli MR, Khaki S, Khameneh B, Khameneh Bagheri R. Management of Cardiovascular Diseases by Short-Chain Fatty Acid Postbiotics. Curr Nutr Rep 2024; 13:294-313. [PMID: 38656688 DOI: 10.1007/s13668-024-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Global health concerns persist in the realm of cardiovascular diseases (CVDs), necessitating innovative strategies for both prevention and treatment. This narrative review aims to explore the potential of short-chain fatty acids (SCFAs)-namely, acetate, propionate, and butyrate-as agents in the realm of postbiotics for the management of CVDs. RECENT FINDINGS We commence our discussion by elucidating the concept of postbiotics and their pivotal significance in mitigating various aspects of cardiovascular diseases. This review centers on a comprehensive examination of diverse SCFAs and their associated receptors, notably GPR41, GPR43, and GPR109a. In addition, we delve into the intricate cellular and pharmacological mechanisms through which these receptors operate, providing insights into their specific roles in managing cardiovascular conditions such as hypertension, atherosclerosis, heart failure, and stroke. The integration of current information in our analysis highlights the potential of both SCFAs and their receptors as a promising path for innovative therapeutic approaches in the field of cardiovascular health. The idea of postbiotics arises as an optimistic and inventive method, presenting new opportunities for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Khaki
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ramin Khameneh Bagheri
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
208
|
Mondal S, Pramanik S, Khare VR, Fernandez CJ, Pappachan JM. Sodium glucose cotransporter-2 inhibitors and heart disease: Current perspectives. World J Cardiol 2024; 16:240-259. [PMID: 38817648 PMCID: PMC11135334 DOI: 10.4330/wjc.v16.i5.240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024] Open
Abstract
Sodium glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic medications with remarkable cardiovascular (CV) benefits proven by multiple randomised controlled trials and real-world data. These drugs are also useful in the prevention of CV disease (CVD) in patients with diabetes mellitus (DM). Although DM as such is a huge risk factor for CVD, the CV benefits of SGLT-2i are not just because of antidiabetic effects. These molecules have proven beneficial roles in prevention and management of nondiabetic CVD and renal disease as well. There are various molecular mechanisms for the organ protective effects of SGLT-2i which are still being elucidated. Proper understanding of the role of SGLT-2i in prevention and management of CVD is important not only for the cardiologists but also for other specialists caring for various illnesses which can directly or indirectly impact care of heart diseases. This clinical review compiles the current evidence on the rational use of SGLT-2i in clinical practice.
Collapse
Affiliation(s)
- Sunetra Mondal
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Multispecialty Hospitals, Siliguri 734010, West Bengal, India
| | - Vibhu Ranjan Khare
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Cornelius James Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
209
|
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic Adenosine Monophosphate in Cardiac and Sympathoadrenal GLP-1 Receptor Signaling: Focus on Anti-Inflammatory Effects. Pharmaceutics 2024; 16:693. [PMID: 38931817 PMCID: PMC11206770 DOI: 10.3390/pharmaceutics16060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (R.A.S.)
| | | | | |
Collapse
|
210
|
Higuchi T, Chen X, Werner RA. Navigating new horizons: Prospects of NET-targeted radiopharmaceuticals in precision medicine. Theranostics 2024; 14:3178-3192. [PMID: 38855189 PMCID: PMC11155404 DOI: 10.7150/thno.96743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
In the evolving landscape of precision medicine, NET-targeted radiopharmaceuticals are emerging as pivotal tools for the diagnosis and treatment of a range of conditions, from heart failure and neurodegenerative disorders to neuroendocrine cancers. This review evaluates the advancements offered by 18F-labeled PET tracers and 211At alpha-particle therapy, juxtaposed with current 123I-MIBG SPECT and 131I-MIBG therapies. The enhanced spatial resolution and capability for quantitative analysis render 18F-labeled PET tracers potential candidates for improved detection and management of diseases. Alpha-particle therapy with 211At may offer increased specificity and tumoricidal efficacy, pointing towards a shift in therapeutic protocols. While preliminary data is promising, these innovative approaches require thorough validation against current modalities. Ongoing clinical trials are pivotal to confirm the expected clinical benefits and to address safety concerns. This review underscores the need for rigorous research to verify the clinical utility of NET-targeted radiopharmaceuticals, which may redefine precision medicine paradigms and significantly impact patient care.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Rudolf A Werner
- DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany
- Goethe University Frankfurt, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- The Russell H Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
211
|
Bode C, Preissl S, Hein L, Lother A. Catecholamine treatment induces reversible heart injury and cardiomyocyte gene expression. Intensive Care Med Exp 2024; 12:48. [PMID: 38733526 PMCID: PMC11088585 DOI: 10.1186/s40635-024-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Catecholamines are commonly used as therapeutic drugs in intensive care medicine to maintain sufficient organ perfusion during shock. However, excessive or sustained adrenergic activation drives detrimental cardiac remodeling and may lead to heart failure. Whether catecholamine treatment in absence of heart failure causes persistent cardiac injury, is uncertain. In this experimental study, we assessed the course of cardiac remodeling and recovery during and after prolonged catecholamine treatment and investigated the molecular mechanisms involved. RESULTS C57BL/6N wild-type mice were assigned to 14 days catecholamine treatment with isoprenaline and phenylephrine (IsoPE), treatment with IsoPE and subsequent recovery, or healthy control groups. IsoPE improved left ventricular contractility but caused substantial cardiac fibrosis and hypertrophy. However, after discontinuation of catecholamine treatment, these alterations were largely reversible. To uncover the molecular mechanisms involved, we performed RNA sequencing from isolated cardiomyocyte nuclei. IsoPE treatment resulted in a transient upregulation of genes related to extracellular matrix formation and transforming growth factor signaling. While components of adrenergic receptor signaling were downregulated during catecholamine treatment, we observed an upregulation of endothelin-1 and its receptors in cardiomyocytes, indicating crosstalk between both signaling pathways. To follow this finding, we treated mice with endothelin-1. Compared to IsoPE, treatment with endothelin-1 induced minor but longer lasting changes in cardiomyocyte gene expression. DNA methylation-guided analysis of enhancer regions identified immediate early transcription factors such as AP-1 family members Jun and Fos as key drivers of pathological gene expression following catecholamine treatment. CONCLUSIONS The results from this study show that prolonged catecholamine exposure induces adverse cardiac remodeling and gene expression before the onset of left ventricular dysfunction which has implications for clinical practice. The observed changes depend on the type of stimulus and are largely reversible after discontinuation of catecholamine treatment. Crosstalk with endothelin signaling and the downstream transcription factors identified in this study provide new opportunities for more targeted therapeutic approaches that may help to separate desired from undesired effects of catecholamine treatment.
Collapse
Affiliation(s)
- Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
212
|
Nagliya D, Baggio Lopez T, Del Calvo G, Stoicovy RA, Borges JI, Suster MS, Lymperopoulos A. Differential Modulation of Catecholamine and Adipokine Secretion by the Short Chain Fatty Acid Receptor FFAR3 and α 2-Adrenergic Receptors in PC12 Cells. Int J Mol Sci 2024; 25:5227. [PMID: 38791266 PMCID: PMC11120680 DOI: 10.3390/ijms25105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gβγ-activated phospholipase C (PLC)-β/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (D.N.); (T.B.L.); (G.D.C.); (R.A.S.); (J.I.B.); (M.S.S.)
| |
Collapse
|
213
|
Wakeley ME, Denning NL, Jiang J, De Paepe ME, Chung CS, Wang P, Ayala A. Herpes virus entry mediator signaling blockade produces mortality in neonatal sepsis through induced cardiac dysfunction. Front Immunol 2024; 15:1365174. [PMID: 38774873 PMCID: PMC11106455 DOI: 10.3389/fimmu.2024.1365174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jihong Jiang
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
214
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 PMCID: PMC12164723 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
215
|
Zhong J, Chen H, Liu Q, Zhou S, Liu Z, Xiao Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J Pharm Anal 2024; 14:100917. [PMID: 38799233 PMCID: PMC11127228 DOI: 10.1016/j.jpha.2023.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Many medical conditions, including hypertension, diabetes, obesity, sleep apnea, and heart failure (HF), increase the risk for AF. Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production. Significant changes occur in myocardial metabolism in AF. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus (T2DM) and obesity. GLP-1RAs have also been shown to reduce oxidative stress, inflammation, autonomic nervous system modulation, and mitochondrial function. This article reviews the changes in metabolic characteristics in cardiomyocytes in AF. Although the clinical trial outcomes are unsatisfactory, the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors, lowering the incidence of AF.
Collapse
Affiliation(s)
- Jiani Zhong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hang Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
216
|
Peng C, Lu Y, Li R, Zhang L, Liu Z, Xu X, Wang C, Hu R, Tan W, Zhou L, Wang Y, Yu L, Wang Y, Tang B, Jiang H. Neuroimmune modulation mediated by IL-6: A potential target for the treatment of ischemia-induced ventricular arrhythmias. Heart Rhythm 2024; 21:610-619. [PMID: 38160759 DOI: 10.1016/j.hrthm.2023.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Neural remodeling in the left stellate ganglion (LSG), as mediated by neuroimmune reactions, promotes cardiac sympathetic nerve activity (SNA) and thus increases the incidence of ventricular arrhythmias (VAs). Interleukin-6 (IL-6) is an important factor of the neuroimmune interaction. OBJECTIVE The present study explored the effects of IL-6 on LSG hyperactivity and the incidence of VAs. METHODS Eighteen beagles were randomly allocated to a control group (saline with myocardial infarction [MI], n = 6), adeno-associated virus (AAV) group (AAV with MI, n = 6), and IL-6 group (overexpression of IL-6 via AAV vector with MI, n = 6). Ambulatory electrocardiography was performed before and 30 days after AAV microinjection into the LSG. LSG function and ventricular electrophysiology were assessed at 31 days after surgery, and a canine MI model was established. Samples of the LSG were collected for immunofluorescence staining and molecular biological evaluation. Blood samples and 24-hour Holter data were obtained from 24 patients with acute MI on the day after they underwent percutaneous coronary intervention to assess the correlation between IL-6 levels and SNA. RESULTS IL-6 overexpression increased cardiac SNA and worsened postinfarction VAs. Furthermore, sustained IL-6 overexpression enhanced LSG function, promoted expression of nerve growth factor, c-fos, and fos B in the LSG, and activated the signal transducer and activator of transcription 3/regulator of G protein signalling 4 signaling pathway. Clinical sample analysis revealed a correlation between serum IL-6 levels and heart rate variability frequency domain index as well as T-wave alternans. CONCLUSION IL-6 levels are correlated with cardiac SNA. Chronic overexpression of IL-6 mediates LSG neural remodeling through the signal transducer and activator of transcription 3/regulator of G protein signalling 4 signaling pathway, elevating the risk of VA after MI.
Collapse
Affiliation(s)
- Chen Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Yanmei Lu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Rui Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Ling Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Ruijie Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Baopeng Tang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, P.R. China; Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, P.R. China.
| |
Collapse
|
217
|
Benndorf RA. Introduction to the Special Issue "Angiotensin Receptors". Biochem Pharmacol 2024; 223:116180. [PMID: 38565339 DOI: 10.1016/j.bcp.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Ralf A Benndorf
- Martin-Luther-University Halle-Wittenberg, Department of Clinical Pharmacy and Pharmacotherapy, Halle (Saale), Germany; Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
218
|
Eliezeck M, Guedes Jesus IC, Scalzo SA, Sanches BDL, Silva KSC, Costa M, Mesquita T, Rocha-Resende C, Szawka RE, Guatimosim S. β-Adrenergic signaling drives structural and functional maturation of mouse cardiomyocytes. Am J Physiol Cell Physiol 2024; 326:C1334-C1344. [PMID: 38557356 DOI: 10.1152/ajpcell.00426.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Cardiac maturation represents the last phase of heart development and is characterized by morphofunctional alterations that optimize the heart for efficient pumping. Its understanding provides important insights into cardiac regeneration therapies. Recent evidence implies that adrenergic signals are involved in the regulation of cardiac maturation, but the mechanistic underpinnings involved in this process are poorly understood. Herein, we explored the role of β-adrenergic receptor (β-AR) activation in determining structural and functional components of cardiomyocyte maturation. Temporal characterization of tyrosine hydroxylase and norepinephrine levels in the mouse heart revealed that sympathetic innervation develops during the first 3 wk of life, concurrent with the rise in β-AR expression. To assess the impact of adrenergic inhibition on maturation, we treated mice with propranolol, isolated cardiomyocytes, and evaluated morphofunctional parameters. Propranolol treatment reduced heart weight, cardiomyocyte size, and cellular shortening, while it increased the pool of mononucleated myocytes, resulting in impaired maturation. No changes in t-tubules were observed in cells from propranolol mice. To establish a causal link between β-AR signaling and cardiomyocyte maturation, mice were subjected to sympathectomy, followed or not by restoration with isoproterenol treatment. Cardiomyocytes from sympathectomyzed mice recapitulated the salient immaturity features of propranolol-treated mice, with the additional loss of t-tubules. Isoproterenol rescued the maturation deficits induced by sympathectomy, except for the t-tubule alterations. Our study identifies the β-AR stimuli as a maturation promoting signal and implies that this pathway can be modulated to improve cardiac regeneration therapies.NEW & NOTEWORTHY Maturation involves a series of morphofunctional alterations vital to heart development. Its regulatory mechanisms are only now being unveiled. Evidence implies that adrenergic signaling regulates cardiac maturation, but the mechanisms are poorly understood. To address this point, we blocked β-ARs or performed sympathectomy followed by rescue experiments with isoproterenol in neonatal mice. Our study identifies the β-AR stimuli as a maturation signal for cardiomyocytes and highlights the importance of this pathway in cardiac regeneration therapies.
Collapse
Affiliation(s)
- Marcos Eliezeck
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Itamar Couto Guedes Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sérgio A Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno de Lima Sanches
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kaoma Stephani Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thássio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
219
|
Mohammadi K, Shafie D, Ghomashi N, Abdolizadeh A, Sadeghpour M. Kinin-kallikrein system: New perspectives in heart failure. Heart Fail Rev 2024; 29:729-737. [PMID: 38381277 DOI: 10.1007/s10741-024-10393-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.
Collapse
Affiliation(s)
- Keivan Mohammadi
- Shahid Chamran Heart Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Newsha Ghomashi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Abdolizadeh
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Majid Sadeghpour
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
220
|
Kästner SB, Amon T, Tünsmeyer J, Noll M, Söbbeler FJ, Laakso S, Saloranta L, Huhtinen M. Effects of tasipimidine premedication with and without methadone and dexmedetomidine on cardiovascular variables during propofol-isoflurane anaesthesia in Beagle dogs. Vet Anaesth Analg 2024; 51:253-265. [PMID: 38580536 DOI: 10.1016/j.vaa.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN Prospective, placebo-controlled, blinded, experimental trial. ANIMALS A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 μg kg-1 orally and placebo IV; TMP: tasipimidine 30 μg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 μg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 μg kg-1 IV followed by 1 μg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.
Collapse
Affiliation(s)
- Sabine Br Kästner
- Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany.
| | - Thomas Amon
- Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Julia Tünsmeyer
- Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Mike Noll
- Evidensia, Small Animal Clinic, Norderstedt, Germany
| | | | - Sirpa Laakso
- Department of Research and Development, Orion Pharma, Orion Corporation, Espoo, Finland
| | - Lasse Saloranta
- Department of Research and Development, Orion Pharma, Orion Corporation, Espoo, Finland
| | - Mirja Huhtinen
- Department of Research and Development, Orion Pharma, Orion Corporation, Espoo, Finland
| |
Collapse
|
221
|
Yoshimura K, Mengyan W, Kume S, Kurokawa T, Miyamoto S, Mizukami Y, Ono K. Detection and identification of factors in the atrium responsible for blood pressure regulation in patients with hypertension. Heart Vessels 2024; 39:464-474. [PMID: 38451262 PMCID: PMC11006736 DOI: 10.1007/s00380-024-02362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
Resection of the left atrial appendage reportedly improves blood pressure in patients with hypertension. This study aimed to validate the transcriptional profiles of atrial genes responsible for blood pressure regulation in patients with hypertension as well as to identify the molecular mechanisms in rat biological systems. RNA sequencing data of left atrial appendages from patients with (n = 6) and without (n = 6) hypertension were subjected to unsupervised principal component analysis (PCA). Reduction of blood pressure was reflected by third and ninth principal components PC3 and PC9, and that eighteen transcripts, including endothelin-1, were revealed by PCA-based pathway analysis. Resection of the left atrial appendage in hypertensive rats improved their blood pressure accompanied by a decrease in serum endothelin-1 concentration. Expression of the endothelin-1 gene in the atrium and atrial appendectomy could play roles in blood pressure regulation in humans and rats.
Collapse
Affiliation(s)
- Kenshi Yoshimura
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
- Department of Cardiovascular Surgery, Oita University School of Medicine, Oita University, Yufu, Oita, Japan
| | - Wei Mengyan
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Oita University School of Medicine, Oita University, Yufu, Oita, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube, Yamaguchi, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
222
|
Dubin A, Mugno M. The Effects of Dobutamine in Septic Shock: An Updated Narrative Review of Clinical and Experimental Studies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:751. [PMID: 38792934 PMCID: PMC11123338 DOI: 10.3390/medicina60050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
The key objective in the hemodynamic treatment of septic shock is the optimization of tissue perfusion and oxygenation. This is usually achieved by the utilization of fluids, vasopressors, and inotropes. Dobutamine is the inotrope most commonly recommended and used for this purpose. Despite the fact that dobutamine was introduced almost half a century ago in the treatment of septic shock, and there is widespread use of the drug, several aspects of its pharmacodynamics remain poorly understood. In normal subjects, dobutamine increases contractility and lacks a direct effect on vascular tone. This results in augmented cardiac output and blood pressure, with reflex reduction in systemic vascular resistance. In septic shock, some experimental and clinical research suggest beneficial effects on systemic and regional perfusion. Nevertheless, other studies found heterogeneous and unpredictable effects with frequent side effects. In this narrative review, we discuss the pharmacodynamic characteristics of dobutamine and its physiologic actions in different settings, with special reference to septic shock. We discuss studies showing that dobutamine frequently induces tachycardia and vasodilation, without positive actions on contractility. Since untoward effects are often found and therapeutic benefits are occasional, its profile of efficacy and safety seems low. Therefore, we recommend that the use of dobutamine in septic shock should be cautious. Before a final decision about its prescription, efficacy, and tolerance should be evaluated throughout a short period with narrow monitoring of its wanted and side effects.
Collapse
Affiliation(s)
- Arnaldo Dubin
- Cátedras de Terapia Intensiva y Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata B1902AGW, Argentina
- Sanatorio Otamendi, Azcuénaga 870, Ciudad Autónoma de Buenos Aires C1115AAB, Argentina;
| | - Matías Mugno
- Sanatorio Otamendi, Azcuénaga 870, Ciudad Autónoma de Buenos Aires C1115AAB, Argentina;
| |
Collapse
|
223
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
224
|
Beito MR, Ashraf S, Odogwu D, Harmancey R. Role of Ectopic Olfactory Receptors in the Regulation of the Cardiovascular-Kidney-Metabolic Axis. Life (Basel) 2024; 14:548. [PMID: 38792570 PMCID: PMC11122380 DOI: 10.3390/life14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Olfactory receptors (ORs) represent one of the largest yet least investigated families of G protein-coupled receptors in mammals. While initially believed to be functionally restricted to the detection and integration of odors at the olfactory epithelium, accumulating evidence points to a critical role for ectopically expressed ORs in the regulation of cellular homeostasis in extranasal tissues. This review aims to summarize the current state of knowledge on the expression and physiological functions of ectopic ORs in the cardiovascular system, kidneys, and primary metabolic organs and emphasizes how altered ectopic OR signaling in those tissues may impact cardiovascular-kidney-metabolic health.
Collapse
Affiliation(s)
| | | | | | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.R.B.); (S.A.); (D.O.)
| |
Collapse
|
225
|
Jeeyavudeen MS, Mathiyalagan N, Fernandez James C, Pappachan JM. Tumor metabolism in pheochromocytomas: clinical and therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:349-373. [PMID: 38745767 PMCID: PMC11090696 DOI: 10.37349/etat.2024.00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 05/16/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) have emerged as one of the most common endocrine tumors. It epitomizes fascinating crossroads of genetic, metabolic, and endocrine oncology, providing a canvas to explore the molecular intricacies of tumor biology. Predominantly rooted in the aberration of metabolic pathways, particularly the Krebs cycle and related enzymatic functionalities, PPGLs manifest an intriguing metabolic profile, highlighting elevated levels of oncometabolites like succinate and fumarate, and furthering cellular malignancy and genomic instability. This comprehensive review aims to delineate the multifaceted aspects of tumor metabolism in PPGLs, encapsulating genetic factors, oncometabolites, and potential therapeutic avenues, thereby providing a cohesive understanding of metabolic disturbances and their ramifications in tumorigenesis and disease progression. Initial investigations into PPGLs metabolomics unveiled a stark correlation between specific genetic mutations, notably in the succinate dehydrogenase complex (SDHx) genes, and the accumulation of oncometabolites, establishing a pivotal role in epigenetic alterations and hypoxia-inducible pathways. By scrutinizing voluminous metabolic studies and exploiting technologies, novel insights into the metabolic and genetic aspects of PPGLs are perpetually being gathered elucidating complex interactions and molecular machinations. Additionally, the exploration of therapeutic strategies targeting metabolic abnormalities has burgeoned harboring potential for innovative and efficacious treatment modalities. This review encapsulates the profound metabolic complexities of PPGLs, aiming to foster an enriched understanding and pave the way for future investigations and therapeutic innovations in managing these metabolically unique tumors.
Collapse
Affiliation(s)
| | - Navin Mathiyalagan
- Department of Medical Oncology, Nottingham University Hospitals NHS Trust, NG5 1PB Nottingham, UK
| | - Cornelius Fernandez James
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, PE21 9QS Boston, UK
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, PR2 9HT Preston, UK
- Faculty of Science, Manchester Metropolitan University, M15 6BH Manchester, UK
- Faculty of Biology, Medicine, and Health, The University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
226
|
Brisnovali NF, Franco I, Abdelgawwad A, Tsou HLP, Cao TH, Riva A, Rutter GA, Akalestou E. Effects of SGLT2 Ablation or Inhibition on Corticosterone Secretion in High-Fat-Fed Mice: Exploring a Nexus with Cytokine Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590099. [PMID: 38712064 PMCID: PMC11071289 DOI: 10.1101/2024.04.18.590099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Despite recent therapeutic advances, achieving optimal glycaemic control remains a challenge in managing Type 2 Diabetes (T2D). Sodium-glucose co-transporter type 2 (SGLT2) inhibitors have emerged as effective treatments by promoting urinary glucose excretion. However, the full scope of their mechanisms extends beyond glycaemic control. At present, their immunometabolic effects remain elusive. To investigate the effects of SGLT2 inhibition or deletion, we compared the metabolic and immune phenotype between high fat diet-fed control, chronically dapagliflozin-treated mice and total-body SGLT2/Slc5a2 knockout mice. SGLT2 null mice exhibited superior glucose tolerance and insulin sensitivity compared to control or dapagliflozin-treated mice, independent of glycosuria and body weight. Moreover, SGLT2 null mice demonstrated physiological regulation of corticosterone secretion, with lowered morning levels compared to control mice. Systemic cytokine profiling also unveiled significant alterations in inflammatory mediators, particularly interleukin 6 (IL-6). Furthermore, unbiased proteomic analysis demonstrated downregulation of acute-phase proteins and upregulation of glutathione-related proteins, suggesting a role in the modulation of antioxidant responses. Conversely, IL-6 increased SGLT2 expression in kidney HK2 cells suggesting a role for cytokines in the effects of hyperglycemia. Collectively, our study elucidates a potential interplay between SGLT2 activity, immune modulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Niki F. Brisnovali
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Isabelle Franco
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amira Abdelgawwad
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hio Lam Phoebe Tsou
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Thong Huy Cao
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, United Kingdom
- Leicester van Geest Multi-OMICS facility, University of Leicester, Leicester, United Kingdom
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
227
|
Sisakian HS, Tavaratsyan AR. Cardiogenic pulmonary edema - is it lone cardiogenic? "Missing link" between hemodynamic and other existing mechanisms. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2024; 14:81-89. [PMID: 38764545 PMCID: PMC11101961 DOI: 10.62347/ygqq8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 05/21/2024]
Abstract
The current traditional pathophysiologic concept of pulmonary edema of cardiogenic origin explains its development by a hydrostatic effect due to increased pulmonary capillary pressure resulting in fluid flux to alveolar and interstitial areas from capillaries. However, several experimental studies and clinical data of poor response to hemodynamic and diuretic treatment in many scenarios provide further evidence of the involvement of several other contributing factors to the development of cardiogenic pulmonary edema. Several experimental and clinical studies have found that sympathetic overactivity with elevated plasma catecholamine concentrations may play an important role in the development of cardiovascular-associated pulmonary edema. Catecholamine-induced pulmonary injury may be one of the key mechanisms in acute cardiogenic pulmonary edema triggering proinflammatory cytokine overactivation, oxidative stress and myocardial injury. In the everyday treatment of acute heart failure, physicians should consider the possibility of other noncardiogenic mechanisms involved in the progression of acute pulmonary edema, particularly catecholamine overactivity, lymphatic drainage, inflammatory and oxidative stress, high surfactant protein. The classic, hemodynamic treatment approach in pulmonary edema with the coexistence of other contributing factors may not provide adequate clinical benefit during treatment.
Collapse
Affiliation(s)
- Hamayak S Sisakian
- Department of Cardiology and Clinic of General and Invasive Cardiology, University Hospital 1, Yerevan State Medical UniversityYerevan, Armenia
| | - Ani R Tavaratsyan
- Erebouni Medical Centre, Yerevan State Medical UniversityYerevan, Armenia
| |
Collapse
|
228
|
de Oliveira MT, Baptista R, Chavez-Leal SA, Bonatto MG. Heart failure management with β-blockers: can we do better? Curr Med Res Opin 2024; 40:43-54. [PMID: 38597068 DOI: 10.1080/03007995.2024.2318002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Heart failure (HF) is associated with disabling symptoms, poor quality of life, and a poor prognosis with substantial excess mortality in the years following diagnosis. Overactivation of the sympathetic nervous system is a key feature of the pathophysiology of HF and is an important driver of the process of adverse remodelling of the left ventricular wall that contributes to cardiac failure. Drugs which suppress the activity of the renin-angiotensin-aldosterone system, including β-blockers, are foundation therapies for the management of heart failure with reduced ejection fraction (HFrEF) and despite a lack of specific outcomes trials, are also widely used by cardiologist in patients with HF with preserved ejection fraction (HFpEF). Today, expert opinion has moved away from recommending that treatment for HF should be guided solely by the LVEF and interventions should rather address signs and symptoms of HF (e.g. oedema and tachycardia), the severity of HF, and concomitant conditions. β-blockers improve HF symptoms and functional status in HF and these agents have demonstrated improved survival, as well as a reduced risk of other important clinical outcomes such as hospitalisation for heart failure, in randomised, placebo-controlled outcomes trials. In HFpEF, β-blockers are anti-ischemic and lower blood pressure and heart rate. Moreover, β-blockers also reduce mortality in the setting of HF occurring alongside common comorbid conditions, such as diabetes, CKD (of any severity), and COPD. Higher doses of β-blockers are associated with better clinical outcomes in populations with HF, so that ensuring adequate titration of therapy to their maximal (or maximally tolerated) doses is important for ensuring optimal outcomes for people with HF. In principle, a patient with HF could have combined treatment with a β-blocker, renin-angiotensin-aldosterone system inhibitor/neprilysin inhibitor, mineralocorticoid receptor antagonist, and a SGLT2 inhibitor, according to tolerability.
Collapse
Affiliation(s)
- Mucio Tavares de Oliveira
- Heart Institute, Day Hospital and Infusion Center, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Infusion Center and Day Hospital at Heart Institute (InCor), University of Sao Paulo, Sao Paulo, Brazil
| | - Rui Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | | | - Marcely Gimenes Bonatto
- Department of Heart Failure and Heart Transplant, Hospital Santa Casa de Misericórdia de, Curitiba, Brazil
| |
Collapse
|
229
|
Taddei S, Tsabedze N, Tan RS. β-blockers are not all the same: pharmacologic similarities and differences, potential combinations and clinical implications. Curr Med Res Opin 2024; 40:15-23. [PMID: 38597065 DOI: 10.1080/03007995.2024.2318058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
β-blockers are a heterogeneous class, with individual agents distinguished by selectivity for β1- vs. β2- and α-adrenoceptors, presence or absence of partial agonist activity at one of more β-receptor subtype, presence or absence of additional vasodilatory properties, and lipophilicity, which determines the ease of entry the drug into the central nervous system. Cardioselectivity (β1-adrenoceptor selectivity) helps to reduce the potential for adverse effects mediated by blockade of β2-adrenoceptors outside the myocardium, such as cold extremities, erectile dysfunction, or exacerbation of asthma or chronic obstructive pulmonary disease. According to recently updated guidelines from the European Society of Hypertension, β-blockers are included within the five major drug classes recommended as the basis of antihypertensive treatment strategies. Adding a β-blocker to another agent with a complementary mechanism may provide a rational antihypertensive combination that minimizes the adverse impact of induced sympathetic overactivity for optimal blood pressure-lowering efficacy and clinical outcomes benefit.
Collapse
Affiliation(s)
- Stefano Taddei
- Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
- Cardiovascular Sciences, Duke NUS Medical School, Singapore
| |
Collapse
|
230
|
Maghsoudi S, Shuaib R, Van Bastelaere B, Dakshinamurti S. Adenylyl cyclase isoforms 5 and 6 in the cardiovascular system: complex regulation and divergent roles. Front Pharmacol 2024; 15:1370506. [PMID: 38633617 PMCID: PMC11021717 DOI: 10.3389/fphar.2024.1370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Rabia Shuaib
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ben Van Bastelaere
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Section of Neonatology, Department of Pediatrics, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
231
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure. Biomed Pharmacother 2024; 173:116413. [PMID: 38461687 DOI: 10.1016/j.biopha.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
232
|
Maryam, Varghese TP, B T. Unraveling the complex pathophysiology of heart failure: insights into the role of renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). Curr Probl Cardiol 2024; 49:102411. [PMID: 38246316 DOI: 10.1016/j.cpcardiol.2024.102411] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Heart failure (HF) is a widespread disease with significantly elevated mortality, morbidity, and hospitalization rates. Dysregulation of the sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS) are both postulated to be significant regulators of cardiovascular function, thereby playing a pivotal role in its pathophysiology. The RAAS is a sophisticated hormonal system that controls electrolyte homeostasis, fluid balance, and blood pressure. Angiotensin II, which operates to constrict blood vessels and raise blood pressure, is its principal effector molecule. The RAAS is frequently hyperactive in HF, which increases fluid retention and worsens cardiac function. The SNS is frequently hyperactive in heart failure, which increases the workload on the heart and worsens symptoms. This review will discuss what is currently known about the pathophysiology of heart failure, specifically in the context of RAAS and the SNS, in-depth to emphasize the knowledge gap that necessitates more research.
Collapse
Affiliation(s)
- Maryam
- Department of Pharmacy Practice, Deccan School of Pharmacy, Nampally, Hyderabad, Telangana, India; Department of Pharmacy Practice, Yenepoya Pharmacy College & Research centre, Yenepoya (Deemed to be University), Ayush campus, Naringana, Deralakatte, Mangalore, Karnataka, India
| | - Treesa P Varghese
- Department of Pharmacy Practice, Yenepoya Pharmacy College & Research centre, Yenepoya (Deemed to be University), Ayush campus, Naringana, Deralakatte, Mangalore, Karnataka, India.
| | - Tazneem B
- Department of Pharmacy Practice, Deccan School of Pharmacy, Nampally, Hyderabad, Telangana, India; Department of Pharmacy Practice, Yenepoya Pharmacy College & Research centre, Yenepoya (Deemed to be University), Ayush campus, Naringana, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
233
|
Zhang J, Cao Y, Ren R, Sui W, Zhang Y, Zhang M, Zhang C. Medium-Dose Formoterol Attenuated Abdominal Aortic Aneurysm Induced by EPO via β2AR/cAMP/SIRT1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306232. [PMID: 38353392 PMCID: PMC11022707 DOI: 10.1002/advs.202306232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Indexed: 04/18/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease but effective drugs for treatment of AAA are still lacking. Recently, erythropoietin (EPO) is reported to induce AAA formation in apolipoprotein-E knock out (ApoE-/-) mice but an effective antagonist is unknown. In this study, formoterol, a β2 adrenergic receptor (β2AR) agonist, is found to be a promising agent for inhibiting AAA. To test this hypothesis, ApoE-/- mice are treated with vehicle, EPO, and EPO plus low-, medium-, and high-dose formoterol, respectively. The incidence of AAA is 0, 55%, 35%,10%, and 55% in these 5 groups, respectively. Mechanistically, senescence of vascular smooth muscle cell (VSMC) is increased by EPO while decreased by medium-dose formoterol both in vivo and in vitro, manifested by the altered expression of senescence biomarkers including phosphorylation of H2AXserine139, senescence-associated β-galactosidase activity, and P21 protein level. In addition, expression of sirtuin 1 (SIRT1) in aorta is decreased in EPO-induced AAA but remarkably elevated by medium-dose formoterol. Knockdown of β2AR and blockage of cyclic adenosine monophosphate (cAMP) attenuate the inhibitory role of formoterol in EPO-induced VSMC senescence. In summary, medium-dose formoterol attenuates EPO-induced AAA via β2AR/cAMP/SIRT1 pathways, which provides a promising medication for the treatment of AAA.
Collapse
Affiliation(s)
- Jianlin Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yu Cao
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Ruiqing Ren
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| |
Collapse
|
234
|
Duignan SM, Lakshminrusimha S, Armstrong K, de Boode WP, El-Khuffash A, Franklin O, Molloy EJ. Neonatal sepsis and cardiovascular dysfunction I: mechanisms and pathophysiology. Pediatr Res 2024; 95:1207-1216. [PMID: 38044334 DOI: 10.1038/s41390-023-02926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 12/05/2023]
Abstract
The highest incidence of sepsis across all age groups occurs in neonates leading to substantial mortality and morbidity. Cardiovascular dysfunction frequently complicates neonatal sepsis including biventricular systolic and/or diastolic dysfunction, vasoregulatory failure, and pulmonary arterial hypertension. The haemodynamic response in neonatal sepsis can be hyperdynamic or hypodynamic and the underlying pathophysiological mechanisms are heterogeneous. The diagnosis and definition of both neonatal sepsis and cardiovascular dysfunction complicating neonatal sepsis are challenging and not consensus-based. Future developments in neonatal sepsis management will be facilitated by common definitions and datasets especially in neonatal cardiovascular optimisation. IMPACT: Cardiovascular dysfunction is common in neonatal sepsis but there is no consensus-based definition, making calculating the incidence and designing clinical trials challenging. Neonatal cardiovascular dysfunction is related to the inflammatory response, which can directly target myocyte function and systemic haemodynamics.
Collapse
Affiliation(s)
- Sophie M Duignan
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | | | - Kathryn Armstrong
- Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Afif El-Khuffash
- School of Medicine, Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orla Franklin
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Trinity College, The University of Dublin, Trinity Research in Childhood (TRiCC) & Trinity Translational Medicine Institute (TTMI), Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Trinity Research in Childhood (TRiCC) & Trinity Translational Medicine Institute (TTMI), Dublin, Ireland.
- Department of Neonatology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Department of Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland.
- Paediatric Neurodisability, Children's Health Ireland at Tallaght, Dublin, Ireland.
| |
Collapse
|
235
|
Nassour H, Pétrin D, Devost D, Billard E, Sleno R, Hébert TE, Chatenet D. Evidence for heterodimerization and functional interaction of the urotensin II and the angiotensin II type 1 receptors. Cell Signal 2024; 116:111056. [PMID: 38262555 DOI: 10.1016/j.cellsig.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.
Collapse
Affiliation(s)
- Hassan Nassour
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Etienne Billard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada.
| |
Collapse
|
236
|
Rendell M. Lessons learned from early-stage clinical trials for diabetic nephropathy. Expert Opin Investig Drugs 2024; 33:287-301. [PMID: 38465470 DOI: 10.1080/13543784.2024.2326025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The evolution of treatment for diabetic nephropathy illustrates how basic biochemistry and physiology have led to new agents such as SGLT2 inhibitors and mineralocorticoid blockers. Conversely, clinical studies performed with these agents have suggested new concepts for investigational drug development. We reviewed currently available treatments for diabetic nephropathy and then analyzed early clinical trials of new agents to assess the potential for future treatment modalities. AREAS COVERED We searched ClinicalTrials.gov for new agents under study for diabetic nephropathy in the past decade. Once we have identified investigation trials of new agents, we then used search engines and Pubmed.gov to find publications providing insight on these drugs. Current treatments have shown benefit in both cardiac and renal disease. In our review, we found 51 trials and 43 pharmaceuticals in a number of drug classes: mineralocorticoid blockers, anti-inflammatory, anti-fibrosis, nitric oxide stimulatory, and podocyte protection, and endothelin inhibitors. EXPERT OPINION It is difficult to predict which early phase treatments will advance to confirmatory clinical trials. Current agents are thought to improve hemodynamic function. However, the coincident benefit of both myocardial function and the glomerulus argues for primary effects at the subcellular level, and we follow the evolution of agents which modify fundamental cellular processes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
237
|
Zhang R, Qin C, Zhang J, HonghongRen, Wang Y, Wu Y, Zhao L, Wang J, Zhang J, Liu F. DNA hypomethylation of Syk induces oxidative stress and apoptosis via the PKCβ/P66shc signaling pathway in diabetic kidney disease. FASEB J 2024; 38:e23564. [PMID: 38522019 DOI: 10.1096/fj.202301579r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Epigenetic alterations, especially DNA methylation, have been shown to play a role in the pathogenesis of diabetes mellitus (DM) and its complications, including diabetic kidney disease (DKD). Spleen tyrosine kinase (Syk) is known to be involved in immune and inflammatory disorders. We, therefore, investigated the possible involvement of Syk promoter methylation in DKD, and the mechanisms underlying this process. Kidney tissues were obtained from renal biopsies of patients with early and advanced DKD. A diabetic mouse model (ApoE-/- DM) was generated from ApoE knockout (ApoE-/-) mice using a high-fat and high-glucose diet combined with low-dose streptozocin intraperitoneal injection. We also established an in vitro model using HK2 cells. A marked elevation in the expression levels of Syk, PKCβ, and P66shc in renal tubules was observed in patients with DKD. In ApoE-/- DM mice, Syk expression and the binding of Sp1 to the Syk gene promoter were both increased in the kidney. In addition, the promoter region of the Syk gene exhibited hypomethylation. Syk inhibitor (R788) intervention improved renal function and alleviated pathologic changes in ApoE-/- DM mice. Moreover, R788 intervention alleviated oxidative stress and apoptosis and downregulated the expression of PKCβ/P66shc signaling pathway proteins. In HK2 cells, oxLDL combined with high-glucose stimulation upregulated Sp1 expression in the nucleus (compared with control and oxLDL groups), and this was accompanied by an increase in the binding of Sp1 to the Syk gene promoter. SP1 silencing downregulated the expression of Syk and inhibited the production of reactive oxygen species and cell apoptosis. Finally, PKC agonist intervention reversed the oxidative stress and apoptosis induced by Syk inhibitor (R406). In DKD, hypomethylation at the Syk gene promoter was accompanied by an increase in Sp1 binding at the promoter. As a consequence of this enhanced Sp1 binding, Syk gene expression was upregulated. Syk inhibitors could attenuate DKD-associated oxidative stress and apoptosis via downregulation of PKCβ/P66shc signaling pathway proteins. Together, our results identify Syk as a promising target for intervention in DKD.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HonghongRen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
238
|
Walton M, Wagner JB. Pediatric Beta Blocker Therapy: A Comprehensive Review of Development and Genetic Variation to Guide Precision-Based Therapy in Children, Adolescents, and Young Adults. Genes (Basel) 2024; 15:379. [PMID: 38540438 PMCID: PMC10969836 DOI: 10.3390/genes15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Beta adrenergic receptor antagonists, known as beta blockers, are one of the most prescribed medications in both pediatric and adult cardiology. Unfortunately, most of these agents utilized in the pediatric clinical setting are prescribed off-label. Despite regulatory efforts aimed at increasing pediatric drug labeling, a majority of pediatric cardiovascular drug agents continue to lack pediatric-specific data to inform precision dosing for children, adolescents, and young adults. Adding to this complexity is the contribution of development (ontogeny) and genetic variation towards the variability in drug disposition and response. In the absence of current prospective trials, the purpose of this comprehensive review is to illustrate the current knowledge gaps regarding the key drivers of variability in beta blocker drug disposition and response and the opportunities for investigations that will lead to changes in pediatric drug labeling.
Collapse
Affiliation(s)
- Mollie Walton
- Ward Family Heart Center, Kansas City, MO 64108, USA
| | - Jonathan B. Wagner
- Ward Family Heart Center, Kansas City, MO 64108, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, 2401 Gillham Road, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
239
|
Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc Res 2024; 120:114-131. [PMID: 38195920 PMCID: PMC10936753 DOI: 10.1093/cvr/cvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
- Department for Cardiology, Bart’s Heart Centre, West Smithfield EC1A 7BE, London, UK
| |
Collapse
|
240
|
Wang X, Yang J, Lu C, Hu Y, Xu Z, Wan Q, Zhang M, Shi T, Liu Z, Liu Y. Qifu Yixin Formula Improves Heart Failure by Enhancing β-Arrestin2 Mediated the SUMOylation of SERCA2a. Drug Des Devel Ther 2024; 18:781-799. [PMID: 38500692 PMCID: PMC10946281 DOI: 10.2147/dddt.s446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting β-arrestin2 (β-arr2)-mediated SERCA2a SUMOylation. Materials and Methods The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. β-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. β-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to β-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted β-arr2 expression, whereas Barbadin (β-arr2 inhibitor) or β-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with β-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion QFYXF improves HF by promoting β-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.
Collapse
Affiliation(s)
- Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Cheng Lu
- Department of Cardiology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, People’s Republic of China
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Meng Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Tianyun Shi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Zhirui Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, People’s Republic of China
| |
Collapse
|
241
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
242
|
Huang YC, Hsu CC, Fu TC, Wang JS. Interval aerobic/resistance exercise training depresses adrenergic-induced apoptosis of lymphocytes in sedentary males. Eur J Appl Physiol 2024; 124:837-848. [PMID: 37712975 DOI: 10.1007/s00421-023-05311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Adrenergic stimulation affects lymphocyte autophagy and apoptosis by activating β1-adrenergic receptor (β1-AR) and G protein-coupled receptor kinase 2 (GRK-2) downstream signaling. This study investigated how combined aerobic and resistance exercise training on the interval or continuous pattern influences aerobic/muscular fitness and β1-AR/GRK-2 signaling, and corresponding apoptosis/autophagy of lymphocytes in sedentary males. METHODS Thirty-four sedentary males were randomized into interval training (IT, age = 22.5 ± 0.6 years, fitness level = 47.5 ± 0.9 mL/min/kg, body mass index (BMI) = 22.4 ± 0.4 kg/m2, n = 17) and continuous training (CT, age = 21.6 ± 0.4 years, fitness level = 45.2 ± 1.0 mL/min/kg, BMI = 22.2 ± 0.3 kg/m2, n = 17) groups. These subjects performed IT (bicycle exercise at alternating 40% and 80%VO2 reserve (VO2R) and isokinetic exercise at alternating 60°/s and 180°/s) or CT (bicycle exercise at continuously 60%VO2R and isokinetic exercise at continuously 120°/s) for 30 min/day, 5 days/week for 6 weeks. Aerobic capacity and muscular strength/endurance were determined by the graded exercise test (GXT) and isokinetic strength test, respectively. Blood lymphocyte autophagy/apoptosis and β1-AR/GRK-2 signaling were analyzed using flow cytometry. RESULTS Both IT and CT groups increased isokinetic strengths at various angular velocities, whereas only IT significantly enhanced muscle endurance, indicated by lowered fatigue index from 47.0 ± 1.3% to 41.8 ± 1.6% (P < 0.05). Moreover, the IT group (143 ± 7%) revealed a higher improvement in VO2peak than CT group (132 ± 6%) (P < 0.05). Acute GXT augmented (i) GRK-2 and protein kinase A expressions, (ii) LAMP-2 upregulation and acridine orange staining, (iii) mitochondrial transmembrane potential diminishing, caspase-3 activation, and phosphatidylserine (PS) exposure caused by epinephrine in blood lymphocytes. However, the degree of epinephrine-induced lymphocyte PS exposure potentiated by GXT was suppressed from 65.2 ± 5.2% to 47.4 ± 6.5% following 6 weeks of the IT (P < 0.05). CONCLUSION The IT may be considered more beneficial than CT in terms of improving aerobic/muscular fitness and simultaneously ameliorating apoptosis of blood lymphocyte evoked by intense exercise or adrenergic stimulation in sedentary males.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Chin Hsu
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tieh-Cheng Fu
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jong-Shyan Wang
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
- Graduate Institute of Rehabilitation Science, Chang Gung University, 259 Wen-Hwa 1St Road, Kwei-Shan, Tao-Yuan, 333, Taiwan.
| |
Collapse
|
243
|
Huang X, Hu L, Long Z, Wang X, Wu J, Cai J. Hypertensive Heart Disease: Mechanisms, Diagnosis and Treatment. Rev Cardiovasc Med 2024; 25:93. [PMID: 39076964 PMCID: PMC11263885 DOI: 10.31083/j.rcm2503093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 07/31/2024] Open
Abstract
Hypertensive heart disease (HHD) presents a substantial global health burden, spanning a spectrum from subtle cardiac functional alterations to overt heart failure. In this comprehensive review, we delved into the intricate pathophysiological mechanisms governing the onset and progression of HHD. We emphasized the significant role of neurohormonal activation, inflammation, and metabolic remodeling in HHD pathogenesis, offering insights into promising therapeutic avenues. Additionally, this review provided an overview of contemporary imaging diagnostic tools for precise HHD severity assessment. We discussed in detail the current potential treatments for HHD, including pharmacologic, lifestyle, and intervention devices. This review aimed to underscore the global importance of HHD and foster a deeper understanding of its pathophysiology, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Xuewei Huang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - Lizhi Hu
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Zhuojun Long
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Xinyao Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan, China
| | - Junru Wu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan, China
| |
Collapse
|
244
|
Salgado Rezende de Mendonça L, Senar S, Moreira LL, Silva Júnior JA, Nader M, Campos LA, Baltatu OC. Evidence for the druggability of aldosterone targets in heart failure: A bioinformatics and data science-driven decision-making approach. Comput Biol Med 2024; 171:108124. [PMID: 38412691 DOI: 10.1016/j.compbiomed.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Aldosterone plays a key role in the neurohormonal drive of heart failure. Systematic prioritization of drug targets using bioinformatics and database-driven decision-making can provide a competitive advantage in therapeutic R&D. This study investigated the evidence on the druggability of these aldosterone targets in heart failure. METHODS The target disease predictability of mineralocorticoid receptors (MR) and aldosterone synthase (AS) in cardiac failure was evaluated using Open Targets target-disease association scores. The Open Targets database collections were downloaded to MongoDB and queried according to the desired aggregation level, and the results were retrieved from the Europe PMC (data type: text mining), ChEMBL (data type: drugs), Open Targets Genetics Portal (data type: genetic associations), and IMPC (data type: genetic associations) databases. The target tractability of MR and AS in the cardiovascular system was investigated by computing activity scores in a curated ChEMBL database using supervised machine learning. RESULTS The medians of the association scores of the MR and AS groups were similar, indicating a comparable predictability of the target disease. The median of the MR activity scores group was significantly lower than that of AS, indicating that AS has higher target tractability than MR [Hodges-Lehmann difference 0.62 (95%CI 0.53-0.70, p < 0.0001]. The cumulative distributions of the overall multiplatform association scores of cardiac diseases with MR were considerably higher than with AS, indicating more advanced investigations on a wider range of disorders evaluated for MR (Kolmogorov-Smirnov D = 0.36, p = 0.0009). In curated ChEMBL, MR had a higher cumulative distribution of activity scores in experimental cardiovascular assays than AS (Kolmogorov-Smirnov D = 0.23, p < 0.0001). Documented clinical trials for MR in heart failures surfaced in database searches, none for AS. CONCLUSIONS Although its clinical development has lagged behind that of MR, our findings indicate that AS is a promising therapeutic target for the treatment of cardiac failure. The multiplatform-integrated identification used in this study allowed us to comprehensively explore the available scientific evidence on MR and AS for heart failure therapy.
Collapse
Affiliation(s)
- Lucas Salgado Rezende de Mendonça
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University, Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil
| | | | - Luana Lorena Moreira
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University, Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil
| | | | - Moni Nader
- College of Medicine & Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Luciana Aparecida Campos
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University, Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil.
| | - Ovidiu Constantin Baltatu
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University, Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil.
| |
Collapse
|
245
|
Kheiwa A, Ssembajjwe B, Chatta P, Nageotte S, Abramov D. Safety of SGLT-2 inhibitors in the management of heart failure in the adult congenital heart disease patient population. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 15:100495. [PMID: 39713498 PMCID: PMC11658110 DOI: 10.1016/j.ijcchd.2024.100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sodium glucose transporter 2 inhibitors (SGLT-2i) have shown safety and efficacy in patients with heart failure (HF). However, evidence for the use of SGLT-2i in adult congenital heart disease (ACHD) patients with HF is limited. Methods We performed a retrospective, single center analysis of 18 patients (>18 years of age) with ACHD and a diagnosis of HF who were initiated on an SGLT-2i. Patient characteristics, including vital signs, laboratory values, concomitant medications, clinical outcomes, and echocardiograms, were obtained as part of standardized clinical care at our ACHD program before and 2-6 months after initiation of SGLT-2i. The primary outcome was to demonstrate safety of SGLT-2i initiation via potential changes in systolic blood pressure, serum sodium, and serum creatinine. Results Of the 18 patients, 11 (61%) had moderate complexity congenital heart disease while 7 (39%) had great complexity congenital heart disease. Post initiation, there were no significant differences in systolic blood pressure (121.8 ± 20.8 mmHg to 114.4 ± 14.9 mmHg, p = 0.06), sodium level (138.7 ± 2.9 mMol/L to 138.0 ± 2.2 mMol/L, p = 0.75), and creatinine level (0.85 ± 0.18 mg/dL to 0.89 ± 0.18 mg/dL, p = 0.07). There was a statistically significant decline in weight (78.9 ± 22.9 kg to 76.0 ± 23.0 kg, p = 0.0039) but without a statistically significant change in NT-pro NBP (1358.2 ± 2735.0 pg/mL to 601.6 ± 786.1 pg/mL, p = 0.36). Conclusions We demonstrated the use of SGLT-2i in a small cohort of ACHD population, including patients with complex congenital heart disease, appears safe and well tolerated. The safety and potential efficacy of SGLT-2i in patients with ACHD will require further evaluation in prospective multicenter studies.
Collapse
Affiliation(s)
- Ahmed Kheiwa
- Division of Cardiology, Adult Congenital Heart Disease Program, Loma Linda University, Loma Linda, CA, USA
| | - Brian Ssembajjwe
- Division of Internal Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Payush Chatta
- Division of Cardiology, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Stephen Nageotte
- Division of Pediatric Cardiology, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Dmitry Abramov
- Division of Cardiology, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
246
|
Trauzeddel RF, Rothe LM, Nordine M, Dehé L, Scholtz K, Spies C, Hadzidiakos D, Winterer G, Borchers F, Kruppa J, Treskatsch S. Influence of a chronic beta-blocker therapy on perioperative opioid consumption - a post hoc secondary analysis. BMC Anesthesiol 2024; 24:80. [PMID: 38413849 PMCID: PMC10898005 DOI: 10.1186/s12871-024-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Beta-blocker (BB) therapy plays a central role in the treatment of cardiovascular diseases. An increasing number of patients with cardiovascular diseases undergoe noncardiac surgery, where opioids are an integral part of the anesthesiological management. There is evidence to suggest that short-term intravenous BB therapy may influence perioperative opioid requirements due to an assumed cross-talk between G-protein coupled beta-adrenergic and opioid receptors. Whether chronic BB therapy could also have an influence on perioperative opioid requirements is unclear. METHODS A post hoc analysis of prospectively collected data from a multicenter observational (BioCog) study was performed. Inclusion criteria consisted of elderly patients (≥ 65 years) undergoing elective noncardiac surgery as well as total intravenous general anesthesia without the use of regional anesthesia and duration of anesthesia ≥ 60 min. Two groups were defined: patients with and without BB in their regular preopreative medication. The administered opioids were converted to their respective morphine equivalent doses. Multiple regression analysis was performed using the morphine-index to identify independent predictors. RESULTS A total of 747 patients were included in the BioCog study in the study center Berlin. 106 patients fulfilled the inclusion criteria. Of these, 37 were on chronic BB. The latter were preoperatively significantly more likely to have arterial hypertension (94.6%), chronic renal failure (27%) and hyperlipoproteinemia (51.4%) compared to patients without BB. Both groups did not differ in terms of cumulative perioperative morphine equivalent dose (230.9 (BB group) vs. 214.8 mg (Non-BB group)). Predictive factors for increased morphine-index were older age, male sex, longer duration of anesthesia and surgery of the trunk. In a model with logarithmised morphine index, only gender (female) and duration of anesthesia remained predictive factors. CONCLUSIONS Chronic BB therapy was not associated with a reduced perioperative opioid consumption. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov ( NCT02265263 ) on the 15.10.2014 with the principal investigator being Univ.-Prof. Dr. med. Claudia Spies.
Collapse
Affiliation(s)
- Ralf F Trauzeddel
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Luisa M Rothe
- IS Global Campus Cliníc Rosselló, Barcelona Institute for Global Health, 132, 7è, Barcelona, 08036, Spain
| | - Michael Nordine
- Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Lukas Dehé
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Kathrin Scholtz
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Daniel Hadzidiakos
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Jochen Kruppa
- Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.
| |
Collapse
|
247
|
Gong Q, LE X, Yu P, Zhuang L. Therapeutic advances in atrial fibrillation based on animal models. J Zhejiang Univ Sci B 2024; 25:135-152. [PMID: 38303497 PMCID: PMC10835209 DOI: 10.1631/jzus.b2300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 02/03/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.
Collapse
Affiliation(s)
- Qian Gong
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuan LE
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
248
|
Binda M, Moccaldi B, Civieri G, Cuberli A, Doria A, Tona F, Zanatta E. Autoantibodies Targeting G-Protein-Coupled Receptors: Pathogenetic, Clinical and Therapeutic Implications in Systemic Sclerosis. Int J Mol Sci 2024; 25:2299. [PMID: 38396976 PMCID: PMC10889602 DOI: 10.3390/ijms25042299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic sclerosis (SSc) is a multifaceted connective tissue disease whose aetiology remains largely unknown. Autoimmunity is thought to play a pivotal role in the development of the disease, but the direct pathogenic role of SSc-specific autoantibodies remains to be established. The recent discovery of functional antibodies targeting G-protein-coupled receptors (GPCRs), whose presence has been demonstrated in different autoimmune conditions, has shed some light on SSc pathogenesis. These antibodies bind to GPCRs expressed on immune and non-immune cells as their endogenous ligands, exerting either a stimulatory or inhibitory effect on corresponding intracellular pathways. Growing evidence suggests that, in SSc, the presence of anti-GPCRs antibodies correlates with specific clinical manifestations. Autoantibodies targeting endothelin receptor type A (ETAR) and angiotensin type 1 receptor (AT1R) are associated with severe vasculopathic SSc-related manifestations, while anti-C-X-C motif chemokine receptors (CXCR) antibodies seem to be predictive of interstitial lung involvement; anti-muscarinic-3 acetylcholine receptor (M3R) antibodies have been found in patients with severe gastrointestinal involvement and anti-protease-activated receptor 1 (PAR1) antibodies have been detected in patients experiencing scleroderma renal crisis. This review aims to clarify the potential pathogenetic significance of GPCR-targeting autoantibodies in SSc, focusing on their associations with the different clinical manifestations of scleroderma. An extensive examination of functional autoimmunity targeting GPCRs might provide valuable insights into the underlying pathogenetic mechanisms of SSc, thus enabling the development of novel therapeutic strategies tailored to target GPCR-mediated pathways.
Collapse
Affiliation(s)
- Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Giovanni Civieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Anna Cuberli
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| | - Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy; (M.B.)
| |
Collapse
|
249
|
Gardner J, Eiger DS, Hicks C, Choi I, Pham U, Chundi A, Namjoshi O, Rajagopal S. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization. Sci Signal 2024; 17:eadd9139. [PMID: 38349966 PMCID: PMC10927030 DOI: 10.1126/scisignal.add9139] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of β-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.
Collapse
Affiliation(s)
- Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Ojas Namjoshi
- Center for Drug Discovery RTI International, Research Triangle Park, NC, 27709, USA
- Present address: Engine Biosciences, 733 Industrial Rd., San Carlos, CA, 94070, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
250
|
Hsu LA, Yeh YH, Chang CJ, Chen WJ, Tsai HY, Chang GJ. Aldehyde Dehydrogenase 2 (ALDH2) Deficiency, Obesity, and Atrial Fibrillation Susceptibility: Unraveling the Connection. Int J Mol Sci 2024; 25:2186. [PMID: 38396862 PMCID: PMC10888587 DOI: 10.3390/ijms25042186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-β1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT) and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equivalent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption, indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally increase with TGF-β1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism. Despite limitations, these findings reveal a complex molecular interplay, providing insights into the paradoxical AF-ALDH2 relationship in the setting of obesity.
Collapse
Affiliation(s)
- Lung-An Hsu
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan; (Y.-H.Y.); (C.-J.C.); (W.-J.C.); (H.-Y.T.)
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan; (Y.-H.Y.); (C.-J.C.); (W.-J.C.); (H.-Y.T.)
| | - Chi-Jen Chang
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan; (Y.-H.Y.); (C.-J.C.); (W.-J.C.); (H.-Y.T.)
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan; (Y.-H.Y.); (C.-J.C.); (W.-J.C.); (H.-Y.T.)
| | - Hsin-Yi Tsai
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan 33305, Taiwan; (Y.-H.Y.); (C.-J.C.); (W.-J.C.); (H.-Y.T.)
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan 33305, Taiwan;
| |
Collapse
|