201
|
NLRP3 Inflammasome/Pyroptosis: A Key Driving Force in Diabetic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms231810632. [PMID: 36142531 PMCID: PMC9501057 DOI: 10.3390/ijms231810632] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), a serious diabetic complication, is a kind of low-grade inflammatory cardiovascular disorder. Due to the high risk of morbidity and mortality, DCM has demanded the attention of medical researchers worldwide. The pathophysiological nature of DCM is intricate, and the genesis and development of which are a consequence of the coaction of many factors. However, the exact pathogenesis mechanism of DCM remains unclear. Pyroptosis is a newly identified programmed cell death (PCD) that is directly related to gasdermin D(GSDMD). It is characterized by pore formation on the cell plasma membrane, the release of inflammatory mediators, and cell lysis. The initiation of pyroptosis is closely correlated with NOD-like receptor 3 (NLRP3) activation, which activates caspase-1 and promotes the cleaving of GSDMD. In addition to adjusting the host’s immune defense, NLRP3 inflammasome/pyroptosis plays a critical role in controlling the systemic inflammatory response. Recent evidence has indicated that NLRP3 inflammasome/pyroptosis has a strong link with DCM. Targeting the activation of NLRP3 inflammasome or pyroptosis may be a hopeful therapeutic strategy for DCM. The focus of this review is to summarize the relevant mechanisms of pyroptosis and the relative contributions in DCM, highlighting the potential therapeutic targets in this field.
Collapse
|
202
|
Voloshyna D, Sandhu QI, Khan S, Bseiso A, Mengar J, Nayudu N, Kumar R, Khemani D, Usama M. An Unusual Association Between Metformin and Nightmares: A Case Report. Cureus 2022; 14:e28974. [PMID: 36237763 PMCID: PMC9548325 DOI: 10.7759/cureus.28974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Metformin remains the oral drug of choice for patients with type 2 diabetes mellitus (T2DM). It is an ideal anti-diabetic drug for maintaining good glycemic control in diabetics. However, the side effect profile of metformin varies from minor or no effects to substantial impact on the GI tract. In addition, metformin is rarely known for its association with nightmares. Here we present the case of a newly diagnosed 40-year-old diabetic who developed recurrent nightmares within a week of starting metformin treatment. The patient had no previous history of psychiatric or sleep disorders. However, it was the first time he had experienced such recurrent nightmares, especially after the start of 500 mg metformin thrice a day.
Based on the Naranjo Adverse Drug Reaction (ADR) Probability Scale, and sudden onset and disappearance of nightmares after metformin initiation and discontinuation made metformin the primary cause of his nightmares.
Collapse
|
203
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
204
|
Zhao Z, Chen Y, Li X, Zhu L, Wang X, Li L, Sun H, Han X, Li J. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora. Biomed Pharmacother 2022; 153:113530. [DOI: 10.1016/j.biopha.2022.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022] Open
|
205
|
Liang Z, Yang M, Xu C, Zeng R, Dong L. Effects and safety of metformin in patients with concurrent diabetes mellitus and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Endocr Connect 2022; 11:e220289. [PMID: 35900801 PMCID: PMC9422254 DOI: 10.1530/ec-22-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022]
Abstract
Aim This study aimed to investigate the effects and safety of metformin in patients with concurrent diabetes mellitus (DM) and chronic obstructive pulmonary disease (COPD). Methods PubMed, Embase, Web of Science, the China National Knowledge, and Cochrane Database were searched to find studies that examined the effects and safety of metformin in patients with concurrent DM and COPD. We conducted a meta-analysis with a risk ratio (RR) and assessed the quality of included studies and pooled evidence. Results Eight studies were involved. Metformin was associated with lower risk of COPD-related hospitalizations (RR: 0.72, 95% CI: 0.53-0.98; I2= 89%) and all-cause mortality (RR: 0.60, 95% CI: 0.36-1.01, I2= 69%) in patients with concurrent DM and COPD, but did not increase the risk of hyperlactatemia (RR: 1.14, 95% CI: 0.92-1.41, I2 = 8%). Conclusions Metformin use is associated with lower risk of COPD-related hospitalizations and risk of all-cause mortality without increasing the risk of hyperlactatemia. Considerations should be given to conduct more high-quality randomized trials involving larger samples.
Collapse
Affiliation(s)
- Ziting Liang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Mengge Yang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Changjuan Xu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| |
Collapse
|
206
|
Xu L, Wang W, Song W. A combination of metformin and insulin improve cardiovascular and cerebrovascular risk factors in individuals with type 1 diabetes mellitus. Diabetes Res Clin Pract 2022; 191:110073. [PMID: 36075464 DOI: 10.1016/j.diabres.2022.110073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND This study aims to further clarify whether the addition of metformin to insulin treatment improve cardiovascular and cerebrovascular risk factors in individuals with T1DM. METHODS Electronic databases were searched for randomized controlled trials in which the efficacy and safety of metformin were compared with those of a placebo for risk factors of cardiovascular and cerebrovascular disease among individuals with T1DM, and a meta-analysis was conducted. RESULTS Thirteen cardiovascular studies were identified. In the metformin group, mean carotid intimal media thickness was significantly reduced by 0.03 mm, ascending aortic pulse wave velocity by 6.3 m/s, descending aortic wall shear stress by 1.77 dyn/cm2 (P = 0.02), insulin daily dose by 0.05 U/kg/d, body weight by 2.27 kg, fat-free mass by 1.32 kg, body mass index by 0.58 kg/m2, hip circumference by 0.29 m, and low-density lipoprotein by 0.16 mmol/L, all above are P < 0.05. In the metformin group, flow-mediated dilation was increased by 1.29 %, glucose infusion rate/insulin by 18.22 mg/(kg⋅min)/μIU/μL, and waist-to-hip ratio by 0.02, all above are P < 0.00001. The metformin group showed no differences in blood pressure, reactive hyperemia index, waist circumference, triglyceride, total cholesterol, high-density lipoprotein cholesterol, or body mass index Z score. For cerebrovascular studies were identified. But none of them had a risk factor assessment. CONCLUSIONS Metformin can ameliorate cardiovascular and cerebrovascular risk factors through non-hypoglycemic multiple pathways in individuals with T1DM.
Collapse
Affiliation(s)
- Linlin Xu
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Song
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
207
|
Heer E, Ruan Y, Mah B, Nguyen T, Lyons H, Poirier A, Boyne DJ, O'Sullivan DE, Heitman SJ, Hilsden RJ, Forbes N, Brenner DR. The efficacy of chemopreventive agents on the incidence of colorectal adenomas: A systematic review and network meta-analysis. Prev Med 2022; 162:107169. [PMID: 35878711 DOI: 10.1016/j.ypmed.2022.107169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer and third leading cause of cancer-related death worldwide. Use of chemopreventive agents (CPAs) to reduce the incidence of precursor colorectal adenomas could lower the future burden of CRC. Many classes of potential CPAs have been investigated. To identify the most effective CPAs, we conducted a systematic review and a network meta-analysis (NMA). An electronic search was performed through August 2020 to identify all randomized controlled trials (RCTs) assessing the efficacy of CPAs in reducing the incidence of colorectal adenomas at the time of surveillance colonoscopy among patients who had previously undergone polypectomy during an index colonoscopy. In total, 33 RCTs were included in the NMA, which was conducted under a Bayesian inference framework. Random effects models were used with adjustment for follow-up length and control group event rates to yield relative risks (RRs) and 95% credible intervals (CrIs). Our full network consisted of 13 interventions in addition to a placebo arm. Of 20,925 included patients, 7766 had an adenoma. Compared to placebo, the combination of difluoromethylornithine (DFMO) + Sulindac (RR 0.24, CrI 0.10-0.55) demonstrated a protective effect, while aspirin had a RR of 0.77 (CrI 0.60-1.00), celecoxib 800 mg had a RR of 0.56 (CrI 0.31-1.01) and metformin had a RR of 0.56 (CrI 0.22-1.39). Our results suggest that select CPAs may be efficacious in preventing the development of adenomas. Further studies are needed to identify those patients most likely to benefit and the minimum effective dosages of CPAs.
Collapse
Affiliation(s)
- Emily Heer
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada
| | - Yibing Ruan
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, AB, Canada
| | - Brittany Mah
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada
| | - Teresa Nguyen
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada
| | - Hannah Lyons
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada
| | - Abbey Poirier
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, AB, Canada
| | - Devon J Boyne
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dylan E O'Sullivan
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven J Heitman
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Hilsden
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nauzer Forbes
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Darren R Brenner
- Forzani & MacPhail Colon Cancer Screening Centre, University of Calgary, Calgary, AB, Canada; Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, AB, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
208
|
Stogios N, Maksyutynska K, Navagnanavel J, Sanches M, Powell V, Gerretsen P, Graff-Guerrero A, Chintoh AF, Foussias G, Remington G, Hahn MK, Agarwal SM. Metformin for the prevention of clozapine-induced weight gain: A retrospective naturalistic cohort study. Acta Psychiatr Scand 2022; 146:190-200. [PMID: 35726126 DOI: 10.1111/acps.13462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Clozapine is presently the sole antipsychotic with an indication for treatment-resistant Schizophrenia, but is associated with significant weight gain and other metabolic aberrations. This retrospective chart review aimed to evaluate the effectiveness of adjunctive metformin in preventing clozapine-induced weight gain. METHODS We conducted a retrospective chart review of patients newly initiated on clozapine at the Centre for Addiction and Mental Health in Canada, from November 2014 to April 2021. Our primary outcome was body weight at 6 and 12 months after clozapine initiation. Other metabolic parameters served as secondary outcomes. RESULTS Among 396 patients (males: 71.5%, mean age: 42.8 years) initiated on clozapine, 69 were on metformin or prescribed it ≤3 months after clozapine initiation. The clozapine+metformin group demonstrated less weight gain compared with the clozapine-only group at 6 months (clozapine+metformin: -0.15 kg [SE = 1.08] vs. clozapine-only: 2.99 kg, SE = 0.54) and 12 months after clozapine initiation (clozapine+metformin: -0.67 kg, SE = 1.22 vs. clozapine-only: 4.72 kg, SE = 0.67). Adaptive changes were also observed for fasting glucose (F = 3.10, p = 0.046) and triglycerides (F = 8.56, p < 0.001) in the clozapine+metformin group compared with clozapine only. CONCLUSION In this large retrospective naturalistic cohort study, co-prescription of clozapine and metformin was associated with less weight gain and related metabolic dysfunction at 6 and 12 months after initiation versus clozapine alone. These findings provide evidence for the effectiveness of metformin in preventing clozapine-induced weight gain; larger randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kateryna Maksyutynska
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Marcos Sanches
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Valerie Powell
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Philip Gerretsen
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ariel Graff-Guerrero
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Araba F Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - George Foussias
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Margaret K Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Centre (BBDC), University of Toronto, Toronto, Canada
| |
Collapse
|
209
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
210
|
Zhang JH, Zhang XY, Sun YQ, Lv RH, Chen M, Li M. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: A systematic review and meta-analysis. Front Neurosci 2022; 16:984559. [PMID: 36090264 PMCID: PMC9453211 DOI: 10.3389/fnins.2022.984559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Controversy exists regarding the impact of metformin and whether it prevents or promotes the incidence of cognitive dysfunction. This systematic review and meta-analysis were conducted to identify the effect of metformin therapy on cognitive function in patients with diabetes. Methods Electronic databases (PubMed, EMBASE, PsycINFO, the Cochrane Library, and Web of Science) were systematically searched by two investigators from the date of inception until March 1, 2022. The study followed PRISMA guidelines. Inclusion criteria were defined according to the PECOSmodel. Eligible studies investigated cognitive dysfunction in metformin users compared with non-users in adults with diabetes. Only observational study designs (such as cohort, cross-section, and case-control) were included. Results A systematic search identified 1,839 articles, of which 28 (17 cohort, 8 case-control, and 3 cross-sectional studies) were included in the meta-analysis. Metformin reduced the occurrence of cognitive impairment in patients with diabetes [unadjusted hazard ratio (HR) = 0.67, 95% CI: 0.62–0.73; adjusted hazard ratio (aHR) = 0.92, 95% CI: 0.85–0.99]. In addition, the use of metformin was associated with a decreased risk of dementia (HR = 0.64, 95% CI: 0.59–0.69; aHR = 0.90, 95% CI: 0.84–0.96), while a random-effects meta-analysis indicated no significant effect of metformin on the risk of Alzheimer's disease (AD) (HR = 0.85, 95% CI: 0.60–1.22; aHR = 1.10, 95% CI: 0.95–1.28). Conclusion Metformin therapy decreased the occurrence risk of cognitive decline in patients with diabetes mellitus. Moreover, the use of metformin by adults with diabetes for the prevention of dementia, but not AD, is supported by the available evidence.
Collapse
Affiliation(s)
- Jia-Hao Zhang
- Laboratory of Laser Sports Medicine, School of Sports Science, South China Normal University, Guangzhou, China
| | - Xin-Yang Zhang
- Laboratory of Laser Sports Medicine, School of Sports Science, South China Normal University, Guangzhou, China
- *Correspondence: Xin-Yang Zhang
| | - Yan-Qiu Sun
- Department of Rehabilitation Medicine, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ren-Hua Lv
- Department of Rehabilitation Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Mei Chen
- Laboratory of Laser Sports Medicine, School of Sports Science, South China Normal University, Guangzhou, China
| | - Meng Li
- Laboratory of Laser Sports Medicine, School of Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
211
|
Zhao Y, Zhao Y, Tian Y, Zhou Y. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox‑LDL‑induced THP‑1 monocytes. Exp Ther Med 2022; 24:636. [PMID: 36160906 PMCID: PMC9468789 DOI: 10.3892/etm.2022.11573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that the formation of foam cells is of vital importance in the process of atherosclerosis. The aim of the present study was to assess the effects of metformin on foam cell formation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells and explore its associated mechanism of action. Human monocytic THP-1 cells were pretreated with metformin for 2 h and subsequently treated with ox-LDL for 24 h. The data indicated that metformin significantly inhibited lipid accumulation in ox-LDL-treated THP-1 cells by decreasing the expression of scavenger receptor A, cluster of differentiation 36 and adipocyte enhancer-binding protein 1. In addition, metformin increased the expression levels of scavenger receptor B1 and ATP binding cassette transporter G1 and suppresses the esterification of free cholesterol. Furthermore, it markedly inhibited ferroptosis (reflected by the upregulation of glutathione peroxidase glutathione peroxidase 4 and the downregulation of Heme oxygenase-1). In addition, it caused a marked suppression in the expression levels of cysteinyl aspartate specific proteinase-1, IL-1β, NOD-like receptor protein 3, IL-18 secretion and in the levels of oxidative stress. Metformin attenuated the activation of ERK and facilitated the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Treatment of THP-1 cells with an ERK inhibitor reversed these effects, while inhibition of AMPK activity exacerbated the effects noted in ox-LDL-treated THP-1 cells. In conclusion, the present study suggested that metformin suppressed foam cell formation, inflammatory responses and inhibited ferroptosis in ox-LDL-treated macrophages via the AMPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yizhen Zhao
- Department of Neurosurgery, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Tian
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yang Zhou
- Department of Vascular Surgery, Deyang People's Hospital, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
212
|
Patel V, Sadiq MS, Najeeb S, Khurshid Z, Zafar MS, Heboyan A. Effects of metformin on the bioactivity and osseointegration of dental implants: A systematic review. J Taibah Univ Med Sci 2022; 18:196-206. [PMID: 36398019 PMCID: PMC9643507 DOI: 10.1016/j.jtumed.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/18/2022] Open
Abstract
Dental implants are prosthetic devices that are surgically placed in direct contact with the jawbone to support intra-oral functions and esthetics. Diabetes mellitus may contribute to peri-implant bone loss. During the last few years, there have been attempts to reduce this bone loss and improve the survival rate of implants. Metformin, an anti-diabetic drug known for its osteogenic properties, is thought to prevent peri-implant bone loss in diabetic patients. Although several studies have been conducted to study metformin's effect on diabetic and non-diabetic study models, no systematic review has analyzed and summarized these studies critically. Therefore, the objectives of this systematic review were to summarize the outcomes of these studies and critically appraise them. Seven studies were included in this systematic review. Four studies used only animal models, two used both animal and cell culture models, and one used only cell culture studies. The general characteristics and outcomes of the included studies were summarized, and Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were used to assess the quality of the animal studies. In vitro studies indicate that metformin may induce stem cells to undergo osteoblastic differentiation to produce a higher amount of bone and may also improve osseointegration. Nevertheless, several studies had potential sources of bias. Therefore, it is recommended that emphasis be placed on increasing the quality of future animal studies and human trials to determine the effects of metformin on the osseointegration of dental implants. Future studies are needed with adequate follow-up to evaluate the efficacy of metformin in improving the osseointegration of dental implants.
Collapse
|
213
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
214
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
215
|
Mehrpour O, Saeedi F, Hoyte C, Goss F, Shirazi FM. Utility of support vector machine and decision tree to identify the prognosis of metformin poisoning in the United States: analysis of National Poisoning Data System. BMC Pharmacol Toxicol 2022; 23:49. [PMID: 35831909 PMCID: PMC9281002 DOI: 10.1186/s40360-022-00588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND With diabetes incidence growing globally and metformin still being the first-line for its treatment, metformin's toxicity and overdose have been increasing. Hence, its mortality rate is increasing. For the first time, we aimed to study the efficacy of machine learning algorithms in predicting the outcome of metformin poisoning using two well-known classification methods, including support vector machine (SVM) and decision tree (DT). METHODS This study is a retrospective cohort study of National Poison Data System (NPDS) data, the largest data repository of poisoning cases in the United States. The SVM and DT algorithms were developed using training and test datasets. We also used precision-recall and ROC curves and Area Under the Curve value (AUC) for model evaluation. RESULTS Our model showed that acidosis, hypoglycemia, electrolyte abnormality, hypotension, elevated anion gap, elevated creatinine, tachycardia, and renal failure are the most important determinants in terms of outcome prediction of metformin poisoning. The average negative predictive value for the decision tree and SVM models was 92.30 and 93.30. The AUC of the ROC curve of the decision tree for major, minor, and moderate outcomes was 0.92, 0.92, and 0.89, respectively. While this figure of SVM model for major, minor, and moderate outcomes was 0.98, 0.90, and 0.82, respectively. CONCLUSIONS In order to predict the prognosis of metformin poisoning, machine learning algorithms might help clinicians in the management and follow-up of metformin poisoning cases.
Collapse
Affiliation(s)
- Omid Mehrpour
- Data Science Institute, Southern Methodist University, Dallas, TX, USA. .,Rocky Mountain Poison & Drug Safety, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Farhad Saeedi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Christopher Hoyte
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Foster Goss
- University of Colorado Hospital, Aurora, CO, USA.,Department of Emergency Medicine, University of Colorado Hospital, Aurora, CO, USA
| | - Farshad M Shirazi
- Arizona Poison & Drug Information Center, the University of Arizona, College of Pharmacy and University of Arizona, College of Medicine, Tucson, AZ, USA
| |
Collapse
|
216
|
Su L, Yuan H, Zhang H, Wang R, Fu K, Yin L, Ren Y, Liu H, Fang Q, Wang J, Guo D. PF-06409577 inhibits renal cyst progression by concurrently inhibiting the mTOR pathway and CFTR channel activity. FEBS Open Bio 2022; 12:1761-1770. [PMID: 35748097 PMCID: PMC9527591 DOI: 10.1002/2211-5463.13459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves over-proliferation of cyst-lining epithelial cells and excessive cystic fluid secretion. While metformin effectively inhibits renal cyst growth in mouse models of ADPKD it exhibits low potency, and thus an adenosine monophosphate-activated protein kinase (AMPK) activator with higher potency is required. Herein, we adopted a drug repurposing strategy to explore the potential of PF-06409577, an AMPK activator for diabetic nephropathy, in cellular, ex vivo and in vivo models of ADPKD. Our results demonstrated that PF-06409577 effectively down-regulated mammalian target of rapamycin pathway-mediated proliferation of cyst-lining epithelial cells and reduced cystic fibrosis transmembrane conductance regulator-regulated cystic fluid secretion. Overall, our data suggest that PF-06409577 holds therapeutic potential for ADPKD treatment.
Collapse
Affiliation(s)
- Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Ruoqi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Qian Fang
- Department of UrologyThe Affiliated Hospital of Xuzhou Medical UniversityChina
| | - Junqi Wang
- Department of UrologyThe Affiliated Hospital of Xuzhou Medical UniversityChina
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| |
Collapse
|
217
|
Sanchez-Álvarez NT, Bautista-Niño PK, Trejos-Suárez J, Serrano-Díaz NC. A model of metformin mitochondrial metabolism in metachromatic leukodystrophy: first description of human Schwann cells transfected with CRISPR-Cas9. Open Biol 2022; 12:210371. [PMID: 35857900 PMCID: PMC9256087 DOI: 10.1098/rsob.210371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metachromatic leukodystrophy is a neurological lysosomal deposit disease that affects public health despite its low incidence in the population. Currently, few reports are available on pathophysiological events related to enzyme deficiencies and subsequent sulfatide accumulation. This research aims to examine the use of metformin as an alternative treatment to counteract these effects. This was evaluated in human Schwann cells (HSCs) transfected or non-transfected with CRISPR-Cas9, and later treated with sulfatides and metformin. This resulted in transfected HSCs showing a significant increase in cell reactive oxygen species (ROS) production when exposed to 100 µM sulfatides (p = 0.0007), compared to non-transfected HSCs. Sulfatides at concentrations of 10 to 100 µM affected mitochondrial bioenergetics in transfected HSCs. Moreover, these analyses showed that transfected cells showed a decrease in basal and maximal respiration rates after exposure to 100 µM sulfatide. However, maximal and normal mitochondrial respiratory capacity decreased in cells treated with both sulfatide and metformin. This study has provided valuable insights into bioenergetic and mitochondrial effects of sulfatides in HSCs for the first time. Treatment with metformin (500 µM) restored the metabolic activity of these cells and decreased ROS production.
Collapse
Affiliation(s)
- Nayibe Tatiana Sanchez-Álvarez
- Faculty of Medical and Health Sciences, Masira Institute for Biomedical Research, Universidad de Santander, Bucaramanga, Colombia,Faculty of Health, Phd in Biomedical Sciences, Universidad del Valle, Cali, Colombia,Research Center Floridablanca, Colombian Cardiovascular Foundation, FL, Colombia
| | | | - Juanita Trejos-Suárez
- Faculty of Medical and Health Sciences, Masira Institute for Biomedical Research, Universidad de Santander, Bucaramanga, Colombia
| | | |
Collapse
|
218
|
Iannuzzo F, Basile GA, Campolo D, Genovese G, Pandolfo G, Giunta L, Ruggeri D, Di Benedetto A, Bruno A. Metabolic and clinical effect of alpha-lipoic acid administration in schizophrenic subjects stabilized with atypical antipsychotics: A 12-week, open-label, uncontrolled study. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100116. [PMID: 35992380 PMCID: PMC9389248 DOI: 10.1016/j.crphar.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Many of the atypical antipsychotics induce metabolic side effects, limiting their use in clinical practice. Alpha-lipoic acid (ALA) was proposed as a new approach in schizophrenia to improve metabolic effects of atypical antipsychotics. The aim of the study is to evaluate the effect of ALA on metabolic and clinical parameters among schizophrenic subjects. Methods 15 schizophrenic subjects, in stable atypical antipsychotic monotherapy were included in the study. ALA was administrated at the oral daily dose of 600 mg/d in addition to antipsychotic therapy. Metabolic, clinical, and psychopathological parameters were measured at typical antipsychotics. e initial screening, and after 12 weeks. Results ALA produced a statistically significant reduction in QTc (p = 0.012), blood glucose (p = 0.005), AST (p = 0.021), γGT (p = 0.035), CPK (p = 0.005) and prolactinaemia (p = 0.026). In contrast, there was a significant increase in HbA1c (p = 0.026). No effects on body weight and blood lipid levels (triglycerides, total cholesterol, HDL, LDL) emerged. Conclusions ALA treatment appeared to be effective for reducing diabetes risk, liver functionality parameters, hyperprolactinaemia and QTC interval. ALA appears to be safe as adjunctive components in schizophrenia.
Collapse
Affiliation(s)
- Fiammetta Iannuzzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, Messina, 98125, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, Messina, 98125, Italy
| | - Domenica Campolo
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| | - Giovanni Genovese
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| | - Gianluca Pandolfo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, Messina, 98125, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| | - Loretta Giunta
- Department of Internal Medicine, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| | - Domenica Ruggeri
- Department of Internal Medicine, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| | - Antonino Di Benedetto
- Department of Internal Medicine, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| | - Antonio Bruno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, Contesse, Messina, 98125, Italy
- Psychiatry Unit, Polyclinic Hospital University of Messina, Via Consolare Valeria 1, Contesse, 98125, Messina, Italy
| |
Collapse
|
219
|
Xie F, Zhong Y, Wang D, So KF, Xiao J, Lv Y. Metformin protects against ethanol-induced liver triglyceride accumulation by the LKB1/AMPK/ACC pathway. Mol Biol Rep 2022; 49:7837-7848. [PMID: 35733070 DOI: 10.1007/s11033-022-07610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatic lipid accumulation is one of the main pathological features of alcoholic liver disease (ALD). Metformin serves as an AMPK activator and has been shown to have lipids lowering effects in non-alcoholic fatty liver disease (NAFLD), but its role in ALD remains unclear. The purpose of this study was to explore the potential mechanism of metformin regulating lipid metabolism in ALD. METHODS AND RESULTS In vitro and in vivo ALD models were established using AML12 cells and C57BL/6 mice, respectively. To determine the effect of metformin on ALD in vitro, the concentration of cellular triglyceride was examined by Nile red staining and a biochemical kit. To further reveal the role of metformin on ALD in vivo, liver tissues were examined by HE and oil red O staining, and the levels of ALT and AST in serum were determined via an automatic biochemical analyzer. The expression of mRNA and proteins were measured using qRT-PCR and Western blot, respectively. The role of the LKB1/AMPK/ACC axis on metformin regulating ethanol-induced lipid accumulation was evaluated by siRNA and AAV-shRNA interference. The results showed metformin reduced the ethanol-induced lipid accumulation in AML12 cells through activating AMPK, inhibiting ACC, reducing SREBP1c, and increasing PPARα. In addition, compared with control mice, metformin treatment inhibited ethanol-induced liver triglyceride accumulation and the increase of ALT and AST in serum. Interference with LKB1 attenuated the effect of metformin on ethanol-induced lipid accumulation both in vitro and in vivo. CONCLUSION Metformin protects against lipid formation in ALD by activating the LKB1/AMPK/ACC axis.
Collapse
Affiliation(s)
- Fotian Xie
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanming Zhong
- School of Physical Education and Sport Science, Fujian normal university, Fuzhou, China
| | - Dongmei Wang
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Kwok Fai So
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
220
|
Ni X, Zhang L, Feng X, Tang L. New Hypoglycemic Drugs: Combination Drugs and Targets Discovery. Front Pharmacol 2022; 13:877797. [PMID: 35865956 PMCID: PMC9295075 DOI: 10.3389/fphar.2022.877797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/10/2022] [Indexed: 01/02/2023] Open
Abstract
New hypoglycemic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RA), dipeptidyl peptidase-4 inhibitors (DPP-4i) and sodium-glucose cotransporter 2 inhibitors (SGLT-2i), which brings more options for the treatment of type 2 diabetes (T2DM). They are generally well tolerated, although caution is required in rare cases. Clinical trials have show good glycemic control with combination therapy with new hypoglycemic drugs in prediabetes and T2DM (mostly traditional stepwise therapy), but early combination therapy appears to have faster, more, and longer-lasting benefits. With the widespread clinical application of oral semaglutide, it is time to develop combinations drugs containing new hypoglycemic drugs, especially SGLT-2i and/or GLP-1RA, to control the risk of prediabetes and newly diagnosed T2DM and its cardiovascular complications, while improving patient compliance. Clinical and preclinical studies support that SGLT-2i exerts its protective effect on heart failure through indirect and direct effects. How this comprehensive protective effect regulates the dynamic changes of heart genes needs further study. We provide ideas for the development of heart failure drugs from the perspective of "clinical drug-mechanism-intensive disease treatment." This will help to accelerate the development of heart failure drugs, and to some extent guide the use of heart failure drugs.
Collapse
Affiliation(s)
| | | | - Xiaojun Feng
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| |
Collapse
|
221
|
Ndembe G, Intini I, Perin E, Marabese M, Caiola E, Mendogni P, Rosso L, Broggini M, Colombo M. LKB1: Can We Target an Hidden Target? Focus on NSCLC. Front Oncol 2022; 12:889826. [PMID: 35646638 PMCID: PMC9131655 DOI: 10.3389/fonc.2022.889826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
LKB1 (liver kinase B1) is a master regulator of several processes such as metabolism, proliferation, cell polarity and immunity. About one third of non-small cell lung cancers (NSCLCs) present LKB1 alterations, which almost invariably lead to protein loss, resulting in the absence of a potential druggable target. In addition, LKB1-null tumors are very aggressive and resistant to chemotherapy, targeted therapies and immune checkpoint inhibitors (ICIs). In this review, we report and comment strategies that exploit peculiar co-vulnerabilities to effectively treat this subgroup of NSCLCs. LKB1 loss leads to an enhanced metabolic avidity, and treatments inducing metabolic stress were successful in inhibiting tumor growth in several preclinical models. Biguanides, by compromising mitochondria and reducing systemic glucose availability, and the glutaminase inhibitor telaglenastat (CB-839), inhibiting glutamate production and reducing carbon intermediates essential for TCA cycle progression, have provided the most interesting results and entered different clinical trials enrolling also LKB1-null NSCLC patients. Nutrient deprivation has been investigated as an alternative therapeutic intervention, giving rise to interesting results exploitable to design specific dietetic regimens able to counteract cancer progression. Other strategies aimed at targeting LKB1-null NSCLCs exploit its pivotal role in modulating cell proliferation and cell invasion. Several inhibitors of LKB1 downstream proteins, such as mTOR, MEK, ERK and SRK/FAK, resulted specifically active on LKB1-mutated preclinical models and, being molecules already in clinical experimentation, could be soon proposed as a specific therapy for these patients. In particular, the rational use in combination of these inhibitors represents a very promising strategy to prevent the activation of collateral pathways and possibly avoid the potential emergence of resistance to these drugs. LKB1-null phenotype has been correlated to ICIs resistance but several studies have already proposed the mechanisms involved and potential interventions. Interestingly, emerging data highlighted that LKB1 alterations represent positive determinants to the new KRAS specific inhibitors response in KRAS co-mutated NSCLCs. In conclusion, the absence of the target did not block the development of treatments able to hit LKB1-mutated NSCLCs acting on several fronts. This will give patients a concrete chance to finally benefit from an effective therapy.
Collapse
Affiliation(s)
- Gloriana Ndembe
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilenia Intini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Perin
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
222
|
Association of Metformin Use During Hospitalization and Mortality in Critically Ill Adults With Type 2 Diabetes Mellitus and Sepsis. Crit Care Med 2022; 50:935-944. [PMID: 35120041 DOI: 10.1097/ccm.0000000000005468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Whether metformin exposure is associated with improved outcomes in patients with type 2 diabetes mellitus and sepsis. DESIGN Retrospective cohort study. SETTING Patients admitted to ICUs in 16 hospitals in Pennsylvania from October 2008 to December 2014. PATIENTS Adult critical ill patients with type 2 diabetes mellitus and sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We conducted a retrospective cohort study to compare 90-day mortality in diabetic patients with sepsis with and without exposure to metformin during hospitalization. Data were obtained from the electronic health record of a large healthcare system in Pennsylvania from October 2008 to December 2014, on patients admitted to the ICU at any of the 16 hospitals within the system. The primary outcome was mortality at 90 days. The absolute and adjusted odds ratio (OR) with 95% CI were calculated in a propensity score-matched cohort. Among 14,847 patients with type 2 diabetes mellitus and sepsis, 682 patients (4.6%) were exposed to metformin during hospitalization and 14,165 (95.4%) were not. Within a total of 2,691 patients subjected to propensity score-matching at a 1:4 ratio, exposure to metformin (n = 599) was associated with decreased 90-day mortality (71/599, 11.9% vs 475/2,092, 22.7%; OR, 0.46; 95% CI, 0.35-0.60), reduced severe acute kidney injury (50% vs 57%; OR, 0.75; 95% CI, 0.62-0.90), less Major Adverse Kidney Events at 1 year (OR, 0.27; 95% CI, 0.22-0.68), and increased renal recovery (95% vs 86%; OR, 6.43; 95% CI, 3.42-12.1). CONCLUSIONS Metformin exposure during hospitalization is associated with a decrease in 90-day mortality in patients with type 2 diabetes mellitus and sepsis.
Collapse
|
223
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
224
|
Is Time-Restricted Eating Safe in the Treatment of Type 2 Diabetes?-A Review of Intervention Studies. Nutrients 2022; 14:nu14112299. [PMID: 35684097 PMCID: PMC9182892 DOI: 10.3390/nu14112299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Time-restricted eating (TRE) has been shown to improve body weight and glucose metabolism in people at high risk of type 2 diabetes. However, the safety of TRE in the treatment of type 2 diabetes is unclear. We investigated the safety of TRE interventions in people with type 2 diabetes by identifying published and ongoing studies. Moreover, we identified the commonly used antidiabetic drugs and discussed the safety of TRE in people with type 2 diabetes considering the use of these drugs. In addition, we addressed the research needed before TRE can be recommended in the treatment of type 2 diabetes. A literature search was conducted to identify published (MEDLINE PubMed) and ongoing studies (ClinicalTrials.gov) on TRE in people with type 2 diabetes. To assess the usage of antidiabetic drugs and to discuss pharmacodynamics and pharmacokinetics in a TRE context, the most used antidiabetic drugs were identified and analysed. Statistics regarding sale of pharmaceuticals were obtained from MEDSTAT.DK which are based on data from the national Register of Medicinal Product Statistics, and from published studies on medication use in different countries. Four published studies investigating TRE in people with type 2 diabetes were identified as well as 14 ongoing studies. The completed studies suggested that TRE is safe among people with type 2 diabetes. Common antidiabetic drugs between 2010 and 2019 were metformin, insulin, dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, sulfonylureas, and sodium-glucose cotransporter-2 inhibitors. Existing studies suggest that TRE is not associated with major safety issues in people with type 2 diabetes as long as medication is monitored and adjusted. However, because of low generalisability of the few studies available, more studies are needed to make concrete recommendations regarding efficacy and safety of TRE in people with type 2 diabetes.
Collapse
|
225
|
Ojeda-Fernández L, Foresta A, Macaluso G, Colacioppo P, Tettamanti M, Zambon A, Genovese S, Fortino I, Leoni O, Roncaglioni MC, Baviera M. Metformin use is associated with a decrease in the risk of hospitalization and mortality in COVID-19 patients with diabetes: A population-based study in Lombardy. Diabetes Obes Metab 2022; 24:891-898. [PMID: 35014746 DOI: 10.1111/dom.14648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
AIM To compare the association of metformin use and coronavirus disease 2019 (COVID-19) outcomes in a cohort of 31 966 patients with diabetes in Lombardy. METHODS We used a COVID-19 linkable administrative regional database to select patients with diabetes who were aged 40 years or older. They had at least two prescriptions of antidiabetic drugs in 2019 and a positive test for severe acute respiratory syndrome coronavirus-2 from 15 February 2020 to 15 March 2021. The association of metformin use and clinical outcomes was assessed by multivariable logistic regression analyses and after propensity score matching (PSM). Clinical outcomes were all-cause mortality, in-hospital mortality, hospitalization for COVID-19, and admission to an intensive care unit (ICU). RESULTS In multivariable models, metformin use was associated with a significantly lower risk of total mortality (OR 0.70; 95% CI 0.66-0.75), in-hospital mortality (OR 0.68; 95% CI 0.63-0.73), hospitalization for COVID-19 (OR 0.86; 95% CI 0.81-0.91), and ICU admission (OR 0.81; 95% CI 0.69-0.94) compared with metformin non-users. Results were similar after PSM; metformin was associated with a significantly lower risk of total mortality (OR 0.79; 95% CI 0.73-0.86), in-hospital mortality (OR 0.74; 95% CI 0.67-0.81), and ICU admission (OR 0.77; 95% CI 0.63-0.95). CONCLUSIONS In this large cohort, metformin use was associated with a protective effect in COVID-19 clinical outcomes, suggesting that it might be a potentially useful drug to prevent severe COVID-19 disease, although randomized controlled trials (RCTs) are needed to confirm this. While awaiting the results of RCTs, we suggest continuing prescribing metformin to COVID-19 patients with diabetes.
Collapse
Affiliation(s)
- Luisa Ojeda-Fernández
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andreana Foresta
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Macaluso
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pierluca Colacioppo
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Tettamanti
- Laboratory of Geriatric Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonella Zambon
- Department of Statistics and Quantitative Methods, University of Milano Bicocca, Milan, Italy
| | | | - Ida Fortino
- Unità Organizzativa Osservatorio Epidemiologico Regionale, Lombardy Region, Milan, Italy
| | - Olivia Leoni
- Unità Organizzativa Osservatorio Epidemiologico Regionale, Lombardy Region, Milan, Italy
| | - Maria Carla Roncaglioni
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marta Baviera
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
226
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
227
|
Rehman R, Alam F, Abidi SH, Farooqi N, Jehan F. Oxidative stress and metformin: An in-vitro study on serum and primary human granulosa cell cultures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2022. [DOI: 10.29333/ejgm/12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
228
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
229
|
Zhu W, Ding C, Huang P, Ran J, Lian P, Tang Y, Dai W, Huang X. Metformin Ameliorates Hepatic Steatosis induced by olanzapine through inhibiting LXRα/PCSK9 pathway. Sci Rep 2022; 12:5639. [PMID: 35379885 PMCID: PMC8979948 DOI: 10.1038/s41598-022-09610-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Studies have confirmed that olanzapine, the mainstay treatment for schizophrenia, triggers metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). However, the etiology of olanzapine-induced NAFLD is poorly understood. Proprotein convertase subtilisin kexin type 9 (PCSK9) is involved in NAFLD pathogenesis, and metformin can significantly decrease circulating PCSK9. The purpose of this study was to investigate the role of PCSK9 and explore the therapeutic effect of metformin for olanzapine-associated NAFLD. Olanzapine significantly upregulated PCSK9 and promoted lipid accumulation in mouse livers and HepG2 and AML12 cells. Metformin ameliorated these pathological alterations. PCSK9 upstream regulator liver X receptor α (LXRα) was significantly upregulated in olanzapine-induced NAFLD. LXRα antagonist treatment and LXRα overexpression resulted in a decrease and increase of PCSK9, respectively. Hepatic lipogenesis-associated genes FAS and SCD1 were significantly upregulated in olanzapine-induced NAFLD mice and HepG2 cells overexpressing PCSK9, and genes related to lipid β-oxidation (SCAD and PPARα) were downregulated, while metformin reversed these changes. In addition, we found that LXRα overexpression compromised the effect of metformin on PCSK9 levels and intracellular lipid droplet formation. Taken together, our findings suggest that olanzapine enhances hepatic PCSK9 expression by upregulating LXRα, thereby increasing FAS and SCD1 expression as well as decreasing SCAD and PPARα, and promoting lipid accumulation, and, subsequently, NAFLD, which is ameliorated by metformin.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chen Ding
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Piaopiao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Juanli Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pingan Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yaxin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wen Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Medicine, Columbia University Medical Center, New York, USA
| | - Xiansheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
230
|
Saad AAA, Zhang F, Refat M, Mohammed EAH, Zhang M, Chen Y, Al Hamyari B, Alafifi J, Wu X. Tamsulosin alters the pharmacokinetics of metformin via inhibition of renal multidrug and toxin extrusion protein 1 and organic cation transporter 2 in rats. J Pharm Biomed Anal 2022; 212:114666. [DOI: 10.1016/j.jpba.2022.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
|
231
|
Yang XD, Yang YY. Ferroptosis as a Novel Therapeutic Target for Diabetes and Its Complications. Front Endocrinol (Lausanne) 2022; 13:853822. [PMID: 35422764 PMCID: PMC9001950 DOI: 10.3389/fendo.2022.853822] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
The global diabetes epidemic and its complications are increasing, thereby posing a major threat to public health. A comprehensive understanding of diabetes mellitus (DM) and its complications is necessary for the development of effective treatments. Ferroptosis is a newly identified form of programmed cell death caused by the production of reactive oxygen species and an imbalance in iron homeostasis. Increasing evidence suggests that ferroptosis plays a pivotal role in the pathogenesis of diabetes and diabetes-related complications. In this review, we summarize the potential impact and regulatory mechanisms of ferroptosis on diabetes and its complications, as well as inhibitors of ferroptosis in diabetes and diabetic complications. Therefore, understanding the regulatory mechanisms of ferroptosis and developing drugs or agents that target ferroptosis may provide new treatment strategies for patients with diabetes.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
232
|
Tankova T, Senkus E, Beloyartseva M, Borštnar S, Catrinoiu D, Frolova M, Hegmane A, Janež A, Krnić M, Lengyel Z, Marcou Y, Mazilu L, Mrinakova B, Percik R, Petrakova K, Rubovszky G, Tokar M, Vrdoljak E. Management Strategies for Hyperglycemia Associated with the α-Selective PI3K Inhibitor Alpelisib for the Treatment of Breast Cancer. Cancers (Basel) 2022; 14:1598. [PMID: 35406370 PMCID: PMC8997133 DOI: 10.3390/cancers14071598] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Alpelisib is an α-selective phosphatidylinositol 3-kinase inhibitor used for treating hormone receptor-positive (HR+), human epidermal growth receptor 2-negative (HER2-), PIK3CA-mutated locally advanced or metastatic breast cancer following disease progression on or after endocrine therapy. Hyperglycemia is an on-target effect of alpelisib affecting approximately 60% of treated patients, and sometimes necessitating dose reductions, treatment interruptions, or discontinuation of alpelisib. Early detection of hyperglycemia and timely intervention have a key role in achieving optimal glycemic control and maintaining alpelisib dose intensity to optimize the benefit of this drug. A glycemic support program implemented by an endocrinology-oncology collaborative team may be very useful in this regard. Lifestyle modifications, mainly comprising a reduced-carbohydrate diet, and a designated stepwise, personalized antihyperglycemic regimen, based on metformin, sodium-glucose co-transporter 2 inhibitors, and pioglitazone, are the main tools required to address the insulin-resistant hyperglycemia induced by alpelisib. In this report, based on the consensus of 14 oncologists and seven endocrinologists, we provide guidance for hyperglycemia management strategies before, during, and after alpelisib therapy for HR+, HER2-, PIK3CA-mutated breast cancer, with a focus on a proactive, multidisciplinary approach.
Collapse
Affiliation(s)
- Tsvetalina Tankova
- Department of Endocrinology, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
| | - Elżbieta Senkus
- Department of Oncology & Radiotherapy, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Maria Beloyartseva
- Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 23 Kashirskoye Avenue, 115478 Moscow, Russia; (M.B.); (M.F.)
| | - Simona Borštnar
- Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia;
| | - Doina Catrinoiu
- Department of Diabetology, Clinical Emergency Hospital of Constanta, Romania, Tomis Bvd. No. 145, 900591 Constanta, Romania; (D.C.); (L.M.)
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley No. 1, 900470 Constanta, Romania
| | - Mona Frolova
- Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 23 Kashirskoye Avenue, 115478 Moscow, Russia; (M.B.); (M.F.)
| | - Alinta Hegmane
- Out-Patient Department of Medical Oncology, Riga East University Hospital, Oncology Center of Latvia, 4, Hipokrata Str., LV1079 Riga, Latvia;
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Disease, University Medical Center, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Mladen Krnić
- Department of Endocrinology, Clinical Hospital Center Split, School of Medicine, University of Split, Šoltanska 1, 21000 Split, Croatia;
| | - Zoltan Lengyel
- Szent János Hospital, Diós árok 1-3, 1125 Budapest, Hungary;
| | - Yiola Marcou
- Medical Oncology Department, The Bank of Cyprus Oncology Centre, 32 Acropoleos Avenue, Strovolos, Nicosia 2006, Cyprus;
| | - Laura Mazilu
- Department of Diabetology, Clinical Emergency Hospital of Constanta, Romania, Tomis Bvd. No. 145, 900591 Constanta, Romania; (D.C.); (L.M.)
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley No. 1, 900470 Constanta, Romania
| | - Bela Mrinakova
- 1st Department of Oncology, Comenius University, Faculty of Medicine, Bratislava, Heydukova 10, 812 50 Bratislava, Slovakia;
- Slovak Republic Department of Medical Oncology, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Ruth Percik
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Ramat Aviv, Tel Aviv 69978, Israel
| | - Katarina Petrakova
- Masaryk Memorial Cancer Institute, Žlutý kopec 543/7, Brno-Střed-Staré, 602 00 Brno, Czech Republic;
| | - Gábor Rubovszky
- National Institute of Oncology, Rath Gy. Str. 7-9, 1122 Budapest, Hungary;
| | - Margarita Tokar
- The Legacy Heritage Oncology Center and Dr. Larry Norton Institute, SorokaMedical Center, Yitzhack I. Rager Blvd 151, Be’er Sheva, Israel;
| | - Eduard Vrdoljak
- Department of Oncology, Clinical Hospital Center Split, School of Medicine, University of Split, Spinčićeva 1, 21000 Split, Croatia;
| |
Collapse
|
233
|
Li X, Liu M, Shi Q, Fang Y, Fu D, Shen ZX, Yi H, Wang L, Zhao W. Elevated serum IL-13 level is associated with increased Treg cells in tumor microenvironment and disease progression of Diffuse large B-cell lymphoma. Hematol Oncol 2022; 41:230-238. [PMID: 35304777 DOI: 10.1002/hon.2993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/11/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common aggressive lymphoid malignancy, with an immunosuppressive microenvironment affecting clinical outcome. Interleukin (IL)-13 overexpression is observed in multiple solid tumors and contributes to tumor progression. This study aims to investigate pretreatment serum IL-13 levels and their relationship with the prognosis of DLBCL patients. One hundred and sixty-six patients with newly diagnosed DLBCL from June 2015 to July 2017 were included. Patients with elevated pretreatment serum IL-13 levels (IL-13≥1.63pg/ml) were classified into the high IL-13 group and they had significantly lower complete remission rate (60% vs. 74%, p=0.0059), higher progression rate (43% vs. 23%, p=0.0051), and poor progression-free survival (2-yr PFS, 63% vs. 78%,p=0.0078) and overall survival (2-yr OS, 75% vs. 92%, p=0.0027), when compared to those in the low IL-13 group (IL-13<1.63pg/ml). Meanwhile, increased Treg cell ratio in peripheral blood (p=0.0147) and elevated serum IL-2 levels (p=0.0272) were observed in the high IL-13 group. Moreover, RNA sequencing data showed that patients in the high IL-13 group had significantly elevated expression of chemokines and chemokine receptors (CCR4, CCL19, CCL21, CXCL2) related to Treg activation and recruitment. Consistent with the chemokine profile, tumor immunophenotyping analysis revealed that higher Treg cells recruitment in the high IL-13 group than the low IL-13 group (p=0.0116). In vitro, when lymphoma cells co-cultured with peripheral blood monocytes of healthy controls, metformin down-regulated both IL-13 level and Treg cell ratio, in consistent with the decreased serum IL-13 levels of patients after 6 months of metformin maintenance therapy in the high IL-13 group. Taken together, pretreatment serum IL-13 level is related to the immunosuppressive microenvironment and poor clinical outcome of DLBCL patients and could be targeted by metformin, thus providing a new therapeutic strategy in treating DLBCL with high serum IL-13 levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Xiang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| |
Collapse
|
234
|
Ilias I, Rizzo M, Zabuliene L. Metformin: Sex/Gender Differences in Its Uses and Effects—Narrative Review. Medicina (B Aires) 2022; 58:medicina58030430. [PMID: 35334606 PMCID: PMC8952223 DOI: 10.3390/medicina58030430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Metformin (MTF) occupies a major and fundamental position in the therapeutic management of type 2 diabetes mellitus (T2DM). Gender differences in some effects and actions of MTF have been reported. Women are usually prescribed lower MTF doses compared to men and report more gastrointestinal side effects. The incidence of cardiovascular events in women on MTF has been found to be lower to that of men on MTF. Despite some promising results with MTF regarding pregnancy rates in women with PCOS, the management of gestational diabetes, cancer prevention or adjunctive cancer treatment and COVID-19, most robust meta-analyses have yet to confirm such beneficial effects.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, GR-11521 Athens, Greece
- Correspondence: e-mail:
| | - Manfredi Rizzo
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Via del Vespro, 141, 90127 Palermo, Italy;
| | - Lina Zabuliene
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio St. 21/27, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
235
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
236
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
237
|
Cheng T, Wang C, Lu Q, Cao Y, Yu W, Li W, Liu B, Gao X, Lü J, Pan X. Metformin inhibits the tumor-promoting effect of low-dose resveratrol, and enhances the anti-tumor activity of high-dose resveratrol by increasing its reducibility in triple negative breast cancer. Free Radic Biol Med 2022; 180:108-120. [PMID: 35038549 DOI: 10.1016/j.freeradbiomed.2022.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Resveratrol, a natural antioxidant that maintains better bioactivity under hypoxia, has anti-tumor effects, but its underlying mechanism is controversial and the effect on Triple-negative breast cancer (TNBC) remains unclear. Herein, we investigated the anti-TNBC mechanism of resveratrol under a mimic hypoxic tumor microenvironment and explored a method of combining metformin to improve the therapeutic effect. The results showed an inverted "U" shaped relationship between the cell viability and resveratrol concentrations. Low concentrations of resveratrol (LRes) promoted proliferation and migration in MDA-MB-231 cells by activating JAK3/STAT3 signaling pathway, while high concentrations of resveratrol (HRes) inhibited cell growth and induced both autophagy and apoptosis through MAPK signaling pathway. Meanwhile, HRes treatment resulted in the up-regulation of antioxidant-related genes SOD3 and FAM213B, the increase of catalase activity and NAD(P)H level, which leading to a reducing microenvironment in cells. Notably, metformin could inhibit the proliferation and migration induced by LRes, whereas promote apoptosis induced by HRes. Moreover, metformin enhanced the reducing environment via further increasing the catalase activity and NAD(P)H level. These findings conclude the anti-TNBC mechanism of HRes should be attributed to its antioxidant activity and metformin enhances its reducibility. Metformin combined with resveratrol exerts a synergistic therapeutic effect on TNBC and effectively prevents tumor progression.
Collapse
Affiliation(s)
- Tingting Cheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Cheng Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qianqian Lu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China
| | - Yuru Cao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China
| | - Weiwei Yu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China; Institute of Regulatory Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
238
|
Ren Z, Okyere SK, Xie L, Wen J, Wang J, Chen Z, Ni X, Deng J, Hu Y. Oral Administration of Bacillus toyonensis Strain SAU-20 Improves Insulin Resistance and Ameliorates Hepatic Steatosis in Type 2 Diabetic Mice. Front Immunol 2022; 13:837237. [PMID: 35242140 PMCID: PMC8887768 DOI: 10.3389/fimmu.2022.837237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, the ameliorative effects of Bacillus toyonensis-SAU-20 (B. toyo SAU-20), a new probiotic strain isolated and identified by our laboratory from Ageratina adenophora, on the development of insulin resistance and hepatic steatosis in type 2 diabetic (T2DM) mice was investigated. Thirty Specific-pathogen free Kunming (SPFKM) mice were randomly allocated to three groups: control, high fat diet/streptozotocin (HFD/STZ), and HFD/STZ+B. toyo SAU-20 groups with oral administration of B. toyo SAU-20 for 35 days. Biochemistry parameters, glucose tolerance, and insulin resistance were measured in the blood whereas histological analysis, inflammatory cytokines and lipogenic genes in the liver tissues. The results showed that, the levels of serum glucose, lipid profile, mRNA expression of lipogenic related genes and pro-inflammatory cytokines were significantly increased in T2DM mice. However, after B. toyo SAU-20 administration, the elevation of these parameters was significantly suppressed (P<0.05). In addition, the feeding of B. toyo SAU-20 significantly improved the morphological changes of the liver with significant alleviation of dyslipidemia, oxidative stress status and inflammation (P<0.05) indicating the ameliorating effect of B. toyo SAU-20 in hepatic steatosis in T2DM. Therefore, we concluded that, B. toyo SAU-20 alleviated insulin resistance and hepatic steatosis by improving the lipid profiles, antioxidant status and downregulating lipogenic genes as well as pro-inflammation cytokines expression.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiayi Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- New Ruipeng Pet Healthcare Group Co., Ltd.Shenzhen, China
| |
Collapse
|
239
|
Zera CA, Seely EW. Controversies in Gestational Diabetes. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 17:102-107. [PMID: 35118455 DOI: 10.17925/ee.2021.17.2.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Gestational diabetes mellitus (GDM) complicates approximately 7% of pregnancies in the USA. Despite recognition of the benefits of diagnosing and treating GDM, there are several areas of controversy that remain unresolved. There is debate as to whether to screen for GDM with the one-step versus the two-step approach. While the former identifies more pregnancies with potential adverse outcomes, data are lacking as to whether treatment of these pregnancies will improve outcomes, while increasing costs by diagnosing more women. Though it is well established that the diagnosis of even mild GDM, and treatment with lifestyle recommendations and insulin, improves pregnancy outcomes, it is controversial as to which type and regimen of insulin is optimal, and whether oral agents can be used safely and effectively to control glucose levels. Finally, it is recommended that women with GDM get tested for type 2 diabetes within several months of delivery; however, many women do not undergo this testing and alternative approaches are needed. These controversies are discussed with data from both sides of the debate to enable clinicians to make patient-centered decisions until more definitive data are available.
Collapse
Affiliation(s)
- Chloe A Zera
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ellen W Seely
- Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
240
|
Li Q, Xu H, Sui C, Zhang H. Impact of metformin use on risk and mortality of hepatocellular carcinoma in diabetes mellitus. Clin Res Hepatol Gastroenterol 2022; 46:101781. [PMID: 34332136 DOI: 10.1016/j.clinre.2021.101781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The views regarding the associations between metformin use and hepatocellular carcinoma (HCC) among diabetes mellitus (DM) patients are divisive. Thus we summarized all available published studies evaluating the relationship between metformin therapy and HCC survival and risk, and aim to conduct an updated meta-analysis study to more accurately clarify the association. METHODS We searched for articles regarding impact of metformin use on risk and mortality of HCC in DM and published before April 2021 in databases (PubMed and Web of Science). We used STATA 12.0 software to compute odds ratios (ORs)/relative risks (RRs) or hazard ratios (HRs) and their 95% confidence intervals (CIs) to generate a computed effect size and 95% CI. RESULTS The present study showed that metformin use was associated with a decreased risk of HCC in DM with a random effects model (OR/RR = 0.59, 95% CI 0.51-0.68, I2 = 96.5%, p < 0.001). In addition, the study indicated that metformin use was associated with a decreased all-cause mortality of HCC in DM with a random effects model (HR = 0.74, 95% CI 0.66-0.83, I2 = 49.6%, p = 0.037). CONCLUSION In conclusion, our studies support that the use of metformin in DM patients is significantly associated with reduced risk and all-cause mortality of HCC. And more prospective studies focusing on the metformin therapy as a protective factor for HCC are needed to verify the accuracy of the findings.
Collapse
Affiliation(s)
- Qiaomei Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Naval Medical University, 201805 Shanghai, China
| | - Hairong Xu
- Second department of biliary tract, The Third Affiliated Hospital of Naval Medical University, 201805 Shanghai, China
| | - Chengjun Sui
- Department of special treatment, The Third Affiliated Hospital of Naval Medical University, 201805 Shanghai, China
| | - Hongjuan Zhang
- Department of Oncology Biotherapy, The Third Affiliated Hospital of Naval Medical University, No. 700 North Moyu road, Jiading district, 201805 Shanghai, China.
| |
Collapse
|
241
|
Li T, Providencia R, Jiang W, Liu M, Yu L, Gu C, Chang ACY, Ma H. Association of Metformin with the Mortality and Incidence of Cardiovascular Events in Patients with Pre-existing Cardiovascular Diseases. Drugs 2022; 82:311-322. [PMID: 35032305 DOI: 10.1007/s40265-021-01665-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Whether metformin reduces all-cause cardiovascular mortality and the incidence of cardiovascular events in patients with pre-existing cardiovascular diseases (CVD) remains inconclusive. Some randomised controlled trials (RCTs) and cohort studies have shown that metformin is associated with an increased risk of mortality and cardiovascular events. METHODS We conducted a pooling synthesis to assess the effects of metformin in all-cause cardiovascular mortality and incidence of cardiovascular events in patients with CVD. Studies published up to October 2021 in PubMed or Embase with a registration in PROSPERO (CRD42020189905) were collected. Both RCT and cohort studies were included. Hazard ratios (HR) with 95% CI were pooled across various trials using the random-effects model. RESULTS This study enrolled 35 published studies (in 14 publications) for qualitative synthesis and identified 33 studies (published in 26 publications) for quantitative analysis. We analysed a total of 61,704 patients, among them 58,271 patients were used to calculate all-cause mortality while 12,814 patients were used to calculate cardiovascular mortality. Compared with non-metformin control, metformin usage is associated with a reduction in all-cause mortality (HR: 0.90; 95% CI 0.83, 0.98; p = 0.01), cardiovascular mortality (HR: 0.89; 95% CI 0.85, 0.94; p < 0.0001), incidence of coronary revascularisation (HR: 0.79; 95% CI 0.64, 0.98; p = 0.03), and heart failure (HR: 0.90; 95% CI 0.87, 0.94; p < 0.0001) in patients with pre-existing cardiovascular diseases. CONCLUSION Metformin use is associated with a reduction in all-cause mortality, cardiovascular mortality, incidence of coronary revascularisation, and heart failure in patients with CVD; however, metformin usage was not associated with reduction in the incidence of myocardial infarction, angina, or stroke.
Collapse
Affiliation(s)
- Tian Li
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | | | - Wenhua Jiang
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 211125, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China.
| |
Collapse
|
242
|
Wu X, Sun W. Extracellular Vesicles Derived From Stem Cells in Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:793363. [PMID: 35096823 PMCID: PMC8793284 DOI: 10.3389/fcell.2021.793363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain related to degradation of cartilaginous tissues, mainly resulting from oxidative stress, cell apoptosis, and extracellular matrix degradation. Extracellular vesicles (EVs) exist in all bodily fluids and can be produced by all types of cells. Stem cell-derived EVs (SC-EVs), which are the main paracrine components of stem cells, have gained significant attention in the field of regenerative medicine. Over the past years, accumulating evidence indicates the therapeutic and diagnostic potentials of EVs in IVDD. The main mechanisms involve the induction of regenerative phenotypes, apoptosis alleviation, and immune modulation. In addition, the efficiency of SC-EVs can be enhanced by choosing appropriate donor cells and cell phenotypes, optimizing cell culture conditions, or engineering EVs to deliver drugs and targeting molecules. Given the importance and novelty of SC-EVs, we give an overview of SC-EVs and discuss the roles of SC-EVs in IVDD.
Collapse
Affiliation(s)
- Xinjie Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Wei Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
243
|
Wang S, Ma Y, Wang W, Dai Y, Sun H, Li J, Wang S, Li F. Status and prospect of novel treatment options toward alveolar and cystic echinococcosis. Acta Trop 2022; 226:106252. [PMID: 34808118 DOI: 10.1016/j.actatropica.2021.106252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are the two most important global parasitic infectious diseases caused by species of Echinococcus granulosus and E. multilocularis, respectively. Although numerous trials have been performed in search of novel therapeutic options to curb the neglected zoonosis, no other nonsurgical options are currently available to replace the licensed anti echinococcal drugs albendazole (ABZ) and mebendazole (MBZ). A safer and more effective treatment plan for echinococcosis is therefore urgently needed to compensate for this therapeutic shortfall. Here, we present a review of the literature for state-of-the-art valuable anti-parasitic compounds and novel strategies that have proved effective against CE and AE, which includes details about the pharmaceutical type, practical approach, experimental plan, model application and protoscolecidal effects in vivo and in vitro. The content includes the current application of traditional clinical chemicals, the preparation of new compounds with various drug loadings, repurposing findings, combined programs, the prospects for Chinese herbal medicines, non-drug administrations and the exploration of target inhibitors based on open-source information for parasitic genes. Next the conventional experimental projects and pharmacodynamic evaluation methods are systematically summarized and evaluated. The demands to optimize the construction of the echinococcosis model and improve the dynamic monitoring method in vivo are also discussed given the shortcomings of in vivo models and monitoring methods.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibo Ma
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Weishan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yi Dai
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haohao Sun
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jing Li
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
244
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
245
|
Sun ML, Liu HJ, Luo XD, Wang Y, Zhang W, Liu C, Wang X. Bioequivalence and Safety Assessment of Two Formulations of Metformin Hydrochloride Sustained-Release Tablets (Yuantang® SR and Glucophage® XR) Under Fed Conditions in Healthy Chinese Adult Subjects: An Open-Label, Two-Way Crossover, Sequence Randomized Phase I Clinical Trial. Drugs R D 2022; 22:51-60. [PMID: 35061235 PMCID: PMC8885941 DOI: 10.1007/s40268-021-00377-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Objective The purpose of this single-center, randomized, open, two-period, two-sequence crossover, single-dose administration, bioequivalence research was to evaluate the bioequivalence and safety of the generic formulations of metformin hydrochloride sustained-release (MH-SR) 500 mg tablets (test preparation [T]: Yuantang® SR) and the original formulation (reference preparation [R]: Glucophage® XR) in 36 healthy Chinese volunteers under postprandial conditions. Methods Subjects received 500 mg T/R in each period, with a 7-day washout period. Venous blood samples of 4 mL each were collected from each subject 19 times spanning predose (0 h) to 36 h postdose. The metformin concentration in deproteinized plasma was determined by high-performance liquid chromatography–tandem mass spectrometry. Bioequivalence (80.00–125.00%) was assessed by adjusted geometric mean ratios (GMRs) and two-sided 90% confidence intervals (CIs) of the area under the curve (AUC) and maximum concentration (Cmax) for each component. SAS 9.4 software was used for statistical analysis and Phoenix WinNonlin software v7 was used to analyze the pharmacokinetic parameters. Results Thirty-four volunteers completed the clinical study. The 90% CIs (96.12–105.44% for AUC from time zero to the time of the last measurable concentration [AUCt], 96.22–105.54% for AUC extrapolated from time zero to infinity [AUC∞], and 98.42–105.00% for Cmax) of T/R adjusted GMRs were within the bioequivalence acceptance range of 80.00–125.00%, indicating that they are bioequivalent. No serious adverse events occurred in this study, indicating that the two formulations were effective and well tolerated. Conclusions Yuantang® SR was confirmed to be a well tolerated and bioequivalent alternative to Glucophage® XR when taken under postprandial conditions in healthy Chinese volunteers. The Clinical Trials Registry Platform used for this study was http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml. The trial registration numbers (TRNs) and dates of registrations were CTR20180476 (19 April 2018) for this clinical trial and CTR20171595 (11 January 2018) for the pilot trial.
Collapse
Affiliation(s)
- Ming-Li Sun
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Hui-Juan Liu
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Xiang-Dong Luo
- Department of Research and Development, Guangdong Sinocorp Pharmaceutical Co., Ltd, Xiang-er Road, Huizhou Industrial Transfer Park, Longmen County, Huizhou, Guangdong Province, 516800, People's Republic of China
| | - Yu Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Wei Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Chen Liu
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
246
|
Liu S, Washio J, Sato S, Abiko Y, Shinohara Y, Kobayashi Y, Otani H, Sasaki S, Wang X, Takahashi N. Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions. Int J Mol Sci 2022; 23:ijms23020989. [PMID: 35055173 PMCID: PMC8781974 DOI: 10.3390/ijms23020989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.
Collapse
Affiliation(s)
- Shan Liu
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Correspondence: ; Tel.: +81-22-717-8295
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuta Shinohara
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuri Kobayashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Shiori Sasaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| |
Collapse
|
247
|
Hu A, Hu Z, Ye J, Liu Y, Lai Z, Zhang M, Ji W, Huang L, Zou H, Chen B, Zhong J. Metformin exerts anti-tumor effects via Sonic hedgehog signaling pathway by targeting AMPK in HepG2 cells. Biochem Cell Biol 2022; 100:142-151. [PMID: 34990285 DOI: 10.1139/bcb-2021-0409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metformin, a traditional first-line pharmacologic treatment for type 2 diabetes, has recently been shown to impart anti-cancer effects on hepatocellular carcinoma (HCC). However, the molecular mechanism of metformin on its antitumor activity is still not completely clear. The Sonic hedgehog (Shh) signaling pathway is closely associated with the initiation and progression of HCC. Therefore, the aim of the current study was to investigate the effects of metformin on the biological behavior of HCC and the underlying functional mechanism of metformin on the Shh pathway. The HCC cellular was induced in HepG2 cells by recombinant human Shh (rhShh). The effects of metformin on proliferation and metastasis were evaluated by proliferation, wound healing and invasion assays in vitro. The mRNA and protein expression levels of proteins related to the Shh pathway were measured by western blotting, quantitative PCR and immunofluorescence staining. Metformin inhibited rhShh-induced proliferation and metastasis. Furthermore, metformin decreased mRNA and protein expression of components of the Shh pathway including Shh, Ptch, Smo and Gli-1. Silencing of AMPK in the presence of metformin revealed that metformin could exert its inhibitory effect via AMPK. Our findings demonstrate that metformin can suppress the migration and invasion of HepG2 cells via AMPK-mediated inhibition of the Shh pathway.
Collapse
Affiliation(s)
- Ang Hu
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Zeming Hu
- First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China;
| | - Jianming Ye
- First Affiliated Hospital of Gannan Medical University, 477808, Ganzhou, Jiangxi, China;
| | - Yuwen Liu
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Zhonghong Lai
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Mi Zhang
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Weichao Ji
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Lili Huang
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Haohong Zou
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Bin Chen
- First Affiliated Hospital of Gannan Medical University, 477808, Ganzhou, Jiangxi, China;
| | - Jianing Zhong
- Gannan Medical University, 74554, Ganzhou, China, 341000;
| |
Collapse
|
248
|
Salvati KA, Ritger ML, Davoudian PA, O’Dell F, Wyskiel DR, Souza GMPR, Lu AC, Perez-Reyes E, Drake JC, Yan Z, Beenhakker MP. OUP accepted manuscript. Brain 2022; 145:2332-2346. [PMID: 35134125 PMCID: PMC9337815 DOI: 10.1093/brain/awac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.
Collapse
Affiliation(s)
- Kathryn A Salvati
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Epilepsy Research Laboratory and Weil Institute for Neurosciences, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Ritger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Pasha A Davoudian
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- MD-PhD Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Finnegan O’Dell
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel R Wyskiel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C Lu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Robert M. Berne Center for Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- The Robert M. Berne Center for Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark P Beenhakker
- Correspondence to: Mark P. Beenhakker Department of Pharmacology University of Virginia School of Medicine Charlottesville, VA, 22908, USA E-mail:
| |
Collapse
|
249
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
250
|
Abstract
Type two diabetes mellitus (T2DM) represents a chronic condition with increasing prevalence worldwide among the older population. The T2DM condition increases the risk of micro and macrovascular complications as well as the risk of geriatric syndromes such as falls, fractures and cognitive impairment. The management of T2DM in the older population represents a challenge for the clinician, and a Comprehensive Geriatric Assessment should always be prioritized, in order to tailor the glycated hemoglobin target according to functional and cognitive status comorbidities, life expectancy and type of therapy. According to the most recent guidelines, older adults with T2DM should be categorized into three groups: healthy patients with good functional status, patients with complications and reduced functionality and patients at the end of life; for each group the target for glycemic control is different, also according to the type of treatment drug. The therapeutic approach should always begin with lifestyle changes; after that, several lines of therapy are available, with different mechanisms of action and potential effects other than glucose level reduction. Particular interest is growing in sodium-glucose cotransporter-2 inhibitors, due to their effect on the cardiovascular system. In this review, we evaluate the therapeutic options available for the treatment of older diabetic patients, to ensure a correct treatment approach.
Collapse
|