201
|
Miller JP, McAuley JD, Pang KCH. Spontaneous fos expression in the suprachiasmatic nucleus of young and old mice. Neurobiol Aging 2004; 26:1107-15. [PMID: 15748791 DOI: 10.1016/j.neurobiolaging.2004.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 08/26/2004] [Accepted: 08/27/2004] [Indexed: 11/27/2022]
Abstract
The senescence-accelerated mouse (SAMP8) is an animal model of aging that displays an array of circadian rhythm disruptions as early as 7 months of age. The present study explored the physiological basis for age-related changes in circadian rhythms by measuring c-Fos immunostaining. Cellular activity in the SCN "core" and "shell" was examined for 2-, 7-, and 12-month-old SAMP8 at circadian times (CTs) 2 and 14. Consistent with previous studies in rats, we observed higher levels of cellular activity at CT2 than at CT14, and higher levels of activity in the "shell" than in the "core" of the SCN. However, there was no effect of age on the pattern of cellular activity in either the "core" or the "shell" of the SCN. These results are discussed in the context of current research on spontaneous and light-induced c-Fos expression in the SCN of rodents.
Collapse
Affiliation(s)
- Jonathan P Miller
- J.P. Scott Center for Neuroscience, Mind, and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | |
Collapse
|
202
|
Kilb W, Hartmann D, Saftig P, Luhmann HJ. Altered morphological and electrophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic Presenilin-1 knockout mice. Eur J Neurosci 2004; 20:2749-56. [PMID: 15548218 DOI: 10.1111/j.1460-9568.2004.03732.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of Presenilin-1 are the major cause of familial Alzheimer's disease. Presenilin-1 knockout (PS1-/-) mice develop severe cortical dysplasia related to human type 2 lissencephaly. This overmigration syndrome has been attributed to the premature loss of Cajal-Retzius cells (CRcs), pioneer neurons required for the termination of radial neuronal migration. To elucidate the potential cellular mechanisms responsible for this premature neuronal loss, we investigated the morphological and electrophysiological properties of visually identified CRcs of wild-type (WT) and PS1-/- mouse brains at embryonic day 16.5. The density of CRcs was substantially reduced in the cerebral cortex of PS1-/-. In PS1-/- CRcs the number of axonal branches was significantly increased to 12.5 +/- 4.9 (n = 8; WT, 4.0 +/- 1.4, n = 12), while no differences in dendritic branching and total length of dendritic and axonal compartments were observed. Additionally, the resting membrane potential of PS1-/- CRcs was significantly depolarized (-48.3 +/- 1.7 mV; n = 23) in contrast to WT CRcs (-57.9 +/- 2.1 mV; n = 38). Active membrane properties were not affected by PS1 deficiency. CRcs of both genotypes showed spontaneous postsynaptic currents that could be completely blocked by 100 microM bicuculline and were unaffected by glutamatergic antagonists, suggesting that they were mediated by GABAA receptors. These results demonstrate that axonal branching and resting membrane potential of CRcs was affected in embryonic cerebral cortex of PS1-/- mice. The depolarized membrane potential observed in PS1-/- CRcs may increase the susceptibility to neuronal death, thus facilitating the premature loss of CRcs in PS1-/- mice.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany.
| | | | | | | |
Collapse
|
203
|
Tecuapetla F, Carrillo-Reid L, Guzmán JN, Galarraga E, Bargas J. Different inhibitory inputs onto neostriatal projection neurons as revealed by field stimulation. J Neurophysiol 2004; 93:1119-26. [PMID: 15356181 DOI: 10.1152/jn.00657.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This work investigated if diverse properties could be ascribed to evoked inhibitory postsynaptic currents (IPSCs) recorded on rat neostriatal neurons when field stimulation was delivered at two different locations: the globus pallidus (GP) and the neostriatum (NS). Previous work stated that stimulation in the GP could antidromically excite projection axons from medium spiny neurons. This maneuver would predominantly activate the inhibitory synapses that interconnect spiny cells. In contrast, intrastriatal stimulation would preferentially activate inhibitory synapses provided by interneurons. This study shows that, in fact, intensity-amplitude experiments are able to reveal different properties for IPSCs evoked from these two locations (GP and NS). In addition, while all IPSCs evoked from the GP were always sensitive to omega-conotoxin GVIA (Ca(V2.2)2.2 or N-channel blocker), one-half of the inhibition evoked from the NS exhibited little sensitivity to omega-conotoxin GVIA. Characteristically, all omega-conotoxin GVIA-insensitive IPSCs exhibited strong paired pulse depression, whereas omega-conotoxin GVIA-sensitive IPSCs evoked from either the GP or the NS could exhibit short-time depression or facilitation. omega-Agatoxin TK (Ca(V2.1)2.1+ or P/Q-channel blocker) blocked IPSCs evoked from both locations. Therefore 1) distinct inhibitory inputs onto projection neostriatal cells can be differentially stimulated with field electrodes; 2) N-type Ca2+ channels are not equally expressed in inhibitory terminals activated in the NS; and 3) synapses that interconnect spiny neurons use both N- and P/Q-type Ca2+ channels.
Collapse
Affiliation(s)
- Fatuel Tecuapetla
- Departmento de Biofísica, Instituto de Fisiología Celular, Universidad National Autónoma de Mexico, Mexico City D.F., Mexico
| | | | | | | | | |
Collapse
|
204
|
Kalume F, Lee SM, Morcos Y, Callaway JC, Levin MC. Molecular mimicry: cross-reactive antibodies from patients with immune-mediated neurologic disease inhibit neuronal firing. J Neurosci Res 2004; 77:82-9. [PMID: 15197740 DOI: 10.1002/jnr.20137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent data indicate that molecular mimicry may play a role in the pathogenesis of human-T-lymphotropic virus type-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), an immune-mediated disease of the central nervous system (CNS). Specifically, HAM/TSP patients developed antibodies that cross-react with heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), an antigen highly expressed in neurons. Antibodies to HTLV-1-tax cross-reacted with hnRNP A1, suggesting molecular mimicry between the two proteins. In support of this hypothesis, HAM/TSP IgG and antibodies to hnRNP A1 and HTLV-1-tax inhibited neuronal firing, suggesting that these antibodies can be pathogenic. We extended these observations by carrying out studies on over 20 different neurons. We also tested IgG isolated from six different HAM/TSP patients and two HTLV-1 seronegative controls and added experiments that control for antibody isotype, antibody target, and neuron viability. In these studies, IgG was infused into the extracellular space during whole-cell current clamp recordings of neurons. Our results confirm that in contrast to normal IgG, IgG from all HAM/TSP patients completely inhibited neuronal firing. Affinity-purified antibodies specific for hnRNP A1 and a monoclonal antibody to HTLV-1-tax (which reacted with hnRNP A1 and whose epitope overlaps the human immunodominant epitope of tax) also inhibited neuronal firing. Monoclonal antibodies to neurofilament did not change neuronal firing. These data indicate that antibodies to neurons can be pathogenic, that biologic activity can be affected by a cross-reactive epitope between HTLV-1-tax and hnRNP A1, and that molecular mimicry may play a role in the pathogenesis of HAM/TSP.
Collapse
Affiliation(s)
- Franck Kalume
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
205
|
Reynolds JNJ, Wickens JR. The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res 2004; 1011:115-28. [PMID: 15140651 DOI: 10.1016/j.brainres.2004.03.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
Tonically active neurons (TANs) in the mammalian striatum show a pause in their ongoing firing activity in response to an auditory cue that is paired with a reward. This response to reward-related cues develops through learning and becomes expressed synchronously by TANs located throughout the striatum. The pause response is abolished by inactivating the thalamic inputs to the striatum but a short-latency excitatory response to reward-related cues remains, which may originate in the cortex. We investigated the cortical inputs to striatal neurons to determine the electrophysiological properties of their cortical projections. We made in vivo intracellular recordings from 14 giant aspiny interneurons (which correspond to the TANs) and from a control group of spiny projection neurons (n=18) in urethane-anaesthetised rats. All giant aspiny interneurons were tonically active (firing rate: 3.0+/-1.5 Hz) and displayed small-amplitude subthreshold fluctuations in membrane potential. These fluctuations in membrane potential were correlated with the cortical electroencephalogram (EEG). Test stimulation of the contralateral cortex induced postsynaptic potentials (PSPs) in giant aspiny interneurons. These PSPs were significantly shorter in latency (5.1+/-1.6 ms) than those measured in spiny projection neurons (9.3+/-2.8 ms; p<0.01), whereas the latencies of ipsilaterally evoked PSPs did not differ. Taken together, these observations suggest that giant aspiny interneurons are under the significant influence of spontaneous excitatory inputs and receive specialised input from either faster conducting or less branching cortical fibres than spiny projection neurons. These inputs may be involved in the synchronised convergence of reward-related cues from spatially distinct cortical areas onto giant aspiny interneurons.
Collapse
Affiliation(s)
- John N J Reynolds
- Department of Anatomy and Structural Biology and the Neuroscience Research Centre, School of Medical Sciences, University of Otago, P.O. Box 913, Lindo Feguson Bldg., Dunedin, New Zealand.
| | | |
Collapse
|
206
|
Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT. Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 2004; 24:4535-40. [PMID: 15140924 PMCID: PMC6729398 DOI: 10.1523/jneurosci.0462-04.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The accumulation of amyloid-beta protein into plaques is a characteristic feature of Alzheimer's disease. However, the contribution of amyloid-beta plaques to neuronal dysfunction is unknown. We compared intracellular recordings from neocortical pyramidal neurons in vivo in APP-Sw (Tg2576 transgenic mice overexpressing amyloid precursor protein with the Swedish mutation) transgenic mice to age-matched nontransgenic cohorts at ages either before or after deposition of cortical plaques. We show that the evoked synaptic response of neurons to transcallosal stimuli is severely impaired in cortex containing substantial plaque accumulation, with an average 2.5-fold greater rate of response failure and twofold reduction in response precision compared with age-matched nontransgenic controls. This effect correlated with the presence of amyloid-beta plaques and alterations in neuronal process geometry. Responses of neurons in younger APP-Sw animals, before plaque accumulation, were similar to those in nontransgenic controls. In all cases, spontaneous membrane potential dynamics were similar, suggesting that overall levels of synaptic innervation were not affected by plaques. Our results show that plaques disrupt the synchrony of convergent inputs, reducing the ability of neurons to successfully integrate and propagate information.
Collapse
Affiliation(s)
- Edward A Stern
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | |
Collapse
|
207
|
Schreiber S, Erchova I, Heinemann U, Herz AVM. Subthreshold Resonance Explains the Frequency-Dependent Integration of Periodic as Well as Random Stimuli in the Entorhinal Cortex. J Neurophysiol 2004; 92:408-15. [PMID: 15014100 DOI: 10.1152/jn.01116.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons integrate subthreshold inputs in a frequency-dependent manner. For sinusoidal stimuli, response amplitudes thus vary with stimulus frequency. Neurons in entorhinal cortex show two types of such resonance behavior: stellate cells in layer II exhibit a prominent peak in the resonance profile at stimulus frequencies of 5–16 Hz. Pyramidal cells in layer III show only a small impedance peak at low frequencies (1–5 Hz) or a maximum at 0 Hz followed by a monotonic decrease of the impedance. Whether the specific frequency selectivity for periodic stimuli also governs the integration of non-periodic stimuli has been questioned recently. Using frozen-noise stimuli with different distributions of power over frequencies, we provide experimental evidence that the integration of non-periodic subthreshold stimuli is determined by the same subthreshold frequency selectivity as that of periodic stimuli. Differences between the integration of noise stimuli in stellate and pyramidal cells can be fully explained by the resonance properties of each cell type. Response power thus reflects stimulus power in a frequency-selective way. Theoretical predictions based on linear system's theory as well as on conductance-based model neurons support this finding. We also show that the frequency selectivity in the subthreshold range extends to suprathreshold responses in terms of firing rate. Cells in entorhinal cortex are representative examples of cells with resonant or low-pass filter impedance profiles. It is therefore likely that neurons with similar frequency selectivity will process input signals according to the same simple principles.
Collapse
Affiliation(s)
- Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115 Berlin, Germany.
| | | | | | | |
Collapse
|
208
|
Cowan AI, Stricker C. Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. J Neurophysiol 2004; 92:2137-50. [PMID: 15201316 DOI: 10.1152/jn.01262.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are two types of excitatory neurons within layer IV of rat somatosensory cortex: star pyramidal (SP) and spiny stellate cells (SS). We examined the intrinsic properties and connectivity between these neurons to determine differences in function. Eighty-four whole cell recordings of pairs of neurons were examined in slices of rat barrel cortex at 36 +/- 1 degrees C. Only minimal differences in intrinsic properties were found; however, differences in synaptic strength could clearly be shown. Connections between homonymous pairs (SS-SS or SP-SP) had a higher efficacy than heteronymous connections. This difference was mainly a result of quantal content. In 42 pairs, synaptic dynamics were examined. Sequences of action potentials (3-20 Hz) in the presynaptic neuron consistently caused synaptic depression (E2/E1=0.53+/-0.18). The dominant component of depression was release-independent; this depression occurred even when preceding action potentials had failed to cause a response. The release-dependence of depression was target specific; in addition, release-independence was greater for postsynaptic SPs. In a subset of connections formed only between SP and any other cell type (43%), synaptic efficacy was dependent on the presynaptic membrane potential (Vm); at -55 mV, the connections were almost silent, whereas at -85 mV, transmission was very reliable. We suggest that, within layer IV, there is stronger efficacy between homonymous than between heteronymous excitatory connections. Under dynamic conditions, the functional connectivity is shaped by synaptic efficacy at individual connections, by Vm, and by the specificity in the types of synaptic depression.
Collapse
Affiliation(s)
- Anna I Cowan
- Institute of Neuroinformatics, University of Zürich and Federal Institute of Technology (Eidgenössische Technische Hochschule), CH-8057 Zürich, Switzerland
| | | |
Collapse
|
209
|
Sha L, Miller SM, Szurszewski JH. Morphology and electrophysiology of neurons in dog paraventricular nucleus: in vitro study. Brain Res 2004; 1010:95-107. [PMID: 15126122 DOI: 10.1016/j.brainres.2004.02.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2004] [Indexed: 11/18/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus plays an important role in regulating gut motility. To date, there have been no intracellular electrophysiological studies of dog PVN neurons in vitro. The aims of this study were to: (1) adapt brain slice methods developed for studies of rodent CNS tissue to canine CNS tissue; and (2) study the electrophysiology and morphology of single neurons of the dog paraventricular nucleus (PVN). Coronal hypothalamic slice preparations (400 microm thick) of dog brain were used. Three groups of PVN neurons were classified based on their firing pattern. Continuous firing neurons (n=32) exhibited continuous ongoing action potentials (APs). Burst firing neurons generated bursts of APs (n=19). Intermittent firing neurons had only a few spontaneous APs. In contrast to continuous firing neurons, 14 of 19 burst firing neurons and 3 of 7 intermittent firing neurons responded to depolarizing current with a Ca2+-dependent low-threshold potential. Twenty-one PVN neurons studied electrophysiologically were filled with biocytin. Continuous firing neurons (n=12) had oval-shaped soma with two or three sparsely branched dendrites. Branched axons were found in two continuous firing neurons, in which one branch appeared to terminate locally. Burst firing neurons (n=8) generally had triangular soma with 2 to 5 branched dendrites. In summary, the brain slice technique was used to study the morphology and electrophysiology of single neurons of the dog brain. Electrophysiological and morphological properties of the three neuron groups were identified and discussed.
Collapse
Affiliation(s)
- Lei Sha
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
210
|
Hazama M, Kimura A, Donishi T, Sakoda T, Tamai Y. Topography of corticothalamic projections from the auditory cortex of the rat. Neuroscience 2004; 124:655-67. [PMID: 14980736 DOI: 10.1016/j.neuroscience.2003.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Corticothalamic projections from cortical auditory field to the medial geniculate body (MG) in the rat were systematically examined by making small injections of biocytin in cortical area Te1. All injections, confined to 400 microm in diameter, resulted in two projections terminating in the ventral (MGV) and dorsal divisions (MGD) of the MG. The projections to the MGV were evidently topographic. The rostral and caudal portions of area Te1 projected to the ventromedial and dorsolateral parts of the MGV, respectively, forming narrow bands of terminal axons that extended in the mediolateral direction in the coronal plane of the MGV. The minimum dorsoventral width of the bands ranged approximately from 100 to 300 microm. Besides, the more rostral portion of area Te1 tended to project to the more rostral side of the MGV. The projections to the MGD consistently arborized in its ventral margin made up of the deep dorsal nucleus of the MGD. A similar weak topography along the rostrocaudal direction was observed in the projections to the MGD. Large terminals were occasionally found in the MGD after the injections involving cortical layer V. The distribution of large terminals also appeared topographic along with small terminals that were the major component of labeling. Collaterals of labeled axons produced slabs of terminal field in the thalamic reticular nucleus, which also exhibited a weak topography of distribution. These results provide insights into the structural basis of corticofugal modulations related to the tonotopic organizations in the cortex and MG.
Collapse
Affiliation(s)
- M Hazama
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-0012, Japan
| | | | | | | | | |
Collapse
|
211
|
Luebke JI, Chang YM, Moore TL, Rosene DL. Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 2004; 125:277-88. [PMID: 15051166 DOI: 10.1016/j.neuroscience.2004.01.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
Executive system function, mediated largely by the prefrontal cortex (PFC), often declines significantly with normal aging in humans and non-human primates. The neural substrates of this decline are unknown, but age-related changes in the structural properties of PFC neurons could lead to altered synaptic signaling and ultimately to PFC dysfunction. The present study addressed this issue using whole-cell patch clamp assessment of excitatory and inhibitory postsynaptic currents (PSCs) in layer 2/3 pyramidal cells in in vitro slices of the PFC from behaviorally characterized young (< or =12 years old) and aged (> or =19 years old) rhesus monkeys. Behaviorally, aged monkeys were significantly impaired in performance on memory and executive system function tasks. Physiologically, the frequency of spontaneous glutamate receptor-mediated excitatory PSCs was significantly reduced in cells from aged monkeys, while the frequency of spontaneous GABAA receptor-mediated inhibitory PSCs was significantly increased. In contrast, there was no effect of age on the frequency, amplitude, rise time or decay time of action potential-independent miniature excitatory and inhibitory PSCs. The observed change in excitatory-inhibitory synaptic balance likely leads to significantly altered signaling properties of layer 2/3 pyramidal cells in the PFC with age.
Collapse
Affiliation(s)
- J I Luebke
- Center for Behavioral Development, Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
212
|
Saitoh K, Isa T, Takakusaki K. Nigral GABAergic inhibition upon mesencephalic dopaminergic cell groups in rats. Eur J Neurosci 2004; 19:2399-409. [PMID: 15128394 DOI: 10.1111/j.0953-816x.2004.03337.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic inhibition from the substantia nigra pars reticulata (SNr) to the mesencephalic dopaminergic neurons, which was mediated by gamma (gamma)-amino-butyric acid (GABA), was investigated in a midbrain slice preparation of Wistar rats. Whole-cell patch-clamp recordings were used to record synaptic potentials/currents from the dopaminergic neurons (n = 93) located in the retrorubral field (n = 22), the substantia nigra pars compacta (n = 47) and the ventral tegmental area (n = 24). In the presence of ionotropic glutamate receptor antagonists electrical stimulation of the SNr induced inhibitory postsynaptic potentials (IPSPs) and/or currents (IPSCs) in 83 neurons. The IPSPs/IPSCs were comprised early and late components. The early IPSPs/IPSCs were mediated by chloride currents through GABA(A) receptors. The late IPSPs/IPSCs were mediated by potassium currents through GABA(B) receptors. Both GABA(A)- and GABA(B)-IPSPs were amplified by repetitive stimuli with frequencies between 25 and 200 Hz. This frequency range covers the firing frequencies of SNr neurons in vivo. It was observed that an application of a GABA(B) receptor antagonist increased the amplitude of the GABA(A)-IPSPs. The amplification was followed by a rebound depolarization that induced transient firing of dopaminergic neurons. These properties of the IPSPs were common in all of the three dopaminergic nuclei. These results suggest that postsynaptic GABA(A)- and GABA(B)-inhibition contribute to transient and persistent alternations of the excitability of dopaminergic neurons, respectively. These postsynaptic mechanisms may be, in turn, regulated by presynaptic GABA(B)-inhibition. Nigral GABAergic input may provide the temporospatial regulation of the background excitability of mesencephalic dopaminergic systems.
Collapse
Affiliation(s)
- Kazuya Saitoh
- Department of Physiology, Asahikawa Medical College, Asahikawa 078-8510, Japan.
| | | | | |
Collapse
|
213
|
Manns ID, Sakmann B, Brecht M. Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol 2004; 556:601-22. [PMID: 14724202 PMCID: PMC1664944 DOI: 10.1113/jphysiol.2003.053132] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 01/07/2004] [Indexed: 11/08/2022] Open
Abstract
Layer 5 (L5) pyramidal neurones constitute a major sub- and intracortical output of the somatosensory cortex. This layer 5 is segregated into layers 5A and 5B which receive and distribute relatively independent afferent and efferent pathways. We performed in vivo whole-cell recordings from L5 neurones of the somatosensory (barrel) cortex of urethane-anaesthetized rats (aged 27-31 days). By delivering 6 deg single whisker deflections, whisker pad receptive fields were mapped for 16 L5A and 11 L5B neurones located below the layer 4 whisker-barrels. Average resting membrane potentials were -75.6 +/- 1.1 mV, and spontaneous action potential (AP) rates were 0.54 +/- 0.14 APs s(-1). Principal whisker (PW) evoked responses were similar in L5A and L5B neurones, with an average 5.0 +/- 0.6 mV postsynaptic potential (PSP) and 0.12 +/- 0.03 APs per stimulus. The layer 5A sub- and suprathreshold receptive fields (RFs) were more confined to the principle whisker than those of layer 5B. The basal dendritic arbors of layer 5A and 5B cells were located below both layer 4 barrels and septa, and the cell bodies were biased towards the barrel walls. Responses in both L5A and L5B developed slowly, with onset latencies of 10.1 +/- 0.5 ms and peak latencies of 33.9 +/- 3.3 ms. Contralateral multi-whisker stimulation evoked PSPs similar in amplitude to those of PW deflections; whereas, ipsilateral stimulation evoked smaller and longer latency PSPs. We conclude that in L5 a whisker deflection is represented in two ways: focally by L5A pyramids and more diffusely by L5B pyramids as a result of combining different inputs from lemniscal and paralemniscal pathways. The relevant output evoked by a whisker deflection could be the ensemble activity in the anatomically defined cortical modules associated with a single or a few barrel-columns.
Collapse
Affiliation(s)
- Ian D Manns
- Max-Planck Institut für medizinische Forschung, Abteilung Zellphysiologie, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
214
|
Kole MHP, Czéh B, Fuchs E. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress. Hippocampus 2004; 14:742-51. [PMID: 15318332 DOI: 10.1002/hipo.10212] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well understood. We tested the hypothesis that chronic stress affects the input-output characteristics and excitability of CA3 pyramidal cells. Somatic whole-cell current-clamp recording with parallel intracellular biocytin labeling was performed on CA3 neurons from in vitro hippocampal slices from male tree shrews, which were collected after 28 days of psychosocial stress exposure and compared to recordings obtained from control animals. Post hoc morphometric analysis of biocytin-labeled CA3 cells revealed branch regression, by fewer dendritic crossings and length, limited to a distance of approximately 280-340 microm from the soma only. The results from whole-cell recording indicate that chronic stress surprisingly reduced the apparent membrane time constant and input resistance 20-25%, accompanied by increased amplitude of the hyperpolarization-induced voltage "sag." All active membrane properties, including depolarization-induced action potential kinetics, complex spiking patterns, and afterhyperpolarization voltages, were indistinguishable from control recordings. Although linear association analysis confirmed that differences in geometry, such as apical length or branch number, were correlated to functional variability in properties of the AP current and voltage threshold, these changes were too marginal to be reflected in the group differences. However, the individual adrenal hormone status was associated significantly with the selective changes in subthreshold excitability. Taken together, the data provide evidence that despite long-term stress induces morphological changes, upregulates cortisol release and shifts the intrinsic membrane properties, the efficacy of somatic excitability of CA3 pyramidal neurons is largely preserved.
Collapse
Affiliation(s)
- Maarten H P Kole
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | |
Collapse
|
215
|
Lobo MK, Itri JN, Cepeda C, Chavira CA, Levine MS. Ionotropic Glutamate Receptor Expression and Dopaminergic Modulation in the Developing Subthalamic Nucleus of the Rat: An Immunohistochemical and Electrophysiological Analysis. Dev Neurosci 2004; 25:384-93. [PMID: 14966379 DOI: 10.1159/000075664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 09/09/2003] [Indexed: 11/19/2022] Open
Abstract
Using standard immunohistochemical procedures, we investigated the changes in the expression of ionotropic glutamate receptor (GluR) subunits, GluRl, GluR5/6/7, and NMDAR1, in the subthalamic nucleus of developing rats. The general sequence of development for each subunit was the same. At early postnatal ages, there was dense neuropil staining and cellular clustering which progressed to decreased neuropil staining and an even distribution of conspicuous cells in the later postnatal ages and in the adult. GluR5/6/7 displayed the earliest maturation, while GluR1 exhibited the slowest maturation. These morphological changes suggest a different time course for the functionality of GluR subtypes in the developing subthalamic nucleus. Correlative electrophysiological studies demonstrated functional GluRs as early as 16 days of age. All neurons tested displayed robust responses to kainate and N-methyl-D-aspartate, and these responses were modulated by dopamine.
Collapse
Affiliation(s)
- M K Lobo
- Mental Retardation Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, Calif. 90095, USA
| | | | | | | | | |
Collapse
|
216
|
Cox CL. Synaptic Activation of Metabotropic Glutamate Receptors Regulates Dendritic Outputs of Thalamic Interneurons. Neuron 2004; 41:611-23. [PMID: 14980209 DOI: 10.1016/s0896-6273(04)00013-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 11/26/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
Information gating through the thalamus is dependent on the output of thalamic relay neurons. These relay neurons receive convergent innervation from a number of sources, including GABA-containing interneurons that provide feed-forward inhibition. These interneurons are unique in that they have two distinct outputs: axonal and dendritic. In addition to conventional axonal outputs, these interneurons have presynaptic dendrites that may provide localized inhibitory influences. Our study indicates that synaptic activation of metabotropic glutamate receptors (mGluRs) increases inhibitory activity in relay neurons by increasing output of presynaptic dendrites of interneurons. Optic tract stimulation increases inhibitory activity in thalamic relay neurons in a frequency- and intensity-dependent manner and is attenuated by mGluR antagonists. Our data suggest that synaptic activation of mGluRs selectively alters dendritic output but not axonal output of thalamic interneurons. This mechanism could serve an important role in focal, feed-forward information processing in addition to dynamic information processing in thalamocortical circuits.
Collapse
|
217
|
Stern JE. Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:197-215. [PMID: 14769436 DOI: 10.1016/j.pbiomolbio.2003.11.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulated evidence indicates that nitric oxide (NO) plays a pivotal role in the central control of bodily homeostasis, including cardiovascular and fluid balance regulation. Two major neuronal substrates mediating NO actions in the control of homeostasis are the paraventricular nucleus (PVN) of the hypothalamus, considered a key center for the integration of neuroendocrine and autonomic functions, and the supraoptic nucleus (SON). In this work, a comprehensive review of NO modulatory actions within the SON/PVN, including NO actions on neuroendocrine and autonomic outputs, as well as the cellular mechanisms underlying these effects is provided. Furthermore, this review comprises recent progress from our laboratory that adds to our current understanding of the cellular sources, targets and mechanisms underlying NO actions within neuroendocrine and autonomic hypothalamic neuronal circuits. By combining in vitro patch clamp recordings, tract-tracing neuroanatomy, immunohistochemistry and live imaging techniques, we started to shed light into the cellular sources and signals driving NO production within the SON and PVN, as well as NO actions and mechanisms targeting discrete neuronal populations within these circuits. Based on this new information, we have expanded one of the current working models in the field, highlighting a key role for NO as a signaling molecule that facilitates crosstalk among various cell types and systems. We propose that this dynamic NO signaling mechanisms may constitute a neuroanatomical and functional substrate underlying the ability of the SON and PVN to coordinate complex neuroendocrine and autonomic output patterns.
Collapse
Affiliation(s)
- Javier E Stern
- Department of Pharmacology and Toxicology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| |
Collapse
|
218
|
Lecchi M, Marguerat A, Ionescu A, Pelizzone M, Renaud P, Sommerhalder J, Safran AB, Tribollet E, Bertrand D. Ganglion cells from chick retina display multiple functional nAChR subtypes. Neuroreport 2004; 15:307-11. [PMID: 15076758 DOI: 10.1097/00001756-200402090-00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have examined the properties of nicotinic acetylcholine receptors in embryonic chick retinal ganglion cells. Ganglion cells, identified according to morphological and physiological criteria, displayed spontaneous or induced action potentials. In 94/99 cells acetylcholine pulses evoked responses. In current clamp mode, acetylcholine provoked membrane depolarization and triggered action potentials. Under voltage clamp conditions, acetylcholine evoked inward currents that were readily blocked by d-tubocurarine. Antagonists specific for homomeric (alpha-bungarotoxin) and heteromeric (dihydro-beta-erythroidine) receptors revealed that ganglion cells express multiple functional receptor subtypes. These findings demonstrate that ACh modulates the electrical activity of these cells and is likely to mediate synaptic transmission. The presence of multiple receptor subtypes may contribute to processing and transmission of information in the retina.
Collapse
Affiliation(s)
- M Lecchi
- Department of Physiology, Faculty of Medicine, CH-1211, CMU 1, rue M. Servet, Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Kole MHP, Costoli T, Koolhaas JM, Fuchs E. Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress. Neuroscience 2004; 125:337-47. [PMID: 15062977 DOI: 10.1016/j.neuroscience.2004.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
The negative impact of chronic stress at the structure of apical dendrite branches of cornu ammonis 3 (CA3) pyramidal neurons is well established. However, there is no information available on the CA3 dendritic organization related to short-lasting stress, which suffices to produce long-term habituation or sensitization of anxiety behaviors and neuroendocrine responses. Here, we tested the effects evoked by brief stress on the arrangements of CA3 pyramidal neuron dendrites, and the activity-dependent properties of the commissural-associational (C/A) excitatory postsynaptic potentials (EPSPs). Adult male rats were socially defeated followed by 3 weeks without further treatment or as comparison exposed to a regimen of a social defeat every second day for the same time period. We assessed CA3 pyramidal neurons with somatic whole-cell recording and neurobiotin application in acute hippocampal slices. The results from morphometric analysis of post hoc reconstructions demonstrated that CA3 dendrites from repeatedly stressed rats were reduced in surface area and length selectively at the apical cone (70% of control, approximately 280 microm from the soma). Brief stress, however, produced a similar decrease in apical dendritic length (77% of control, approximately 400 microm from the soma), accompanied by an increased length (167% of control) and branch complexity at the basal cone. The structural changes of the dendrites significantly influenced signal propagation by shortening the onset latency of EPSPs and increasing input resistance (r=0.45, P<0.01), of which the first was significantly changed in repeatedly stressed animals. Both brief and repeated stress long-lastingly impaired long-term potentiation of C/A synapses to a similar degree (P<0.05). These data indicate that the geometric plasticity of CA3 dendrites is dissociated from repetition of aversive experiences. A double social conflict suffices to drive a dynamic reorganization, by site-selective elimination and de novo growth of dendrite branches over the course of weeks after the actual experience.
Collapse
Affiliation(s)
- M H P Kole
- Clinical Neurobiology Laboratory, German Primate Center, Goettingen, Germany.
| | | | | | | |
Collapse
|
220
|
Kimura A, Donishi T, Okamoto K, Tamai Y. Efferent connections of “posterodorsal” auditory area in the rat cortex: Implications for auditory spatial processing. Neuroscience 2004; 128:399-419. [PMID: 15350651 DOI: 10.1016/j.neuroscience.2004.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 11/19/2022]
Abstract
We examined efferent connections of the cortical auditory field that receives thalamic afferents specifically from the suprageniculate nucleus (SG) and the dorsal division (MGD) of the medial geniculate body (MG) in the rat [Neuroscience 117 (2003) 1003]. The examined cortical region was adjacent to the caudodorsal border (4.8-7.0 mm posterior to bregma) of the primary auditory area (area Te1) and exhibited relatively late auditory response and high best frequency, compared with the caudal end of area Te1. On the basis of the location and auditory response property, the cortical region is considered identical to "posterodorsal" auditory area (PD). Injections of biocytin in PD revealed characteristic projections, which terminated in cortical areas and subcortical structures that play pivotal roles in directed attention and space processing. The most noticeable cortical terminal field appeared as dense plexuses of axons in area Oc2M, the posterior parietal cortex. Small terminal fields were scattered in area frontal cortex, area 2 that comprises the frontal eye field. The subcortical terminal fields were observed in the pontine nucleus, the nucleus of the brachium inferior colliculus, and the intermediate and deep layers of the superior colliculus. Corticostriatal projections targeted two discrete regions of the caudate putamen: the top of the middle part and the caudal end. It is noteworthy that the inferior colliculus and amygdala virtually received no projection. Corticothalamic projections terminated in the MGD, the SG, the ventral zone of the ventral division of the MG, the ventral margin of the lateral posterior nucleus (LP), and the caudodorsal part of the posterior thalamic nuclear group (Po). Large terminals were found in the MGD, SG, LP and Po besides small terminals, the major component of labeling. The results suggest that PD is an auditory area that plays an important role in spatial processing linked to directed attention and motor function. The results extend to the rat findings from nonhuman primates suggesting the existence of a posterodorsal processing stream for auditory spatial perception.
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, 641-8509, Japan.
| | | | | | | |
Collapse
|
221
|
Liu JC, DeFazio RA, Espinosa-Jeffrey A, Cepeda C, de Vellis J, Levine MS. Calcium modulates dopamine potentiation of N-methyl-D-aspartate Responses: Electrophysiological and imaging evidence. J Neurosci Res 2004; 76:315-22. [PMID: 15079860 DOI: 10.1002/jnr.20079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the striatum, dopamine (DA) exerts a major modulatory influence on voltage- and ligand-gated currents. Previously we have shown that DA modulates glutamatergic neurotransmission and that the direction of this modulation depends on, among other factors, the glutamate and DA receptor subtypes activated. These effects also involve DA-induced alterations in voltage-gated Ca(2+) currents. In the present experiments, the effects of Ca(2+) channel blockers on DA and D1 receptor-dependent potentiation of N-methyl-D-aspartate (NMDA) responses were examined in vitro in striatal slices using current clamp recording techniques. DA or D1 receptor agonists consistently enhanced NMDA responses. Cadmium and the more selective L-type Ca(2+) channel antagonists nifedipine and methoxyverapamil reduced the potentiation of NMDA responses by DA or D1 receptor activation. Furthermore, studies using Ca(2+) imaging with Fluo-3 in cultured cortical or dissociated striatal neurons demonstrated that DA and D1 agonists increased intracellular Ca(2+) transients induced by NMDA. These as well as previous findings indicate that in striatal neurons at least two mechanisms contribute to the enhancement of NMDA responses by DA receptor activation, facilitation of voltage-gated Ca(2+) currents and D1 receptor activation of the cAMP-protein kinase A cascade. The existence of multiple mechanisms leading to a similar outcome allows a certain degree of redundancy in the consequences of DA modulation.
Collapse
Affiliation(s)
- J C Liu
- Mental Retardation Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
222
|
Abstract
The amygdaloid complex has long been implicated in seizure disorders. Yet, projection cells of the lateral amygdaloid nucleus (LA) display little spontaneous activity suggesting that this seizure prone structure is normally controlled by strong inhibitory mechanisms. This control is achieved in part by local interneurons; however, a synaptically activated, Ca(2+)-dependent K(+) (K(Ca)) conductance has recently been identified as a second major inhibitory mechanism. In the present study, we investigated which K(Ca) channels underlie this conductance, and their roles in the generation of the synaptic responses and spike adaptation of LA projection cells. Intracellular recordings were obtained from LA projection cells in barbiturate-anesthetized rats. In recordings with K-acetate pipettes, perirhinal stimulation evoked an initial excitatory postsynaptic potential (EPSP) followed by a prolonged monophasic hyperpolarization, similar to what was observed in cats under in vivo conditions, and distinct from the multiphasic hyperpolarization observed previously in rodents with in vitro recordings. This indicates that differences in the cellular environment, not interspecies differences, are responsible for the differing response profiles previously reported. In recordings with pipettes containing 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or Cs-acetate the reversal potentials were significantly more positive than those recorded with K-acetate, consistent with a K(Ca) conductance contribution to the response. To investigate the K(Ca) channels underlying this conductance, intracellular recordings were obtained while perfusing the LA with Ringer's solution and then switching to a solution containing charybdotoxin, isoproterenol, or apamin. Charybdotoxin and isoproterenol produced positive shifts in the reversal potential, whereas apamin did not. By contrast, all three substances decreased adaptation during spike trains elicited by depolarizing current injections. These results suggest that intermediate (IK) and small (SK) conductance K(Ca) channels limit LA projection cell excitability, with IK channels involved in controlling both the synaptic response and intrinsic excitability of these neurons, and SK channels being involved only in the latter.
Collapse
Affiliation(s)
- J C T Chen
- Department of Physiology and Neuroscience, New York University, School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
223
|
Brecht M, Roth A, Sakmann B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 2003; 553:243-65. [PMID: 12949232 PMCID: PMC2343497 DOI: 10.1113/jphysiol.2003.044222] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 08/26/2003] [Indexed: 11/08/2022] Open
Abstract
Whole-cell voltage recordings were made in vivo from subsequently reconstructed pyramidal neurons (n = 30) in layer 3 (L3) and layer 2 (L2) of the barrel cortex of urethane-anaesthetised rats. Average resting membrane potentials were well below (15-40 mV) action potential (AP) initiation threshold. The average spontaneous AP activity (0.068 +/- 0.22 APs s-1) was low. Principal whisker (PW) deflections evoked postsynaptic potentials (PSPs) in almost all cells of a PW column but evoked AP activity (0.031 +/- 0.056 APs per PW stimulus 6 deg deflection) was low indicating 'sparse' coding by APs. Barrel-related cells (n = 16) have their soma located above a barrel and project their main axon through the barrel whereas septum-related cells (n = 8) are located above and project their main axon through the septum between barrels. Both classes of cell had broad subthreshold receptive fields (RFs) which comprised a PW and several (> 8) surround whiskers (SuW). Barrel-related cells had shorter PSP onset latencies (9.6 +/- 4.6 ms) and larger amplitude PW stimulus responses (9.1 +/- 4.5 mV) than septum-related cells (23.3 +/- 16.5 ms and 5.0 +/- 2.8 mV, respectively). The dendritic fields of barrel-related cells were restricted, in the horizontal plane, to the PW column width. Their axonal arbors projected horizontally into several SuW columns, preferentially those representing whiskers of the same row, suggesting that they are the major anatomical substrate for the broad subthreshold RFs. In barrel-related cells the response time course varied with whisker position and subthreshold RFs were highly dynamic, expanding in size from narrow single-whisker to broad multi-whisker RFs, elongated along rows within 10-150 ms following a deflection. The response time course in septum-related cells was much longer and almost independent of whisker position. Their broad subthreshold RF suggests that L2/3 cells integrate PSPs from several barrel columns. We conclude that the lemniscal (barrel-related) and paralemniscal (septum-related) afferent inputs remain anatomically and functionally segregated in L2/3.
Collapse
Affiliation(s)
- Michael Brecht
- Department of Cell Physiology, Max-Planck Institute for Medical Research, Heidelberg, Germany.
| | | | | |
Collapse
|
224
|
Klueva J, Munsch T, Albrecht D, Pape HC. Synaptic and non-synaptic mechanisms of amygdala recruitment into temporolimbic epileptiform activities. Eur J Neurosci 2003; 18:2779-91. [PMID: 14656327 DOI: 10.1111/j.1460-9568.2003.02984.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lateral amygdala (LA) activity during synchronized-epileptiform discharges in temporolimbic circuits was investigated in rat horizontal slices containing the amygdala, hippocampus (Hip), perirhinal (Prh) and lateral entorhinal (LEnt) cortex, through multiple-site extra- and intracellular recording techniques and measurement of the extracellular K+ concentration. Application of 4-aminopyridine (50 microm) induced epileptiform discharges in all regions under study. Slow interictal-like burst discharges persisted in the Prh/LEnt/LA after disconnection of the Hip, seemed to originate in the Prh as shown from time delay analyses, and often preceded the onset of ictal-like activity. Disconnection of the amygdala resulted in de-synchronization of epileptiform discharges in the LA from those in the Prh/LEnt. Interictal-like activity was intracellularly reflected in LA projection neurons as gamma-aminobutyric acid (GABA)A/B receptor-mediated synaptic responses, and depolarizing electrogenic events (spikelets) residing on the initial phase of the GABA response. Spikelets were considered antidromically conducted ectopic action potentials generated at axon terminals, as they were graded in amplitude, were not abolished through hyperpolarizing membrane responses (which effectively blocked evoked orthodromic action potentials), lacked a clear prepotential or synaptic potential, were not affected through blockers of gap junctions, and were blocked through remote application of tetrodotoxin at putative target areas of LA projection neurons. Remote application of a GABAB receptor antagonist facilitated spikelet generation. A transient elevation in the extracellular K+ level averaging 3 mm above baseline occurred in conjunction with interictal-like activity in all areas under study. We conclude that interictal-like discharges in the LA/LEnt/Prh spread in a predictable manner through the synaptic network with the Prh playing a leading role. The rise in extracellular K+ may provide a depolarizing mechanism for recruitment of interneurons and generation of ectopic action potentials at axon terminals of LA projection neurons. Antidromically conducted ectopic action potentials may provide a spreading mechanism of seizure activity mediated by diffuse axonal projections of LA neurons.
Collapse
Affiliation(s)
- Julia Klueva
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, D-39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
225
|
Abstract
Relay neurons of the lateral geniculate nucleus innervate visual cortex, but they also provide axonal collaterals to neurons in the thalamic reticular nucleus, and these thalamic reticular neurons provide feedback inhibition to relay cells. An alternative source of inhibitory inputs onto geniculate relay neurons arises from intralaminar interneurons that provide feedforward inhibition via retinogeniculate innervation, and perhaps feedback inhibition via the corticothalamic pathway, analogous to that involving thalamic reticular neurons. Several reports indicate that relay neurons may also give rise to axonal collaterals within the lateral geniculate nucleus, constituting another route for feedback or local integration. We now provide new data indicating that collaterals from geniculate relay neurons provide excitatory input to local intralaminar interneurons and that this pathway may serve as a previously unknown means of local feedback inhibition. This circuitry could prove important in such activities as surround inhibition of receptive fields or increasing signal gain over noise.
Collapse
|
226
|
Abstract
AII amacrine cells play a critical role in the high-fidelity signal transmission pathways involved with nighttime vision. The temporal properties of the light responses strongly depend on the transfer function at different synaptic stages and consequently on presynaptic calcium influx. AII light responses are complex waveforms generated by graded input, they comprise Na+-based spikes as well as a sustained component, and they are transferred to graded cone bipolar cells. It is, therefore, of interest to determine the properties of AII voltage-dependent calcium channels (VDCCs) to establish whether these cells express N-type and/or P/Q-type VDCCs, characteristic of spiking neurons, or whether they are more like graded neurons, which mostly use L-type VDCCs. We combined electrophysiological, molecular biological, and imaging techniques to characterize calcium currents and their sites of origin in mouse AII amacrine cells. Calcium currents activated at potentials more positive than -60 mV (maximally between -50 and -20 mV) and inactivated slowly. These currents were blocked by dihydropyridine (DHP) antagonists and were enhanced by the DHP agonist BayK 8644. Single-cell RT-PCR analysis of mRNA encoding for different calcium channel alpha subunits in AIIs revealed a consistent expression of the alpha1-D subunit. Calcium imaging of AII cells showed that the greatest change in intracellular calcium occurred in the lobular appendages, with minor changes being observed in the arboreal dendrites. Depolarization-induced calcium rises were also modulated by DHPs, suggesting that a particular kind of L-type VDCC, mainly localized to the lobular appendages, enables these spiking-capable neurons to release neurotransmitter in a sustained manner onto OFF-cone bipolar cells.
Collapse
|
227
|
Yamashita T, Isa T. Fulfenamic acid sensitive, Ca(2+)-dependent inward current induced by nicotinic acetylcholine receptors in dopamine neurons. Neurosci Res 2003; 46:463-73. [PMID: 12871768 DOI: 10.1016/s0168-0102(03)00128-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) exhibit high Ca(2+) permeabilities and the Ca(2+)-influx through the nAChRs may be involved in regulation of a variety of signal processing in the postsynaptic neurons. The mesencephalic dopamine (DA) neurons receive cholinergic inputs from the brainstem and express abundant nAChRs. Here we report that the Ca(2+)-influx induced by a transient pressure application of ACh activates an inward current mediated by nAChRs and subsequently an inward current component that is sensitive to fulfenamic acid (FFA) and phenytoin, presumably a Ca(2+)-activated nonselective cation current in the DA neurons in the midbrain slices of the rat. The FFA- and phenytoin-sensitive current exhibits a negative slope conductance below -40 mV, suggesting its role in significant enhancement of depolarizing responses. In the current clamp recordings with perforated patch clamp configuration, bath application of carbachol markedly enhanced the glutamate-induced depolarization, which led to a long-lasting depolarizing hump. Activation of nAChRs is involved in this process, in cooperation with muscarinic receptors that suppress afterhyperpolarization caused by Ca(2+)-activated K(+)-channels. The long-lasting depolarizing hump was suppressed by FFA. All these results suggested a potential role of the FFA-sensitive current triggered by nAChR activation in marked enhancement of the excitatory synaptic response in DA neurons.
Collapse
Affiliation(s)
- Tetsuji Yamashita
- Department of Integrative Physiology, National Institute for Physiological Sciences and Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
| | | |
Collapse
|
228
|
Ziburkus J, Lo FS, Guido W. Nature of inhibitory postsynaptic activity in developing relay cells of the lateral geniculate nucleus. J Neurophysiol 2003; 90:1063-70. [PMID: 12711717 DOI: 10.1152/jn.00178.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using intracellular recordings in an isolated (in vitro) brain stem preparation, we examined the inhibitory postsynaptic responses of developing neurons in the dorsal lateral geniculate nucleus (LGN) of the rat. As early as postnatal day (P) 1-2, 31% of all excitatory postsynaptic (EPSP) activity evoked by electrical stimulation of the optic tract was followed by inhibitory postsynaptic potentials (IPSPs). By P5, 98% of all retinally evoked EPSPs were followed by IPSP activity. During the first postnatal week, IPSPs were mediated largely by GABA(A) receptors. Additional GABA(B)-mediated IPSPs emerged at P3-4 but were not prevalent until after the first postnatal week. Experiments involving the separate stimulation of each optic nerve indicated that developing LGN cells were binocularly innervated. At P11-14, it was common to evoke EPSP/IPSP pairs by stimulating either the contralateral or ipsilateral optic nerve. During the third postnatal week, binocular excitatory responses were encountered far less frequently. However, a number of cells still maintained a binocular inhibitory response. These results provide insight about the ontogeny and nature of postsynaptic inhibitory activity in the LGN during the period of retinogeniculate axon segregation.
Collapse
Affiliation(s)
- Jokubas Ziburkus
- Department of Cell Biology and Anatomy Louisiana State Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
229
|
Li J, Bickford ME, Guido W. Distinct firing properties of higher order thalamic relay neurons. J Neurophysiol 2003; 90:291-9. [PMID: 12634282 DOI: 10.1152/jn.01163.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that the thalamus is composed of at least two types of nuclei. First-order relay nuclei transmit signals from the periphery to the cortex while higher order nuclei may route information from one cortical area to another. Although much is known about the functional properties of relay neurons in first-order nuclei, little is known about relay neurons belonging to higher-order nuclei. We investigated the electrophysiological properties of relay cells in a higher-order thalamic nucleus using in vitro intracellular recordings from thalamic slices of the rat's lateral posterior nucleus (LPN). We found neurons of the LPN possess many of the same membrane properties as first-order relay neurons. These included low-threshold calcium spikes (IT) and burst firing, a mixed cation conductance (IH) that prevented membrane hyperpolarization, and a transient K+ conductance that delayed spike firing (IA). The repetitive firing characteristics of LPN neurons were more distinct. One group of cells, located in the more caudal regions of the LPN responded to depolarizing current pulses with a train of action potentials or in a regular spiking (RS) mode. This form of firing showed a steep but highly linear increase in firing frequency with increasing levels of membrane depolarization. Another group of cells, located in the more rostral regions of the LPN, responded to depolarizing current pulses with clusters of high-frequency bursts or in a clustered spiking (CS) mode. The overall firing frequency rose nonlinearly with membrane depolarization, but the frequency of a given burst remained relatively constant. The caudal LPN receives input from the superior colliculus, whereas the rostral LPN receives input from layers V and VI of the visual cortex. Thus the RS and CS cells may be driven by subcortical and cortical inputs respectively, and the distinct temporal properties of their response modes may be a necessary component of the LPN circuitry.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
230
|
Brelje TC, Wessendorf MW, Sorenson RL. Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. Methods Cell Biol 2003; 70:165-244. [PMID: 12512325 DOI: 10.1016/s0091-679x(02)70006-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- T Clark Brelje
- Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
231
|
Kimura A, Donishi T, Sakoda T, Hazama M, Tamai Y. Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 2003; 117:1003-16. [PMID: 12654352 DOI: 10.1016/s0306-4522(02)00949-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thalamocortical projections from the auditory thalamic nuclei were examined systematically in the rat, including those from the dorsal division (MGD) of the medial geniculate body (MG), which were less clearly determined in previous studies. Injections of biocytin confined in each thalamic nucleus revealed characteristic features of projections in terms of cortical areas and layers of termination. In contrast to exclusively selective projections to cortical area Te1 from the ventral division (MGV) of the MG, diffuse and selective terminations were observed in the projections from the dorsal (MGD) and medial divisions (MGM) of the MG and the suprageniculate nucleus (SG). Diffuse termination was continuous in layer I or VI of the temporal cortex, while selective termination was in layers III and IV of discrete cortical areas. In addition to diffuse termination in the upper half of layer I of cortical areas Te1, Te2d and Te3v, the MGD and SG projections formed plexuses of axons selectively in lower layer III and layer IV of Te2d and Te3v. The SG projections targeted further the dorsal bank of the perirhinal cortex (PRh), while the MGD projections targeted in part the ventral fringe of Te1. The MGM projections terminated diffusely in layer VI of Te1 and Te3v, and selectively in lower layer III and layer IV of the rostral part of Te3v. Diffuse projections to layers I and VI from the SG and MGM extended in cortical regions over the dorsal fringe of Te1. Selective dense projections to middle cortical layers of Te2d and Te3v (especially its rostral part) indicate the existence of auditory areas, which could be involved in cross-modal interaction with visual and somatosensory system, respectively. Diffuse projections are supposed to bind information processings in these areas and the primary auditory area (Te1).
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical University, 811-1, 641-0012, Wakayama Kimiidera, Japan.
| | | | | | | | | |
Collapse
|
232
|
Luebke JI, Rosene DL. Aging alters dendritic morphology, input resistance, and inhibitory signaling in dentate granule cells of the rhesus monkey. J Comp Neurol 2003; 460:573-84. [PMID: 12717715 DOI: 10.1002/cne.10668] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neural substrates of age-related hippocampal dysfunction in primates are poorly understood. This issue was addressed with combined intracellular biocytin filling and whole-cell patch clamp recordings of intrinsic membrane properties and inhibitory postsynaptic currents (IPSCs) in dentate granule cells in in vitro slices prepared from behaviorally characterized young (<11 years old) and aged (>24 years old) rhesus monkeys. Six of nine aged monkeys were significantly impaired in performance on the hippocampally mediated delayed nonmatch to sample (DNMS) task at a 2-minute delay. Morphometric analyses showed that cells from aged monkeys had significantly reduced vertical dendritic extents and distal dendritic branching but increased proximal dendritic branching. Intrinsic membrane and action potential properties did not differ between cells from young and aged monkeys with the exception of a small but significant increase in input resistance with age. The frequency, amplitude, and rise time of gamma-aminobutyric acid (GABA)(A) receptor-mediated miniature IPSCs were not significantly different in cells from young vs. aged monkeys. However, the miniature IPSC decay time constant and the benzodiazepine potentiation of this decay time constant were both significantly increased in cells from aged monkeys. These differences in the properties of dentate granule cells correlated positively with age but not specifically with impairment on the DNMS 2-minute delay task. Nevertheless, these changes in dendritic morphology, input resistance, and inhibitory signaling properties may be part of a constellation of subtle functional changes contributing to age-associated cognitive impairment.
Collapse
Affiliation(s)
- Jennifer I Luebke
- Center for Behavioral Development, Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
233
|
Telfeian AE, Connors BW. Widely integrative properties of layer 5 pyramidal cells support a role for processing of extralaminar synaptic inputs in rat neocortex. Neurosci Lett 2003; 343:121-4. [PMID: 12759179 DOI: 10.1016/s0304-3940(03)00379-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have compared the length, strength, conduction velocity and divergence of horizontal connections onto layers 2/3 and 5 neurons in slices of rat primary somatosensory neocortex. Slices were cut along laminar borders to eliminate most vertical connections, and excitatory postsynaptic potentials (EPSPs) were recorded from pyramidal cells in adjacent uncut tissue. When electric stimuli were delivered within the same layer as the recorded cell, EPSPs could be evoked up to 2000 microm away for both layers 2/3 and 5 pyramids. Estimates of horizontal axonal conduction velocities ( approximately 0.4 m/s) and the thresholds for activation also did not differ between layers. However, layers 2/3 cells rarely responded to stimuli delivered to isolated deeper layers, while layer 5 neurons were often excited by horizontal inputs from isolated layers 2/3 and 4.
Collapse
Affiliation(s)
- Albert E Telfeian
- Department of Neuroscience, Brown University, Division of Biology and Medicine, Providence, RI 02912, USA.
| | | |
Collapse
|
234
|
Cepeda C, Hurst RS, Flores-Hernández J, Hernández-Echeagaray E, Klapstein GJ, Boylan MK, Calvert CR, Jocoy EL, Nguyen OK, André VM, Vinters HV, Ariano MA, Levine MS, Mathern GW. Morphological and electrophysiological characterization of abnormal cell types in pediatric cortical dysplasia. J Neurosci Res 2003; 72:472-86. [PMID: 12704809 DOI: 10.1002/jnr.10604] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms responsible for seizure generation in cortical dysplasia (CD) are unknown, but morphologically abnormal cells could contribute. We examined the passive and active membrane properties of cells from pediatric CD in vitro. Normal- and abnormal-appearing cells were identified morphologically by using infrared videomicroscopy and biocytin in slices from children with mild to severe CD. Electrophysiological properties were assessed with patch clamp recordings. Four groups of abnormal-appearing cells were observed. The first consisted of large, pyramidal cells probably corresponding to cytomegalic neurons. Under conditions that reduced the contribution of K(+) conductances, these cells generated large Ca(2+) currents and influx when depolarized. When these cells were acutely dissociated, peak Ca(2+) currents and densities were greater in cytomegalic compared with normal-appearing pyramidal neurons. The second group included large, nonpyramidal cells with atypical somatodendritic morphology that could correspond to "balloon" cells. These cells did not display active voltage- or ligand-gated currents and did not appear to receive synaptic inputs. The third group included misoriented and dysmorphic pyramidal neurons, and the fourth group consisted of immature-looking pyramidal neurons. Electrophysiologically, neurons in these latter two groups did not display significant abnormalities when compared with normal-appearing pyramidal neurons. We conclude that there are cells with abnormal intrinsic membrane properties in pediatric CD. Among the four groups of cells, the most abnormal electrophysiological properties were displayed by cytomegalic neurons and large cells with atypical morphology. Cytomegalic neurons could play an important role in the generation of epileptic activity.
Collapse
Affiliation(s)
- Carlos Cepeda
- Mental Retardation Research Center, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Xiang Z, Prince DA. Heterogeneous actions of serotonin on interneurons in rat visual cortex. J Neurophysiol 2003; 89:1278-87. [PMID: 12626611 DOI: 10.1152/jn.00533.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of serotonin (5-HT) on excitability of two cortical interneuronal subtypes, fast-spiking (FS) and low threshold spike (LTS) cells, and on spontaneous inhibitory postsynaptic currents (sIPSCs) in layer V pyramidal cells were studied in rat visual cortical slices using whole-cell recording techniques. Twenty-two of 28 FS and 26 of 35 LTS interneurons responded to local application of 5-HT. In the group of responsive neurons, 5-HT elicited an inward current in 50% of FS cells and 15% of LTS cells, an outward current was evoked in 41% of FS cells and 81% of LTS cells, and an inward current followed by an outward current in 9% of FS cells and 4% LTS cells. The inward and outward currents were blocked by a 5-HT(3) receptor antagonist, tropisetron, and a 5-HT(1A) receptor antagonist, NAN-190, respectively. The 5-HT-induced inward and outward currents were both associated with an increase in membrane conductance. The estimated reversal potential was more positive than -40 mV for the inward current and close to the calculated K(+) equilibrium potential for the outward current. The 5-HT application caused an increase, a decrease, or an increase followed by a decrease in the frequency of sIPSCs in pyramidal cells. The 5-HT(3) receptor agonist 1-(m-chlorophenyl) biguanide increased the frequency of larger and fast-rising sIPSCs, whereas the 5-HT(1A) receptor agonist (+/-)8-hydroxydipropylaminotetralin hydrobromide elicited opposite effects and decreased the frequency of large events. These data indicate that serotonergic activation imposes complex actions on cortical inhibitory networks, which may lead to changes in cortical information processing.
Collapse
Affiliation(s)
- Zixiu Xiang
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, California 94305, USA
| | | |
Collapse
|
236
|
Nowak LG, Azouz R, Sanchez-Vives MV, Gray CM, McCormick DA. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J Neurophysiol 2003; 89:1541-66. [PMID: 12626627 DOI: 10.1152/jn.00580.2002] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To facilitate the characterization of cortical neuronal function, the responses of cells in cat area 17 to intracellular injection of current pulses were quantitatively analyzed. A variety of response variables were used to separate the cells into subtypes using cluster analysis. Four main classes of neurons could be clearly distinguished: regular spiking (RS), fast spiking (FS), intrinsic bursting (IB), and chattering (CH). Each of these contained significant subclasses. RS neurons were characterized by trains of action potentials that exhibited spike frequency adaptation. Morphologically, these cells were spiny stellate cells in layer 4 and pyramidal cells in layers 2, 3, 5, and 6. FS neurons had short-duration action potentials (<0.5 ms at half height), little or no spike frequency adaptation, and a steep relationship between injected current intensity and spike discharge frequency. Morphologically, these cells were sparsely spiny or aspiny nonpyramidal cells. IB neurons typically generated a low frequency (<425 Hz) burst of spikes at the beginning of a depolarizing current pulse followed by a tonic train of action potentials for the remainder of the pulse. These cells were observed in all cortical layers, but were most abundant in layer 5. Finally, CH neurons generated repetitive, high-frequency (350-700 Hz) bursts of short-duration (<0.55 ms) action potentials. Morphologically, these cells were layer 2-4 (mainly layer 3) pyramidal or spiny stellate neurons. These results indicate that firing properties do not form a continuum and that cortical neurons are members of distinct electrophysiological classes and subclasses.
Collapse
Affiliation(s)
- Lionel G Nowak
- Unité de recherche Cerveau et Cognition, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5549, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
237
|
Bandrowski AE, Huguenard JR, Prince DA. Baseline glutamate levels affect group I and II mGluRs in layer V pyramidal neurons of rat sensorimotor cortex. J Neurophysiol 2003; 89:1308-16. [PMID: 12626613 PMCID: PMC3005275 DOI: 10.1152/jn.00644.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Possible functional roles for glutamate that is detectable at low concentrations in the extracellular space of intact brain and brain slices have not been explored. To determine whether this endogenous glutamate acts on metabotropic glutamate receptors (mGluRs), we obtained whole cell recordings from layer V pyramidal neurons of rat sensorimotor cortical slices. Blockade of mGluRs with (+)-alpha-amino-4-carboxy-alpha-methyl-benzeacetic acid (MCPG, a general mGluR antagonist) increased the mean amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), an effect attributable to a selective increase in the occurrence of large amplitude sEPSCs. 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495, a group II antagonist) increased, but R(-)-1-amino-2,3-dihydro-1H-indene-1,5-dicarboxylic acid (AIDA) and (RS)-hexyl-HIBO (group I antagonists) decreased sEPSC amplitude, and (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III antagonist) did not change it. The change in sEPSCs elicited by MCPG, AIDA, and LY341495 was absent in tetrodotoxin, suggesting that it was action potential-dependent. The increase in sEPSCs persisted in GABA receptor antagonists, indicating that it was not due to effects on inhibitory interneurons. AIDA and (S)-3,5-dihydroxyphenylglycine (DHPG, a group I agonist) elicited positive and negative shifts in holding current, respectively. LY341495 and (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV, a group II agonist) elicited negative and positive shifts in holding current, respectively. The AIDA and LY341495 elicited currents persisted in TTX. Finally, in current clamp, LY341495 depolarized cells by approximately 2 mV and increased the number of action potentials to a given depolarizing current pulse. Thus ambient levels of glutamate tonically activate mGluRs and regulate cortical excitability.
Collapse
Affiliation(s)
- A E Bandrowski
- Department of Neurology, Stanford University Medical Center, Stanford, California 94305, USA
| | | | | |
Collapse
|
238
|
Hamam BN, Kennedy TE. Visualization of the dendritic arbor of neurons in intact 500 microm thick brain slices. J Neurosci Methods 2003; 123:61-7. [PMID: 12581850 DOI: 10.1016/s0165-0270(02)00341-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Characterizing the structure and electrophysiological properties of single neurons is essential for understanding how individual cells contribute to the function of neuronal networks. Following intra-cellular recording from neurons in acute brain slices, the structure of the recorded cell has typically been examined by serial sectioning of the tissue slice and then reconstructing the neuron of interest; a labor-intensive and time-consuming process. Here, we have adapted a whole-mount immunohistochemical technique and used it to visualize the dendritic arbor of individual neurons in sections of adult CNS tissue up to 500 microm thick. Permeabilization of the slice and extensive washing allow histochemical reagents to penetrate and be washed from the section, producing limited background staining. Using this method, the cell within the slice can be sectioned optically and reconstructed using the optical sections. We present images of the dendritic trees of neurons in 500 microm thick slices of adult rat entorhinal cortex and hippocampus, labeled either immunohistochemically, or by biocytin injection following whole-cell patch clamp or sharp electrode recordings. The resolution obtained is sufficient to visualize dendritic spines deep within the section. The method is free from artifacts associated with cutting serial sections and is broadly applicable to tasks that require visualization of the fine structure of individual cells in thick slices of CNS tissue.
Collapse
Affiliation(s)
- Bassam N Hamam
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 University St, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
239
|
Pastor AM, Mentis GZ, De La Cruz RR, Díaz E, Navarrete R. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J Neurophysiol 2003; 89:793-805. [PMID: 12574457 DOI: 10.1152/jn.00498.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of early postnatal blockade of neuromuscular transmission using botulinum neurotoxin (BoNT) type A on motoneuron gap junctional coupling was studied by means of intracellular recordings and biocytin labeling using the in vitro hemisected spinal cord preparation of neonatal rats. The somata of tibialis anterior (TA) motoneurons were retrogradely labeled at birth (P0) by intramuscular injection of fluorescent tracers. Two days later, BoNT was injected unilaterally into the TA muscle. The toxin blocked neuromuscular transmission for the period studied (P4-P7) as shown by tension recordings of the TA muscle. Retrograde horseradish peroxidase tracing in animals reared to adulthood demonstrated no significant cell death or changes in the soma size of BoNT-treated TA motoneurons. Intracellular recordings were carried out in prelabeled control and BoNT-treated TA motoneurons from P4 to P7. Graded stimulation of the ventral root at subthreshold intensities elicited short-latency depolarizing (SLD) potentials that consisted of several discrete components reflecting electrotonic coupling between two or more motoneurons. BoNT treatment produced a significant increase (67%) in the maximum amplitude of the SLD and in the number of SLD components as compared with control (3.1 +/- 1.7 vs. 1.4 +/- 0.7; means +/- SD). The morphological correlates of electrotonic coupling were investigated at the light microscope level by studying the transfer of biocytin to other motoneurons and the putative sites of gap junctional interaction. The dye-coupled neurons clustered around the injected cell with close somato-somatic, dendro-somatic and -dendritic appositions that might represent the sites of electrotonic coupling. The size of the motoneuron cluster was, on average, 2.2 times larger after BoNT treatment. Our findings demonstrate that a short-lasting functional disconnection of motoneurons from their target muscle delays motoneuron maturation by halting the elimination of gap junctional coupling that normally occurs during early postnatal development.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología y Zoología, Facultad de Biología, 41012-Sevilla, Spain.
| | | | | | | | | |
Collapse
|
240
|
Grabauskas G, Bradley RM. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract. J Neurophysiol 2003; 89:199-211. [PMID: 12522172 DOI: 10.1152/jn.00963.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the parameters that define the characteristics of either inhibitory postsynaptic potentials (IPSP) or currents (IPSC) in the gustatory nucleus of the solitary tract (rNST), whole cell patch-clamp recordings were made in horizontal brain stem slices of newborn rats. Neurons were labeled with biocytin to confirm both their location and morphology. IPSPs or IPSCs were evoked by delivering either single, paired-pulse, or tetanic stimulus shocks (0.1-ms duration) via a bipolar stimulating electrode placed on the rNST. Pure IPSP/IPSCs were isolated by the use of glutamate receptor antagonists. For 83% of the single-stimulus-evoked IPSCs, the decay time course was fitted with two exponentials having average time constants of 38 and 181 ms, respectively, while the remainder could be fitted with one exponential of 59 ms. Paired-pulse stimulation resulted in summation of the amplitude of the conditioning and test-stimulus-evoked IPSCs. The decay time course of the test-stimulus-evoked IPSC was slower when compared to the decay time of the conditioning stimulus IPSC. Repeated stimulation resulted in an increase in the decay time of the IPSP/Cs where each consecutive stimulus contributed to prolongation of the decay time constant. Most of the IPSP/Cs resulting from a 1-s >/= 30-Hz tetanic stimulus exhibited an S-shaped decay time course where the amplitude of the IPSP/Cs after termination of the stimulus was initially sustained before starting to decay back to the resting membrane potential. Elevation of extracellular Ca(2+) concentration 10 mM resulted in an increase in the amplitude and decay time of single-stimulus shock-evoked IPSP/Cs. The benzodiazepine GABA(A) receptor modulator diazepam increased the decay time of single-stimulus shock-evoked IPSCs. However, application of diazepam did not affect the decay time of tetanic-stimulation-evoked IPSP/Cs. These results suggest that the decay time of single-stimulus-evoked IPSCs is defined either by receptor kinetics or neurotransmitter clearance from the synaptic cleft or both, while the decay time course of the tetanic stimulus evoked IPSP/Cs is defined by neurotransmitter diffusion from the synaptic cleft. During repetitive stimulation, neurotransmitter accumulates in the synaptic cleft prolonging the decay time constant of the IPSCs. High-frequency stimulation elevates the GABA concentration in the synaptic cleft, which then oversaturates the postsynaptic receptors, and, as a consequence, after termination of the tetanic stimulus, the amplitude of IPSP/Cs is sustained resulting in an S shaped decay time course. This activity-dependent plasticity at GABAergic synapses in the rNST is potentially important in the encoding of taste responses because the dynamic range of stimulus frequencies that result in synaptic plasticity (0-70 Hz) corresponds to the breadth of frequencies that travels via afferent gustatory nerve fibers in response to taste stimuli.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109, USA.
| | | |
Collapse
|
241
|
McDonagh JC, Hornby TG, Reinking RM, Stuart DG. Associations between the morphology and physiology of ventral-horn neurons in the adult turtle. J Comp Neurol 2002; 454:177-91. [PMID: 12412142 DOI: 10.1002/cne.10437] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study compared some morphologic and physiological properties of adult turtle spinal motoneurons (MNs) vs. interneurons (INs). Reconstructions were made of 20 biocytin-stained cells, which had been previously studied physiologically in 2-mm-thick slices of lumbosacral spinal cord. The intracellularly measured physiological properties included resting potential, input resistance (R(N)), threshold (rheobase, I(Rh)), and slope of the stimulus current (I) -spike frequency (f) relation. The seven morphologic properties that were quantified for each cell included three indices of somal size (diameter, area, volume), and four of dendritic size: the number of first- and last-order branches, rostrocaudal extent, and sigma individual lengths. Significant differences were shown between all seven morphologic parameters for MNs vs. INs. Despite the small sample size, significant differences were also shown for five of seven parameters for high-threshold vs. low-threshold MNs, and three of seven for low-threshold MNs vs. INs. These latter three parameters were the number of terminal dendritic branches, their rostrocaudal extent, and the sigma dendritic lengths. Linear associations for the MN + IN and the MN samples were stronger between the four dendritic parameters than between soma-dendritic ones. Exponential associations between morphologic and physiological properties were mostly significant (28 of 30), and their strength was in the order I(Rh) < R(N) < f/I slope for the MN +IN sample and I(Rh) < R(N) = f/I slope for the MN sample. There is discussion of the relevance of the above findings to the provisional classification of turtle ventral-horn neurons on the basis of electrophysiology alone.
Collapse
Affiliation(s)
- Jennifer C McDonagh
- Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona 85724-5051, USA
| | | | | | | |
Collapse
|
242
|
Abstract
Voltage-clamp recordings from layer II neurones in somatosensory cortex of rats aged between 12 and 17 days showed a high frequency of spontaneous postsynaptic currents (sPSCs), which on average was 33 +/- 13 Hz (s.d.). sPSCs were mediated largely by glutamatergic AMPA receptors. Their rates and amplitudes were independent of blocking sodium channels with 1 microM tetrodotoxin (TTX). Most of them, therefore, represent genuine miniature excitatory postsynaptic currents (mEPSCs). The rise time of the fastest (10 %) mEPSCs was 288 +/- 86 micros (10-90 %) and the half-width was 1073 +/- 532 micros. The amplitude was -5.9 +/- 1.1 pA with a coefficient of variation (CV) of 0.44 +/- 0.14. The rate of mEPSCs was very temperature sensitive with a Q(10) (33-37 degrees C) of 8.9 +/- 0.9. Due to this temperature sensitivity, we estimated that the microscope lamp contributed an increase in temperature of about 4 degrees C to the tissue in the focal volume of the condenser. Cell-type differences in the rate of mEPSCs were found between pyramidal/multipolar and bipolar cells. The latter had a frequency of about a third of that seen in the other cell groups. Recordings in layer II are ideally suited to investigate mechanisms of spontaneous transmitter release.
Collapse
Affiliation(s)
- Christopher R L Simkus
- Institute of Neuroinformatics, University of Zürich and Federal Institute of Technology (ETH), Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
243
|
Abstract
The presence, magnitude, and time course of GABA transporter currents were investigated in electrophysiologically characterized neocortical astrocytes in an in vitro slice preparation. On stimulation with a bipolar-tungsten stimulating electrode placed nearby, the majority of cells tested displayed long-lasting GABA transporter currents using both single and repetitive stimulation protocols. Using subtype-specific GABA transporter antagonists, long-lasting GABA transporter currents were identified in neocortical astrocytes that originated from at least two subtypes of GABA transporters: GAT-1 and GAT-2/3. These transporter currents displayed slow rise times and long decay times, contrasting the time course observed for glutamate transporter currents, and are indicative of a long extracellular time course of GABA as well as a role for glial GABA transporters during synaptic transmission.
Collapse
Affiliation(s)
- Gregory A Kinney
- Veterans Affairs Puget Sound Health Care System, Seattle, 98108, USA.
| | | |
Collapse
|
244
|
Abstract
Neocortical neurons in vivo receive periodic stimuli due to feedforward input from the periphery as well as local cellular and circuit properties. In order to understand how neurons process such information, the responses of neurons to periodic sine wave current stimuli of varying frequencies and amplitudes were investigated. Sine wave stimuli were injected into pyramidal cells of young adult ferret visual cortical slices in vitro using sharp microelectrodes. To simulate higher resting membrane potentials observed in vivo a slight depolarizing current was injected to bring the neuron just to threshold. Initially, neurons discharged at least one action potential per sine wave cycle, but as the frequency was increased, a point was reached where this one-to-one responsiveness was lost. This critical frequency was dependent upon the injected sine wave amplitude and the magnitude of the underlying steady-state depolarization, and was correlated with spike width. Larger steady-state depolarizations and thinner action potentials corresponded to higher critical frequencies. Thus, when a neuron was very active it could respond in a one-to-one fashion over a greater range of frequencies than with the smallest DC offset. The results suggest that the frequency-following characteristics of individual cortical neurons can be modulated by the activity state of the neuron itself.
Collapse
Affiliation(s)
- J C Brumberg
- Section of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
245
|
Mentis GZ, Díaz E, Moran LB, Navarrete R. Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats. J Physiol 2002; 544:757-64. [PMID: 12411521 PMCID: PMC2290633 DOI: 10.1113/jphysiol.2002.028159] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neonatal rat motoneurones are electrically coupled via gap junctions and the incidence of this coupling declines during postnatal development. The mechanisms involved in this developmental regulation of gap junctional communication are largely unknown. Here we have studied the role of NMDA receptor-mediated glutamatergic synaptic activity in the regulation of motoneurone coupling. Gap junctional coupling was demonstrated by the presence of graded, short latency depolarising potentials following ventral root stimulation, and by the transfer of the low molecular weight tracer Neurobiotin to neighbouring motoneurones. Sites of close apposition between the somata and/or dendrites of the dye-coupled motoneurones were identified as potential sites of gap junctional coupling. Early postnatal blockade of the NMDA subtype of glutamate receptors using the non-competitive antagonist dizocilpine maleate (MK801) arrested the developmental decrease in electrotonic and dye coupling during the first postnatal week. These results suggest that the postnatal increase in glutamatergic synaptic activity associated with the onset of locomotion promote the loss of gap junctional connections between developing motoneurones.
Collapse
Affiliation(s)
- George Z Mentis
- Division of Neuroscience and Psychological Medicine, Department of Neuromuscular Diseases, Imperial College London, Fulham Palace Road, UK
| | | | | | | |
Collapse
|
246
|
Li DP, Chen SR, Pan HL. Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release. J Neurophysiol 2002; 88:2664-74. [PMID: 12424302 DOI: 10.1152/jn.00540.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) in the paraventricular nucleus (PVN) is involved in the regulation of the excitability of PVN neurons. However, the effect of NO on the inhibitory GABAergic and excitatory glutamatergic inputs to spinally projecting PVN neurons has not been studied specifically. In the present study, we determined the role of the inhibitory GABAergic and excitatory glutamatergic inputs in the inhibitory action of NO on spinally projecting PVN neurons. Spinally projecting PVN neurons were retrogradely labeled by a fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocasbocyane (DiI), injected into the spinal cord of rats. Whole cell voltage- and current-clamp recordings were performed on DiI-labeled PVN neurons in the hypothalamic slice. The spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded in DiI-labeled neurons were abolished by 20 microM bicuculline, whereas the miniature excitatory postsynaptic currents (mEPSCs) were eliminated by 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione. Bath application of an NO donor, 100 microM S-nitroso-N-acetyl-penicillamine (SNAP), or the NO precursor, 100 microM L-arginine, both significantly increased the frequency of mIPSCs of DiI-labeled PVN neurons, without altering the amplitude and the decay time constant of mIPSCs. The effect of SNAP and L-arginine on the frequency of mIPSCs was eliminated by an NO scavenger, 2-(4-carboxypheny)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an NO synthase inhibitor, 1-(2-trifluoromethylphenyl) imidazole, respectively. Neither SNAP nor L-arginine significantly altered the frequency and the amplitude of mEPSCs. Under current-clamp conditions, 100 microM SNAP or 100 microM L-arginine significantly decreased the discharge rate of the DiI-labeled PVN neurons, without significantly affecting the resting membrane potential. On the other hand, 20 microM bicuculline significantly increased the impulse activity of PVN neurons. In the presence of bicuculline, SNAP or L-arginine both failed to inhibit the firing activity of PVN neurons. This electrophysiological study provides substantial new evidence that NO suppresses the activity of spinally projecting PVN neurons through potentiation of the GABAergic synaptic input.
Collapse
Affiliation(s)
- De-Pei Li
- Department of Anesthesiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
247
|
New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J Neurosci 2002. [PMID: 12351751 DOI: 10.1523/jneurosci.22-19-08754.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transmission through the dorsal thalamus involves nuclei that convey different aspects of sensory or motor information. Cells in the dorsal thalamus are strongly inhibited by the GABAergic cells of the thalamic reticular nucleus (TRN). Here we show that stimulation of cells in specific dorsal thalamic nuclei evokes robust IPSCs or IPSPs in other specific dorsal thalamic nuclei and vice versa. These IPSCs are GABA(A) receptor-mediated currents and are consistent with the activation of disynaptic intrathalamic pathways mediated by TRN. Thus, cells engaged in sensory analyses in the ventrobasal complex or the medial division of the posterior complex can interact with cells responsive to sensory events in the caudal intralaminar nuclei, whereas cells engaged in motor analyses in the ventrolateral nucleus can interact with cells responsive to motor events in the rostral intralaminar nuclei. Furthermore, sensory event-related cells in the caudal intralaminar nuclei can interact with motor event-related cells in the rostral intralaminar nuclei. In addition, single cells in one dorsal thalamic nucleus can receive convergent inhibitory inputs after stimulation of cells in two or more other dorsal thalamic nuclei, and TRN-mediated inhibitory inputs can momentarily switch off tonic firing of action potentials in dorsal thalamic cells. Our findings provide the first direct evidence for a rich network of intrathalamic pathways that allows modality-related and cross-modality inhibitory modulation between dorsal thalamic nuclei. Moreover, TRN-mediated switching between dorsal thalamic nuclei could provide a mechanism for the selection of competing transmissions of sensory and/or motor information through the dorsal thalamus.
Collapse
|
248
|
Abstract
Numerous observations suggest diverse and modulatory roles for serotonin (5-HT) in cortex. Because of the diversity of cell types and multiple receptor subtypes and actions of 5-HT, it has proven difficult to determine the overall role of 5-HT in cortical function. To provide a broader perspective of cellular actions, we studied the effects of 5-HT on morphologically and physiologically identified pyramidal and nonpyramidal neurons from layers I-III of primary somatosensory and motor cortex. We found cell type-specific differences in response to 5-HT. Four cell types were observed in layer I: Cajal Retzius, pia surface, vertical axon, and horizontal axon cells. The physiology of these cells ranged from fast spiking (FS) to regular spiking (RS). In layers II-III, we observed interneurons with FS, RS, and late spiking physiology. Morphologically, these cells varied from bipolar to multipolar and included basket-like and chandelier cells. 5-HT depolarized or hyperpolarized pyramidal neurons and reduced the slow afterhyperpolarization and spike frequency. Consistent with a role in facilitating tonic inhibition, 5-HT2 receptor activation increased the frequency of spontaneous IPSCs in pyramidal neurons. In layers II-III, 70% of interneurons were depolarized by 5-HT. In layer I, 57% of cells with axonal projections to layers II-III (vertical axon) were depolarized by 5-HT, whereas 63% of cells whose axons remain in layer I (horizontal axon) were hyperpolarized by 5-HT. We propose a functional segregation of 5-HT effects on cortical information processing, based on the pattern of axonal arborization.
Collapse
|
249
|
de la Cruz RR, Benítez-Temiño B, Pastor AM. Intrinsic determinants of synaptic phenotype: an experimental study of abducens internuclear neurons connecting with anomalous targets. Neuroscience 2002; 112:759-71. [PMID: 12088736 DOI: 10.1016/s0306-4522(02)00133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present experiments investigate the role of postsynaptic neurons in the morphological differentiation of presynaptic terminals that are formed de novo in the adult CNS. Abducens internuclear neurons in the adult cat were chosen as the experimental model. These neurons project onto the contralateral medial rectus motoneurons of the oculomotor nucleus. Abducens internuclear axon terminals were identified by their anterograde labeling with biocytin and analyzed at the electron microscopic level. To promote the formation of new synapses, two different experimental approaches were used. First, after the selective ablation of medial rectus motoneurons with ricin, abducens internuclear neurons reinnervated the neighboring oculomotor internuclear neurons. Second, after axotomy followed by embryonic cerebellar grafting, abducens internuclear axons invaded the implanted tissue and established synaptic connections in both the molecular and granule cell layer. Boutons contacting the oculomotor internuclear neurons developed ultrastructural characteristics that resembled the control synapses on medial rectus motoneurons. In the grafted cerebellar tissue, abducens internuclear axons and terminals did not resemble climbing or mossy fibers but showed similarities with control boutons. However, labeled boutons analyzed in the granule cell layer established a higher number of synaptic contacts than controls. This could reflect a trend towards the mossy fiber phenotype, although labeled boutons significantly differed in every measured parameter with the mossy fiber rosettes found in the graft. We conclude that at least for the abducens internuclear neurons, the ultrastructural differentiation of axon terminals reinnervating novel targets in the adult brain seems to be mainly under intrinsic control, with little influence by postsynaptic cells.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia y Comportamiento, Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Spain.
| | | | | |
Collapse
|
250
|
Sanabria ERG, Silva AVD, Spreafico R, Cavalheiro EA. Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2002; 43 Suppl 5:96-106. [PMID: 12121302 DOI: 10.1046/j.1528-1157.43.s.5.31.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Clinical, neuropathological, and electrophysiological data have shown that limbic structures are involved in the pathogenesis of temporal lobe epilepsy (TLE). In most cases, limbic-originated seizures frequently spread to extrahippocampal areas. It is unclear whether such distant circuitries, especially the neocortex, exhibit abnormal electrophysiology as consequences of a chronic epileptogenic process. The present research studied neuropathological abnormalities and in vitro electrophysiological properties of sensorimotor neocortex in pilocarpine-treated epileptic rats. METHODS Adult epileptic animals showing six to seven seizures/week and saline-injected rats were selected for neurohistology. Coronal sections were sampled throughout the anteroposterior extent of the diencephalon and stained with cresyl violet (Nissl). Immunocytochemistry (ICC) was performed using anti-neurofilament (SMI-311) antibody. Extracellular (layer II/III) and intracellular (layer V) recordings were performed in coronal sensorimotor neocortical slices. Several electrophysiological aspects were examined such as evoked responses, intrinsic properties, and firing patterns of layer V pyramidal cells. RESULTS Nissl staining showed a significant decrease of cortical thickness in epileptic rats when compared with controls, particularly in superficial layers (II-IV). Such abnormalities were also revealed by SMI-311 staining. SMI-311-labeled dendrite arborizations were more complex in layers I-II of epileptic rats. Epileptic rats manifested several abnormalities in extracellular field responses including hyperresponsiveness and presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-mediated polysynaptic activity. Although no significant changes were observed concerning passive intrinsic properties, it was possible to detect a higher proportion of bursting neurons distributed in layer V (60%) of epileptic rats compared with 22% in control slices. CONCLUSIONS Taken together, our findings indicate damage, reorganization, and chronic hyperexcitability of sensorimotor neocortex in experimental TLE.
Collapse
Affiliation(s)
- Emilio R Garrido Sanabria
- Laboratório de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Botucatu 862, CEP 04023-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|