201
|
Reynolds JS, Peng W, Chu T, Mitchell JR. Effects of timing of food intake and fat/carbohydrate ratio on insulin sensitivity and preconditioning against renal ischemia reperfusion injury by calorie restriction. ACTA ACUST UNITED AC 2019; 5:23-32. [PMID: 31093582 PMCID: PMC6510179 DOI: 10.3233/nha-180044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND: Dietary restriction (DR) improves lifespan, metabolic fitness and resilience in many organisms, but the role of dietary macronutrient composition and timing of food intake in specific benefits remains unclear. OBJECTIVE: We sought to compare the effects of two isocaloric DR regimes differing in the timing of food intake - every other day (EOD) fasting/feeding vs. daily calorie restriction (CR) – at two different fat/carbohydrate ratios on two well-established DR benefits, improved glucose homeostasis and protection from renal ischemia reperfusion injury in mice. We hypothesized that both EOD fasting and isocaloric CR would result in similar improvements in glucose homeostasis and stress resistance independent of macronutrient composition. METHODS: Six groups of mice were fed either semi-purified low-fat diet (LFD, 10% calories from fat) or high-fat diet (HFD, 60% calories from fat) and randomized into one of three dietary regimens: 1) ad libitum (AL), 2) EOD feeding/fasting, or 3) pair-fed daily to the average daily EOD intake within LFD or HFD feeding group resulting in daily CR. After 6 weeks, the following assessments were made: fasting blood glucose, glucose and insulin tolerance, and resistance to bilateral renal ischemia reperfusion injury using serum urea as a marker of renal function. Within the EOD group, the effects of prior day feeding (EODfed vs. EODfast) were also assessed. RESULTS: EOD mice ate ∼20–25% less food over time than AL mice on the corresponding LFD or HFD. EOD and CR mice displayed changes in body weight, fasting blood glucose levels and glucose tolerance commensurate with total calorie intake. No significant differences were observed in circulating IGF-1 levels. Insulin sensitivity improved independent of fat/carbohydrate ratio on daily CR and EODfast regimens, but not EODfed. HFD increased susceptibility to renal ischemia reperfusion in AL mice, while CR and EOD regimens gave significant protection independent of dietary fat content or fed or fasted day in the EOD group. CONCLUSIONS: Reduced food intake protects mice against renal ischemia reperfusion injury within 6 weeks independent of timing of food intake (CR, EODfast, EODfed) or fat content of diet (10% vs. 60%). Neither circulating IGF-1 levels (unchanged) nor whole-body insulin sensitivity (improved upon daily CR and EODfast but not EODfed) correlated with protection, so are unlikely to be involved mechanistically.
Collapse
Affiliation(s)
- Justin S Reynolds
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, MA, USA
| | - Wei Peng
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, MA, USA
| | - Timothy Chu
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, MA, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, MA, USA
| |
Collapse
|
202
|
Włodarczyk M, Ciebiera M, Nowicka G. TNF-α G-308A genetic variants, serum CRP-hs concentration and DNA damage in obese women. Mol Biol Rep 2019; 47:855-866. [PMID: 30900134 PMCID: PMC7340642 DOI: 10.1007/s11033-019-04764-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Obesity is associated with inflammation, which can disturb genome stability. Tumor necrosis factor (TNF-α) polymorphism was found to affect TNF-α protein production and inflammation. Therefore, the present study illustrates the relationship between TNF-α polymorphism, the degree of inflammation assessed by serum high sensitivity C-reactive protein concentration (CRP-hs) and basal DNA damage in patients with obesity (BMI 30–34.9 kg/m2) and control subjects with proper body mass (BMI < 25 kg/m2). A total of 115 participants (75 obese premenopausal women; and 40 age-, and gender-matched controls) were included. Biochemical parameters (serum concentrations of total-cholesterol, HDL-cholesterol, LDL- cholesterol, triglycerides, glucose, apolipoprotein AI, CRP-hs) and endogenous DNA damage (determined by comet assay) were measured. TNF-α G-308A polymorphism (rs1800629) was analyzed by PCR-RFLP (PCR-restriction fragments length polymorphism). An effect of TNF-α genotype on serum CRP-hs concentration was noted (p = 0.031). In general, carriers of the rare A allele of the TNF-α G-308A polymorphism had significantly lower endogenous DNA damage and serum CRP-hs concentrations than GG homozygotes, however, the protective effect of the A allele was especially visible in non-obese women. Serum CRP-hs concentrations and levels of DNA damage (% DNA in tail) were significantly higher in obese than in controls (p = 0.001 and p < 0.0001, respectively). The adjusted multiple linear regression analyses revealed a significant, independent impact of obesity on DNA damage (p = 0.00000) and no effect of other covariates i.e. age, TNF-α genotype and serum CRP-hs concentration. Our study showed that obesity has a significant impact on the levels of endogenous DNA damage. Obesity abolished the protective effect of A allele of the TNF-α G-308A polymorphism on DNA damage and on inflammation development observed in non-obese A allele carriers.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy with Division of Laboratory Medicine, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland. .,Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Michał Ciebiera
- II Department of Obstetrics and Gynecology, The Centre of Postgraduate Medical Education, Cegłowska 80, 01-809, Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy with Division of Laboratory Medicine, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.,Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
203
|
Obesity, DNA Damage, and Development of Obesity-Related Diseases. Int J Mol Sci 2019; 20:ijms20051146. [PMID: 30845725 PMCID: PMC6429223 DOI: 10.3390/ijms20051146] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity has been recognized to increase the risk of such diseases as cardiovascular diseases, diabetes, and cancer. It indicates that obesity can impact genome stability. Oxidative stress and inflammation, commonly occurring in obesity, can induce DNA damage and inhibit DNA repair mechanisms. Accumulation of DNA damage can lead to an enhanced mutation rate and can alter gene expression resulting in disturbances in cell metabolism. Obesity-associated DNA damage can promote cancer growth by favoring cancer cell proliferation and migration, and resistance to apoptosis. Estimation of the DNA damage and/or disturbances in DNA repair could be potentially useful in the risk assessment and prevention of obesity-associated metabolic disorders as well as cancers. DNA damage in people with obesity appears to be reversible and both weight loss and improvement of dietary habits and diet composition can affect genome stability.
Collapse
|
204
|
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019; 29:592-610. [PMID: 30840912 DOI: 10.1016/j.cmet.2019.01.018] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increase in life expectancy has boosted the incidence of age-related pathologies beyond social and economic sustainability. Consequently, there is an urgent need for interventions that revert or at least prevent the pathogenic age-associated deterioration. The permanent or periodic reduction of calorie intake without malnutrition (caloric restriction and fasting) is the only strategy that reliably extends healthspan in mammals including non-human primates. However, the strict and life-long compliance with these regimens is difficult, which has promoted the emergence of caloric restriction mimetics (CRMs). We define CRMs as compounds that ignite the protective pathways of caloric restriction by promoting autophagy, a cytoplasmic recycling mechanism, via a reduction in protein acetylation. Here, we describe the current knowledge on molecular, cellular, and organismal effects of known and putative CRMs in mice and humans. We anticipate that CRMs will become part of the pharmacological armamentarium against aging and age-related cardiovascular, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | | | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science, Suzhou, China.
| |
Collapse
|
205
|
Guest PC. Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:1-24. [PMID: 31493219 DOI: 10.1007/978-3-030-25650-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The quest for increased human longevity has been a goal of mankind throughout recorded history. Recent molecular studies are now providing potentially useful insights into the aging process which may help to achieve at least some aspects of this quest. This chapter will summarize the main findings of these studies with a focus on long-lived mutant mice and worms, and the longest living natural species including Galapagos giant tortoises, bowhead whales, Greenland sharks, quahog clams and the immortal jellyfish.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
206
|
Alshahrani A, AlDubayee M, Zahra M, Alsebayel FM, Alammari N, Alsudairy F, Almajed M, Aljada A. Differential Expression of Human N-Alpha-Acetyltransferase 40 (hNAA40), Nicotinamide Phosphoribosyltransferase (NAMPT) and Sirtuin-1 (SIRT-1) Pathway in Obesity and T2DM: Modulation by Metformin and Macronutrient Intake. Diabetes Metab Syndr Obes 2019; 12:2765-2774. [PMID: 31920356 PMCID: PMC6938199 DOI: 10.2147/dmso.s228591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Interactions between environmental factors, such as diet and lifestyle, and metabolic pathways are pivotal in understanding aging mechanisms. hNAA40, Nicotinamide phosphoribosyltransferase (NAMPT), and NAD-dependent protein deacetylase sirtuin-1 (SIRT-1) have been shown to exert important biological processes, including stress response and aging. METHODS hNAA40, NAMPT, and SIRT-1 mRNA expression in peripheral blood mononuclear cells (PBMC) were quantitated in 30 lean adult volunteers of normal weight, 30 obese, 20 drug-naïve obese Type 2 diabetes mellitus (T2DM), and 30 obese T2DM on Metformin. Similarly, hNAA40, NAMPT, and SIRT-1 expression in PBMC were quantitated in 36 normal healthy adults randomly assigned to three different groups (Glucose or Whey proteins or lipids; 300 kcal). Blood samples were obtained at 1, 2, and 3 hrs after the macronutrient intake. RESULTS There was an increase in hNAA40 and a decrease in NAMPT and SIRT-1 expression in PBMC from T2DM. Metformin treatment reverted hNAA40, NAMPT, and SIRT-1 expression levels to normal levels. Glucose intake resulted in a significant increase in expression of hNAA40 at 1 hr and decreased significantly at 3 hrs post intake. Lipid intake resulted in an increase in expression of hNAA40 at 2 hr post intake and returned to normal levels at 3 hrs. Neither glucose nor lipid intake resulted in a significant change in NAMPT or SIRT-1 expression. Whey proteins resulted in significantly lower expression of NAMPT at 3 hrs and did not alter the expression levels of SIRT-1 significantly. CONCLUSION hNAA40, NAMPT, and SIRT-1 pathway could play a role in the determination of the healthy life-span. Metformin modulates this pathway.
Collapse
Affiliation(s)
- Awad Alshahrani
- Department of Medicine, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Kingdom of Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed AlDubayee
- Department of Medicine, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Kingdom of Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Zahra
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Firas M Alsebayel
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Nawaf Alammari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Faisal Alsudairy
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Muath Almajed
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Correspondence: Ahmad Aljada Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh11533, Kingdom of Saudi ArabiaTel +966 112158 834 Email
| |
Collapse
|
207
|
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev 2019; 177:186-200. [PMID: 30044947 PMCID: PMC6333505 DOI: 10.1016/j.mad.2018.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although the beneficial effects of calorie restriction (CR) on health and aging were first observed a century ago, the specific macronutrients and molecular processes that mediate the effect of CR have been heavily debated. Recently, it has become clear that dietary protein plays a key role in regulating both metabolic health and longevity, and that both the quantity and quality - the specific amino acid composition - of dietary protein mediates metabolic health. Here, we discuss recent findings in model organisms ranging from yeast to mice and humans regarding the influence of dietary protein as well as specific amino acids on metabolic health, and the physiological and molecular mechanisms which may mediate these effects. We then discuss recent findings which suggest that the restriction of specific dietary amino acids may be a potent therapy to treat or prevent metabolic syndrome. Finally, we discuss the potential for dietary restriction of specific amino acids - or pharmaceuticals which harness these same mechanisms - to promote healthy aging.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
208
|
Abiri B, Vafa M. Dietary Restriction, Cardiovascular Aging and Age-Related Cardiovascular Diseases: A Review of the Evidence. REVIEWS ON BIOMARKER STUDIES IN AGING AND ANTI-AGING RESEARCH 2019; 1178:113-127. [DOI: 10.1007/978-3-030-25650-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
209
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
210
|
Abstract
Exceptional longevity represents an extreme phenotype. Current centenarians are survivors of a cohort who display delayed onset of age-related diseases and/or resistance to otherwise lethal illnesses occurring earlier in life. Characteristics of aging are heterogeneous, even among long-lived individuals. Associations between specific clinical or genetic biomarkers exist, but there is unlikely to be a single biomarker predictive of long life. Careful observations in the oldest old offer some empirical strategies that favor increased health span and life span, with implications for compression of disability, identification and implementation of lifestyle behaviors that promote independence, identification and measurement of more reliable markers associated with longevity, better guidance for appropriate health screenings, and promotion of anticipatory health discussions in the setting of more accurate prognostication. Comprehensive PubMed literature searches were performed, with an unbiased focus on mechanisms of longevity. Overall, the aggregate literature supports that the basis for exceptional longevity is multifactorial and involves disparate combinations of genes, environment, resiliency, and chance, all of which are influenced by culture and geography.
Collapse
Affiliation(s)
- Robert J Pignolo
- Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
211
|
Salt C, Morris PJ, Wilson D, Lund EM, German AJ. Association between life span and body condition in neutered client-owned dogs. J Vet Intern Med 2018; 33:89-99. [PMID: 30548336 PMCID: PMC6335446 DOI: 10.1111/jvim.15367] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background There is an association between overweight status and life span in kenneled dogs, but a similar association has not been reported for pet dogs. Objectives To examine the effects of being overweight in middle age on the life span of neutered client‐owned dogs. Animals Fifty‐thousand seven‐hundred eighty seven middle‐aged neutered client‐owned dogs attending a network of approximately 900 veterinary hospitals across North America. Methods Retrospective case‐control study. For each of 12 breeds, groups of dogs aged between 6.5 and 8.5 years were identified as being in “overweight” or “normal” body condition. Within each breed and sex, differences in life span between dogs in normal body condition and overweight body condition in the 2 groups were then analyzed by Cox proportional hazards models. Results For all breeds, instantaneous risk of death for dogs in overweight body condition was greater than those in normal body condition throughout the age range studied, with hazard ratios ranging from 1.35 (99.79% confidence interval [CI] 1.05‐1.73) for German Shepherd dog to 2.86 (99.79% CI 2.14‐3.83) for Yorkshire Terrier. In all breeds, median life span was shorter in overweight compared with normal weight dogs, with the difference being greatest in Yorkshire Terriers (overweight: 13.7 years, 99.79% CI 13.3‐14.2; normal: 16.2 years, 99.79% CI 15.7‐16.5) and least in German Shepherd dogs (overweight: 12.1 years, 99.79% CI 11.8‐12.4; normal: 12.5 years, 99.79% CI 12.2‐12.9). Conclusions and Clinical Importance Veterinary professionals should consider promoting healthy body condition for dogs, particularly from midlife onward.
Collapse
Affiliation(s)
- Carina Salt
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, United Kingdom
| | | | - Derek Wilson
- WALTHAM Centre for Pet Nutrition, Melton Mowbray, United Kingdom
| | | | - Alexander J German
- Institute of Ageing and Chronic Disease, University of Liverpool, Cheshire, United Kingdom
| |
Collapse
|
212
|
Arabi Y, Jawdat D, Bouchama A, Tamim H, Tamimi W, Al-Balwi M, Al-Dorzi HM, Sadat M, Afesh L, Lehe C, Almashaqbeh W, Sakhija M, Al-Dawood A. Oxidative stress, caloric intake and outcomes of critically ill patients. Clin Nutr ESPEN 2018; 29:103-111. [PMID: 30661672 DOI: 10.1016/j.clnesp.2018.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of this study was to investigate the patterns of oxidative stress in critically ill patients and the association with caloric intake and outcomes. METHODS In this pre-planned sub-study of the PermiT (Permissive Underfeeding versus Target Enteral Feeding in Adult Critically Ill Patients Trial- ISRCTN68144998), we included patients expected to stay in the ICU for ≥14 days. Serum samples were collected on days 1, 3, 5, 7 and 14 of enrollment. We measured total anti-oxidant capacity (TAC), protein carbonyl concentration (a measure of protein oxidation) and 8-hydroxy-7,8-dihydro-2'-deoxyguanosine (8-OHdG) (a measure of DNA oxidation). We used principal component analysis (PCA) and hierarchical cluster analysis (HCA) to group patients according to oxidative stress. RESULTS Principal component analysis identified 2 components that were responsible for 79% of the total variance, and cluster analysis grouped patients in three statistically distinct clusters. Majority of patients 78.6% (44/55) were included in cluster 1 with lowest TAC, protein carbonyl and 8-OHdG levels and cluster 2 which accounted for 16.1% (9/55) of patients had the highest levels of TAC and intermediate levels of protein carbonyl levels. Cluster 3 patients 5.4% (3/56) had the highest protein carbonyl levels. Incident renal replacement therapy was highest in cluster 2 (4/8, 50.0%), compared to cluster 1 (4/42, 9.5%) and cluster 3 (1/3, 33.3%, p 0.01). When adjusted to oxidative stress cluster membership, permissive underfeeding was not associated with 90-day mortality (adjusted odds ratio, aOR 1.37, 95% CI 0.36, 5.25, p 0.64) but was associated significantly with lower incident renal replacement therapy (aOR 0.02, 95% CI < 0.001, 0.57, p 0.02). CONCLUSIONS There are different distinct patterns of oxidative stress in critically ill patients. Incident renal replacement therapy was different among the three clusters. Our data suggest a protective effect of permissive underfeeding on incident renal replacement therapy that may differ by clusters of oxidative stress.
Collapse
Affiliation(s)
- Yaseen Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Dunia Jawdat
- Cord Blood Bank, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Abderrezak Bouchama
- Department of Experimental Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Hani Tamim
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Internal Medicine, American University of Beirut- Medical Center, Beirut, Lebanon.
| | - Waleed Tamimi
- Department of Clinical Laboratory, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Mohammed Al-Balwi
- Molecular Pathology and Genetics, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Hasan M Al-Dorzi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Musharaf Sadat
- Intensive Care Department, King Abdulaziz Medical City, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Lara Afesh
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Cynthia Lehe
- Department of Experimental Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Walid Almashaqbeh
- Cord Blood Bank, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Maram Sakhija
- Intensive Care Department, King Abdulaziz Medical City, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Abdulaziz Al-Dawood
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
213
|
Doucet É, McInis K, Mahmoodianfard S. Compensation in response to energy deficits induced by exercise or diet. Obes Rev 2018; 19 Suppl 1:36-46. [PMID: 30511511 DOI: 10.1111/obr.12783] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Obesity is an extremely resilient condition. Weight loss is most challenging, and weight recidivism is rampant. There is accumulating evidence highlighting that energy deficits meant to produce increased mobilization of energy stores trigger a number of somewhat persistent adaptations that together increase the drive to eat and decrease energy output. These adaptations ostensibly enable a context where the likelihood of energy compensation is heightened. In fact, energy compensation is present for both diet and exercise induced energy deficits although at different magnitudes. For the most part, the energy compensation in response to exercise induced energy deficits seems to be larger. Interestingly, energy compensation appears to be greater for longer interventions, an effect independent of whether the energy deficit is induced through diet or exercise. The latter suggests that the increased drive to eat and the reduced energy expenditure that accompany weight loss might be successfully fought off initially. However, with time there seems to be increasing erosion of the behaviours that initially opposed adaptations to weight loss and increased energy compensation progressively sets in. Under such conditions, it would seem prudent to propose weight loss targets that align with a level of behaviour modifications that can be sustained indefinitely.
Collapse
Affiliation(s)
- É Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - K McInis
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - S Mahmoodianfard
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
214
|
Affiliation(s)
- Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
215
|
Ross MD. Endothelial Regenerative Capacity and Aging: Influence of Diet, Exercise and Obesity. Curr Cardiol Rev 2018; 14:233-244. [PMID: 30047332 PMCID: PMC6300798 DOI: 10.2174/1573403x14666180726112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background: The endothelium plays an important role in cardiovascular regulation, from blood flow to platelet aggregation, immune cell infiltration and demargination. A dysfunctional endo-thelium leads to the onset and progression of Cardiovascular Disease (CVD). The aging endothelium displays significant alterations in function, such as reduced vasomotor functions and reduced angio-genic capabilities. This could be partly due to elevated levels of oxidative stress and reduced endothe-lial cell turnover. Circulating angiogenic cells, such as Endothelial Progenitor Cells (EPCs) play a significant role in maintaining endothelial health and function, by supporting endothelial cell prolifera-tion, or via incorporation into the vasculature and differentiation into mature endothelial cells. Howev-er, these cells are reduced in number and function with age, which may contribute to the elevated CVD risk in this population. However, lifestyle factors, such as exercise, physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and antioxidants, significantly af-fect the number and function of these circulating angiogenic cells. Conclusion: This review will discuss the effects of advancing age on endothelial health and vascular regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the mecha-nistic links and the subsequent impact on cardiovascular health
Collapse
Affiliation(s)
- Mark D Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
216
|
Abstract
Nutrient composition and caloric intake have traditionally been used to devise optimized diets for various phases of life. Adjustment of meal size and frequency have emerged as powerful tools to ameliorate and postpone the onset of disease and delay aging, whereas periods of fasting, with or without reduced energy intake, can have profound health benefits. The underlying physiological processes involve periodic shifts of metabolic fuel sources, promotion of repair mechanisms, and the optimization of energy utilization for cellular and organismal health. Future research endeavors should be directed to the integration of a balanced nutritious diet with controlled meal size and patterns and periods of fasting to develop better strategies to prevent, postpone, and treat the socioeconomical burden of chronic diseases associated with aging.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
217
|
Muo IM, Park SJ, Smith A, A Springer D, Allen MD, Hagen TJ, Chung JH. Compound D159687, a phosphodiesterase 4D inhibitor, induces weight and fat mass loss in aged mice without changing lean mass, physical and cognitive function. Biochem Biophys Res Commun 2018; 506:1059-1064. [PMID: 30409425 DOI: 10.1016/j.bbrc.2018.10.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
AIMS Therapies that recapitulate the health benefits of caloric restriction in older adults are needed. Phosphodiesterase 4 inhibitors demonstrate such promise. We examined their effects on body weight and composition, physical and cognitive function in aged mice using Compound D159687 (D159687). METHODS Nineteen 18-months old mice were randomized to receive either control (DMSO) or D159687 for seven weeks. We assessed food intake, body weight and body composition over time and performed once the following tests: treadmill, inverted grip strength, rotarod, spontaneous Y maze tests and skeletal muscle mitochondrial biogenesis. RESULTS Four of the D159687 treated mice died in the first week. Necropsy suggests acute lung injury. D159687 treated mice weighed more than control mice at baseline. After controlling for baseline weight, D159687 treated mice lost 4.2 grams(g) more weight than control mice, mainly from fat mass loss (p value < 0.001). Muscle mass was unchanged between the two mice groups. D159587 mice ate significantly more food than the control mice. We found no difference between the two groups in the results of treadmill, rotarod and spontaneous Y maze tests and in mitochondrial biogenesis. CONCLUSION Compound D159687 induced weight loss, predominantly fat mass loss and increased food intake in aged mice. The caloric restriction and lean mass preservation potential of PDE4D inhibitors deserve further verification. Findings may have major therapeutic implications when translated to the older adult population. Although physical and cognitive parameters were unchanged in this study, further studies would be needed to verify these results. The high death rate in the D159687 treated mice may have been due to the technical aspects of oral gavage.
Collapse
Affiliation(s)
- Ijeoma M Muo
- Laboratory of Obesity and Aging Research, NHLBI, National Institute of Health, Bethesda, MD 20892, USA.
| | - Sung-Jun Park
- Laboratory of Obesity and Aging Research, NHLBI, National Institute of Health, Bethesda, MD 20892, USA.
| | - Antoine Smith
- Laboratory of Obesity and Aging Research, NHLBI, National Institute of Health, Bethesda, MD 20892, USA.
| | - Danielle A Springer
- Murine Phenotyping Core, NHLBI National Institute of Health, Bethesda, MD 20892, USA.
| | - Michele D Allen
- Murine Phenotyping Core, NHLBI National Institute of Health, Bethesda, MD 20892, USA.
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, NHLBI, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
218
|
Le Couteur DG, Simpson SJ. 90th Anniversary Commentary: Caloric Restriction Effects on Aging. J Nutr 2018; 148:1656-1659. [PMID: 30281103 DOI: 10.1093/jn/nxy146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Aging and ANZAC Research Institute, The University of Sydney and Concord Hospital, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
219
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|
220
|
Ries D, Carriquiry A, Shook R. Modeling energy balance while correcting for measurement error via free knot splines. PLoS One 2018; 13:e0201892. [PMID: 30161152 PMCID: PMC6116982 DOI: 10.1371/journal.pone.0201892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
Measurements of energy balance components (energy intake, energy expenditure, changes in energy stores) are often plagued with measurement error. Doubly-labeled water can measure energy intake (EI) with negligible error, but is expensive and cumbersome. An alternative approach that is gaining popularity is to use the energy balance principle, by measuring energy expenditure (EE) and change in energy stores (ES) and then back-calculate EI. Gold standard methods for EE and ES exist and are known to give accurate measurements, albeit at a high cost. We propose a joint statistical model to assess the measurement error in cheaper, non-intrusive measures of EE and ES. We let the unknown true EE and ES for individuals be latent variables, and model them using a bivariate distribution. We try both a bivariate Normal as well as a Dirichlet Process Mixture Model, and compare the results via simulation. Our approach, is the first to account for the dependencies that exist in individuals' daily EE and ES. We employ semiparametric regression with free knot splines for measurements with error, and linear components for error free covariates. We adopt a Bayesian approach to estimation and inference and use Reversible Jump Markov Chain Monte Carlo to generate draws from the posterior distribution. Based on the semiparameteric regression, we develop a calibration equation that adjusts a cheaper, less reliable estimate, closer to the true value. Along with this calibrated value, our method also gives credible intervals to assess uncertainty. A simulation study shows our calibration helps produce a more accurate estimate. Our approach compares favorably in terms of prediction to other commonly used models.
Collapse
Affiliation(s)
- Daniel Ries
- Statistical Sciences Department, Sandia National Laboratories, Albuquerque, NM, United States of America
- Department of Statistics, Iowa State University, Ames, IA, United States of America
- * E-mail:
| | - Alicia Carriquiry
- Department of Statistics, Iowa State University, Ames, IA, United States of America
| | - Robin Shook
- Center for Children’s Healthy Lifestyles & Nutrition, Children’s Mercy, Kansas City, MO, United States of America
| |
Collapse
|
221
|
Wang S, Huang M, You X, Zhao J, Chen L, Wang L, Luo Y, Chen Y. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci Rep 2018; 8:13037. [PMID: 30158649 PMCID: PMC6115465 DOI: 10.1038/s41598-018-31353-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
Calorie restriction (CR) extends lifespan and elicits numerous effects beneficial to health and metabolism in various model organisms, but the underlying mechanisms are not completely understood. Gut microbiota has been reported to be associated with the beneficial effects of CR; however, it is unknown whether these effects of CR are causally mediated by gut microbiota. In this study, we employed an antibiotic-induced microbiota-depleted mouse model to investigate the functional role of gut microbiota in CR. Depletion of gut microbiota rendered mice resistant to CR-induced loss of body weight, accompanied by the increase in fat mass, the reduction in lean mass and the decline in metabolic rate. Depletion of gut microbiota led to increases in fasting blood glucose and cholesterol levels independent of CR. A few metabolism-modulating hormones including leptin and insulin were altered by CR and/or gut microbiota depletion. In addition, CR altered the composition of gut microbiota with significant increases in major probiotic genera such as Lactobacillus and Bifidobacterium, together with the decrease of Helicobacter. In addition, we performed fecal microbiota transplantation in mice fed with high-fat diet. Mice with transferred microbiota from calorie-restricted mice resisted high fat diet-induced obesity and exhibited metabolic improvement such as alleviated hepatic lipid accumulation. Collectively, these data indicate that CR-induced metabolic improvement especially in body weight reduction is mediated by intestinal microbiota to a certain extent.
Collapse
Affiliation(s)
- Shuo Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meiqin Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue You
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yangjun Luo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Sciences and Technology, Shanghai Tech University, Shanghai, 200031, China.
| |
Collapse
|
222
|
Franceschi C, Ostan R, Santoro A. Nutrition and Inflammation: Are Centenarians Similar to Individuals on Calorie-Restricted Diets? Annu Rev Nutr 2018; 38:329-356. [DOI: 10.1146/annurev-nutr-082117-051637] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals capable of reaching the extreme limit of human life such as centenarians are characterized by an exceptionally healthy phenotype—that is, a low number of diseases, low blood pressure, optimal metabolic and endocrine parameters, and increased diversity in the gut microbiota—and they are epigenetically younger than their chronological age. We present data suggesting that such a remarkable phenotype is largely similar to that found in adults following a calorie-restricted diet. Interviews with centenarians and historical data on the nutritional and lifestyle habits of Italians during the twentieth century suggest that as children and into adulthood, centenarians lived in an environment that was nonobesogenic, but at the same time the environment did not produce malnutrition. Centenarians appear to be creatures of habit, and we argue that their habit of eating meals at the same time each day favored the maintenance of circadian rhythms, including their sleep cycle. Finally, we argue that centenarians’ chronic inflammatory status, which we dubbed inflammaging, is peculiar, likely adaptive, and less detrimental than in younger people.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rita Ostan
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| |
Collapse
|
223
|
McMurphy T, Huang W, Queen NJ, Ali S, Widstrom KJ, Liu X, Xiao R, Siu JJ, Cao L. Implementation of environmental enrichment after middle age promotes healthy aging. Aging (Albany NY) 2018; 10:1698-1721. [PMID: 30036185 PMCID: PMC6075449 DOI: 10.18632/aging.101502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
With increases in life expectancy, it is vital to understand the dynamics of aging, their interaction with lifestyle factors, and the connections to age-related disease processes. Our work on environmental enrichment (EE), a housing environment boosting mental health, has revealed a novel anticancer and anti-obesity phenotype mediated by a brain-fat axis: the hypothalamic-sympathoneural-adipocyte (HSA) axis in young animals. Here we investigated EE effects on healthspan and lifespan when initiated after middle age. Short-term EE for six weeks activated the HSA axis in 10-month-old mice. Long-term EE for twelve months reduced adiposity, improved glucose tolerance, decreased leptin levels, enhanced motor abilities, and inhibited anxiety. In addition to adipose remodeling, EE decreased age-related liver steatosis, reduced hepatic glucose production, and increased glucose uptake by liver and adipose tissue contributing to the improved glycemic control. The EE-induced liver modulation was associated with a suppression of protein kinase Cε. Moreover, EE down-regulated the expression of inflammatory genes in the brain, adipose, and liver. EE initiated at 18-month of age significantly improved glycemic control and showed a trend of positive impact on mean lifespan. These data suggest that EE induces metabolic and behavioral adaptations that are shared by factors known to increase healthspan and lifespan.
Collapse
Affiliation(s)
- Travis McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle J. Widstrom
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jason J. Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
224
|
Setayesh T, Nersesyan A, Mišík M, Ferk F, Langie S, Andrade VM, Haslberger A, Knasmüller S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:64-91. [PMID: 30115431 DOI: 10.1016/j.mrrev.2018.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
Abstract
Health authorities are alarmed worldwide about the increase of obesity and overweight in the last decades which lead to adverse health effects including inflammation, cancer, accelerated aging and infertility. We evaluated the state of knowledge concerning the impact of elevated body mass on genomic instability. Results of investigations with humans (39 studies) in which DNA damage was monitored in lymphocytes and sperm cells, are conflicting and probably as a consequence of heterogeneous study designs and confounding factors (e.g. uncontrolled intake of vitamins and minerals and consumption of different food types). Results of animal studies with defined diets (23 studies) are more consistent and show that excess body fat causes DNA damage in multiple organs including brain, liver, colon and testes. Different molecular mechanisms may cause genetic instability in overweight/obese individuals. ROS formation and lipid peroxidation were found in several investigations and may be caused by increased insulin, fatty acid and glucose levels or indirectly via inflammation. Also reduced DNA repair and formation of advanced glycation end products may play a role but more data are required to draw firm conclusions. Reduction of telomere lengths and hormonal imbalances are characteristic for overweight/obesity but the former effects are delayed and moderate and hormonal effects were not investigated in regard to genomic instability in obese individuals. Increased BMI values affect also the activities of drug metabolizing enzymes which activate/detoxify genotoxic carcinogens, but no studies concerning the impact of these alterations of DNA damage in obese individuals are available. Overall, the knowledge concerning the impact of increased body weight and DNA damage is poor and further research is warranted to shed light on this important issue.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Vanessa M Andrade
- Laboratório de Biologia Celulare Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Brazil
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
225
|
Nirwane A, Majumdar A. Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health. Arch Physiol Biochem 2018; 124:194-206. [PMID: 29072101 DOI: 10.1080/13813455.2017.1391847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondria play a pivotal role in physiological energy governance. Mitochondrial biogenesis comprises growth and division of pre-existing mitochondria, triggered by environmental stressors such as endurance exercise, caloric restriction, cold exposure and oxidative stress. For normal physiology, balance between energy intake, storage and expenditure is of utmost important for the coordinated regulation of energy homeostasis. In contrast, abnormalities in these regulations render the individual susceptible to cardiometabolic disorders. This review provides a comprehensive coverage and understanding on mitochondrial biogenesis achieved through energy-sensing pathways. This includes the complex coordination of nuclear, cytosolic and mitochondrial events involving energy sensors, transcription factors, coactivators and regulators. It focuses on the importance of mitochondrial biogenesis in cardiometabolic health. Lastly, converging on the benefits of caloric restriction and endurance exercise in achieving cardiometabolic health.
Collapse
Affiliation(s)
- Abhijit Nirwane
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Anuradha Majumdar
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
| |
Collapse
|
226
|
Safahani M, Aligholi H, Noorbakhsh F, Djalali M, Pishva H, Modarres Mousavi SM, Alizadeh L, Gorji A, Koohdani F. Switching from high-fat diet to foods containing resveratrol as a calorie restriction mimetic changes the architecture of arcuate nucleus to produce more newborn anorexigenic neurons. Eur J Nutr 2018; 58:1687-1701. [PMID: 29785640 DOI: 10.1007/s00394-018-1715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE These days, obesity threatens the health for which one of the main interventions is calorie restriction (CR). Due to the difficulty of compliance with this treatment, CR mimetics such as resveratrol (RSV) have been considered. The present study compared the effects of RSV and CR on hypothalamic remodeling in a diet-switching experiment. METHODS C57BL/6 male mice received high-fat diet (HFD) for 4 weeks, subsequently their diet switched to chow diet, HFD + RSV, chow diet + RSV or CR diet for a further 6 weeks. Body weight, fat accumulation, hypothalamic apoptosis and expression of trophic factors as well as generation and fate specification of newborn cells in arcuate nucleus (ARC) were evaluated. RESULTS Switching diet to RSV-containing foods leading to weight and fat loss after 6 weeks. In addition, not only a significant reduction in apoptosis but also a considerable increase in production of newborn cells in ARC occurred following consumption of RSV-enriched diets. These were in line with augmentation of hypothalamic ciliary neurotrophic factor and leukemia inhibitory factor expression. Interestingly, RSV-containing diets changed the fate of newborn neurons toward generation of more proopiomelanocortin than neuropeptide Y neurons. The CR had effects similar to those of RSV-containing diets in the all-evaluated aspects besides neurogenesis in ARC. CONCLUSIONS Although both RSV-containing and CR diets changed the fate of newborn neurons to create an anorexigenic architecture for ARC, newborn neurons were more available after switching to RSV-enriched diets. It can be consider as a promising mechanism for future investigations.
Collapse
Affiliation(s)
- Maryam Safahani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Pishva
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran. .,Department of Neurology, Department of Neurosurgery, Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 45, 48149, Münster, Germany. .,Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
227
|
A one-year resistance training program following weight loss has no significant impact on body composition and energy expenditure in postmenopausal women living with overweight and obesity. Physiol Behav 2018; 189:99-106. [DOI: 10.1016/j.physbeh.2018.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
228
|
Duriancik DM, Tippett JJ, Morris JL, Roman BE, Gardner EM. Age, calorie restriction, and age of calorie restriction onset reduce maturation of natural killer cells in C57Bl/6 mice. Nutr Res 2018; 55:81-93. [PMID: 29914631 DOI: 10.1016/j.nutres.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/05/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Calorie restriction (CR), also known as energy restriction, has been shown to have a deleterious impact on both adult and aged mouse survival during influenza virus infection. Natural killer (NK) cell phenotypic differences contribute to increased susceptibility of adult CR mice. We hypothesized NK cell phenotype from adult and aged C57Bl/6 mice fed NIH-31 diet ad libitum (AL) would be different from NK cell phenotype from adult and aged mice fed NIH-31/NIA fortified diet at 40% CR. We hypothesized NK cell phenotype from mice consuming 40% CR initiated at 20 months of age would not be different from 40% CR initiated at 3 months of age. We initiated the 40% restriction either at the standard 12 weeks of age or at 78 weeks of age. NK cells were isolated and quantified from various tissues using flow cytometry. Aged CR mice had significantly reduced levels of terminally mature (CD27-CD11b+) NK cells, increased expression of the immature marker CD127, and decreased expression of the mature marker DX5. Total number of NK cells among cells was significantly lower in the lung and spleen of old-onset aged CR mice compared to aged AL mice, while there was no significant difference between young-onset aged CR and aged AL mice. Old-onset aged CR mice had significantly less early mature (DX5+ and CD27+CD11b+) NK cells compared to young-onset aged CR and aged AL fed mice. Overall, we found that CR in aged mice is detrimental to maturation of NK cells, which is exacerbated when CR is initiated in old age.
Collapse
Affiliation(s)
- David M Duriancik
- Biology Department, 459 Murchie Science Building, University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI, USA 48502.
| | - Jared J Tippett
- Biology Department, 459 Murchie Science Building, University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI, USA 48502.
| | - Jaslyn L Morris
- Biology Department, 459 Murchie Science Building, University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI, USA 48502.
| | - Brooke E Roman
- Department of Food Science and Human Nutrition, Room 236A G. M. Trout FSHN Building, Michigan State University, 469 Wilson Road, East Lansing, MI, USA 48824-1224.
| | - Elizabeth M Gardner
- Department of Food Science and Human Nutrition, Room 236A G. M. Trout FSHN Building, Michigan State University, 469 Wilson Road, East Lansing, MI, USA 48824-1224.
| |
Collapse
|
229
|
Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D, Ravussin E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab 2018; 27:805-815.e4. [PMID: 29576535 PMCID: PMC5886711 DOI: 10.1016/j.cmet.2018.02.019] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/23/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
Abstract
Calorie restriction (CR) is a dietary intervention with potential benefits for healthspan improvement and lifespan extension. In 53 (34 CR and 19 control) non-obese adults, we tested the hypothesis that energy expenditure (EE) and its endocrine mediators are reduced with a CR diet over 2 years. Approximately 15% CR was achieved over 2 years, resulting in an average 8.7 kg weight loss, whereas controls gained 1.8 kg. In the CR group, EE measured over 24 hr or during sleep was approximately 80-120 kcal/day lower than expected on the basis of weight loss, indicating sustained metabolic adaptation over 2 years. This metabolic adaptation was accompanied by significantly reduced thyroid axis activity and reactive oxygen species (F2-isoprostane) production. Findings from this 2-year CR trial in healthy, non-obese humans provide new evidence of persistent metabolic slowing accompanied by reduced oxidative stress, which supports the rate of living and oxidative damage theories of mammalian aging.
Collapse
Affiliation(s)
- Leanne M Redman
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital and Sanford-Burnham Medical Research Institute, Orlando, FL 32804, USA
| | - Jeffrey H Burton
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Corby K Martin
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Dora Il'yasova
- School of Public Health, Georgia State University, Atlanta, GA 30302, USA
| | - Eric Ravussin
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
230
|
Il'yasova D, Fontana L, Bhapkar M, Pieper CF, Spasojevic I, Redman LM, Das SK, Huffman KM, Kraus WE. Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial. Aging Cell 2018; 17. [PMID: 29424490 PMCID: PMC5847862 DOI: 10.1111/acel.12719] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) without malnutrition slows aging in animal models. Oxidative stress reduction was proposed to mediate CR effects. CR effect on urinary F2-isoprostanes, validated oxidative stress markers, was assessed in CALERIE, a two-year randomized controlled trial. Healthy volunteers (n = 218) were randomized to prescribed 25% CR (n = 143) or ad libitum control (AL, n = 75) stratifying the randomization schedule by site, sex, and BMI. F2-isoprostanes were quantified using LC-MS/MS in morning, fasted urine specimens at baseline, at 12 and 24 months. The primary measure of oxidative status was creatinine-adjusted 2,3-dinor-iPF(2α)-III concentration, additional measured included iPF(2α)-III, iPF2a-VI, and 8,12-iso-iPF2a-VI. Intention-to-treat analyses assessed change in 2,3-dinor-iPF(2α)-III using mixed models assessing treatment, time, and treatment-by-time interaction effects, adjusted for blocking variables and baseline F2-isoprostane value. Exploratory analyses examined changes in iPF(2α)-III, iPF(2α)-VI, and 8,12-iso-iPF(2α)-VI. A factor analysis used aggregate information on F2-isoprostane values. In CR group, 2,3-dinor-iPF(2α)-III concentrations were reduced from baseline by 17% and 13% at 12 and 24 months, respectively; these changes were significantly different from AL group (p < .01). CR reduced iPF(2α)-III concentrations by 20% and 27% at 12 and 24 months, respectively (p < .05). The effects were weaker on the VI-species. CR caused statistically significant reduction in isoprostane factor at both time points, and mean (se) changes were -0.36 (0.06) and -0.31 (0.06). No significant changes in isoprostane factor were at either time point in AL group (p < .01 between-group difference). We conclude that two-year CR intervention in healthy, nonobese men and women reduced whole body oxidative stress as assessed by urinary concentrations of F2-isoprostanes.
Collapse
Affiliation(s)
- Dora Il'yasova
- School of Public Health; Georgia State University; Atlanta GA USA
| | - Luigi Fontana
- Department of Medicine; Washington University School of Medicine; St Louis MO USA
- Department of Clinical and Experimental Sciences; Brescia University School of Medicine; Brescia Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Manjushri Bhapkar
- Duke Clinical Research Institute; Duke School of Medicine; Duke University; Durham NC USA
| | - Carl F. Pieper
- Department of Biostatistics and Bioinformatics; Duke University School of Medicine; Durham NC USA
| | - Ivan Spasojevic
- Division of Medical Oncology; Department of Medicine; Duke Cancer Institute; Duke University School of Medicine; Durham NC USA
| | | | - Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA USA
| | - Kim M. Huffman
- Divisions of Rheumatology and Immunology and Duke Molecular Physiology Institute; Duke School of Medicine; Duke University; Durham NC USA
| | - William E. Kraus
- Duke Molecular Physiology Institute and Duke Clinical Research Institute; Duke School of Medicine; Duke University; Durham NC USA
| | | |
Collapse
|
231
|
Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM. Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction-induced weight loss and weight loss maintenance. Am J Physiol Endocrinol Metab 2018; 314:E396-E405. [PMID: 29351490 PMCID: PMC5966756 DOI: 10.1152/ajpendo.00261.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
Calorie restriction (CR) triggers benefits for healthspan including decreased risk of cardiometabolic disease (CVD). In an ancillary study to CALERIE 2, a 24-mo 25% CR study, we assessed the cardiometabolic effects of CR in 53 healthy, nonobese (BMI: 22-28 kg/m2) men ( n = 17) and women ( n = 36). The aim of this study was to investigate whether CR can reduce risk factors for CVD and insulin resistance in nonobese humans and, moreover, to assess whether improvements are exclusive to a period of weight loss or continue during weight maintenance. According to the energy balance method, the 25% CR intervention ( n = 34) produced 16.5 ± 1.5% (mean ± SE) and 14.8 ± 1.5% CR after 12 and 24 mo (M12, M24), resulting in significant weight loss (M12 -9 ± 0.5 kg, M24 -9 ± 0.5 kg, P < 0.001). Weight was maintained in the group that continued their habitual diet ad libitum (AL, n = 19). In comparison to AL, 24 mo of CR decreased visceral (-0.5 ± 0.01 kg, P < 0.0001) and subcutaneous abdominal adipose tissue (-1.9 ± 0.2kg, P < 0.001) as well as intramyocellular lipid content (-0.11 ± 0.05%, P = 0.031). Furthermore, CR decreased blood pressure (SBP -8 ± 3 mmHg, P = 0.005; DBP -6 ± 2 mmHg, P < 0.001), total cholesterol (-13.6 ± 5.3 mg/dl, P = 0.001), and LDL-cholesterol (-12.9 ± 4.4 mg/dl, P = 0.005), and the 10-yr risk of CVD-disease was reduced by 30%. Homeostasis model assessment of insulin resistance (HOMA-IR) decreased during weight loss in the CR group (-0.46 ± 0.15, P = 0.003), but this decrease was not maintained during weight maintenance (-0.11 ± 0.15, P = 0.458). In conclusion, sustained CR in healthy, nonobese individuals is beneficial in improving risk factors for cardiovascular and metabolic disease such as visceral adipose tissue mass, ectopic lipid accumulation, blood pressure, and lipid profile, whereas improvements in insulin sensitivity were only transient.
Collapse
Affiliation(s)
- Jasper Most
- Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - L Anne Gilmore
- Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Steven R Smith
- Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Hongmei Han
- Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Eric Ravussin
- Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Leanne M Redman
- Pennington Biomedical Research Center , Baton Rouge, Louisiana
| |
Collapse
|
232
|
Audelan T, Legrand M, M'Garrech M, Best AL, Barreau E, Labetoulle M, Rousseau A. [Ocular surface aging: Pathophysiology and consequences for management]. J Fr Ophtalmol 2018; 41:262-270. [PMID: 29573862 DOI: 10.1016/j.jfo.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 11/15/2022]
Abstract
All the components of the ocular surface and the lacrimal system are affected by aging. Aging induces lacrimal gland fibrosis, Meibomian gland dysfunction, loss of corneal sensitivity, decreased corneal cell density, impairment of immune defences, increased local inflammation associated with hormonal changes, conjunctivochalasis, lid abnormalities, etc. Furthermore, homeostasis of the ocular surface may be altered by various age-related systemic comorbidities and iatrogenic interventions. Altogether, aging is considered the most predominant risk factor for dry eye disease. The increasing knowledge of the pathophysiology of aging of the ocular surface allows for refinement of the management of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- T Audelan
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - M Legrand
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - M M'Garrech
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - A-L Best
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - E Barreau
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - M Labetoulle
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France; Immunologie des infections virales et maladies auto-immunes UMR 1184, CEA, Fontenay-aux-Roses, France
| | - A Rousseau
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France; Immunologie des infections virales et maladies auto-immunes UMR 1184, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|
233
|
Abstract
Metabolic interventions involving undernutrition but not malnutrition (e.g., caloric restriction, CR) are effective strategies for improving both health and longevity in species ranging from lower organisms to nonhuman primates. Initial human trials to test the effects of sustained, reduced energy intake have yielded promising health benefits. Through intense research efforts in understanding the molecular mechanisms of CR, three cellular pathways have now been identified although the precise details remain unknown. More recently, circadian regulation has been recognized as a novel mediator for CR effects in mice. Harnessing the molecular insights into CR, novel nutritional interventions and pharmacological application of CR mimetics have been tested showing great promise in simultaneously improving metabolic function and providing overall health benefits. Additional research is needed to identify efficacious therapeutics that can be safely and practically translated to human studies in promoting healthspan.
Collapse
|
234
|
Templeman I, Thompson D, Gonzalez J, Walhin JP, Reeves S, Rogers PJ, Brunstrom JM, Karagounis LG, Tsintzas K, Betts JA. Intermittent fasting, energy balance and associated health outcomes in adults: study protocol for a randomised controlled trial. Trials 2018; 19:86. [PMID: 29394908 PMCID: PMC5797418 DOI: 10.1186/s13063-018-2451-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Background Prior studies have shown that intermittent fasting is capable of producing improvements in body weight and fasted health markers. However, the extent to which intermittent fasting incurs compensatory changes in the components of energy balance and its impact on postprandial metabolism are yet to be ascertained. Methods A total of 30–36 lean participants and 30–36 overweight/obese participants will be recruited to provide two separate study groups who will undergo the same protocol. Following an initial assessment of basic anthropometry and key health markers, measurements of habitual energy intake (weighed food and fluid intake) and physical activity energy expenditure (combined heart rate and accelerometry) will be obtained over 4 weeks under conditions of energy balance. Participants will then be randomly allocated to one of three experimental conditions for 20 days, namely (1) daily calorie restriction (reduce habitual daily energy intake by 25%), (2) intermittent fasting with calorie restriction (alternate between 24-hour periods of fasting and feeding to 150% of habitual daily energy intake), (3) intermittent fasting without calorie restriction (alternate between 24-hour periods of fasting and feeding to 200% of habitual daily energy intake). In addition to continued monitoring of energy intake and physical activity during the intervention, participants will report for laboratory-based assessments of various metabolic parameters both before and after the intervention. Specifically, fasting and postprandial measurements of resting metabolic rate, substrate oxidation, appetite, food preference, and plasma concentrations of key metabolites and hormones will be made, in addition to subcutaneous abdominal adipose tissue biopsies in the fasted state and an assessment of body composition via dual-energy x-ray absorptiometry. Discussion Comparing observed changes in these measures across the three intervention arms in each group will establish the impact of intermittent fasting on postprandial metabolism and the components of energy balance in both lean and overweight/obese populations. Furthermore, this will be benchmarked against current nutritional interventions for weight management and the relative contributions of negative energy balance and fasting-dependent mechanisms in inducing any observed effects will be elucidated. Trial registration Trial retrospectively registered at clinicaltrials.gov under reference number NCT02498002 (version: IMF-02, date: July 6, 2015). Electronic supplementary material The online version of this article (10.1186/s13063-018-2451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iain Templeman
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Javier Gonzalez
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | | | - Sue Reeves
- Department of Life Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Peter J Rogers
- School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | - Jeffrey M Brunstrom
- School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, UK
| | - Leonidas G Karagounis
- Faculty of Sport and Health Sciences, University of St Mark and St John, Plymouth, PL6 8BH, UK
| | - Kostas Tsintzas
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - James A Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
235
|
Toledo FGS, Johannsen DL, Covington JD, Bajpeyi S, Goodpaster B, Conley KE, Ravussin E. Impact of prolonged overfeeding on skeletal muscle mitochondria in healthy individuals. Diabetologia 2018; 61:466-475. [PMID: 29150696 PMCID: PMC5770194 DOI: 10.1007/s00125-017-4496-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESES Reduced mitochondrial capacity in skeletal muscle has been observed in obesity and type 2 diabetes. In humans, the aetiology of this abnormality is not well understood but the possibility that it is secondary to the stress of nutrient overload has been suggested. To test this hypothesis, we examined whether sustained overfeeding decreases skeletal muscle mitochondrial content or impairs function. METHODS Twenty-six healthy volunteers (21 men, 5 women, age 25.3 ± 4.5 years, BMI 25.5 ± 2.4 kg/m2) underwent a supervised protocol consisting of 8 weeks of high-fat overfeeding (40% over baseline energy requirements). Before and after overfeeding, we measured systemic fuel oxidation by indirect calorimetry and performed skeletal muscle biopsies to measure mitochondrial gene expression, content and function in vitro. Mitochondrial function in vivo was measured by 31P NMR spectroscopy. RESULTS With overfeeding, volunteers gained 7.7 ± 1.8 kg (% change 9.8 ± 2.3). Overfeeding increased fasting NEFA, LDL-cholesterol and insulin concentrations. Indirect calorimetry showed a shift towards greater reliance on lipid oxidation. In skeletal muscle tissue, overfeeding increased ceramide content, lipid droplet content and perilipin-2 mRNA expression. Phosphorylation of AMP-activated protein kinase was decreased. Overfeeding increased mRNA expression of certain genes coding for mitochondrial proteins (CS, OGDH, CPT1B, UCP3, ANT1). Despite the stress of nutrient overload, mitochondrial content and mitochondrial respiration in muscle did not change after overfeeding. Similarly, overfeeding had no effect on either the emission of reactive oxygen species or on mitochondrial function in vivo. CONCLUSIONS/INTERPRETATION Skeletal muscle mitochondria are significantly resilient to nutrient overload. The lower skeletal muscle mitochondrial oxidative capacity in human obesity is likely to be caused by reasons other than nutrient overload per se. TRIAL REGISTRATION ClinicalTrials.gov NCT01672632.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1054, Pittsburgh, PA, 15261, USA.
| | | | | | - Sudip Bajpeyi
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Department of Kinesiology, University of Texas El Paso, El Paso, TX, USA
| | - Bret Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Orlando, FL, USA
| | - Kevin E Conley
- University of Washington Medical Center, Seattle, WA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
236
|
Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, Saris WHM, Astrup A, Maoret JJ, Iacovoni J, Déjean S, Moro C, Viguerie N, Langin D. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity. Cell Rep 2018; 22:1079-1089. [PMID: 29386128 DOI: 10.1016/j.celrep.2017.12.102] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.
Collapse
Affiliation(s)
- Valentin Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Benjamin Léger
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Frédéric Martins
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-José Maoret
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Jason Iacovoni
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Sébastien Déjean
- University of Toulouse, Paul Sabatier University, Toulouse, France; CNRS, UMR 5219, Toulouse Mathematics Institute, Toulouse, France
| | - Cédric Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
237
|
Abstract
The ageing trajectory is plastic and can be slowed down by lifestyle factors, including good nutrition, adequate physical activity and avoidance of smoking. In humans, plant-based diets such as the Mediterranean dietary pattern are associated with healthier ageing and lower risk of age-related disease, whereas obesity accelerates ageing and increases the likelihood of most common complex diseases including CVD, T2D, dementia, musculoskeletal diseases and several cancers. As yet, there is only weak evidence in humans about the molecular mechanisms through which dietary factors modulate ageing but evidence from cell systems and animal models suggest that it is probable that better dietary choices influence all 9 hallmarks of ageing. It seems likely that better eating patterns retard ageing in at least two ways including (i) by reducing pervasive damaging processes such as inflammation, oxidative stress/redox changes and metabolic stress and (ii) by enhancing cellular capacities for damage management and repair. From a societal perspective, there is an urgent imperative to discover, and to implement, cost-effective lifestyle (especially dietary) interventions which enable each of us to age well, i.e. to remain physically and socially active and independent and to minimise the period towards the end of life when individuals suffer from frailty and multi-morbidity.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
238
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
239
|
Obermeyer Z, Samra JK, Mullainathan S. Individual differences in normal body temperature: longitudinal big data analysis of patient records. BMJ 2017; 359:j5468. [PMID: 29237616 PMCID: PMC5727437 DOI: 10.1136/bmj.j5468] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To estimate individual level body temperature and to correlate it with other measures of physiology and health. DESIGN Observational cohort study. SETTING Outpatient clinics of a large academic hospital, 2009-14. PARTICIPANTS 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. MAIN OUTCOME MEASURES Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. RESULTS In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (-0.021°C for every decade, P<0.001) and African-American women the hottest (versus white men: 0.052°C, P<0.001). Several comorbidities were linked to lower temperature (eg, hypothyroidism: -0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, P<0.001), as were physiological measurements (eg, body mass index: 0.002 per m/kg2, P<0.001). Overall, measured factors collectively explained only 8.2% of individual temperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). CONCLUSIONS Individuals' baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality.
Collapse
Affiliation(s)
- Ziad Obermeyer
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine and Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Jasmeet K Samra
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
240
|
Guan B, Chen Y, Yang J, Yang W, Wang C. Effect of Bariatric Surgery on Thyroid Function in Obese Patients: a Systematic Review and Meta-Analysis. Obes Surg 2017; 27:3292-3305. [PMID: 29039052 DOI: 10.1007/s11695-017-2965-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We aimed to make a meta-analysis regarding the effect of bariatric surgery on thyroid function in obese patients. PubMed, EMBASE, CENTRAL, and four Chinese databases were searched for clinical studies. Data were pooled using Review Manager 5.3, and subgroup and sensitivity analyses were performed if necessary and feasible. As a result, 24 articles were included into meta-analysis. Bariatric surgery was associated with significant decrease in TSH, FT3, and T3 levels. However, FT4, T4, and rT3 levels were not significantly changed postoperatively. In addition, bariatric surgery had a favorable effect on overt and subclinical hypothyroid, with reduction of thyroid hormone requirements postoperatively. In conclusion, TSH, FT3, and T3 decrease are expected following bariatric surgery, as well as non-significant change of T4, FT4, and rT3 levels.
Collapse
Affiliation(s)
- Bingsheng Guan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - YanYa Chen
- Department of Nursing Science, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Jingge Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wah Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
241
|
Lettieri-Barbato D, Giovannetti E, Aquilano K. Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging (Albany NY) 2017; 8:3341-3355. [PMID: 27899768 PMCID: PMC5270672 DOI: 10.18632/aging.101122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
In developing countries the rise of obesity and obesity-related metabolic disorders, such as cardiovascular diseases and type 2 diabetes, reflects the changes in lifestyle habits and wrong dietary choices. Dietary restriction (DR) regimens have been shown to extend health span and lifespan in many animal models including primates. Identifying biomarkers predictive of clinical benefits of treatment is one of the primary goals of precision medicine. To monitor the clinical outcomes of DR interventions in humans, several biomarkers are commonly adopted. However, a validated link between the behaviors of such biomarkers and DR effects is lacking at present time. Through a systematic analysis of human intervention studies, we evaluated the effect size of DR (i.e. calorie restriction, very low calorie diet, intermittent fasting, alternate day fasting) on health-related biomarkers. We found that DR is effective in reducing total and visceral adipose mass and improving inflammatory cytokines profile and adiponectin/leptin ratio. By analysing the levels of canonical biomarkers of healthy aging, we also validated the changes of insulin, IGF-1 and IGFBP-1,2 to monitor DR effects. Collectively, we developed a useful platform to evaluate the human responses to dietary regimens low in calories.
Collapse
Affiliation(s)
| | | | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,IRCCS San Raffaele La Pisana, Rome, Italy
| |
Collapse
|
242
|
Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 2017; 12:1887-1902. [PMID: 29184395 PMCID: PMC5685139 DOI: 10.2147/cia.s126458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complexity of aging is hard to be captured. However, apart from its tissue-specific features, a structural and functional progressive decline of the whole organism that leads to death, often preceded by a phase of chronic morbidity, characterizes the common process of aging. Therefore, the research goal of scientists in the field moved from the search for strategies able to extend longevity to those ensuring healthy aging associated with a longer lifespan referred to as “healthspan”. The aging process is plastic and can be tuned by multiple mechanisms including dietary and genetic interventions. To date, the most robust approach, efficient in warding off the cellular markers of aging, is calorie restriction (CR). Here, after a preliminary presentation of the major debate originated by CR, we concisely overviewed the recent results of CR treatment on humans. We also provided an update on the molecular mechanisms involved by CR and the effects on some of the age-associated cellular markers. We finally reviewed a number of tested CR mimetics and concluded with an evaluation of future applications of such dietary approach.
Collapse
Affiliation(s)
- Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | |
Collapse
|
243
|
Das SK, Balasubramanian P, Weerasekara YK. Nutrition modulation of human aging: The calorie restriction paradigm. Mol Cell Endocrinol 2017; 455:148-157. [PMID: 28412520 PMCID: PMC7153268 DOI: 10.1016/j.mce.2017.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
Globally, the aging population is growing rapidly, creating an urgent need to attenuate age-related health conditions, including metabolic disease and disability. A promising strategy for healthy aging based on consistently positive results from studies with a variety of species, including non-human primates (NHP), is calorie restriction (CR), or the restriction of energy intake while maintaining intake of essential nutrients. The burgeoning evidence for this approach in humans is reviewed and the major study to date to address this question, CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy), is described. CALERIE findings indicate the feasibility of CR in non-obese humans, confirm observations in NHP, and are consistent with improvements in disease risk reduction and potential anti-aging effects. Finally, the mechanisms of CR in humans are reviewed which sums up the fact that evolutionarily conserved mechanisms mediate the anti-aging effects of CR. Overall, the prospect for further research in both NHP and humans is highly encouraging.
Collapse
Affiliation(s)
- Sai Krupa Das
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison WI, USA.
| | - Yasoma K Weerasekara
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
244
|
Abstract
PURPOSE OF REVIEW Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes. RECENT FINDINGS Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition. There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.
Collapse
Affiliation(s)
- Saeid Golbidi
- Faculty of Medicine, Department of Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Andreas Daiber
- Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - M Faadiel Essop
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Faculty of Medicine, Department of Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
245
|
Effects of active commuting and leisure-time exercise on fat loss in women and men with overweight and obesity: a randomized controlled trial. Int J Obes (Lond) 2017; 42:469-478. [PMID: 28993707 DOI: 10.1038/ijo.2017.253] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022]
|
246
|
Balasubramanian P, Mattison JA, Anderson RM. Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res Rev 2017; 39:29-35. [PMID: 28219777 PMCID: PMC5563491 DOI: 10.1016/j.arr.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/29/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
Abstract
This short review focuses on the importance of nonhuman primate nutrition and aging studies and makes the case that a targeted expansion of the use of this highly translatable model would be advantageous to the biology of aging field. First, we describe the high degree of similarity of the model in terms of aging phenotypes including incidence and prevalence of common human age-related diseases. Second, we discuss the importance of the nonhuman primate nutrition and aging studies and the extent to which the outcomes of two ongoing long-term studies of caloric restriction are congruent with short-term equivalent studies in humans. Third, we showcase a number of pharmacological agents previously employed in nonhuman primate studies that display some potential as caloric restriction mimetics. Finally, we present nonhuman primates as an important model for translation of mechanisms of delayed aging identified in studies of shorter-lived animals. Proof of efficacy and safety of candidate longevity agents in nonhuman primates would be a cost-effective means to bring these exciting new avenues a step closer to clinical application.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Geriatic Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
247
|
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: An update. Ageing Res Rev 2017; 39:36-45. [PMID: 27544442 PMCID: PMC5315691 DOI: 10.1016/j.arr.2016.08.005] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), a nutritional intervention of reduced energy intake but with adequate nutrition, has been shown to extend healthspan and lifespan in rodent and primate models. Accumulating data from observational and randomized clinical trials indicate that CR in humans results in some of the same metabolic and molecular adaptations that have been shown to improve health and retard the accumulation of molecular damage in animal models of longevity. In particular, moderate CR in humans ameliorates multiple metabolic and hormonal factors that are implicated in the pathogenesis of type 2 diabetes, cardiovascular diseases, and cancer, the leading causes of morbidity, disability and mortality. In this paper, we will discuss the effects of CR in non-obese humans on these physiological parameters. Special emphasis is committed to recent clinical intervention trials that have investigated the feasibility and effects of CR in young and middle-aged men and women on parameters of energy metabolism and metabolic risk factors of age-associated disease in great detail. Additionally, data from individuals who are either naturally exposed to CR or those who are self-practicing this dietary intervention allows us to speculate on longer-term effects of more severe CR in humans.
Collapse
Affiliation(s)
- Jasper Most
- Reproductive Endocrinology and Women's Health, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Valeria Tosti
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leanne M Redman
- Reproductive Endocrinology and Women's Health, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA.
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Sciences, Brescia University Medical School, Brescia, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
248
|
Sotos-Prieto M, Bhupathiraju SN, Hu FB. Changes in Diet Quality and Total and Cause-Specific Mortality. N Engl J Med 2017; 377:1304. [PMID: 28953436 DOI: 10.1056/nejmc1710523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Frank B Hu
- Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
249
|
Mitchell SE, Tang Z, Kerbois C, Delville C, Derous D, Green CL, Wang Y, Han JJD, Chen L, Douglas A, Lusseau D, Promislow DEL, Speakman JR. The effects of graded levels of calorie restriction: VIII. Impact of short term calorie and protein restriction on basal metabolic rate in the C57BL/6 mouse. Oncotarget 2017; 8:17453-17474. [PMID: 28193912 PMCID: PMC5392262 DOI: 10.18632/oncotarget.15294] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022] Open
Abstract
Under calorie restriction (CR) animals need to lower energy demands. Whether this involves a reduction in cellular metabolism is an issue of contention. We exposed C57BL/6 mice to graded CR for 3 months, measured BMR and dissected out 20 body compartments. From a separate age-matched group (n=57), we built 7 predictive models for BMR. Unadjusted BMR declined with severity of restriction. Comparison of measured and predicted BMR from the simple models suggested suppression occurred. The extent of 'suppression' was greater with increased CR severity. However, when models based on individual organ sizes as predictors were used, the discrepancy between the prediction and the observed BMR disappeared. This suggested 'metabolic suppression' was an artefact of not having a detailed enough model to predict the expected changes in metabolism. Our data have wide implications because they indicate that inferred 'metabolic' impacts of genetic and other manipulations may reflect effects on organ morphology.
Collapse
Affiliation(s)
- Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - ZhanHui Tang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Celine Kerbois
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jackie J D Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Biology, University of Washington, Seattle, Washington, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
250
|
Doerstling SS, O'Flanagan CH, Hursting SD. Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors. Front Oncol 2017; 7:216. [PMID: 28959684 PMCID: PMC5604081 DOI: 10.3389/fonc.2017.00216] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.
Collapse
Affiliation(s)
- Steven S Doerstling
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ciara H O'Flanagan
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,University of North Carolina Nutrition Research Institute, Kannapolis, NC, United States
| |
Collapse
|