201
|
Shafqat A, Shafqat S, Salameh SA, Kashir J, Alkattan K, Yaqinuddin A. Mechanistic Insights Into the Immune Pathophysiology of COVID-19; An In-Depth Review. Front Immunol 2022; 13:835104. [PMID: 35401519 PMCID: PMC8989408 DOI: 10.3389/fimmu.2022.835104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes coronavirus-19 (COVID-19), has caused significant morbidity and mortality globally. In addition to the respiratory manifestations seen in severe cases, multi-organ pathologies also occur, making management a much-debated issue. In addition, the emergence of new variants can potentially render vaccines with a relatively limited utility. Many investigators have attempted to elucidate the precise pathophysiological mechanisms causing COVID-19 respiratory and systemic disease. Spillover of lung-derived cytokines causing a cytokine storm is considered the cause of systemic disease. However, recent studies have provided contradictory evidence, whereby the extent of cytokine storm is insufficient to cause severe illness. These issues are highly relevant, as management approaches considering COVID-19 a classic form of acute respiratory distress syndrome with a cytokine storm could translate to unfounded clinical decisions, detrimental to patient trajectory. Additionally, the precise immune cell signatures that characterize disease of varying severity remain contentious. We provide an up-to-date review on the immune dysregulation caused by COVID-19 and highlight pertinent discussions in the scientific community. The response from the scientific community has been unprecedented regarding the development of highly effective vaccines and cutting-edge research on novel therapies. We hope that this review furthers the conversations held by scientists and informs the aims of future research projects, which will potentially further our understanding of COVID-19 and its immune pathogenesis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
202
|
Chang T, Yang J, Deng H, Chen D, Yang X, Tang ZH. Depletion and Dysfunction of Dendritic Cells: Understanding SARS-CoV-2 Infection. Front Immunol 2022; 13:843342. [PMID: 35265087 PMCID: PMC8898834 DOI: 10.3389/fimmu.2022.843342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 infection is closely related to disorders of the innate immune and delayed adaptive immune systems. Dendritic cells (DCs) “bridge” innate immunity and adaptive immunity. DCs have important roles in defending against SARS-CoV-2 infection. In this review, we summarize the latest research concerning the role of DCs in SARS-CoV-2 infection. We focus on the complex interplay between DCs and SARS-CoV-2: pyroptosis-induced activation; activation of the renin–angiotensin–aldosterone system; and activation of dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin. We also discuss the decline in DC number, the impaired antigen-presentation capability, and the reduced production of type-I interferon of DCs in severe SARS-CoV-2 infection. In addition, we discuss the potential mechanisms for pathological activation of DCs to understand the pattern of SARS-CoV-2 infection. Lastly, we provide a brief overview of novel vaccination and immunotherapy strategies based on DC targeting to overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - XiangPing Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| |
Collapse
|
203
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
204
|
Affiliation(s)
- Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
205
|
Smith CIE, Zain R, Österborg A, Palma M, Buggert M, Bergman P, Bryceson Y. Do reduced numbers of plasmacytoid dendritic cells contribute to the aggressive clinical course of COVID-19 in chronic lymphocytic leukemia? Scand J Immunol 2022; 95:e13153. [PMID: 35244285 PMCID: PMC9115357 DOI: 10.1111/sji.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Infections with SARS‐CoV‐2 have been unduly severe in patients with haematological malignancies, in particular in those with chronic lymphocytic leukaemia (CLL). Based on a series of observations, we propose that an underlying mechanism for the aggressive clinical course of COVID‐19 in CLL is a paucity of plasmacytoid dendritic cells (pDCs) in these patients. Indeed, pDCs express Toll‐like receptor 7 (TLR7), which together with interferon‐regulatory factor 7 (IRF7), enables pDCs to produce large amounts of type I interferons, essential for combating COVID‐19. Treatment of CLL with Bruton's tyrosine kinase (BTK) inhibitors increased the number of pDCs, likely secondarily to the reduction in the tumour burden.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Center for Rare Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Österborg
- Dept of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marzia Palma
- Dept of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Yenan Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
206
|
Escape and Over-Activation of Innate Immune Responses by SARS-CoV-2: Two Faces of a Coin. Viruses 2022; 14:v14030530. [PMID: 35336937 PMCID: PMC8951629 DOI: 10.3390/v14030530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
In the past 20 years, coronaviruses (CoVs), including SARS-CoV-1, MERS-CoV, and SARS-CoV-2, have rapidly evolved and emerged in the human population. The innate immune system is the first line of defense against invading pathogens. Multiple host cellular receptors can trigger the innate immune system to eliminate invading pathogens. However, these CoVs have acquired strategies to evade innate immune responses by avoiding recognition by host sensors, leading to impaired interferon (IFN) production and antagonizing of the IFN signaling pathways. In contrast, the dysregulated induction of inflammasomes, leading to uncontrolled production of IL-1 family cytokines (IL-1β and IL-18) and pyroptosis, has been associated with COVID-19 pathogenesis. This review summarizes innate immune evasion strategies employed by SARS-CoV-1 and MERS-CoV in brief and SARS-CoV-2 in more detail. In addition, we outline potential mechanisms of inflammasome activation and evasion and their impact on disease prognosis.
Collapse
|
207
|
Espinoza C, Alarcón M. The Immune Response to SARS-CoV-2: Mechanisms, Aging, Sequelae and Vaccines. Mini Rev Med Chem 2022; 22:2166-2185. [PMID: 35249484 DOI: 10.2174/1389557522666220304231537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
This review seeks to clarify the factors involved in the various immune responses to SARS-CoV-2 infection and the mechanisms that influence the development of COVID-19 with severe evolution. The innate immune response that evolves against SARS-CoV-2 in a complex way is highlighted, integrating multiple pathways by coronaviruses to evade it, in addition to characterizing the adaptive immune response, which can lead to an effective immune response or can contribute to immunopathological imbalance. In turn, host-dependent biomarkers such as age, gender, ABO blood group, and risk factors that contribute to the critical and varied progress of COVID-19 immunopathogenesis were analyzed. Finally, the potential vaccine candidates are presented, capable of generating immune protection with humoral and/or cellular neutralizing responses, in favor of blocking and destroying both the new human coronavirus and its variants, which cause the current pandemic.
Collapse
Affiliation(s)
- Carolina Espinoza
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| |
Collapse
|
208
|
Arnold CG, Libby A, Vest A, Hopkinson A, Monte AA. Immune mechanisms associated with sex-based differences in severe COVID-19 clinical outcomes. Biol Sex Differ 2022; 13:7. [PMID: 35246245 PMCID: PMC8894555 DOI: 10.1186/s13293-022-00417-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Although biological males and females are equally likely to become infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evidence has mounted that males experience higher severity and fatality compared to females. MAIN: The objective of this review is to examine the existing literature on biological mechanisms underlying sex-based differences that could contribute to SARS-CoV-2 infection clinical outcomes. Sex-based differences in immunologic response and hormonal expression help explain the differences in coronavirus disease 2019 (COVID-19) outcomes observed in biological males and females. X inactivation facilitates a robust immune response to COVID-19 in females, who demonstrate a more profound antibody response and faster recovery when compared to males. Low testosterone levels also help explain the dysregulated inflammatory response and poor outcomes observed in some males with COVID-19. Gender differences in health expression and behaviors further compound these observed differences. CONCLUSION Understanding the biology of sex-based differences in COVID-19 severity and mortality could help inform preventative measures, treatment decisions, and development of personalized, sex-specific therapies.
Collapse
Affiliation(s)
- Cosby G. Arnold
- Department of Emergency Medicine, University of Colorado-Anschutz Medical Campus, 12401 East 17th Avenue, 7th Floor, Aurora, CO 80045 USA
| | - Anne Libby
- Department of Emergency Medicine, University of Colorado-Anschutz Medical Campus, 12401 East 17th Avenue, 7th Floor, Aurora, CO 80045 USA
| | - Alexis Vest
- Department of Emergency Medicine, University of Colorado-Anschutz Medical Campus, 12401 East 17th Avenue, 7th Floor, Aurora, CO 80045 USA
| | - Andrew Hopkinson
- Department of Emergency Medicine, University of Colorado-Anschutz Medical Campus, 12401 East 17th Avenue, 7th Floor, Aurora, CO 80045 USA
| | - Andrew A. Monte
- Department of Emergency Medicine, University of Colorado-Anschutz Medical Campus, 12401 East 17th Avenue, 7th Floor, Aurora, CO 80045 USA
| |
Collapse
|
209
|
Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet 2022; 54:382-392. [PMID: 35241825 PMCID: PMC9005345 DOI: 10.1038/s41588-021-01006-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10−8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10−13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone. Genome-wide meta-analysis of SARS-CoV-2 susceptibility and severity phenotypes in up to 756,646 samples identifies a rare protective variant proximal to ACE2. A 6-SNP genetic risk score provides additional predictive power when added to known risk factors.
Collapse
|
210
|
Sarzani R, Spannella F, Giulietti F, Di Pentima C, Giordano P, Giacometti A. Possible harm from glucocorticoid drugs misuse in the early phase of SARS-CoV-2 infection: a narrative review of the evidence. Intern Emerg Med 2022; 17:329-338. [PMID: 34718937 PMCID: PMC8557262 DOI: 10.1007/s11739-021-02860-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Since the publication of the RECOVERY trial, the use of glucocorticoid drugs (GC) has spread for the treatment of severe COVID-19 worldwide. However, the benefit of dexamethasone was largest in patients who received mechanical ventilation or supplemental oxygen therapy, while no benefit was found among patients without hypoxemia. In addition, a positive outcome was found in patients who received dexamethasone after several days of symptoms, while possible harm could exist if administered early. The right time interval for GC administration is still a matter of debate. Previous studies showed that an early GC use during the first phase of the disease, when viral replication peaks, may negatively affect the innate immune response through several mechanisms, such as the inhibition of pro-inflammatory and antiviral cytokine production and signaling pathway, including type I interferon, that is fundamental to counteract the virus and that was found to be impaired in several patients with life-threatening COVID-19. The GC misuse can lead to a more severe disease even in patients who do not have the established risk factors, such as obesity and cardiovascular diseases. In our focused review, we describe the role of immune response in viral infections, especially SARS-CoV-2, and discuss the potential harms of GC misuse in COVID-19.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy.
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy.
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
- Department of Clinical and Molecular Sciences, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, via della Montagnola n. 81, 60127, Ancona, Italy
| | - Andrea Giacometti
- Department of Biological Sciences and Public Health, Infectious Diseases Clinic, University "Politecnica Delle Marche", Via Tronto 10/a, Ancona, Italy
| |
Collapse
|
211
|
Lehman HK, Yu KOA, Towe CT, Risma KA. Respiratory Infections in Patients with Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:683-691.e1. [PMID: 34890826 DOI: 10.1016/j.jaip.2021.10.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Recurrent and life-threatening respiratory infections are nearly universal in patients with primary immunodeficiency diseases (PIDD). Early recognition, aggressive treatment, and prophylaxis with antimicrobials and immunoglobulin replacement have been the mainstays of management and will be reviewed here with an emphasis on respiratory infections. Genetic discoveries have allowed direct translation of research to clinical practice, improving our understanding of clinical patterns of pathogen susceptibilities and guiding prophylaxis. The recent identification of inborn errors in type I interferon signaling as a basis for life-threatening viral infections in otherwise healthy individuals suggests another targetable pathway for treatment and/or prophylaxis. The future of PIDD diagnosis will certainly involve early genetic identification by newborn screening before onset of infections, with early treatment offering the potential of preventing disease complications such as chronic lung changes. Gene editing approaches offer tremendous therapeutic potential, with rapidly emerging delivery systems. Antiviral therapies are desperately needed, and specific cellular therapies show promise in patients requiring hematopoietic stem cell transplantation. The introduction of approved therapies for clinical use in PIDD is limited by the difficulty of studying outcomes in rare patients/conditions with conventional clinical trials.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY.
| | - Karl O A Yu
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY
| | - Christopher T Towe
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kimberly A Risma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
212
|
Durstenfeld MS, Hsue PY, Peluso MJ, Deeks SG. Findings From Mayo Clinic's Post-COVID Clinic: PASC Phenotypes Vary by Sex and Degree of IL-6 Elevation. Mayo Clin Proc 2022; 97:430-432. [PMID: 35246280 PMCID: PMC8886352 DOI: 10.1016/j.mayocp.2022.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Matthew S Durstenfeld
- Department of Medicine, University of California, San Francisco; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA.
| | - Priscilla Y Hsue
- Department of Medicine, University of California, San Francisco; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco
| |
Collapse
|
213
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
214
|
Schmidt A, M. Groh A, S. Frick J, Vehreschild MJGT, U. Ludwig K. Genetic Predisposition and the Variable Course of Infectious Diseases. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:117-123. [PMID: 35101171 PMCID: PMC9160423 DOI: 10.3238/arztebl.m2022.0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Contact with a pathogen is followed by variable courses of infectious disease, which are only partly explicable by classical risk factors. The susceptibility to infection is variable, as is the course of disease after infection. In this review, we discuss the extent to which this variation is due to genetic factors of the affected individual (the host). METHODS Selective review of the literature on host genetics in infectious disease, with special attention to the pathogens SARSCoV- 2, influenza viruses, Mycobacterium tuberculosis, and human immunodeficiency virus (HIV). RESULTS Genetic variants of the host contribute to the pathogenesis of infectious diseases. For example, in HIV infection, a relatively common variant leading to a loss of function of the HIV co-receptor CCR5 affects the course of the disease, as do variants in genes of the major histocompatibility complex (MHC) region. Rare monogenic variants of the interferon immune response system contribute to severe disease courses in COVID-19 and influenza (type I interferon in these two cases) and in tuberculosis (type II interferon). An estimated 1.8% of life-threatening courses of COVID-19 in men under age 60 are caused by a deficiency of toll-like receptor 7. The scientific understanding of host genetic factors has already been beneficial to the development of effective drugs. In a small number of cases, genetic information has also been used for individual therapeutic decision-making and for the identification of persons at elevated risk. CONCLUSION A comprehensive understanding of host genetics can improve the care of patients with infectious diseases. Until the present, the clinical utility of host genetics has been limited to rare cases; in the future, polygenic risk scores summarizing the relevant genetic variants in each patient will enable a wider benefit. To make this possible, multicenter studies are needed that will systematically integrate clinical and genetic data.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, Medical Faculty of the University of Bonn & Bonn University Hospital
| | - Ana M. Groh
- Medical Department II, Infectiology, University HospitalFrankfurt, Goethe University Frankfurt
| | - Julia S. Frick
- Interfaculty Institute for Microbiology and Infection Medicine, University Hospital and Faculty of Medicine Tübingen
- MVZ Laboratory Ludwigsburg GbR
| | | | - Kerstin U. Ludwig
- Institute of Human Genetics, Medical Faculty of the University of Bonn & Bonn University Hospital
- * Institut für Humangenetik, Department of Genomics Universitätsklinikum Bonn Venusberg-Campus 1, Gebäude 76 53127 Bonn, Germany
| |
Collapse
|
215
|
Lo SM, Hwang YS, Liu CL, Shen CN, Hong WH, Yang WC, Lee MH, Shen CR. Inhibiting TLR7 Expression in the Retinal Pigment Epithelium Suppresses Experimental Autoimmune Uveitis. Front Immunol 2022; 12:736261. [PMID: 35069523 PMCID: PMC8766412 DOI: 10.3389/fimmu.2021.736261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Experimental autoimmune uveitis (EAU), a model of human uveitis, is an organ-specific, T cell-mediated autoimmune disease. Autoreactive T cells can penetrate the blood-retinal barrier, which is a physical defense composed of tight junction-linked retinal pigment epithelial (RPE) cells. RPE cells serve as antigen-presenting cells (APCs) in the eye since they express MHC class I and II and Toll-like receptors (TLRs). Although previous studies have shown that supplementation with TLR agonists exacerbates uveitis, little is known about how TLR signaling in the RPE contributes to the development of uveitis. In this study, we isolated the RPE from EAU mice, which were induced by active immunization (aEAU) or adoptive transfer of antigen-specific T cells (tEAU). The expression of TLRs on RPE was determined, and both aEAU and tEAU mice exhibited induced tlr7 expression. The TLR7 agonist R848 was shown to induce aggressive disease progression, along with significantly elevated levels of the uveopathogenic cytokine IL-17. Furthermore, not only IL-17 but also R848 appeared to enhance the inflammatory response and to impair the barrier function of the RPE, indicating that TLR7 signaling is involved in the pathogenesis of EAU by affecting the behaviors of the RPE and consequently allowing the infiltration of autoreactive T cells intraocularly. Finally, local application of shRNA against TLR7 delivered by recombinant AAV effectively inhibited disease severity and reduced IFN-γ and IL-17. Our findings highlight an immunomodulatory role of RPE TLR7 in EAU development and provide a potential therapeutic strategy for autoimmune uveitis.
Collapse
Affiliation(s)
- Sheng-Min Lo
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yih-Shiou Hwang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.,Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chia-Ning Shen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Hsin Hong
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Cheng Yang
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Meng-Hua Lee
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Rui Shen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
216
|
Mogensen TH. Human genetics of SARS-CoV-2 infection and critical COVID-19. Clin Microbiol Infect 2022; 28:1417-1421. [PMID: 35218979 PMCID: PMC8865963 DOI: 10.1016/j.cmi.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/13/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND During the past two years studies on patients with SARS-CoV-2 infection have revealed rare inborn errors of immunity (IEI) in type interferon (IFN) pathways underlying critical COVID-19 pneumonia. This has provided insights into pathophysiological mechanisms and immune signaling circuits regulating antiviral responses to SARS-CoV-2 and governing susceptibility and outcome of SARS-CoV-2 infection in humans. OBJECTIVES In this review the current knowledge on IEIs underlying critical COVID-19 are presented, and the clinical implications of these findings for individualized prophylaxis and treatment are outlined. SOURCES The review is based on a broad literature search, including primarily studies on whole exome sequencing, and to a lesser extent genome-wide association studies, of patients with critical COVID-19, as well as retrospective descriptive studies of the SARS-CoV-2 disease course in individuals with known IEIs. CONTENT The review describes the discovery of monogenic IEI in 9 genetic loci related to the production or responses to type I IFN in patients with critical COVID-19 pneumonia and the surprising finding of phenocopies of these, represented by neutralizing autoantibodies to type IFN in a significant proportion of patients with critical pneumonia, particularly in elderly men, and further enriched in patients with lethal disease course. Moreover insights gained from studies on SARS-CoV-2 infection, disease course, and outcome in patients with known IEI is presented. Finally, some hypotheses for a possible genetic basis of autoimmune, inflammatory, and long-term complications of SARS-CoV-2 infection are presented and discussed. IMPLICATIONS Uncovering IEI underlying critical COVID-19 or other severe SARS-CoV-2 disease manifestations provide valuable insights into the basic principles of antiviral immune responses and pathophysiology related to SARS-CoV-2 infection. Such knowledge has important clinical implications for identification of susceptible individuals and for diagnosis, prophylaxis, and treatment of patients to reduce disease burden and improve preparedness against viral pandemics with known or emerging viruses in the future.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
217
|
Li X, Chen Z, Geng J, Mei Q, Li H, Mao C, Han M. COVID-19 and Male Reproduction: A Thorny Problem. Am J Mens Health 2022; 16:15579883221074816. [PMID: 35176914 PMCID: PMC8859685 DOI: 10.1177/15579883221074816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the global epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the increasing number of infections, little is known about how SARS-CoV-2 affects the male reproductive system during infection or after recovery. Based on the existing research data, we reviewed the effects of SARS-CoV-2 on the male reproductive system and discussed its possible mechanism of action. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme 2 (ACE2)/transmembrane serine protease 2 (TMPRSS2) pathway, and males are more susceptible than females. After infection, immunopathological damage is noticed in the testicles, and the semen index is significantly reduced. Second, abnormalities of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels were also observed, suggesting that there may be dysfunction of the hypothalamic–pituitary–gonadal (HPG) axis. Even after recovery, the effect of SARS-CoV-2 on the male reproductive system can last for at least a period. There are still many unresolved questions about the effect of SARS-CoV-2 infection on the male reproductive tract. Other receptors involved during the invasion of human cells by SARS-CoV-2 remain to be identified. Will the mutation of SARS-CoV-2 increase the diversity of receptors? How does SARS-CoV-2 affect the HPG axis? The long-term effects of SARS-CoV-2 on the male reproductive system remain to be evaluated. SARS-CoV-2 infection can affect male reproductive function. Standard treatment strategies should be developed in time to protect the fertility of infected patients. For recovered patients with fertility requirements, fertility assessments should be performed and professional fertility guidance should be provided at the same time.
Collapse
Affiliation(s)
- Xiaoping Li
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiqiang Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jinke Geng
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Qian Mei
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Li
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Caiping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mutian Han
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China.,Center for Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
218
|
Sahajpal NS, Jill Lai CY, Hastie A, Mondal AK, Dehkordi SR, van der Made CI, Fedrigo O, Al-Ajli F, Jalnapurkar S, Byrska-Bishop M, Kanagal-Shamanna R, Levy B, Schieck M, Illig T, Bacanu SA, Chou JS, Randolph AG, Rojiani AM, Zody MC, Brownstein CA, Beggs AH, Bafna V, Jarvis ED, Hoischen A, Chaubey A, Kolhe R. Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19. iScience 2022; 25:103760. [PMID: 35036860 PMCID: PMC8744399 DOI: 10.1016/j.isci.2022.103760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | | - Alex Hastie
- Bionano Genomics, Inc., San Diego, CA 92121, USA
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | - Siavash Raeisi Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA 92093, USA
| | - Caspar I. van der Made
- Department of Human Genetics, Radboud University Medical Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Farooq Al-Ajli
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Sawan Jalnapurkar
- Department of Medicine, Medical College of Georgia, Augusta University, GA 30912, USA
| | | | | | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York 10032, USA
| | - Maximilian Schieck
- Department of Human Genetics, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Thomas Illig
- Department of Human Genetics, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
- Hannover Unified Biobank (HUB), Hannover 30625, Germany
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Janet S. Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Anesthesia and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA 92093, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Alka Chaubey
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
- Bionano Genomics, Inc., San Diego, CA 92121, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | |
Collapse
|
219
|
Ng JW, Chong ETJ, Tan YA, Lee HG, Chan LL, Lee QZ, Saw YT, Wong Y, Zakaria AAB, Amin ZB, Lee PC. Prevalence of Coronavirus Disease 2019 (COVID-19) in Different Clinical Stages before the National COVID-19 Vaccination Programme in Malaysia: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2216. [PMID: 35206404 PMCID: PMC8871879 DOI: 10.3390/ijerph19042216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
More than 1.75 million COVID-19 infections and 16 thousand associated deaths have been reported in Malaysia. A meta-analysis on the prevalence of COVID-19 in different clinical stages before the National COVID-19 Vaccination Program in Malaysia is still lacking. To address this, the disease severity of a total of 215 admitted COVID-19 patients was initially recorded in the early phase of this study, and the data were later pooled into a meta-analysis with the aim of providing insight into the prevalence of COVID-19 in 5 different clinical stages during the outset of the COVID-19 pandemic in Malaysia. We have conducted a systematic literature search using PubMed, Web of Science, Scopus, ScienceDirect, and two preprint databases (bioRxiv and medRxiv) for relevant studies with specified inclusion and exclusion criteria. The quality assessment for the included studies was performed using the Newcastle-Ottawa Scale. The heterogeneity was examined with an I2 index and a Q-test. Funnel plots and Egger's tests were performed to determine publication bias in this meta-analysis. Overall, 5 studies with 6375 patients were included, and the pooled prevalence rates in this meta-analysis were calculated using a random-effect model. The highest prevalence of COVID-19 in Malaysia was observed in Stage 2 cases (32.0%), followed by Stage 1 (27.8%), Stage 3 (17.1%), Stage 4 (7.6%), and Stage 5 (3.4%). About two-thirds of the number of cases have at least one morbidity, with the highest percentage of hypertension (66.7%), obesity (55.5%), or diabetes mellitus (33.3%) in Stage 5 patients. In conclusion, this meta-analysis suggested a high prevalence of COVID-19 occurred in Stage 2. The prevalence rate in Stage 5 appeared to be the lowest among COVID-19 patients before implementing the vaccination program in Malaysia. These meta-analysis data are critically useful for designing screening and vaccination programs and improving disease management in the country.
Collapse
Affiliation(s)
- Jun Wei Ng
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.W.N.); (E.T.J.C.)
| | - Eric Tzyy Jiann Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.W.N.); (E.T.J.C.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Yee Ann Tan
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Heng Gee Lee
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Lan Lan Chan
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Qin Zhi Lee
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Yen Tsen Saw
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Yiko Wong
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Ahmad Aizudeen Bin Zakaria
- Queen Elizabeth Hospital, Jalan Penampang, Kota Kinabalu 88200, Sabah, Malaysia; (Y.A.T.); (H.G.L.); (L.L.C.); (Q.Z.L.); (Y.T.S.); (Y.W.); (A.A.B.Z.)
| | - Zarina Binti Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Ping-Chin Lee
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (J.W.N.); (E.T.J.C.)
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
220
|
Sauerwein KMT, Geier CB, Stemberger RF, Akyaman H, Illes P, Fischer MB, Eibl MM, Walter JE, Wolf HM. Antigen-Specific CD4+ T-Cell Activation in Primary Antibody Deficiency After BNT162b2 mRNA COVID-19 Vaccination. Front Immunol 2022; 13:827048. [PMID: 35237272 PMCID: PMC8882590 DOI: 10.3389/fimmu.2022.827048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Previous studies on immune responses following COVID-19 vaccination in patients with common variable immunodeficiency (CVID) were inconclusive with respect to the ability of the patients to produce vaccine-specific IgG antibodies, while patients with milder forms of primary antibody deficiency such as immunoglobulin isotype deficiency or selective antibody deficiency have not been studied at all. In this study we examined antigen-specific activation of CXCR5-positive and CXCR5-negative CD4+ memory cells and also isotype-specific and functional antibody responses in patients with CVID as compared to other milder forms of primary antibody deficiency and healthy controls six weeks after the second dose of BNT162b2 vaccine against SARS-CoV-2. Expression of the activation markers CD25 and CD134 was examined by multi-color flow cytometry on CD4+ T cell subsets stimulated with SARS-CoV-2 spike peptides, while in parallel IgG and IgA antibodies and surrogate virus neutralization antibodies against SARS-CoV-2 spike protein were measured by ELISA. The results show that in CVID and patients with other milder forms of antibody deficiency normal IgG responses (titers of spike protein-specific IgG three times the detection limit or more) were associated with intact vaccine-specific activation of CXCR5-negative CD4+ memory T cells, despite defective activation of circulating T follicular helper cells. In contrast, CVID IgG nonresponders showed defective vaccine-specific and superantigen-induced activation of both CD4+T cell subsets. In conclusion, impaired TCR-mediated activation of CXCR5-negative CD4+ memory T cells following stimulation with vaccine antigen or superantigen identifies patients with primary antibody deficiency and impaired IgG responses after BNT162b2 vaccination.
Collapse
Affiliation(s)
- Kai M. T. Sauerwein
- Immunology Outpatient Clinic, Vienna, Austria
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
- Biomedizinische Forschung & Bio-Produkte AG, Vienna, Austria
| | | | | | | | - Peter Illes
- USF Health Department of Pediatrics, Division of Allergy/Immunology, Children´s Research Institute, St. Petersburg, FL, United States
| | - Michael B. Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Martha M. Eibl
- Immunology Outpatient Clinic, Vienna, Austria
- Biomedizinische Forschung & Bio-Produkte AG, Vienna, Austria
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Hermann M. Wolf
- Immunology Outpatient Clinic, Vienna, Austria
- Medical School, Sigmund Freud Private University, Vienna, Austria
- *Correspondence: Hermann M. Wolf,
| |
Collapse
|
221
|
Low Serum Levels of Interferon Alpha in COVID-19 Patients Are Associated with Older Age. J Clin Med 2022; 11:jcm11040961. [PMID: 35207234 PMCID: PMC8877658 DOI: 10.3390/jcm11040961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Innate immune response, especially type 1 interferon (IFN) response is considered to play a substantial role in the outcome of SARS-CoV-2 infection. A reduced and delayed IFN response has been associated with progression to severe COVID-19. In this study, we investigated levels of circulating IFNα and serum neutralizing activity in COVID-19 patients admitted to the intensive care unit. We found a significant association of levels of IFNα with age (p = 0.007). This association has also been observed in a cohort of COVID-19 outpatients with mild infection (p = 0.02). The impact of senescence on IFN response can explain the higher susceptibility of the elderly to severe COVID-19.
Collapse
|
222
|
Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’Brien DP, Pinto-Fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022; 12:biom12020300. [PMID: 35204803 PMCID: PMC8869442 DOI: 10.3390/biom12020300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ubiquitylation and ISGylation are protein post-translational modifications (PTMs) and two of the main events involved in the activation of pattern recognition receptor (PRRs) signals allowing the host defense response to viruses. As with similar viruses, SARS-CoV-2, the virus causing COVID-19, hijacks these pathways by removing ubiquitin and/or ISG15 from proteins using a protease called PLpro, but also by interacting with enzymes involved in ubiquitin/ISG15 machinery. These enable viral replication and avoidance of the host immune system. In this review, we highlight potential points of therapeutic intervention in ubiquitin/ISG15 pathways involved in key host-pathogen interactions, such as PLpro, USP18, TRIM25, CYLD, A20, and others that could be targeted for the treatment of COVID-19, and which may prove effective in combatting current and future vaccine-resistant variants of the disease.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Md Rashadul Alam
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Sam Farrar
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Rachel Kealy
- Environmental Futures & Big Data Impact Lab, University of Exeter, Stocker Rd., Exeter EX4 4PY, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Darragh P. O’Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Correspondence: (D.P.O.); (A.P.-F.)
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (D.P.O.); (A.P.-F.)
| |
Collapse
|
223
|
Fedeli P, Scendoni R, Cingolani M, Corrales Compagnucci M, Cirocchi R, Cannovo N. Informed Consent and Protection of Personal Data in Genetic Research on COVID-19. Healthcare (Basel) 2022; 10:healthcare10020349. [PMID: 35206963 PMCID: PMC8871888 DOI: 10.3390/healthcare10020349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
The particular characteristics of COVID-19 demand the careful biomedical study of samples from patients who have shown different symptomatology, in order to understand the genetic foundations of its phenotypic expression. Research on genetic material from COVID-19 patients is indispensable for understanding the biological bases for its varied clinical manifestations. The issue of “informed consent” constitutes the crux of the problem in regulating research biobanks, because it concerns the relationship between the person and the parts separated from the body. There are several consensus models that can be adopted, varying from quite restricted models of specific informed consent to forms that allow very broad authorization (open consent). Our current understanding of COVID-19 is incomplete. Thus, we cannot plan, with precision, the research to be conducted on biological samples that have been, or will be, collected from patients infected by the novel coronavirus. Therefore, we suggest utilizing the “participation pact” between researchers and donors, based on a new form of participation in research, which offers a choice based on the principles of solidarity and reciprocity, which represent the communication of “values”. In the last part of this paper, the general data protection regulation concerning the matter is discussed. The treatment of personal data must be performed with explicit goals, and donors must be provided with a clear, transparent explanation of the methods, goals and time of storage. The data must not be provided to unauthorized subjects. In conclusion, open informed consent forms will be necessary for research on individual patients and on populations.
Collapse
Affiliation(s)
| | - Roberto Scendoni
- Department of Law, University of Macerata, 62100 Macerata, Italy;
| | - Mariano Cingolani
- Department of Law, University of Macerata, 62100 Macerata, Italy;
- Correspondence:
| | - Marcelo Corrales Compagnucci
- Centre for Advanced Studies on Biomedical Innovation Law (CeBIL), Faculty of Law, University of Copenhagen, Karen Blixens Plads 16, DK-2300 Copenhagen, Denmark;
| | - Roberto Cirocchi
- Department of Surgical and Biomedical Sciences, University of Perugia, 06132 Perugia, Italy;
| | - Nunzia Cannovo
- Ethic Committee, University of Naples, 80138 Napoli, Italy;
| |
Collapse
|
224
|
da Silva Torres MK, Bichara CDA, de Almeida MDNDS, Vallinoto MC, Queiroz MAF, Vallinoto IMVC, dos Santos EJM, de Carvalho CAM, Vallinoto ACR. The Complexity of SARS-CoV-2 Infection and the COVID-19 Pandemic. Front Microbiol 2022; 13:789882. [PMID: 35222327 PMCID: PMC8870622 DOI: 10.3389/fmicb.2022.789882] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the death of millions of people worldwide and thousands more infected individuals developed sequelae due to the disease of the new coronavirus of 2019 (COVID-19). The development of several studies has contributed to the knowledge about the evolution of SARS-CoV2 infection and the disease to more severe forms. Despite this information being debated in the scientific literature, many mechanisms still need to be better understood in order to control the spread of the virus and treat clinical cases of COVID-19. In this article, we carried out an extensive literature review in order to bring together, in a single article, the biological, social, genetic, diagnostic, therapeutic, immunization, and even socioeconomic aspects that impact the SAR-CoV-2 pandemic. This information gathered in this article will enable a broad and consistent reading of the main aspects related to the current pandemic.
Collapse
Affiliation(s)
- Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mariana Cayres Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- University Center of the State of Pará, Belém, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Antonio Carlos R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| |
Collapse
|
225
|
Sex differences in COVID-19 mortality in the Netherlands. Infection 2022; 50:709-717. [PMID: 35138581 PMCID: PMC9151564 DOI: 10.1007/s15010-021-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Since the first reports of COVID-19 cases, sex-discrepancies have been reported in COVID-19 mortality. We provide a detailed description of these sex differences in relation to age and comorbidities among notified cases as well as in relation to age and sex-specific mortality in the general Dutch population. METHODS Data on COVID-19 cases and mortality until May 31st 2020 was extracted from the national surveillance database with exclusion of healthcare workers. Association between sex and case fatality was analyzed with multivariable logistic regression. Subsequently, male-female ratio in standardized mortality ratios and population mortality rates relative to all-cause and infectious disease-specific mortality were computed stratified by age. RESULTS Male-female odds ratio for case fatality was 1.33 [95% CI 1.26-1.41] and among hospitalized cases 1.27 [95% CI 1.16-1.40]. This remained significant after adjustment for age and comorbidities. The male-female ratio of the standardized mortality ratio was 1.70 [95%CI 1.62-1.78]. The population mortality rate for COVID-19 was 35.1 per 100.000, with a male-female rate ratio of 1.25 (95% CI 1.18-1.31) which was higher than in all-cause population mortality and infectious disease mortality. CONCLUSION Our study confirms male sex is a predisposing factor for severe outcomes of COVID-19, independent of age and comorbidities. In addition to general male-female-differences, COVID-19 specific mechanisms likely contribute to this mortality discrepancy.
Collapse
|
226
|
Brodin P. SARS-CoV-2 infections in children: Understanding diverse outcomes. Immunity 2022; 55:201-209. [PMID: 35093190 PMCID: PMC8769938 DOI: 10.1016/j.immuni.2022.01.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infections mostly lead to mild or even asymptomatic infections in children, but the reasons for this are not fully understood. More efficient local tissue responses, better thymic function, and cross-reactive immunity have all been proposed to explain this. In rare cases of children and young people, but very rarely in adults, post-infectious hyperinflammatory syndromes can develop and be serious. Here, I will discuss our current understanding of SARS-CoV-2 infections in children and hypothesize that a life history and energy allocation perspective might offer an additional explanation to mild infections, viral dynamics, and the higher incidence of rare multisystem inflammatory syndromes in children and young people.
Collapse
Affiliation(s)
- Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK; Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
227
|
Immunology of SARS-CoV-2 infection in children. Nat Immunol 2022; 23:177-185. [PMID: 35105983 DOI: 10.1038/s41590-021-01123-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Children and adolescents exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with the majority having minimal to mild symptoms. Additionally, some succumb to a severe hyperinflammatory post-infectious complication called multisystem inflammatory syndrome in children (MIS-C), predominantly affecting previously healthy individuals. Studies characterizing the immunological differences associated with these clinical outcomes have identified pathways important for host immunity to SARS-CoV-2 and innate modulators of disease severity. In this Review, we delineate the immunological mechanisms underlying the spectrum of pediatric immune response to SARS-CoV-2 infection in comparison with that of adults.
Collapse
|
228
|
Madden EA, Diamond MS. Host cell-intrinsic innate immune recognition of SARS-CoV-2. Curr Opin Virol 2022; 52:30-38. [PMID: 34814102 PMCID: PMC8580835 DOI: 10.1016/j.coviro.2021.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged at the end of 2019 and caused the pandemic of coronavirus disease 2019 (COVID-19). Basic and clinical investigations indicate that severe forms of COVID-19 are due in part to dysregulated immune responses to virus infection. The innate immune system is the first line of host defense against most virus infections, with pathogen recognition receptors detecting SARS-CoV-2 RNA and protein components and initiating pro-inflammatory and antiviral responses. Notwithstanding this response, SARS-CoV-2 proteins evade, inhibit, and skew innate immune signaling early in infection. In this review, we highlight the components of cell-based recognition of SARS-CoV-2 infection and the mechanisms employed by the virus to modulate these innate immune host defense pathways.
Collapse
Affiliation(s)
- Emily A Madden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 631100, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
229
|
Pessoa NL, Diniz LMO, Andrade ADS, Kroon EG, Bentes AA, Campos MA. Children with sickle cell disease and severe COVID-19 presenting single nucleotide polymorphisms in innate immune response genes - A case report. EJHAEM 2022; 3:199-202. [PMID: 35464153 PMCID: PMC9015419 DOI: 10.1002/jha2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
Here we report three clinical cases of children with sickle cell disease (SCD) and severe COVID-19 who evolved with complications during hospitalization or after discharge. They present single nucleotide polymorphisms in tlr-7 and tirap genes, identified from 37 patients under 16 years old hospitalized from September 2020 to May 2021 in the Hospital João Paulo II, Belo Horizonte, Brazil. They presented significant complications of SCD as acute chest syndrome, splenic sequestration, and pain crisis during hospitalization or up to 2 months after SARS-CoV-2 infection. They all required transfusion of concentrated red blood cells and hospitalization in a reference hospital to care for children with SCD.
Collapse
Affiliation(s)
- Natália Lima Pessoa
- Laboratório de VírusDepartamento de MicrobiologiaInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Imunologia de Doenças Virais, Instituto René RachouFundação Oswaldo CruzBelo HorizonteBrazil
| | - Lilian Martins Oliveira Diniz
- Departamento de Pediatria, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Hospital João Paulo IIFundação Hospitalar do Estado de Minas GeraisBelo HorizonteBrazil
| | | | - Erna Geessien Kroon
- Laboratório de VírusDepartamento de MicrobiologiaInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Aline Almeida Bentes
- Departamento de Pediatria, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Hospital João Paulo IIFundação Hospitalar do Estado de Minas GeraisBelo HorizonteBrazil
| | - Marco Antônio Campos
- Imunologia de Doenças Virais, Instituto René RachouFundação Oswaldo CruzBelo HorizonteBrazil
| |
Collapse
|
230
|
Elkrief A, Wu JT, Jani C, Enriquez KT, Glover M, Shah MR, Shaikh HG, Beeghly-Fadiel A, French B, Jhawar SR, Johnson DB, McKay RR, Rivera DR, Reuben DY, Shah S, Tinianov SL, Vinh DC, Mishra S, Warner JL. Learning through a Pandemic: The Current State of Knowledge on COVID-19 and Cancer. Cancer Discov 2022; 12:303-330. [PMID: 34893494 PMCID: PMC8831477 DOI: 10.1158/2159-8290.cd-21-1368] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has left patients with current or past history of cancer facing disparate consequences at every stage of the cancer trajectory. This comprehensive review offers a landscape analysis of the current state of the literature on COVID-19 and cancer, including the immune response to COVID-19, risk factors for severe disease, and impact of anticancer therapies. We also review the latest data on treatment of COVID-19 and vaccination safety and efficacy in patients with cancer, as well as the impact of the pandemic on cancer care, including the urgent need for rapid evidence generation and real-world study designs. SIGNIFICANCE: Patients with cancer have faced severe consequences at every stage of the cancer journey due to the COVID-19 pandemic. This comprehensive review offers a landscape analysis of the current state of the field regarding COVID-19 and cancer. We cover the immune response, risk factors for severe disease, and implications for vaccination in patients with cancer, as well as the impact of the COVID-19 pandemic on cancer care delivery. Overall, this review provides an in-depth summary of the key issues facing patients with cancer during this unprecedented health crisis.
Collapse
Affiliation(s)
- Arielle Elkrief
- Division of Medical Oncology (Department of Medicine), McGill University Health Centre, Montreal, Quebec, Canada
| | - Julie T Wu
- Stanford University, Palo Alto, California
| | - Chinmay Jani
- Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Kyle T Enriquez
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Mansi R Shah
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | | | - Sachin R Jhawar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Rana R McKay
- University of California San Diego, San Diego, California
| | - Donna R Rivera
- Division of Cancer Control and Population Services, National Cancer Institute, Rockville, Maryland
| | - Daniel Y Reuben
- Medical University of South Carolina, Charleston, South Carolina
| | - Surbhi Shah
- Hematology and Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Stacey L Tinianov
- Advocates for Collaborative Education, UCSF Breast Science Advocacy Core, San Francisco, California
| | - Donald Cuong Vinh
- Division of Infectious Diseases (Department of Medicine), Divisions of Medical Microbiology and of Molecular Diagnostics (OptiLab), McGill University Health Centre, Montreal, Quebec, Canada
| | - Sanjay Mishra
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy L Warner
- Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
231
|
Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022; 23:165-176. [PMID: 35105981 PMCID: PMC8935980 DOI: 10.1038/s41590-021-01091-0] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
232
|
McGonagle D, Kearney MF, O'Regan A, O'Donnell JS, Quartuccio L, Watad A, Bridgewood C. Therapeutic implications of ongoing alveolar viral replication in COVID-19. THE LANCET. RHEUMATOLOGY 2022; 4:e135-e144. [PMID: 34873587 PMCID: PMC8635460 DOI: 10.1016/s2665-9913(21)00322-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with moderate-to-severe COVID-19 pneumonia, an aberrant post-viral alveolitis with excessive inflammatory responses and immunothrombosis underpins use of immunomodulatory therapy (eg, corticosteroids and interleukin-6 receptor antagonism). By contrast, immunosuppression in individuals with mild COVID-19 who do not require oxygen therapy or in those with critical disease undergoing prolonged ventilation is of no proven benefit. Furthermore, a window of opportunity is thought to exist for timely immunosuppression in patients with moderate-to-severe COVID-19 pneumonia shortly after clinical presentation. In this Viewpoint, we explore the shortcomings of a universal immunosuppression approach in patients with moderate-to-severe COVID-19 due to disease heterogeneity related to ongoing SARS-CoV-2 replication, which can manifest as RNAaemia in some patients treated with immunotherapy. By contrast, immunomodulatory therapy has overall benefits in patients with rapid SARS-CoV-2 clearance, via blunting of multifaceted, excessive innate immune responses in the lungs, potentially uncontrolled T-cell responses, possible autoimmune responses, and immunothrombosis. We highlight this therapeutic dichotomy to better understand the immunopathology of moderate-to-severe COVID-19, particularly the role of RNAaemia, and to refine therapy choices.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK,Correspondence to: Prof Dennis McGonagle, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | - Mary F Kearney
- HIV Dynamics and Replication Program, National Cancer Institute National Institutes of Health, Bethesda, MD, USA
| | - Anthony O'Regan
- Department of Respiratory Medicine, Galway University Hospitals, National University of Ireland, Galway, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luca Quartuccio
- Department of Medicine, Clinic of Rheumatology, University of Udine, Udine, Italy
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK,Department of Medicine B, Rhumatology Unit and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charles Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
233
|
Salehi-Vaziri M, Fazlalipour M, Seyed Khorrami SM, Azadmanesh K, Pouriayevali MH, Jalali T, Shoja Z, Maleki A. The ins and outs of SARS-CoV-2 variants of concern (VOCs). Arch Virol 2022; 167:327-344. [PMID: 35089389 PMCID: PMC8795292 DOI: 10.1007/s00705-022-05365-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a newly emerging coronavirus that caused the COVID-19 epidemic, has been spreading quickly throughout the world. Despite immunization and some fairly effective therapeutic regimens, SARS-CoV-2 has been ravaging patients, health workers, and the economy. SARS-CoV-2 mutates and evolves to adapt to its host as a result of extreme selection pressure. As a consequence, new SARS-CoV-2 variants have emerged, some of which are classified as variants of concern (VOC) because they exhibit greater transmissibility, cause more-severe disease, are better able to escape immunity, or cause higher mortality than the original Wuhan strain. Here, we introduce these VOCs and review their characteristics, such as transmissibility, immune escape, mortality risk, and diagnostics.
Collapse
Affiliation(s)
- Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Fazlalipour
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
| | | | - Kayhan Azadmanesh
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran.
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
234
|
Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: from cells to organisms. Curr Opin Immunol 2022; 74:172-182. [PMID: 35149239 PMCID: PMC8786610 DOI: 10.1016/j.coi.2022.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFNs) have broad and potent antiviral activity. We review the interplay between type I IFNs and SARS-CoV-2. Human cells infected with SARS-CoV-2 in vitro produce low levels of type I IFNs, and SARS-CoV-2 proteins can inhibit various steps in type I IFN production and response. Exogenous type I IFNs inhibit viral growth in vitro. In various animal species infected in vivo, type I IFN deficiencies underlie higher viral loads and more severe disease than in control animals. The early administration of exogenous type I IFNs improves infection control. In humans, inborn errors of, and auto-antibodies against type I IFNs underlie life-threatening COVID-19 pneumonia. Overall, type I IFNs are essential for host defense against SARS-CoV-2 in individual cells and whole organisms.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
235
|
Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 2022; 603:587-598. [PMID: 35090163 DOI: 10.1038/s41586-022-04447-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
SARS-CoV-2 infection is benign in most individuals but, in ˜10% of cases, it triggers hypoxemic COVID-19 pneumonia, which becomes critical in ˜3% of cases. The ensuing risk of death (˜1%) doubles every five years from childhood onward and is ˜1.5 times greater in men than in women. What are the molecular and cellular determinants of critical COVID-19 pneumonia? Inborn errors of type I IFNs, including autosomal TLR3 and X-linked TLR7 deficiencies, are found in ˜1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing autoantibodies neutralizing IFN-α, -β, and/or -ω, which are more common in men than in women, are found in ˜15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can apparently be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defense against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.
Collapse
|
236
|
Mendiola-Pastrana IR, López-Ortiz E, Río de la Loza-Zamora JG, González J, Gómez-García A, López-Ortiz G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life (Basel) 2022; 12:life12020170. [PMID: 35207458 PMCID: PMC8879159 DOI: 10.3390/life12020170] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background: From the start of the COVID-19 pandemic, new SARS-CoV-2 variants have emerged that potentially affect transmissibility, severity, and immune evasion in infected individuals. In the present systematic review, the impact of different SARS-CoV-2 variants on clinical outcomes is analyzed. Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Two databases (PubMed and ScienceDirect) were searched for original articles published from 1 January 2020 to 23 November 2021. The articles that met the selection criteria were appraised according to the Newcastle–Ottawa Quality Assessment Scale. Results: Thirty-three articles were included, involving a total of 253,209 patients and 188,944 partial or complete SARS-CoV-2 sequences. The most reported SARS-CoV-2 variants showed changes in the spike protein, N protein, RdRp and NSP3. In 28 scenarios, SARS-CoV-2 variants were found to be associated with a mild to severe or even fatal clinical outcome, 15 articles reported such association to be statistically significant. Adjustments in eight of them were made for age, sex and other covariates. Conclusions: SARS-CoV-2 variants can potentially have an impact on clinical outcomes; future studies focused on this topic should consider several covariates that influence the clinical course of the disease.
Collapse
Affiliation(s)
- Indira R. Mendiola-Pastrana
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - Eduardo López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - José G. Río de la Loza-Zamora
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Anel Gómez-García
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58351, Mexico;
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
- Correspondence:
| |
Collapse
|
237
|
Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Tsioufis K, Tousoulis D. Genetic Predisposition and Inflammatory Inhibitors in COVID-19: Where Do We Stand? Biomedicines 2022; 10:biomedicines10020242. [PMID: 35203452 PMCID: PMC8868779 DOI: 10.3390/biomedicines10020242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and the resulting coronavirus disease-19 (COVID-19) have led to a global pandemic associated with high fatality rates. COVID-19 primarily manifests in the respiratory system as an acute respiratory distress syndrome following viral entry through the angiotensin-converting enzyme-2 (ACE2) that is present in pulmonary epithelial cells. Central in COVID-19 is the burst of cytokines, known as a “cytokine storm”, and the subsequent widespread endothelial activation, leading to cardiovascular complications such as myocarditis, arrhythmias, and adverse vascular events, among others. Genetic alterations may play an additive, detrimental role in the clinical course of patients with COVID-19, since gene alterations concerning ACE2, major histocompatibility complex class I, and toll-like receptors may predispose patients to a worse clinical outcome. Since the role of inflammation is quintessential in COVID-19, pharmacologic inhibition of various signaling pathways such as the interleukin-1 and -6, tumor necrosis factor-alpha, interferon gamma, Janus kinase-signal transducer and activator of transcription, and granulocyte–macrophage colony-stimulating factor may ameliorate the prognosis following timely administration. Finally, frequently used, non-specific anti-inflammatory agents such as corticosteroids, statins, colchicine, and macrolides represent additional therapeutic considerations.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Clinic, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- Correspondence: ; Tel.: +30-21-3208-8099; Fax: +30-21-3208-8676
| | - Panagiotis Theofilis
- 1st Cardiology Clinic, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Clinic, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- 1st Cardiology Clinic, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 157 72 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Clinic, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- 1st Cardiology Clinic, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| |
Collapse
|
238
|
Adli A, Rahimi M, Khodaie R, Hashemzaei N, Hosseini SM. Role of Genetic Variants and Host Polymorphisms on COVID‐19: From Viral Entrance Mechanisms to Immunological Reactions. J Med Virol 2022; 94:1846-1865. [PMID: 35076118 PMCID: PMC9015257 DOI: 10.1002/jmv.27615] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by a highly pathogenic emerging virus, is called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Knowledge regarding the pathogenesis of this virus is in infancy; however, investigation on the pathogenic mechanisms of the SARS‐CoV‐2 is underway. In COVID‐19, one of the most remarkable characteristics is the wide range of disease manifestation and severity seen across individuals of different ethnic backgrounds and geographical locations. To effectively manage COVID‐19 in the populations, beyond SARS‐CoV‐2 detection, serological response assessment, and analytic techniques, it is critical to obtain knowledge about at‐risk individuals and comprehend the identified variations in the disease's severity in general and also in the populations' levels. Several factors can contribute to variation in disease presentation, including population density, gender and age differences, and comorbid circumstances including diabetes mellitus, hypertension, and obesity. Genetic factors presumably influence SARS‐CoV‐2 infection susceptibility. Besides this, COVID‐19 has also been linked with a higher risk of mortality in men and certain ethnic groups, revealing that host genetic characteristics may affect the individual risk of death. Also, genetic variants involved in pathologic processes, including virus entrance into cells, antiviral immunity, and inflammatory response, are not entirely understood. Regarding SARS‐CoV‐2 infection characteristics, the present review suggests that various genetic polymorphisms influence virus pathogenicity and host immunity, which might have significant implications for understanding and interpreting the matter of genetics in SARS‐CoV‐2 pathogenicity and customized integrative medical care based on population investigation. Genetic factors presumably influence SARS‐CoV‐2 infection susceptibility. Genetic variants were involved in the pathologic processes of SARS‐CoV‐2 infection. Various genetic polymorphisms influence virus pathogenicity and host immunity. Human leukocyte antigens (HLAs) may play a vital role in SARS‐CoV‐2 susceptibility. Polymorphisms in several genes such as IL‐6, TMPRSS2, IFITM3, CD26, ACE, and DBP were associated with the COVID‐19 severity.
Collapse
Affiliation(s)
- Abolfazl Adli
- Human Genetic Research Center, Baqiyatallah University of Medical SciencesTehran1435916471Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical SciencesTehranIran
| | - Reza Khodaie
- Department of Biology, East Tehran Branch, Islamic Azad UniversityTehranIran
| | | | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical SciencesTehran1435916471Iran
| |
Collapse
|
239
|
Ferraccioli G, Gremese E, Goletti D, Petrone L, Cantini F, Ugel S, Canè S, Bronte V. Immune-guided therapy of COVID-19. Cancer Immunol Res 2022; 10:384-402. [DOI: 10.1158/2326-6066.cir-21-0675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023]
|
240
|
Viral and Host Genetic and Epigenetic Biomarkers Related to SARS-CoV-2 Cell Entry, Infection Rate, and Disease Severity. BIOLOGY 2022; 11:biology11020178. [PMID: 35205046 PMCID: PMC8869311 DOI: 10.3390/biology11020178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
The rapid spread of COVID-19 outbreak lead to a global pandemic declared in March 2020. The common features of corona virus family helped to resolve structural characteristics and entry mechanism of SARS-CoV-2. However, rapid mutagenesis leads to the emergence of new strains that may have different reproduction rates or infectivity and may impact the course and severity of the disease. Host related factors may also play a role in the susceptibility for infection as well as the severity and outcomes of the COVID-19. We have performed a literature and database search to summarize potential viral and host-related genomic and epigenomic biomarkers, such as genetic variability, miRNA, and DNA methylation in the molecular pathway of SARS-CoV-2 entry into the host cell, that may be related to COVID-19 susceptibility and severity. Bioinformatics tools may help to predict the effect of mutations in the spike protein on the binding to the ACE2 receptor and the infectivity of the strain. SARS-CoV-2 may also target several transcription factors and tumour suppressor genes, thus influencing the expression of different host genes and affecting cell signalling. In addition, the virus may interfere with RNA expression in host cells by exploiting endogenous miRNA and its viral RNA. Our analysis showed that numerous human miRNA may form duplexes with different coding and non-coding regions of viral RNA. Polymorphisms in human genes responsible for viral entry and replication, as well as in molecular damage response and inflammatory pathways may also contribute to disease prognosis and outcome. Gene ontology analysis shows that proteins encoded by such polymorphic genes are highly interconnected in regulation of defense response. Thus, virus and host related genetic and epigenetic biomarkers may help to predict the course of the disease and the response to treatment.
Collapse
|
241
|
Englmeier L, Subburayalu J. What's happening where when SARS-CoV-2 infects: are TLR7 and MAFB sufficient to explain patient vulnerability? Immun Ageing 2022; 19:6. [PMID: 35065665 PMCID: PMC8783172 DOI: 10.1186/s12979-022-00262-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 12/04/2022]
Abstract
The present COVID-19 pandemic has revealed that several characteristics render patients especially prone to developing severe COVID-19 disease, i.e., the male sex, obesity, and old age. An explanation for the observed pattern of vulnerability has been proposed which is based on the concept of low sensitivity of the TLR7-signaling pathway at the time of infection as a common denominator of vulnerable patient groups. We will discuss whether the concept of established TLR-tolerance in macrophages and dendritic cells of the obese and elderly prior to infection can explain not only the vulnerability of these two demographic groups towards development of a severe infection with SARS-CoV-2, but also the observed cytokine response in these vulnerable patients, which is skewed towards pro-inflammatory cytokines with a missing interferon signature.
Collapse
Affiliation(s)
- Ludwig Englmeier
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany. .,Patent Attorney Dr. Ludwig Englmeier, scrIPtum, Erlenaustrasse 11, 83080, Oberaudorf, Germany. .,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany.,Mildred Scheel Early Career Center, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
242
|
Girona-Alarcon M, Argüello G, Esteve-Sole A, Bobillo-Perez S, Burgos-Artizzu XP, Bonet-Carne E, Mensa-Vilaró A, Codina A, Hernández-Garcia M, Jou C, Alsina L, Jordan I. Low levels of CIITA and high levels of SOCS1 predict COVID-19 disease severity in children and adults. iScience 2022; 25:103595. [PMID: 34904133 PMCID: PMC8654705 DOI: 10.1016/j.isci.2021.103595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
It is unclear why COVID-19 ranges from asymptomatic to severe. When SARS-CoV-2 is detected, interferon (IFN) response is activated. When it is insufficient or delayed, it might lead to overproduction of cytokines and severe COVID-19. The aim was to compare cytokine and IFN patterns in children and adults with differing severity with SARS-CoV-2.It was a prospective, observational study, including 84 patients. Patients with moderate/severe disease had higher cytokines' values than patients with mild disease (p< 0.001).Two IFN genes were selected to build a decision tree for severity classification: SOCS1 (representative of the rest of the IFN genes) and CIITA (inverse correlation). Low values of CIITA and high values of SOCS1 indicated severe disease. This method correctly classified 33/38(86.8%) of children and 27/34 (79.4%) of adults. To conclude, patients with severe disease had an elevated cytokine pattern, which correlated with the IFN response, with low CIITA and high SOCS1 values.
Collapse
Affiliation(s)
- Mònica Girona-Alarcon
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Guillermo Argüello
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.,Statistics and Operations Research, Universidad de Oviedo, 33003 Oviedo, Asturias, Spain
| | - Ana Esteve-Sole
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Sara Bobillo-Perez
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Xavier Paolo Burgos-Artizzu
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.,BCNatal
- Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, 08028 Barcelona, Spain
| | - Elisenda Bonet-Carne
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.,BCNatal
- Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, 08028 Barcelona, Spain.,BCNatal Fetal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,ETSETB, Universitat Politècnica de Catalunya • BarcelonaTech, 08034 Barcelona, Spain
| | - Anna Mensa-Vilaró
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,BCNatal Fetal Medicine Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Anna Codina
- Pediatric Biobank Unit, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - María Hernández-Garcia
- Paediatric Service, Hospital Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Cristina Jou
- Department of Pathology and Biobank, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Alsina
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Paediatrics Department, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Iolanda Jordan
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig Sant Joan de Déu Number 2, Esplugues de Llobregat, 08950 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, University of Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain.,Paediatrics Department, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
243
|
The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603:145-151. [PMID: 35045565 PMCID: PMC8891013 DOI: 10.1038/s41586-022-04421-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3–5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5–17. Here we show that the cyclic GMP-AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS–STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS–STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics. The cGAS–STING pathway has a central role in the pathogenesis of severe COVID-19 by driving the increase in type I interferons that occurs in the later stages of SARS-CoV-2 infection.
Collapse
|
244
|
Mégarbane B. The Time Has Come to Understand the Mechanisms by Which Comorbidities Contribute to COVID-19 Severity. J Pers Med 2022; 12:123. [PMID: 35207612 PMCID: PMC8878418 DOI: 10.3390/jpm12020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
A new coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for a worldwide pandemic for two years, resulting in almost 280 million infections and 5 [...].
Collapse
Affiliation(s)
- Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, INSERM UMRS-1144, Paris-University, 75010 Paris, France
| |
Collapse
|
245
|
Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform 2022; 23:bbab456. [PMID: 34788381 PMCID: PMC8689952 DOI: 10.1093/bib/bbab456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 caused the first severe pandemic of the digital era. Computational approaches have been ubiquitously used in an attempt to timely and effectively cope with the resulting global health crisis. In order to extensively assess such contribution, we collected, categorized and prioritized over 17 000 COVID-19-related research articles including both peer-reviewed and preprint publications that make a relevant use of computational approaches. Using machine learning methods, we identified six broad application areas i.e. Molecular Pharmacology and Biomarkers, Molecular Virology, Epidemiology, Healthcare, Clinical Medicine and Clinical Imaging. We then used our prioritization model as a guidance through an extensive, systematic review of the most relevant studies. We believe that the remarkable contribution provided by computational applications during the ongoing pandemic motivates additional efforts toward their further development and adoption, with the aim of enhancing preparedness and critical response for current and future emergencies.
Collapse
Affiliation(s)
- Francesco Napolitano
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Makkah, Saudi Arabia
| | - Xiaopeng Xu
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Makkah, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Makkah, Saudi Arabia
| |
Collapse
|
246
|
An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene 2022; 808:145963. [PMID: 34530086 PMCID: PMC8437745 DOI: 10.1016/j.gene.2021.145963] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023]
Abstract
As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.
Collapse
|
247
|
Ng JW, Chong ETJ, Lee PC. An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Curr Pharm Biotechnol 2022; 23:1596-1611. [DOI: 10.2174/1389201023666220114162347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.
Collapse
Affiliation(s)
- Jun Wei Ng
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Eric Tzyy Jiann Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Ping-Chin Lee
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
248
|
Lanari M, Venturini E, Pierantoni L, Stera G, Castelli Gattinara G, Esposito SMR, Favilli S, Franzoni E, Fusco E, Lionetti P, Maffeis C, Marseglia G, Massella L, Midulla F, Zanobini A, Zecca M, Villani A, Staiano A, Galli L. Eligibility criteria for pediatric patients who may benefit from anti SARS-CoV-2 monoclonal antibody therapy administration: an Italian inter-society consensus statement. Ital J Pediatr 2022; 48:7. [PMID: 35022088 PMCID: PMC8754075 DOI: 10.1186/s13052-021-01187-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
The fast diffusion of the SARS-CoV-2 pandemic have called for an equally rapid evolution of the therapeutic options.The Human recombinant monoclonal antibodies (mAbs) have recently been approved by the Food and Drug Administration (FDA) and by the Italian Medicines Agency (AIFA) in subjects aged ≥12 with SARS-CoV-2 infection and specific risk factors.Currently the indications are specific for the use of two different mAbs combination: Bamlanivimab+Etesevimab (produced by Eli Lilly) and Casirivimab+Imdevimab (produced by Regeneron).These drugs have shown favorable effects in adult patients in the initial phase of infection, whereas to date few data are available on their use in children.AIFA criteria derived from the existing literature which reports an increased risk of severe COVID-19 in children with comorbidities. However, the studies analyzing the determinants for progression to severe disease are mainly monocentric, with limited numbers and reporting mostly generic risk categories.Thus, the Italian Society of Pediatrics invited its affiliated Scientific Societies to produce a Consensus document based on the revision of the criteria proposed by AIFA in light of the most recent literature and experts' agreement.This Consensus tries to detail which patients actually have the risk to develop severe disease, analyzing the most common comorbidities in children, in order to detail the indications for mAbs administration and to guide the clinicians in identifying eligible patients.
Collapse
Affiliation(s)
- Marcello Lanari
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Italian Association of Children's Hospital (AOPI), Rome, Italy
| | | | - Luca Pierantoni
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Stera
- Postgraduate School of Pediatrics, University of Bologna, Bologna, Italy
| | | | - Susanna Maria Roberta Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Favilli
- Cardiology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Emilio Franzoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Fusco
- Postgraduate School of Pediatrics, University of Florence, Meyer Children's Hospital, Florence, Italy
| | - Paolo Lionetti
- Gastroenterology Unit, NEUROFARBA Department, University of Florence, Meyer Children's Hospital, Florence, Italy
| | - Claudio Maffeis
- Pediatric Clinic B, Mother and Child Hospital, Department of Surgery, Dentistry, Paediatrics, and Gynaecology, University of Verona, Verona, Italy
| | - Gianluigi Marseglia
- Department of Pediatrics, University of Pavia, San Matteo Foundation IRCCS Policlinico, Pavia, Italy
| | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alberto Villani
- General Pediatrics Unit, Pediatric Emergency and General Pediatrics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Luisa Galli
- Infectious Diseases Unit, Meyer Children's University Hospital, Florence, Italy.
- Department of Health Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
249
|
van der Houwen TB, van Hagen PM, van Laar JAM. Immunopathogenesis of Behçet's disease and treatment modalities. Semin Arthritis Rheum 2022; 52:151956. [PMID: 35038644 DOI: 10.1016/j.semarthrit.2022.151956] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Behçet's disease (BD) is an auto-inflammatory disease, primarily characterized by recurrent painful mucocutaneous ulcerations. METHODS A literature search was performed to write a narrative review into the pathogenesis and current treatment options of BD. RESULTS The pathogenesis of BD remains to be elucidated, but is considered a genetically primed disease in which an external trigger causes immune activation resulting in inflammatory symptoms. GWAS data show an association between multiple genetic polymorphisms (HLA-B51, ERAP1, IL10 and IL23R-IL12RB2) and increased susceptibility to BD. Bacteria as streptococci, an unbalanced microbiome or molecular mimicry trigger the inflammation in BD. Increased production or responsiveness of pro-inflammatory components of the innate immune response (TLR, neutrophils, NK-cells or γδ T-cells) to these triggers may be a crucial step in the pathogenesis of BD. Additionally to an increased autoinflammatory response there is evidence of a dysregulated adaptive immune system, with a disturbed Th1/Th2 balance, expansion of Th17 cells and possibly a decrease in regulatory T cells, resulting in a surplus in pro-inflammatory cytokines. The inflammation causes a typical clinical phenotype including orogenital ulcerations, uveitis and skin lesions. Treatment is aimed at the aberrations found in the innate (neutrophils and γδ-T cells) and adaptive immune system (TNF-α, INF-γ, IL-1), directed at organ involvement and individualized based on patient characteristics. CONCLUSION We presented an extensive review into the pathogenesis and treatment options of BD.
Collapse
Affiliation(s)
- T B van der Houwen
- Section of Clinical Immunology, Department of Internal Medicine and Immunology, Erasmus University Medical Center Rotterdam, Room RG 535, PO Box 2040, Rotterdam, 3000CA, the Netherlands
| | - P M van Hagen
- Section of Clinical Immunology, Department of Internal Medicine and Immunology, Erasmus University Medical Center Rotterdam, Room RG 535, PO Box 2040, Rotterdam, 3000CA, the Netherlands
| | - J A M van Laar
- Section of Clinical Immunology, Department of Internal Medicine and Immunology, Erasmus University Medical Center Rotterdam, Room RG 535, PO Box 2040, Rotterdam, 3000CA, the Netherlands.
| |
Collapse
|
250
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|