201
|
Beaudoin JJ, Clemens L, Miedel MT, Gough A, Zaidi F, Ramamoorthy P, Wong KE, Sarangarajan R, Battista C, Shoda LKM, Siler SQ, Taylor DL, Howell BA, Vernetti LA, Yang K. The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury. Int J Mol Sci 2023; 24:9692. [PMID: 37298645 PMCID: PMC10253699 DOI: 10.3390/ijms24119692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.
Collapse
Affiliation(s)
- James J. Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lara Clemens
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Mark T. Miedel
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Albert Gough
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Fatima Zaidi
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Kari E. Wong
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Christina Battista
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lisl K. M. Shoda
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Scott Q. Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Brett A. Howell
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lawrence A. Vernetti
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| |
Collapse
|
202
|
Sabeti Z, Ansarin A, Ansarin K, Zafari V, Seyedrezazadeh E, Shakerkhatibi M, Asghari-Jafarabadi M, Dastgiri S, Zoroufchi Benis K, Sepehri M, Khamnian Z. Sex-specific association of exposure to air pollutants and Nrf2 gene expression and inflammatory biomarkers in exhaled breath of healthy adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121463. [PMID: 36958658 DOI: 10.1016/j.envpol.2023.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Studies investigating the nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels in the respiratory system of healthy subjects are scarce. Moreover, separate studies on the health-related outcomes of air pollution for each sex are limited. The current panel study investigated sex-specific Nrf2 expression levels and related oxidative stress and inflammatory responses among healthy adolescents exposed to PM2.5, PM10, O3, and PM2.5-bounded metals in a high traffic region. Forty-nine healthy nonsmoking subjects participated in the study for five consecutive months (Nov. 2019 to Feb. 2020). Each subject was asked to provide 1 mL of exhaled breath condensate (EBC). Data were analyzed using linear mixed-effects models. The results showed that PM10, PM2.5, O3, and PM2.5-bounded metals were negatively linked to Nrf2 expression level in EBC of females with -58.3% (95% CI: 79.5, -15.4), -32.1% (95% CI: -50.3, -7.1), -76.2% (95% CI: -92.6, -23.9), and -1.9 (95% CI: -3.4, -0.4), respectively. While our results presented no significant association between the studied pollutants and Nrf2 gene expression in males, significant associations were observed between the pollutants and total nitric oxide (NOx), interleukins 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the EBC of females. In the case of males, only EBC cytokines showed a significant association with air pollutants. Overall, this study suggests that exposure to ambient air pollutants may affect the respiratory system with biologically different mechanisms in males and females. PM2.5 concentration had a positive correlation with exhaled TNF-α and IL6 values in females while positive correlation with TNF-α and negative correlation with IL6 values in males. O3 had a negative correlation with TNF-α in males.
Collapse
Affiliation(s)
- Zahra Sabeti
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Asghari-Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, VIC, 3144, Australia; School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maryam Sepehri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khamnian
- Department of Community Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
203
|
Sung C, An J, Lee S, Park J, Lee KS, Kim IH, Han JY, Park YH, Kim JH, Kang EJ, Hong MH, Kim TY, Lee JC, Lee JL, Yoon S, Choi CM, Lee DH, Yoo C, Kim SW, Jeong JH, Seo S, Kim SY, Kong SY, Choi JK, Park SR. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. NATURE CANCER 2023; 4:844-859. [PMID: 37308678 DOI: 10.1038/s43018-023-00572-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
Immune-related adverse events (irAEs) induced by checkpoint inhibitors involve a multitude of different risk factors. Here, to interrogate the multifaceted underlying mechanisms, we compiled germline exomes and blood transcriptomes with clinical data, before and after checkpoint inhibitor treatment, from 672 patients with cancer. Overall, irAE samples showed a substantially lower contribution of neutrophils in terms of baseline and on-therapy cell counts and gene expression markers related to neutrophil function. Allelic variation of HLA-B correlated with overall irAE risk. Analysis of germline coding variants identified a nonsense mutation in an immunoglobulin superfamily protein, TMEM162. In our cohort and the Cancer Genome Atlas (TCGA) data, TMEM162 alteration was associated with higher peripheral and tumor-infiltrating B cell counts and suppression of regulatory T cells in response to therapy. We developed machine learning models for irAE prediction, validated using additional data from 169 patients. Our results provide valuable insights into risk factors of irAE and their clinical utility.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Soohyeon Lee
- Division of Oncology-Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaesoon Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Il-Hwan Kim
- Department of Oncology, Haeundae Paik Hospital, Cancer Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eun Joo Kang
- Division of Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Yong Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam, Republic of Korea.
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
204
|
Hassan ZR, Salama DEA, Ibrahim HF, Ahmed SG. Ultrastructural changes and IgA modulatory effect of commercial prebiotic and probiotic in murine giardiasis. J Parasit Dis 2023; 47:224-237. [PMID: 37193505 PMCID: PMC10182204 DOI: 10.1007/s12639-022-01552-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Giardiasis, a parasitic infection of the gastrointestinal tract, is prevalent worldwide. The integrity of the intestinal epithelial barrier plays an important defensive role in giardiasis, and as Oral supplementation with prebiotics and probiotics is known to reinforce the intestinal barrier in many gastrointestinal diseases, this study assessed the effects of prebiotic and probiotic supplementation in giardiasis and compared the results with those obtained after nitazoxanide therapy. Swiss albino male lab-bred mice (n = 50) were divided into three major groups; Group I (control group), i.e., negative (noninfected nontreated) and positive controls (infected nontreated); Group II (preventive group), in which mice were provided prebiotic, probiotic, or a combination for 7 days before of infection, and Group III (therapy group), in which mice were administered prebiotic, probiotic, combined supplements and nitazoxanide from day 12 post-infection. The assessment was achieved through Giardia cyst count, histopathological examination and ultrastructure study. Also, Serological and immunohistochemical parameters were done to evaluate the modulation of IgA levels. Oral supplementation with prebiotic and probiotic, either before or after infection (in preventive or therapy groups respectively) resulted in a significant reduction in Giardia cyst shedding. Remarkable histological and ultrastructure improvement in the intestinal changes, along with a significant increase in the serological and immunohistochemical IgA levels, were seen in mice provided combined supplements and nitazoxanide (in therapy group). Thus, our results indicate that combined prebiotic and probiotic supplementation has promising anti-Giardia activity and that it can restore intestinal structures and modulate IgA response, apart from providing synergistic effects when added to nitazoxanide.
Collapse
Affiliation(s)
- Zeinab R. Hassan
- Departments of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
| | - Doaa E. A. Salama
- Departments of Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
- Department of Pathology, School of Medicine, Badr University in Cairo (BUC), Cairo, 11829 Egypt
| | - Hanan F. Ibrahim
- Departments of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
| | - Samah G. Ahmed
- Departments of Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, 11651 Egypt
| |
Collapse
|
205
|
Nguyen HD. Roles of mixed nutrient intakes on metabolic syndrome among korean adults 19-80 years old: molecular mechanisms involved. J Diabetes Metab Disord 2023; 22:401-413. [PMID: 37255769 PMCID: PMC10225430 DOI: 10.1007/s40200-022-01158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
Purpose We aim to identify the association between nutrient intake mixtures (22 micro-macro nutrients) and metabolic syndrome (MetS) or its components, including molecular mechanisms involved, among 16,807 Korean adults aged 19-80. Methods The associations of mixed nutrient intakes on MetS or its components were identified using linear regression models, WQS regression, qgcomp, and BKMR regression. Genes, transcription factors, miRNA, biological processes, and pathways were assessed using GeneMania, CHEA3, MIENTURNET, and ToppFun functions. Results We found that the overall effect of mixed nutrient intakes was also related to MetS and its components. In silico analysis, we found that a mixture of nutrients interacted with the IL6 gene and was linked with MetS. Physical interactions were the key interactions (77%) involved in the mutual genes and MetS targeted by a mixture of nutrients. IL6 related pathways, "positive regulation of type B pancreatic cell apoptotic process", "regulation of glucagon secretion", "LDL pathway during atherogenesis", and "IL-10 anti-inflammatory signaling pathway" were identified as key molecular mechanisms that may be targeted by mixed nutrients implicated in MetS. The key miRNAs and transcription factors involved in the process of MetS targeted by a mixture of nutrients were also described. The cutoff levels for nutrient intake levels associated with MetS and its components were also described. Conclusion Our findings will pave the way for further research to evaluate the interactions between a mixture of nutrients and non-communicable diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01158-1.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam Republic of Korea
| |
Collapse
|
206
|
Wautier JL, Wautier MP. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int J Mol Sci 2023; 24:ijms24119647. [PMID: 37298597 DOI: 10.3390/ijms24119647] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation has been described for two millennia, but cellular aspects and the paradigm involving different mediators have been identified in the recent century. Two main groups of molecules, the prostaglandins (PG) and the cytokines, have been discovered and play a major role in inflammatory processes. The activation of prostaglandins PGE2, PGD2 and PGI2 results in prominent symptoms during cardiovascular and rheumatoid diseases. The balance between pro- and anti-inflammatory compounds is nowadays a challenge for more targeted therapeutic approaches. The first cytokine was described more than a century ago and is now a part of different families of cytokines (38 interleukins), including the IL-1 and IL-6 families and TNF and TGFβ families. Cytokines can perform a dual role, being growth promotors or inhibitors and having pro- and anti-inflammatory properties. The complex interactions between cytokines, vascular cells and immune cells are responsible for dramatic conditions and lead to the concept of cytokine storm observed during sepsis, multi-organ failure and, recently, in some cases of COVID-19 infection. Cytokines such as interferon and hematopoietic growth factor have been used as therapy. Alternatively, the inhibition of cytokine functions has been largely developed using anti-interleukin or anti-TNF monoclonal antibodies in the treatment of sepsis or chronic inflammation.
Collapse
Affiliation(s)
- Jean-Luc Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| | - Marie-Paule Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| |
Collapse
|
207
|
Madruga D, Garcia MM, Martino L, Hassan H, Elayat G, Ghali L, Ceballos L. Positive correlational shift between crevicular antimicrobial peptide LL-37, pain and periodontal status following non-surgical periodontal therapy. A pilot study. BMC Oral Health 2023; 23:335. [PMID: 37246231 DOI: 10.1186/s12903-023-03023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/06/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Periodontitis has a high prevalence and uncertain recurrence. Unlike the pro-inflammatory cytokine profile, little is known about the anti-inflammatory cytokine and antimicrobial peptide overview following treatment. The present study aimed to evaluate if any of the antimicrobial peptide LL-37, interleukin (IL) 4, 10 and 6 together with the volume of gingival crevicular fluid (GCF) and total protein concentration in GCF could be used as correlative biomarkers for the severity in periodontitis as well as prognostic factors in the management of the disease. METHODS Forty-five participants were recruited and allocated to the healthy (15), Stage I-II (15) or Stage III-IV periodontitis (15) group. Along with periodontal examination, GCF samples were obtained at baseline and 4-6 weeks following scaling and root planing (SRP) for the periodontitis groups. GCF samples were analyzed by ELISA kits to quantify LL-37 and IL-4, -6 and - 10. One-way ANOVA followed by Dunnett's test was used to determine differences among the three groups at baseline. Two-way ANOVA followed by Sidak's post-hoc test was used to compare between pre- and post-SRP in the two periodontitis groups. RESULTS The amount of GCF volume was significantly correlated to the severity of periodontitis and decreased following SRP, particularly in the Stage III-IV group (p < 0.01). The levels of LL-37, IL-6, and pain and periodontal clinical parameters were significantly correlated to the severity of periodontitis. IL-4 and IL-10 in the periodontitis groups were significantly lower than the healthy group (p < 0.0001) and barely improved following SRP up to the level of the healthy group. CONCLUSIONS With the limitations of this study, crevicular LL-37 may be a candidate for a biomarker of periodontitis and the associated pain upon probing. TRIAL REGISTRATION The study was registered in clinical trials.gov, with number NCT04404335, dated 27/05/2020.
Collapse
Affiliation(s)
- David Madruga
- Area of Stomatology, Department of Nursing and Stomatology, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, Alcorcón, E-28922, Spain
| | - Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Avda. de Atenas s/n, Alcorcón, E-28922, Spain.
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Alcorcón, Spain.
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.
| | - Luca Martino
- Area of Signal Theory and Communications, Department of Signal Theory and Communications and Telematics Systems and Computing, Higher Technical School of Telecommunications Engineering, Universidad Rey Juan Carlos (URJC), Cam. del Molino, 5, Fuenlabrada, E-28942, Spain
- High Performance Data Science and Signal Processing for Networks and Society research group, Universidad Rey Juan Carlos (DSSP), Fuenlabrada, Spain
| | - Haidar Hassan
- Academic Plastic Surgery, School of Medicine and Dentistry, Blizard Institute, Barts and The London, Queen Mary University of London, London, E1 2AD, UK
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Ghada Elayat
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
- Department of Pathology, Faculty of Medicine, Tanta University, El Bahr St, Tanta, 31111, Egypt
| | - Lucy Ghali
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Laura Ceballos
- Area of Stomatology, Department of Nursing and Stomatology, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, Alcorcón, E-28922, Spain
- High Performance Development and Innovation in Dental Biomaterials Research Group, Universidad Rey Juan Carlos (IDIBO), Alcorcón, Spain
| |
Collapse
|
208
|
Zou M, Wang J, Shao Z. Therapeutic Potential of Exosomes in Tendon and Tendon-Bone Healing: A Systematic Review of Preclinical Studies. J Funct Biomater 2023; 14:299. [PMID: 37367263 PMCID: PMC10299056 DOI: 10.3390/jfb14060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomes have been proven to play a positive role in tendon and tendon-bone healing. Here, we systematically review the literature to evaluate the efficacy of exosomes in tendon and tendon-bone healing. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic and comprehensive review of the literature was performed on 21 January 2023. The electronic databases searched included Medline (through PubMed), Web of Science, Embase, Scopus, Cochrane Library and Ovid. In the end, a total of 1794 articles were systematically reviewed. Furthermore, a "snowball" search was also carried out. Finally, forty-six studies were included for analysis, with the total sample size being 1481 rats, 416 mice, 330 rabbits, 48 dogs, and 12 sheep. In these studies, exosomes promoted tendon and tendon-bone healing and displayed improved histological, biomechanical and morphological outcomes. Some studies also suggested the mechanism of exosomes in promoting tendon and tendon-bone healing, mainly through the following aspects: (1) suppressing inflammatory response and regulating macrophage polarization; (2) regulating gene expression, reshaping cell microenvironment and reconstructing extracellular matrix; (3) promoting angiogenesis. The risk of bias in the included studies was low on the whole. This systematic review provides evidence of the positive effect of exosomes on tendon and tendon-bone healing in preclinical studies. The unclear-to-low risk of bias highlights the significance of standardization of outcome reporting. It should be noted that the most suitable source, isolation methods, concentration and administration frequency of exosomes are still unknown. Additionally, few studies have used large animals as subjects. Further studies may be required on comparing the safety and efficacy of different treatment parameters in large animal models, which would be conducive to the design of clinical trials.
Collapse
Affiliation(s)
- Mingrui Zou
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingzhou Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100191, China; (M.Z.); (J.W.)
- Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
209
|
Liu J, Chen L, Zheng X, Guo C. Identification of immune-related genes in acute myocardial infarction based on integrated bioinformatical methods and experimental verification. PeerJ 2023; 11:e15058. [PMID: 37214088 PMCID: PMC10198157 DOI: 10.7717/peerj.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/22/2023] [Indexed: 05/24/2023] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. The etiology of AMI is complex and has not been fully defined. In recent years, the role of immune response in the development, progression and prognosis of AMI has received increasing attention. The aim of this study was to identify key genes associated with the immune response in AMI and to analyze their immune infiltration. Methods The study included a total of two GEO databases, containing 83 patients with AMI and 54 healthy individuals. We used the linear model of microarray data (limma) package to find the differentially expressed genes associated with AMI, performing weighted gene co-expression analysis (WGCNA) to further identify the genes associated with inflammatory response to AMI. We found the final hub genes through the protein-protein interaction (PPI) network and least absolute shrinkage and selection operator (LASSO) regression model. To verify the above conclusions, we constructed mice AMI model, extracting myocardial tissue to perform qRT-PCR. Furthermore, the CIBERSORT tool for immune cells infiltration analysis was also carried out. Results A total of 5,425 significant up-regulated and 2,126 down-regulated genes were found in GSE66360 and GSE24519. A total of 116 immune-related genes in close association with AMI were screened by WGCNA analysis. These genes were mostly clustered in the immune response on the basis of GO and KEGG enrichment. With construction of PPI network and LASSO regression analysis, this research found three hub genes (SOCS2, FFAR2, MYO10) among these differentially expressed genes. The immune cell infiltration results revealed that significant differences could be found on T cells CD4 memory activated, Tregs (regulatory T cells), macrophages M2, neutrophils, T cells CD8, T cells CD4 naive, eosinophils between controls and AMI patients.
Collapse
Affiliation(s)
- Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Chen
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiang Zheng
- Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
210
|
Sun MX, Qiao FX, Xu ZR, Liu YC, Xu CL, Wang HL, Qi ZQ, Liu Y. Aristolochic acid I exposure triggers ovarian dysfunction by activating NLRP3 inflammasome and affecting mitochondrial homeostasis. Free Radic Biol Med 2023; 204:313-324. [PMID: 37201634 DOI: 10.1016/j.freeradbiomed.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Aristolochic acids are widely distributed in the plants of Aristolochiaceae family and Asarum species. Aristolochic acid I (AAI) is the most frequent compound of aristolochic acids, which can accumulate in the soil, and then contaminates crops and water and enters the human body. Research has shown that AAI affects the reproductive system. However, the mechanism of AAI's effects on the ovaries at the tissue level still needs to be clarified. In this research, we found AAI exposure reduced the body and ovarian growth in mice, decreased the ovarian coefficient, prevented follicular development, and increased atretic follicles. Further experiments showed that AAI upregulated nuclear factor-κB and tumor necrosis factor-α expression, activated the NOD-like receptor protein 3 inflammasome, and led to ovarian inflammation and fibrosis. AAI also affected mitochondrial complex function and the balance between mitochondrial fusion and division. Metabolomic results also showed ovarian inflammation and mitochondrial dysfunction due to AAI exposure. These disruptions reduced the oocyte developmental potential by forming abnormal microtubule organizing centers and expressing abnormal BubR1 to destroy spindle assembly. In summary, AAI exposure triggers ovarian inflammation and fibrosis, affecting the oocyte developmental potential.
Collapse
Affiliation(s)
- Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
211
|
Martínez MA, Aedo H, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Anadón A, Martínez M, Peteiro C, Cueto M, Rubiño S, Hortos M, Ares I. Bifurcaria bifurcata extract exerts antioxidant effects on human Caco-2 cells. ENVIRONMENTAL RESEARCH 2023; 231:116141. [PMID: 37187306 DOI: 10.1016/j.envres.2023.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Hugo Aedo
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Cesar Peteiro
- Planta de Algas, Unidad de Cultivos Marinos "El Bocal", Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO, CSIC), 39012, Santander, Spain
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Spain
| | - Susana Rubiño
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - María Hortos
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
212
|
Schaumburger N, Pally J, Moraru II, Kositsawat J, Kuchel GA, Blinov ML. Dynamic model assuming mutually inhibitory biomarkers of frailty suggests bistability with contrasting mobility phenotypes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1079070. [PMID: 37216041 PMCID: PMC10192762 DOI: 10.3389/fnetp.2023.1079070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Bistability is a fundamental biological phenomenon associated with "switch-like" behavior reflecting the capacity of a system to exist in either of two stable states. It plays a role in gene regulation, cell fate switch, signal transduction and cell oscillation, with relevance for cognition, hearing, vision, sleep, gait and voiding. Here we consider a potential role for bistability in the existence of specific frailty states or phenotypes as part of disablement pathways. We use mathematical modeling with two frailty biomarkers (insulin growth factor-1, IGF-1 and interleukin-6, IL-6), which mutually inhibit each other. In our model, we demonstrate that small variations around critical IGF-1 or IL-6 blood levels lead to strikingly different mobility outcomes. We employ deterministic modeling of mobility outcomes, calculating the average trends in population health. Our model predicts the bistability of clinical outcomes: the deterministically-computed likelihood of an individual remaining mobile, becoming less mobile, or dying over time either increases to almost 100% or decreases to almost zero. Contrary to statistical models that attempt to estimate the likelihood of final outcomes based on probabilities and correlations, our model predicts functional outcomes over time based on specific hypothesized molecular mechanisms. Instead of estimating probabilities based on stochastic distributions and arbitrary priors, we deterministically simulate model outcomes over a wide range of physiological parameter values within experimentally derived boundaries. Our study is "a proof of principle" as it is based on a major assumption about mutual inhibition of pathways that is oversimplified. However, by making such an assumption, interesting effects can be described qualitatively. As our understanding of molecular mechanisms involved in aging deepens, we believe that such modeling will not only lead to more accurate predictions, but also help move the field from using mostly studies of associations to mechanistically guided approaches.
Collapse
Affiliation(s)
- Nathan Schaumburger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Joel Pally
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Ion I. Moraru
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | | | - George A. Kuchel
- UConn Center on Aging, UConn Health, Farmington, CT, United States
| | - Michael L. Blinov
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| |
Collapse
|
213
|
Dozic S, Howden EJ, Bell JR, Mellor KM, Delbridge LMD, Weeks KL. Cellular Mechanisms Mediating Exercise-Induced Protection against Cardiotoxic Anthracycline Cancer Therapy. Cells 2023; 12:cells12091312. [PMID: 37174712 PMCID: PMC10177216 DOI: 10.3390/cells12091312] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anthracyclines such as doxorubicin are widely used chemotherapy drugs. A common side effect of anthracycline therapy is cardiotoxicity, which can compromise heart function and lead to dilated cardiomyopathy and heart failure. Dexrazoxane and heart failure medications (i.e., beta blockers and drugs targeting the renin-angiotensin system) are prescribed for the primary prevention of cancer therapy-related cardiotoxicity and for the management of cardiac dysfunction and symptoms if they arise during chemotherapy. However, there is a clear need for new therapies to combat the cardiotoxic effects of cancer drugs. Exercise is a cardioprotective stimulus that has recently been shown to improve heart function and prevent functional disability in breast cancer patients undergoing anthracycline chemotherapy. Evidence from preclinical studies supports the use of exercise training to prevent or attenuate the damaging effects of anthracyclines on the cardiovascular system. In this review, we summarise findings from experimental models which provide insight into cellular mechanisms by which exercise may protect the heart from anthracycline-mediated damage, and identify knowledge gaps that require further investigation. Improved understanding of the mechanisms by which exercise protects the heart from anthracyclines may lead to the development of novel therapies to treat cancer therapy-related cardiotoxicity.
Collapse
Affiliation(s)
- Sanela Dozic
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erin J Howden
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James R Bell
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | - Lea M D Delbridge
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Weeks
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
214
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
215
|
Chauhan S, Patra S, Singh SP, Lakhani JD. Combined effect of yoga and naturopathy in uncomplicated varicose vein disease - a prospective randomized controlled trial. J Ayurveda Integr Med 2023; 14:100718. [PMID: 37356369 PMCID: PMC10320501 DOI: 10.1016/j.jaim.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/01/2022] [Accepted: 04/24/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Though the treatment of uncomplicated varicose vein (UVV) might prevent late complications such as skin change or ulceration, but, there are limited studies available to justify this concept. Yoga and Naturopathy being a proficient tool in managing non communicable diseases including many cardiovascular diseases; no attempt was made to study its potential effect in Varicose Vein diseases. OBJECTIVE The present study aims to study the combination of Yoga and Naturopathy in uncomplicated varicose vein patients. MATERIALS AND METHODS 50 UVV participants were prospectively recruited and randomly divided into two groups, Experimental and Active control groups. Both the groups practiced their respective interventions, and follow up was done after 1 and 3 months of active intervention. Finally study was completed with 46 participants (2 dropouts in each groups). The sample size was calculated based on the previous study, considering power as 0.8 and 'α' as 0.05, using 'G' power software. The variables such as Body weight, BMI, Systolic blood pressure (SBP), Diastolic blood pressure (DBP), Heart rate (HR), high-sensitivity C-reactive protein (hs-CRP), homocysteine (HCy) were recorded before and after the intervention, but Aberdeen Varicose Vein Questionnaire (AVVQ) and Visual analogue heaviness scale (VAHS) were recorded on 60 and 120 days of the follow up in addition to active intervention period. RESULTS There was a significant decrease in hs-CRP (p < 0.05) in the experimental group as compared to the control group. Body weight, BMI, SBP, HR, hs-CRP, HCy (p < 0.001) and DBP (p < 0.05) significantly decreases following the Combined Yoga and Naturopathy (CYN) intervention for a month in the experimental group. Also, the AVVQ (p < 0.01) and VAHS (p < 0.05) decreases following active intervention and two consecutive follow up. No adverse event was noted during or after the trial. CONCLUSION The combined effect of Yoga and Naturopathy reduced blood pressure and inflammatory markers suggestive of potential of recovery in inflammation in the endothelial tissue of the microvascular system in UVV patients. TRIAL REGISTRY NUMBER CTRI/2018/10/015895; Clinical Trials Registry- India; www.ctri.nic.in.
Collapse
Affiliation(s)
- Shweta Chauhan
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana, Swami Vivekananda Road, Kalluballu Post, Anekal, Jigani, Bangalore 560105, Karnataka, India
| | - Sanjib Patra
- Central University of Rajasthan, NH-8, Bandar Sindri, Dist, Ajmer 305817, Rajasthan, India.
| | | | - Jitendra D Lakhani
- Smt.B.K.Shah Medical Institute and Research Center and Dhiraj Hospital, Piparia, Dist., Vadodara, Gujarat, India
| |
Collapse
|
216
|
Reyes-Ramos CA, Ramírez-Jirano LJ, Bitzer-Quintero OK, Vázquez-Medina JP, Gaxiola-Robles R, Zenteno-Savín T. Dolphin leukocytes exhibit an attenuated cytokine response and increase heme oxygenase activity upon exposure to lipopolysaccharides. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111438. [PMID: 37119961 DOI: 10.1016/j.cbpa.2023.111438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Cetaceans exhibit physiological adaptations that allowed the transition to aquatic life, including a robust antioxidant defense system that prevents injury from repeated exposure to ischemia/reperfusion events associated with breath-hold diving. The signaling cascades that characterize ischemic inflammation in humans are well characterized. In contrast, cetaceans' molecular and biochemical mechanisms that confer tolerance to inflammatory events are poorly understood. Heme oxygenase (HO) is a cytoprotective protein with anti-inflammatory properties. HO catalyzes the first step in the oxidative degradation of heme. The inducible HO-1 isoform is regulated by various stimuli, including hypoxia, oxidant stress, and inflammatory cytokines. The objective of this study was to compare the response of HO-1 and cytokines to a proinflammatory challenge in leukocytes isolated from humans and bottlenose dolphins (Tursiops truncatus). We measured changes in HO activity and expression, and abundance and expression of interleukin 1 beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and heme oxygenase 1 (HMOX1) in leukocytes treated with lipopolysaccharide (LPS) for 24 and 48 h. HO activity increased (p < 0.05) in dolphin (48 h) but not human cells. TNF-α expression increased in human (24 h, 48 h), but not dolphin cells following LPS stimulation. LPS-induced cytokine expression was lower in dolphin than in human leukocytes, suggesting a blunted cytokine response in bottlenose dolphin leukocytes treated with LPS. Results suggest species-specific regulation of inflammatory cytokines in leukocytes treated with LPS, which may lead to differential responses to a pro-inflammatory challenge between marine and terrestrial mammals.
Collapse
Affiliation(s)
- Carlos A Reyes-Ramos
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Independencia Oriente, 44340 Guadalajara, Jalisco, Mexico
| | - Oscar Kurt Bitzer-Quintero
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Independencia Oriente, 44340 Guadalajara, Jalisco, Mexico
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico; Hospital General de Zona No.1, Instituto Mexicano del Seguro Social, 5 de Febrero y Héroes de la Independencia, Centro, La Paz, Baja California Sur C.P. 23000, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| |
Collapse
|
217
|
Ferreira LB, Ashander LM, Appukuttan B, Ma Y, Williams KA, Best G, Smith JR. Human retinal endothelial cells express functional interleukin-6 receptor. J Ophthalmic Inflamm Infect 2023; 13:21. [PMID: 37097497 PMCID: PMC10130314 DOI: 10.1186/s12348-023-00341-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/01/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Interleukin (IL)-6 is an inflammatory cytokine present in the eye during non-infectious uveitis, where it contributes to the progression of inflammation. There are two major IL-6 signaling pathways: classic signaling and trans-signaling. Classic signaling requires cellular expression of the IL-6 receptor (IL-6R), which exists in membrane-bound (mIL-6R) and soluble (sIL-6R) forms. Prevailing dogma is that vascular endothelial cells do not produce IL-6R, relying on trans-signaling during inflammation. However, the literature is inconsistent, including with respect to human retinal endothelial cells. FINDINGS We examined IL-6R transcript and protein expression in multiple primary human retinal endothelial cell isolates, and assessed the effect of IL-6 on the transcellular electrical resistance of monolayers. Using reverse transcription-polymerase chain reaction, IL-6R, mIL-6R and sIL-6R transcripts were amplified in 6 primary human retinal endothelial isolates. Flow cytometry on 5 primary human retinal endothelial cell isolates under non-permeabilizing conditions and following permeabilization demonstrated intracellular stores of IL-6R and the presence of mIL-6R. When measured in real-time, transcellular electrical resistance of an expanded human retinal endothelial cell isolate, also shown to express IL-6R, decreased significantly on treatment with recombinant IL-6 in comparison to non-treated cells across 5 independent experiments. CONCLUSIONS Our findings indicate that human retinal endothelial cells produce IL-6R transcript and functional IL-6R protein. The potential for classic signaling in human retinal endothelial cells has implications for the development of therapeutics targeted against IL-6-mediated pathology in non-infectious uveitis.
Collapse
Affiliation(s)
- Lisia Barros Ferreira
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia
| | - Liam M Ashander
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia
| | - Yuefang Ma
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia
| | - Keryn A Williams
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia
| | - Giles Best
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Flinders Medical Centre, Rm 4E-431, Bedford Park, Adelaide, SA, 5042, Australia.
| |
Collapse
|
218
|
Zhang Q, Sioud M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int J Mol Sci 2023; 24:7493. [PMID: 37108657 PMCID: PMC10138703 DOI: 10.3390/ijms24087493] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Among the innate immune cells recruited to the tumor site, macrophages are the most abundant cell population and are present at all stages of tumor progression. They undergo M1/M2 polarization in response to signals derived from TME. M1 macrophages suppress tumor growth, while their M2 counterparts exert pro-tumoral effects by promoting tumor growth, angiogenesis, metastasis, and resistance to current therapies. Several subsets of the M2 phenotype have been observed, often denoted as M2a, M2b, M2c, and M2d. These are induced by different stimuli and differ in phenotypes as well as functions. In this review, we discuss the key features of each M2 subset, their implications in cancers, and highlight the strategies that are being developed to harness TAMs for cancer treatment.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
219
|
Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. The Role of the Soluble Interleukin-6 Receptor in the Progression of Nonalcoholic Fatty Liver Disease. Bull Exp Biol Med 2023; 174:628-633. [PMID: 37052855 DOI: 10.1007/s10517-023-05759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 04/14/2023]
Abstract
The blood level of soluble IL-6 receptor was measured in patients with different clinical and morphological forms of nonalcoholic fatty liver disease and healthy donors. The relationship of the soluble IL-6 receptor with the content of IL-6, the level of the IL6 gene mRNA, and a number of markers of hepatocyte and peripheral blood leukocyte apoptosis was assessed. It has been established for the first time that progression of nonalcoholic fatty liver disease is associated with changes in the level of soluble IL-6 receptor in the blood. In patients with high activity of nonalcoholic steatohepatitis and liver cirrhosis, the blood concentration of soluble IL-6 receptor sharply decreased in comparison with the earlier stages of progression of nonalcoholic fatty liver disease (liver steatosis, nonalcoholic steatohepatitis of weak and moderate activity). This allows considering the decrease in this indicator as a new diagnostic marker for distinguishing nonalcoholic steatohepatitis of high activity from weak and moderate activity. A close correlation between changes in the level of soluble IL-6 receptor and apoptosis of peripheral blood leukocytes and hepatocytes was revealed.
Collapse
Affiliation(s)
- I V Kurbatova
- Institute of Biology, a Separate Subdivision of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia, Russia.
| | - L V Topchieva
- Institute of Biology, a Separate Subdivision of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia, Russia
| | - O P Dudanova
- Petrozavodsk State University, Petrozavodsk, Russia
| | | |
Collapse
|
220
|
Rizzi M, D'Onghia D, Tonello S, Minisini R, Colangelo D, Bellan M, Castello LM, Gavelli F, Avanzi GC, Pirisi M, Sainaghi PP. COVID-19 Biomarkers at the Crossroad between Patient Stratification and Targeted Therapy: The Role of Validated and Proposed Parameters. Int J Mol Sci 2023; 24:ijms24087099. [PMID: 37108262 PMCID: PMC10138390 DOI: 10.3390/ijms24087099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Clinical knowledge about SARS-CoV-2 infection mechanisms and COVID-19 pathophysiology have enormously increased during the pandemic. Nevertheless, because of the great heterogeneity of disease manifestations, a precise patient stratification at admission is still difficult, thus rendering a rational allocation of limited medical resources as well as a tailored therapeutic approach challenging. To date, many hematologic biomarkers have been validated to support the early triage of SARS-CoV-2-positive patients and to monitor their disease progression. Among them, some indices have proven to be not only predictive parameters, but also direct or indirect pharmacological targets, thus allowing for a more tailored approach to single-patient symptoms, especially in those with severe progressive disease. While many blood test-derived parameters quickly entered routine clinical practice, other circulating biomarkers have been proposed by several researchers who have investigated their reliability in specific patient cohorts. Despite their usefulness in specific contexts as well as their potential interest as therapeutic targets, such experimental markers have not been implemented in routine clinical practice, mainly due to their higher costs and low availability in general hospital settings. This narrative review will present an overview of the most commonly adopted biomarkers in clinical practice and of the most promising ones emerging from specific population studies. Considering that each of the validated markers reflects a specific aspect of COVID-19 evolution, embedding new highly informative markers into routine clinical testing could help not only in early patient stratification, but also in guiding a timely and tailored method of therapeutic intervention.
Collapse
Affiliation(s)
- Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Davide D'Onghia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Gavelli
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
221
|
Huang YH, Chen HK, Hsu YF, Chen HC, Chuang CH, Huang SW, Hsu MJ. Src-FAK Signaling Mediates Interleukin 6-Induced HCT116 Colorectal Cancer Epithelial–Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24076650. [PMID: 37047623 PMCID: PMC10095449 DOI: 10.3390/ijms24076650] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Colorectal cancer is one of the most prevalent and lethal malignancies, affecting approximately 900,000 individuals each year worldwide. Patients with colorectal cancer are found with elevated serum interleukin-6 (IL-6), which is associated with advanced tumor grades and is related to their poor survival outcomes. Although IL-6 is recognized as a potent inducer of colorectal cancer progression, the detail mechanisms underlying IL-6-induced colorectal cancer epithelial–mesenchymal transition (EMT), one of the major process of tumor metastasis, remain unclear. In the present study, we investigated the regulatory role of IL-6 signaling in colorectal cancer EMT using HCT116 human colorectal cancer cells. We noted that the expression of epithelial marker E-cadherin was reduced in HCT116 cells exposed to IL-6, along with the increase in a set of mesenchymal cell markers including vimentin and α-smooth muscle actin (α-SMA), as well as EMT transcription regulators—twist, snail and slug. The changes of EMT phenotype were related to the activation of Src, FAK, ERK1/2, p38 mitogen-activated protein kinase (p38MAPK), as well as transcription factors STAT3, κB and C/EBPβ. IL-6 treatment has promoted the recruitment of STAT3, κB and C/EBPβ toward the Twist promoter region. Furthermore, the Src-FAK signaling blockade resulted in the decline of IL-6 induced activation of ERK1/2, p38MAPK, κB, C/EBPβ and STAT3, as well as the decreasing mesenchymal state of HCT116 cells. These results suggested that IL-6 activates the Src-FAK-ERK/p38MAPK signaling cascade to cause the EMT of colorectal cancer cells. Pharmacological approaches targeting Src-FAK signaling may provide potential therapeutic strategies for rescuing colorectal cancer progression.
Collapse
Affiliation(s)
- Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan 324, Taiwan
| | - Hsiu-Chen Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chin-Hui Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shiu-Wen Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
222
|
Kirchner H, Weisner L, Wilms B. When should I run-the role of exercise timing in metabolic health. Acta Physiol (Oxf) 2023; 237:e13953. [PMID: 36815281 DOI: 10.1111/apha.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The prevalence of type 2 diabetes is reaching epidemic proportions. First line therapy approaches are lifestyle interventions including exercise. Although a vast amount of studies reports on beneficial effects of exercise on metabolism in humans per se, overall data are contradictory which makes it difficult to optimize interventions. Innovative exercise strategies and its underlying mechanism are needed to elucidate in order to close this therapeutic gap. The skeletal muscle produces and secretes myokines and microRNAs in response to exercise and both are discussed as mechanisms linking exercise and metabolic adaptation. Aspects of chronophysiology such as diurnal variation in insulin sensitivity or exercise as a signal to reset dysregulated peripheral clocks are of growing interest in the context of impaired metabolism. Deep insight of how exercise timing determines metabolic adaptations is required to optimize exercise interventions. This review aims to summarize the current state of research on the interaction between timing of exercise and metabolism in humans, providing insights into proposed mechanistic concepts focusing on myokines and microRNAs. First evidence points to an impact of timing of exercise on health outcome, although data are inconclusive. Underlying mechanisms remain elusive. It is currently unknown if the timed release of mykokines depends on time of day when exercise is performed. microRNAs have been found as an important mediator of processes associated with exercise adaptation. Further research is needed to evaluate their full relevance. In conclusion, it seems to be too early to provide concrete recommendations on timing of exercise to maximize beneficial effects.
Collapse
Affiliation(s)
- Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Leon Weisner
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Britta Wilms
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| |
Collapse
|
223
|
Donnenberg VS, Luketich JD, Sultan I, Lister J, Bartlett DL, Ghosh S, Donnenberg AD. A maladaptive pleural environment suppresses preexisting anti-tumor activity of pleural infiltrating T cells. Front Immunol 2023; 14:1157697. [PMID: 37063842 PMCID: PMC10097923 DOI: 10.3389/fimmu.2023.1157697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Treatment options for patients with malignant pleural effusions (MPE) are limited due, at least in part, to the unique environment of the pleural space, which drives an aggressive tumor state and governs the behavior of infiltrating immune cells. Modulation of the pleural environment may be a necessary step toward the development of effective treatments. We examine immune checkpoint molecule (ICM) expression on pleural T cells, the secretomes of pleural fluid, pleural infiltrating T cells (PIT), and ability to activate PIT ex vivo. Methods ICM expression was determined on freshly drained and in vitro activated PIT from breast, lung and renal cell cancer. Secretomics (63 analytes) of activated PIT, primary tumor cultures and MPE fluid was determined using Luminex technology. Complementary digital spatial proteomic profiling (42 analytes) of CD45+ MPE cells was done using the Nanostring GeoMx platform. Cytolytic activity was measured against autologous tumor targets. Results ICM expression was low on freshy isolated PIT; regulatory T cells (T-reg) were not detectable by GeoMx. In vitro activated PIT coexpressed PD-1, LAG-3 and TIGIT but were highly cytotoxic against autologous tumor and uniquely secreted cytokines and chemokines in the > 100 pM range. These included CCL4, CCL3, granzyme B, IL-13, TNFα, IL-2 IFNγ, GM-CSF, and perforin. Activated PIT also secreted high levels of IL-6, IL-8 and sIL-6Rα, which contribute to polarization of the pleural environment toward wound healing and the epithelial to mesenchymal transition. Addition of IL-6Rα antagonist to cultures reversed tumor EMT but did not alter PIT activation, cytokine secretion or cytotoxicity. Discussion Despite the negative environment, immune effector cells are plentiful, persist in MPE in a quiescent state, and are easily activated and expanded in culture. Low expression of ICM on native PIT may explain reported lack of responsiveness to immune checkpoint blockade. The potent cytotoxic activity of activated PIT and a proof-of-concept clinical scale GMP-expansion experiment support their promise as a cellular therapeutic. We expect that a successful approach will require combining cellular therapy with pleural conditioning using immune checkpoint blockers together with inhibitors of upstream master cytokines such as the IL-6/IL-6R axis.
Collapse
Affiliation(s)
- Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Centers, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Centers, Pittsburgh, PA, United States
| | - Ibrahim Sultan
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - John Lister
- Department of Medicine, Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - David L. Bartlett
- Drexel University College of Medicine, Philadelphia, PA, United States
- Department of Surgery, Division of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Sohini Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Albert D. Donnenberg
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Centers, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
224
|
Zegeye MM, Matic L, Lengquist M, Hayderi A, Grenegård M, Hedin U, Sirsjö A, Ljungberg LU, Kumawat AK. Interleukin-6 trans-signaling induced laminin switch contributes to reduced trans-endothelial migration of granulocytic cells. Atherosclerosis 2023; 371:41-53. [PMID: 36996622 DOI: 10.1016/j.atherosclerosis.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS Laminins are essential components of the endothelial basement membrane, which predominantly contains LN421 and LN521 isoforms. Regulation of laminin expression under pathophysiological conditions is largely unknown. In this study, we aimed to investigate the role of IL-6 in regulating endothelial laminin profile and characterize the impact of altered laminin composition on the phenotype, inflammatory response, and function of endothelial cells (ECs). METHODS HUVECs and HAECs were used for in vitro experiments. Trans-well migration experiments were performed using leukocytes isolated from peripheral blood of healthy donors. The BiKE cohort was used to assess expression of laminins in atherosclerotic plaques and healthy vessels. Gene and protein expression was analyzed using Microarray/qPCR and proximity extension assay, ELISA, immunostaining or immunoblotting techniques, respectively. RESULTS Stimulation of ECs with IL-6+sIL-6R, but not IL-6 alone, reduces expression of laminin α4 (LAMA4) and increases laminin α5 (LAMA5) expression at the mRNA and protein levels. In addition, IL-6+sIL-6R stimulation of ECs differentially regulates the release of several proteins including CXCL8 and CXCL10, which collectively were predicted to inhibit granulocyte transmigration. Experimentally, we demonstrated that granulocyte migration is inhibited across ECs pre-treated with IL-6+sIL-6R. In addition, granulocyte migration across ECs cultured on LN521 was significantly lower compared to LN421. In human atherosclerotic plaques, expression of endothelial LAMA4 and LAMA5 is significantly lower compared to control vessels. Moreover, LAMA5-to-LAMA4 expression ratio was negatively correlated with granulocytic cell markers (CD177 and myeloperoxidase (MPO)) and positively correlated with T-lymphocyte marker CD3. CONCLUSIONS We showed that expression of endothelial laminin alpha chains is regulated by IL-6 trans-signaling and contributes to inhibition of trans-endothelial migration of granulocytic cells. Further, expression of laminin alpha chains is altered in human atherosclerotic plaques and is related to intra-plaque abundance of leukocyte subpopulations.
Collapse
Affiliation(s)
- Mulugeta M Zegeye
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Assim Hayderi
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Magnus Grenegård
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Allan Sirsjö
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Liza U Ljungberg
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ashok K Kumawat
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
225
|
Zheng Y, Zhang L, Bonfili L, de Vivo L, Eleuteri AM, Bellesi M. Probiotics Supplementation Attenuates Inflammation and Oxidative Stress Induced by Chronic Sleep Restriction. Nutrients 2023; 15:nu15061518. [PMID: 36986248 PMCID: PMC10054086 DOI: 10.3390/nu15061518] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Insufficient sleep is a serious public health problem in modern society. It leads to increased risk of chronic diseases, and it has been frequently associated with cellular oxidative damage and widespread low-grade inflammation. Probiotics have been attracting increasing interest recently for their antioxidant and anti-inflammatory properties. Here, we tested the ability of probiotics to contrast oxidative stress and inflammation induced by sleep loss. Methods: We administered a multi-strain probiotic formulation (SLAB51) or water to normal sleeping mice and to mice exposed to 7 days of chronic sleep restriction (CSR). We quantified protein, lipid, and DNA oxidation as well as levels of gut-brain axis hormones and pro and anti-inflammatory cytokines in the brain and plasma. Furthermore, we carried out an evaluation of microglia morphology and density in the mouse cerebral cortex. Results: We found that CSR induced oxidative stress and inflammation and altered gut-brain axis hormones. SLAB51 oral administration boosted the antioxidant capacity of the brain, thus limiting the oxidative damage provoked by loss of sleep. Moreover, it positively regulated gut-brain axis hormones and reduced peripheral and brain inflammation induced by CSR. Conclusions: Probiotic supplementation can be a possible strategy to counteract oxidative stress and inflammation promoted by sleep loss.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino, MC, Italy
| | - Luyan Zhang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino, MC, Italy
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino, MC, Italy
| | - Luisa de Vivo
- Center for Neuroscience, University of Camerino, 62032 Camerino, MC, Italy
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino, MC, Italy
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy
- Center for Neuroscience, University of Camerino, 62032 Camerino, MC, Italy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
226
|
Tomar S, Pandey R, Surya P, Verma R, Mathur R, Gangenahalli G, Singh S. Multifunctional, Adhesive, and PDA-Coated Bioactive Glass Reinforced Composite Hydrogel for Regenerative Wound Healing. ACS Biomater Sci Eng 2023; 9:1520-1540. [PMID: 36826450 DOI: 10.1021/acsbiomaterials.2c01223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Effective wound management imposes several challenges in clinical outcomes due to the complexity of the wound microenvironment, bacterial infections, impaired angiogenesis, aggravated inflammation, and enduring pain. In addition, adhesion on wet biological tissue is another extremely challenging task. Addressing all the issues is necessary for an effective wound healing process. Herein, we developed a unique multifunctional, adhesive composite hydrogel composed of gelatin, chitosan, polydopamine-coated bioactive glass (BG), and curcumin-capped silver nanoparticles (Cur-AgNPs) to target the multifaceted complexity of the wound. The PDA-coated BG serves multiple purposes: (1) adhesivity: catechol groups of PDA and Ca ion released from BG chelate the group present in the hydrogel network and surrounding tissues, (2) angiogenesis: promotes vascularization due to the release of Si from BG, and (3) BG also serves as the "reservoir" for the pain-relieving diclofenac sodium drug with a sustained-release behavior. Cur-AgNPs provide excellent bactericidal and anti-inflammatory properties to the composite hydrogel. In situ application of the composite hydrogel could serve the purpose of a "skin biomimetic" and work as a barrier along with bactericidal properties to inhibit the microbial growth. The multifunctional composite hydrogel (MCH) targeted multiple aspects of wound repair including pain alleviation, elimination of microbes (up to 99%), reduced inflammation, high adhesivity, and increased angiogenesis for effective skin regeneration. The MCH showed excellent wound healing potential as significant wound closure was observed at day 7 and also significantly upregulated the expression of crucial genes involved in the skin regeneration process along with increasing vascularization in the wound area.
Collapse
Affiliation(s)
- Sarika Tomar
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rakesh Pandey
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Priyanka Surya
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Ranjan Verma
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rashi Mathur
- Radiological Nuclear Imaging and Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Sweta Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
227
|
Tsounidi D, Tsaousis V, Xenos N, Kroupis C, Moutsatsou P, Christianidis V, Goustouridis D, Raptis I, Kakabakos S, Petrou P. Simultaneous determination of procalcitonin and interleukin-6 in human serum samples with a point-of-care biosensing device. Talanta 2023; 258:124403. [PMID: 36889192 DOI: 10.1016/j.talanta.2023.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The simultaneous determination of two inflammatory diseases biomarkers, namely procalcitonin (PCT) and interleukin-6 (IL-6), in human serum samples employing a Point-of-Care device based on Multi Area Reflectance Spectroscopy is presented. Dual-analyte detection was achieved using silicon chips with two silicon dioxide areas of different thickness, one functionalized with an antibody specific for PCT and the other with an antibody specific for IL-6. The assay included reaction of immobilized capture antibodies with mixtures of PCT and IL-6 calibrators with the biotinylated detection antibodies, streptavidin and biotinylated-BSA. The reader provided for the automated execution of the assay procedure, as well as for the collection and processing of the reflected light spectrum, the shift of which is correlated to analytes concentration in the sample. The assay was completed in 35 min and the detection limits for PCT and IL-6 were 2.0 and 0.01 ng/mL respectively. The dual-analyte assay was characterized by high reproducibility (the intra- and inter-assay coefficients of variation were less than 10% for both analytes) and accuracy (the percent recovery values ranged from 80 to 113% for both analytes). Moreover, the values determined for the two analytes in human serum samples with the assay developed were in good agreement with the values determined for the same samples by clinical laboratory methods. These results support the potential of the proposed biosensing device application for inflammatory biomarkers determination at the Point-of-Need.
Collapse
Affiliation(s)
- Dimitra Tsounidi
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15341, Aghia, Paraskevi, Greece
| | | | - Nikolaos Xenos
- Clinical Biochemistry & Molecular Diagnostics Lab, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Chaidari, Greece
| | - Christos Kroupis
- Clinical Biochemistry & Molecular Diagnostics Lab, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Chaidari, Greece
| | - Paraskevi Moutsatsou
- Clinical Biochemistry & Molecular Diagnostics Lab, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Chaidari, Greece
| | | | - Dimitrios Goustouridis
- ThetaMetrisis, S.A., 12132, Athens, Greece; Department of Electrical & Electronics Eng., University of West Attica, 12244, Athens, Greece
| | - Ioannis Raptis
- ThetaMetrisis, S.A., 12132, Athens, Greece; Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15341, Aghia, Paraskevi, Greece
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15341, Aghia, Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15341, Aghia, Paraskevi, Greece.
| |
Collapse
|
228
|
Tejpal Singh HS, Aminuddin AA, Pang KL, Ekeuku SO, Chin KY. The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature. Pharmaceuticals (Basel) 2023; 16:ph16030385. [PMID: 36986484 PMCID: PMC10052945 DOI: 10.3390/ph16030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arthritis is a cluster of diseases impacting joint health and causing immobility and morbidity in the elderly. Among the various forms of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA) are the most common. Currently, satisfying disease-modifying agents for arthritis are not available. Given the pro-inflammatory and oxidative stress components in the pathogenesis of arthritis, tocotrienol, a family of vitamin E with both anti-inflammatory and antioxidant properties, could be joint-protective agents. This scoping review aims to provide an overview of the effects of tocotrienol on arthritis derived from the existing scientific literature. A literature search using PubMed, Scopus and Web of Science databases was conducted to identify relevant studies. Only cell culture, animal and clinical studies with primary data that align with the objective of this review were considered. The literature search uncovered eight studies investigating the effects of tocotrienol on OA (n = 4) and RA (n = 4). Most of the studies were preclinical and revealed the positive effects of tocotrienol in preserving joint structure (cartilage and bone) in models of arthritis. In particular, tocotrienol activates the self-repair mechanism of chondrocytes exposed to assaults and attenuates osteoclastogenesis associated with RA. Tocotrienol also demonstrated strong anti-inflammatory effects in RA models. The single clinical trial available in the literature showcases that palm tocotrienol could improve joint function among patients with OA. In conclusion, tocotrienol could be a potential anti-arthritic agent pending more results from clinical studies.
Collapse
Affiliation(s)
- Hashwin Singh Tejpal Singh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Alya Aqilah Aminuddin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-391459573
| |
Collapse
|
229
|
Wang Y, Han J, Yue Y, Wu Y, Zhang W, Xia W, Wu M. Purification, structure identification and immune activity of a neutral polysaccharide from Cynanchum Auriculatum. Int J Biol Macromol 2023; 237:124142. [PMID: 36972816 DOI: 10.1016/j.ijbiomac.2023.124142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
The crude polysaccharides CAPS and CAP of Cynanchum Auriculatum, which were prepared by degrading starch by single-enzymatic method (α-amylase) and double-enzymatic method (α-amylase and glucoamylase) respectively, were compared. CAP had good water solubility and higher non-starch polysaccharide content. A homogeneous neutral polysaccharide CAPW, with the degree of acetylation about 17 %, was obtained from CAP by anion exchange column chromatography. Its detailed structure was identified by various methods. CAPW, with the weight average molecular weight of 8.4 kDa, was composed of mannose, glucose, galactose, xylose, and arabinose in a molar ratio of 1.27:1.00:0.25:0.10:1.16. The backbone included β-1,4-Manp, β-1,4,6-Manp, β-1,4-Glcp and β-1,4,6-Glcp residues, with branches at the O-6 position of β-1,4,6-Manp and β-1,4,6-Glcp residues, consisting of α-T-Araf, α-1,5-Araf, α-1,2,5-Araf, α-1,3,5-Araf, T-Xylp,1,4-Xylp, β-T-Manp and β-T-Galp residues. In vitro immunological experiments suggested that CAP-W improved the phagocytic ability of macrophages, stimulated the release of NO, TNF-α and IL-6 from RAW264.7 cells, promoted the expression of NF-κB and caused nuclear translocation of NF-κB p65.
Collapse
|
230
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
231
|
Hassan M, Elzehery R, Mosaad YM, Mostafa M, Elkalla IHR, Elwasify M. Clinical characteristics of bipolar 1 disorder in relation to interleukin-6: a cross-sectional study among Egyptian patients. MIDDLE EAST CURRENT PSYCHIATRY 2023. [DOI: 10.1186/s43045-023-00297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Abstract
Background
Strong evidence in the literature points to the role of pro-inflammatory cytokines in bipolar disorder (BD) pathophysiology. Interleukin-6 (IL-6) is a pro and anti-inflammatory cytokine that was repeatedly found higher in bipolar patients than in healthy controls. However, studies on the phasic differences of IL-6 in bipolar type I (BP-I) were limited. This study aims to explore the phasic differences of serum IL-6 levels in BP-I during euthymia, depression, and mania and their association with the disease’s clinical characteristics in a sample of Egyptian BP-I patients. Thirty currently euthymic, 24 currently depressed, 29 currently manic BP-I patients, and 20 healthy subjects were recruited. Serum IL-6 levels were compared among BP-I groups and then between each group and a group of 20 healthy controls. Serum IL-6 levels (pg/ml) were measured with a sandwich enzyme-linked immunosorbent assay (ELISA). Depression and mania symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and the Young Mania Rating Scale (YMRS), respectively. Clinical characteristics were evaluated through a semi-structured clinical psychiatric interview, and cognitive status was tested using the Montreal Cognitive Assessment (MoCA).
Results
Serum IL-6 levels were significantly higher in each bipolar phase than in healthy subjects. In the BP-I patients, IL-6 levels were lower in patients with a current manic episode than in patients with a current depressive episode (P < 0.05) or who were currently euthymic (P < 0.001). Moreover, IL-6 levels correlated inversely with the YMRS score (rs = − 0.29; P < 0.05). Compared to patients without psychotic features, patients with psychotic features had decreased serum IL-6. Moreover, IL-6 levels were lower in inpatients compared to outpatients.
Conclusions
BP-I disorder is associated with an inflammatory state. The decreased levels of IL-6 during manic episodes, affective episodes with psychotic features, and their inverse correlation with the severity of mania symptoms indicate a possible anti-inflammatory role of IL-6 in mania and psychotic symptoms pathogenesis.
Collapse
|
232
|
Assessing the response of human primary macrophages to defined fibrous architectures fabricated by melt electrowriting. Bioact Mater 2023; 21:209-222. [PMID: 36101857 PMCID: PMC9440261 DOI: 10.1016/j.bioactmat.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023] Open
|
233
|
Lopes JA, Boeno CN, Paloschi MV, Silva MDS, Rego CMA, Pires WL, Santana HM, Chaves YO, Rodrigues MMDS, Lima AM, Setúbal SDS, Soares AM, Zuliani JP. Phenotypic, functional and plasticity features of human PBMCs induced by venom secreted PLA 2s. Mol Immunol 2023; 155:135-152. [PMID: 36812762 DOI: 10.1016/j.molimm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
Bothrops venom contains a high amount of secreted phospholipase A2 (sPLA2s) enzymes responsible for the inflammatory reaction and activation of leukocytes in cases of envenoming. PLA2s are proteins that have enzymatic activity and can hydrolyze phospholipids at the sn-2 position, thereby releasing fatty acids and lysophospholipids precursors of eicosanoids, which are significant mediators of inflammatory conditions. Whether these enzymes have a role in the activation and function of peripheral blood mononuclear cells (PBMCs) is not known. Here we show for the first time how two secreted PLA2s (BthTX-I and BthTX-II) isolated from the venom of Bothrops jararacussu affect the function and polarization of PBMCs. Neither BthTX-I nor BthTX-II exhibited significant cytotoxicity to isolated PBMCs compared with the control at any of the time points studied. RT-qPCR and enzyme-linked immunosorbent assays were used to determine changes in gene expression and the release of pro-inflammatory (TNF-α, IL-6, and IL-12) and anti-inflammatory (TGF-β and IL-10) cytokines, respectively, during the cell differentiation process. Lipid droplets formation and phagocytosis were also investigated. Monocytes/macrophages were labeled with anti-CD14, -CD163, and -CD206 antibodies to assay cell polarization. Both toxins caused a heterogeneous morphology (M1 and M2) on days 1 and 7 based on immunofluorescence analysis, revealing the considerable flexibility of these cells even in the presence of typical polarization stimuli. Thus, these findings indicate that the two sPLA2s trigger both immune response profiles in PBMCs indicating a significant degree of cell plasticity, which may be crucial for understanding the consequences of snake envenoming.
Collapse
Affiliation(s)
- Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Cristina Matiele Alves Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Weverson Luciano Pires
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Yury Oliveira Chaves
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Fundação Oswaldo Cruz, FIOCRUZ Amazônia, Manaus, AM, Brazil
| | - Moreno Magalhães de Souza Rodrigues
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Análise e Visualização de Dados, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson M Lima
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos, LABIOPROT, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos, LABIOPROT, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos, LABIOPROT, Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Brazil.
| |
Collapse
|
234
|
Evaluation of the Multifunctionality of Soybean Proteins and Peptides in Immune Cell Models. Nutrients 2023; 15:nu15051220. [PMID: 36904220 PMCID: PMC10005611 DOI: 10.3390/nu15051220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammatory and oxidative processes are tightly regulated by innate and adaptive immune systems, which are involved in the pathology of a diversity of chronic diseases. Soybean peptides, such as lunasin, have emerged as one of the most hopeful food-derived peptides with a positive impact on health. The aim was to study the potential antioxidant and immunomodulatory activity of a lunasin-enriched soybean extract (LES). The protein profile of LES was characterized, and its behavior under simulated gastrointestinal digestion was evaluated. Besides its in vitro radical scavenging capacity, LES and lunasin's effects on cell viability, phagocytic capacity, oxidative stress, and inflammation-associated biomarkers were investigated in both RAW264.7 macrophages and lymphocytes EL4. Lunasin and other soluble peptides enriched after aqueous solvent extraction partially resisted the action of digestive enzymes, being potentially responsible for the beneficial effects of LES. This extract scavenged radicals, reduced reactive oxygen species (ROS) and exerted immunostimulatory effects, increasing nitric oxide (NO) production, phagocytic activity, and cytokine release in macrophages. Lunasin and LES also exerted dose-dependent immunomodulatory effects on EL4 cell proliferation and cytokine production. The modulatory effects of soybean peptides on both immune cell models suggest their potential protective role against oxidative stress, inflammation, and immune response-associated disorders.
Collapse
|
235
|
Obi AT, Sharma SB, Elfline MA, Luke CE, Dowling AR, Cai Q, Kimball AS, Hollinstat M, Stanger L, Moore BB, Jaffer FA, Henke PK. Experimental venous thrombus resolution is driven by IL-6 mediated monocyte actions. Sci Rep 2023; 13:3253. [PMID: 36828892 PMCID: PMC9951841 DOI: 10.1038/s41598-023-30149-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Deep venous thrombosis and residual thrombus burden correlates with circulating IL-6 levels in humans. To investigate the cellular source and role of IL-6 in thrombus resolution, Wild type C57BL/6J (WT), and IL-6-/- mice underwent induction of VT via inferior vena cava (IVC) stenosis or stasis. Vein wall (VW) and thrombus were analyzed by western blot, immunohistochemistry, and flow cytometry. Adoptive transfer of WT bone marrow derived monocytes was performed into IL6-/- mice to assess for rescue. Cultured BMDMs from WT and IL-6-/- mice underwent quantitative real time PCR and immunoblotting for fibrinolytic factors and matrix metalloproteinase activity. No differences in baseline coagulation function or platelet function were found between WT and IL-6-/- mice. VW and thrombus IL-6 and IL-6 leukocyte-specific receptor CD126 were elevated in a time-dependent fashion in both VT models. Ly6Clo Mo/MØ were the predominant leukocyte source of IL-6. IL-6-/- mice demonstrated larger, non-resolving stasis thrombi with less neovascularization, despite a similar number of monocytes/macrophages (Mo/MØ). Adoptive transfer of WT BMDM into IL-6-/- mice undergoing stasis VT resulted in phenotype rescue. Human specimens of endophlebectomized tissue showed co-staining of Monocyte and IL-6 receptor. Thrombosis matrix analysis revealed significantly increased thrombus fibronectin and collagen in IL-6-/- mice. MMP9 activity in vitro depended on endogenous IL-6 expression in Mo/MØ, and IL-6-/- mice exhibited stunted matrix metalloproteinase activity. Lack of IL-6 signaling impairs thrombus resolution potentially via dysregulation of MMP-9 leading to impaired thrombus recanalization and resolution. Restoring or augmenting monocyte-mediated IL-6 signaling in IL-6 deficient or normal subjects, respectively, may represent a non-anticoagulant target to improve thrombus resolution.
Collapse
Affiliation(s)
- Andrea T Obi
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA.
- University of Michigan Health System, 1500 E. Medical Center Drive, Cardiovascular Center - 5463, Ann Arbor, MI, 48109-5867, USA.
| | - Sriganesh B Sharma
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Megan A Elfline
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Catherine E Luke
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Abigail R Dowling
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Qing Cai
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Andrew S Kimball
- Section of Vascular Surgery, University of Alabama Division of Vascular Surgery, University of Michigan Medical School, Ann Arbor, USA
| | - Mike Hollinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Farouc A Jaffer
- Section of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter K Henke
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
236
|
Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions. Nat Commun 2023; 14:1005. [PMID: 36813793 PMCID: PMC9947178 DOI: 10.1038/s41467-023-36694-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Acne vulgaris is a common neutrophil-driven inflammatory skin disorder in which Cutibacterium acnes (C. acnes) is known to play a key role. For decades, antibiotics have been widely employed to treat acne vulgaris, inevitably resulting in increased bacterial antibiotic resistance. Phage therapy is a promising strategy to combat the growing challenge of antibiotic-resistant bacteria, utilizing viruses that specifically lyse bacteria. Herein, we explore the feasibility of phage therapy against C. acnes. Eight novel phages, isolated in our laboratory, and commonly used antibiotics eradicate 100% of clinically isolated C. acnes strains. Topical phage therapy in a C. acnes-induced acne-like lesions mouse model affords significantly superior clinical and histological scores. Moreover, the decrease in inflammatory response was reflected by the reduced expression of chemokine CXCL2, neutrophil infiltration, and other inflammatory cytokines when compared with the infected-untreated group. Overall, these findings indicate the potential of phage therapy for acne vulgaris as an additional tool to conventional antibiotics.
Collapse
|
237
|
Diaz-Canestro C, Chen J, Liu Y, Han H, Wang Y, Honoré E, Lee CH, Lam KSL, Tse MA, Xu A. A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes. Cell Rep Med 2023; 4:100944. [PMID: 36787735 PMCID: PMC9975321 DOI: 10.1016/j.xcrm.2023.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training.
Collapse
Affiliation(s)
- Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hao Han
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Chi-Ho Lee
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
238
|
Teoh NSN, Gyanwali B, Lai MKP, Chai YL, Chong JR, Chong EJY, Chen C, Tan CS, Hilal S. Association of Interleukin-6 and Interleukin-8 with Cognitive Decline in an Asian Memory Clinic Population. J Alzheimers Dis 2023; 92:445-455. [PMID: 36776060 DOI: 10.3233/jad-220971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Neuroinflammation has been postulated to play an important role in cognitive impairment, cognitive decline, and dementia. Inflammatory biomarkers such as interleukin-6 (IL-6) and IL-8 are found to be associated with the neuro-inflammatory process and worse cognitive function. However, it is unknown whether these interleukins are associated with long-term cognitive function. OBJECTIVE To investigate the association of baseline IL-6 and IL-8 with cognitive function at baseline as well as its association with cognitive decline over five-year follow-up. METHODS 387 patients were recruited from an ongoing memory clinic-based study who underwent comprehensive physical, medical, neuropsychological and blood assessments together with brain MRI. IL-6 and IL-8 were measured using LUMINEX assays. The National Institute of Neurological Disorders and Stroke-Canadian Stroke Network neuropsychological battery was used to assess cognitive decline across multiple domains. RESULTS Among the 387 (mean age = 72.9 years and 53.7% males) participants, 322 had at least two follow-up assessments and were included in the longitudinal analysis. Negative linear trend associations were found between tertiles of IL-8 with baseline global cognition (p-trend< 0.001), attention (p-trend = 0.005), executive function (p-trend< 0.001), and visuospatial function (p-trend = 0.002) domains. No association was found between baseline IL-8 and cognitive decline. IL-6 was not associated with both baseline and follow-up cognition. CONCLUSION IL-8 was associated with worse cognition especially in attention, executive function, and visuospatial function, suggesting the role of neuroinflammation in cognitive impairment. Hence, blood inflammatory biomarkers may be useful indicators in identifying patients at risk of cognitive impairment and warrant consideration for inclusion in treatment trials.
Collapse
Affiliation(s)
- Nicole Shu Ning Teoh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System, Singapore
| | - Mitchell K P Lai
- Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Yuek Ling Chai
- Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Joyce R Chong
- Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| | - Eddie Jun Yi Chong
- Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore
| | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
239
|
Lee HJ, Kim HJ, Ko JH, Oh JY. Myeloid cells protect corneal nerves against sterile injury through negative-feedback regulation of TLR2-IL-6 axis. J Neuroinflammation 2023; 20:27. [PMID: 36750851 PMCID: PMC9903461 DOI: 10.1186/s12974-023-02710-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Mounting evidence suggests that the immune system plays detrimental or protective roles in nerve injury and repair. MAIN BODY Herein we report that both CD11bhiLy6Ghi and CD11bhiLy6ChiLy6Glo myeloid cells are required to protect corneal nerves against sterile corneal injury. Selective depletion of CD11bhiLy6Ghi or CD11bhiLy6ChiLy6Glo cells resulted in aggravation of corneal nerve loss, which correlated with IL-6 upregulation. IL-6 neutralization preserved corneal nerves while reducing myeloid cell recruitment. IL-6 replenishment exacerbated corneal nerve damage while recruiting more myeloid cells. In mice lacking Toll-like receptor 2 (TLR2), the levels of IL-6 and myeloid cells were decreased and corneal nerve loss attenuated, as compared to wild-type and TLR4 knockout mice. Corneal stromal fibroblasts expressed TLR2 and produced IL-6 in response to TLR2 stimulation. CONCLUSION Collectively, our data suggest that CD11bhiLy6Ghi and CD11bhiLy6ChiLy6Glo myeloid cells confer corneal nerve protection under sterile injury by creating a negative-feedback loop to suppress the upstream TLR2-IL-6 axis that drives corneal nerve loss.
Collapse
Affiliation(s)
- Hyun Ju Lee
- grid.412484.f0000 0001 0302 820XLaboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 South Korea
| | - Hyeon Ji Kim
- grid.412484.f0000 0001 0302 820XLaboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 South Korea
| | - Jung Hwa Ko
- grid.412484.f0000 0001 0302 820XLaboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 South Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea. .,Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
| |
Collapse
|
240
|
Song M, Wang Y, Annex BH, Popel AS. Experiment-based Computational Model Predicts that IL-6 Trans-Signaling Plays a Dominant Role in IL-6 mediated signaling in Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526721. [PMID: 36778489 PMCID: PMC9915676 DOI: 10.1101/2023.02.03.526721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory cytokine mediated responses are important in the development of many diseases that are associated with angiogenesis. Targeting angiogenesis as a prominent strategy has shown limited effects in many contexts such as peripheral arterial disease (PAD) and cancer. One potential reason for the unsuccessful outcome is the mutual dependent role between inflammation and angiogenesis. Inflammation-based therapies primarily target inflammatory cytokines such as interleukin-6 (IL-6) in T cells, macrophages, cancer cells, muscle cells, and there is a limited understanding of how these cytokines act on endothelial cells. Thus, we focus on one of the major inflammatory cytokines, IL-6, mediated intracellular signaling in endothelial cells by developing a detailed computational model. Our model quantitatively characterized the effects of IL-6 classic and trans-signaling in activating the signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and mitogen-activated protein kinase (MAPK) signaling to phosphorylate STAT3, extracellular regulated kinase (ERK) and Akt, respectively. We applied the trained and validated experiment-based computational model to characterize the dynamics of phosphorylated STAT3 (pSTAT3), Akt (pAkt), and extracellular regulated kinase (pERK) in response to IL-6 classic and/or trans-signaling. The model predicts that IL-6 classic and trans-signaling induced responses are IL-6 and soluble IL-6 receptor (sIL-6R) dose-dependent. Also, IL-6 trans-signaling induces stronger downstream signaling and plays a dominant role in the overall effects from IL-6. In addition, both IL-6 and sIL-6R levels regulate signaling strength. Moreover, our model identifies the influential species and kinetic parameters that specifically modulate the pSTAT3, pAkt, and pERK responses, which represent potential targets for inflammatory cytokine mediated signaling and angiogenesis-based therapies. Overall, the model predicts the effects of IL-6 classic and/or trans-signaling stimulation quantitatively and provides a framework for analyzing and integrating experimental data. More broadly, this model can be utilized to identify targets that influence inflammatory cytokine mediated signaling in endothelial cells and to study the effects of angiogenesis- and inflammation-based therapies.
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 21205
| | - Youli Wang
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, Georgia, USA 30912
| | - Brian H. Annex
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, Georgia, USA 30912
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 21205
| |
Collapse
|
241
|
Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, Joyce SA, Gahan CGM, Houston A, Hyland NP. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer 2023; 128:528-536. [PMID: 36418894 PMCID: PMC9938136 DOI: 10.1038/s41416-022-02062-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. METHODS Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. RESULTS The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. CONCLUSION The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
Collapse
Affiliation(s)
- J M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - C J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - P Cronin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - K Baker
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Pathology, University College Cork, Cork, Ireland
| | - S Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - S A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - A Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| | - N P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
242
|
Queiroz MB, Inada RNH, Jampani JLDA, Guerreiro-Tanomaru JM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Biocompatibility and bioactive potential of an experimental tricalcium silicate-based cement in comparison with Bio-C repair and MTA Repair HP materials. Int Endod J 2023; 56:259-277. [PMID: 36314136 DOI: 10.1111/iej.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
AIM To evaluate the tissue reaction of a tricalcium silicate-based repair material associated with 30% calcium tungstate (TCS + CaWO4 ) in comparison to Bio-C Repair (Bio-C; Angelus) and to MTA Repair HP (MTA HP; Angelus). METHODOLOGY Polyethylene tubes filled with one of the materials or left empty (control group, CG) were implanted into the subcutaneous tissues of rats for 7, 15, 30 and 60 days (n = 32/group). The capsule thickness, number of inflammatory cells, collagen content, interleukin-6 (IL-6), osteocalcin (OCN), von Kossa reaction and analysis under polarized light were evaluated. The data were subjected to generalized linear models for repeated measures, except the OCN. OCN data were submitted to Kruskal-Wallis and Dunn's post hoc test and Friedman followed by Nemenyi's test at significance level of 5%. RESULTS At all time points, significant differences in the number of inflammatory cells were not observed between TCS + CaWO4 and Bio-C, whereas, at 15, 30 and 60 days, no significant difference was detected between TCS + CaWO4 and MTA HP. At all periods, significant differences were not detected in the number of fibroblasts in TCS + CaWO4 versus MTA HP, and, at 60 days, no significant difference was demonstrated between these groups and CG. Significant differences in the immunoexpression of IL-6 were not detected amongst bioceramic materials at all periods. From 7 to 60 days, significant reduction in the number of inflammatory cells, number of IL-6-immunopositive cells and in the capsule thickness was accompanied by significant increase in the collagen in all groups. OCN-immunolabelled cells, von Kossa-positive structures and amorphous calcite deposits were observed around all materials, whereas, in the CG, these structures were not seen. CONCLUSIONS These findings indicate that the experimental material (TCS + CaWO4 ) is biocompatible and has a bioactive potential, similar to the MTA HP and Bio-C Repair, and suggest its use as a root repair material.
Collapse
Affiliation(s)
| | - Rafaela N H Inada
- Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - José Leandro de Abreu Jampani
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mário Tanomaru-Filho
- Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
243
|
Yang L, Guo P, Wang P, Wang W, Liu J. IL-6/ERK signaling pathway participates in type I IFN-programmed, unconventional M2-like macrophage polarization. Sci Rep 2023; 13:1827. [PMID: 36726024 PMCID: PMC9892596 DOI: 10.1038/s41598-022-23721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/03/2022] [Indexed: 02/03/2023] Open
Abstract
Type I interferons (IFN-Is) have been harnessed for cancer therapies due to their immunostimulatory functions. However, certain tumor-tolerating activities by IFN-Is also exist, and may potentially thwart their therapeutic effects. In this respect, our previous studies have demonstrated a monocyte-orchestrated, IFN-I-to-IL-4 cytokine axis, which can subsequently drive M2-skewed pro-tumoral polarization of macrophages. Whether other IFN-dependent signals may also contribute to such an unconventional circumstance of M2-like macrophage skewing remain unexplored. Herein, we first unveil IL-6 as another ligand that participates in IFN-dependent induction of a typical M2 marker (ARG1) in transitional monocytes. Indeed, IL-6 significantly promotes IL-4-dependent induction of a major group of prominent M2 markers in mouse bone marrow-derived macrophages (BMDMs) and human peripheral blood-derived macrophages, while it alone does not engage marked increases of these markers. Such a pattern of regulation is confirmed globally by RNAseq analyses in BMDMs, which in turn suggests an association of IL-6-amplified subset of M2 genes with the ERK1/2 signaling pathway. Interestingly, pharmacological experiments establish the role of SHP2-ERK cascade in mediating IL-6's enhancement effect on these M2 targets. Similar approaches also validate the involvement of IL-6/ERK signaling in promoting the IFN-dependent, unconventional M2-skewing phenotype in transitional monocytes. Furthermore, an inhibitor of ERK signaling cooperates with an IFN-I inducer to enable a greater antitumor effect, which correlates with suppression of treatment-elicited ARG1. The present work establishes a role of IL-6/ERK signaling in promoting M2-like macrophage polarization, and suggests this axis as a potential therapeutic target for combination with IFN-I-based cancer treatments.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Wei Wang
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China. .,The First People's Hospital of Yancheng, Yancheng, 224006, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
244
|
Easson GWD, Savadipour A, Anandarajah A, Iannucci LE, Lake SP, Guilak F, Tang SY. Modulation of TRPV4 protects against degeneration induced by sustained loading and promotes matrix synthesis in the intervertebral disc. FASEB J 2023; 37:e22714. [PMID: 36583692 DOI: 10.1096/fj.202201388r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue-level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short- (hours) and long-term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+ flux propagating across the cells within the IVD. Nuclear factor (NF)-κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)-6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF-κB activity, IL-6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected against IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short- and long-term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load-induced IVD degeneration.
Collapse
Affiliation(s)
- Garrett W D Easson
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alireza Savadipour
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriner's Hospital for Children - St. Louis, St. Louis, Missouri, USA
| | - Akila Anandarajah
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Leanne E Iannucci
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Farshid Guilak
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriner's Hospital for Children - St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Simon Y Tang
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
245
|
Verma S, Verma S, Khan FH, Siddiqi Z, Raza ST, Abbas M, Mahdi F. Genetic polymorphisms of IL6 gene -174G > C and -597G > A are associated with the risk of COVID-19 severity. Int J Immunogenet 2023; 50:5-11. [PMID: 36323530 PMCID: PMC9878250 DOI: 10.1111/iji.12605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is pro-inflammatory disorder characterized by acute respiratory distress syndrome. Interleukin-6, a cytokine secreted by macrophages, which mediates an inflammatory response, is frequently increased and associated with the severity in COVID-19 patients. The differential expression of IL6 cytokine in COVID-19 patients may be associated with the presence of single nucleotide polymorphisms (SNPs) in regulatory region of cytokine genes. The aim of this study is to investigate the role of two promoter polymorphisms of the IL6 gene (-597G > A and -174G > C) with the severity of COVID-19. The study included 242 patients, out of which 97 patients with severe symptoms and 145 patients with mild symptoms of COVID-19. Genotyping of two selected SNPs, rs1800795 (-174G > C) and rs1800797 (-597G > A) of promoter region of IL6 gene, was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In our study, individuals with GC genotypes of IL6 (-174G > C) polymorphism showed significantly higher risk of severity [adjusted odds (OR) 3.86, p <.001] but we did not observe any association of COVID-19 severity with rs1800797 (-597G > A) polymorphism. The COVID-19 severity was significantly higher in individuals having 'C' allele of IL6 (-174G > C) polymorphism (p = .014). Linkage disequilibrium between rs1800795 (-174G > C) and rs1800797 (-597G > A) showed that individuals having AC* haplotype significantly association with COVID-19 severity (p = .034). Our results suggest that 'C' allele of rs1800795 (-174G > C) polymorphism of IL6 may be the risk allele for severity of COVID-19 in North Indian population.
Collapse
Affiliation(s)
- Shrikant Verma
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
| | - Sushma Verma
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
| | | | - Zeba Siddiqi
- Department of MedicineEras Lucknow Medical College and HospitalEra UniversityLucknowUttar PradeshIndia
| | - Syed Tasleem Raza
- Department of BiochemistryEras Lucknow Medical College and HospitalEra UniversityLucknowUttar PradeshIndia
| | - Mohammad Abbas
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia,Department of MicrobiologyEra UniversityLucknowUttar PradeshIndia
| | - Farzana Mahdi
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
| |
Collapse
|
246
|
Kim JY, Seo SM, Kim HW, Lee WJ, Choi YK. Protective Role of the Toll-Like Receptor 5 Agonist KMRC011 against Murine Colitis Induced by Citrobacter rodentium and Dextran Sulfate Sodium. J Microbiol Biotechnol 2023; 33:35-42. [PMID: 36457188 PMCID: PMC9895994 DOI: 10.4014/jmb.2209.09048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to identify the therapeutic ability of a novel toll-like receptor (TLR) 5 agonist, KMRC011, on ulcerative colitis induced by Citrobacter rodentium and dextran sulfate sodium in a C57BL/6N mouse model. Ulcerative colitis was induced in the mice by the oral administration of 1% dextran sulfate sodium in sterile drinking water for seven days ad libitum, followed by C. rodentium infection on the seventh day by intra-gastric administration (DSS-CT group). KMRC011 was administered intramuscularly at both 24 h and 15 min before (Treatment 1 group), and at both 15 min and 24 h after (Treatment 2 group) the C. rodentium infection. The length of the large intestine and histopathological counts were significantly greater and mucosal thickness was significantly thinner in the Treatment 1 group compared to the DSS-CT and Treatment 2 groups. Il-6 and Il-10 mRNA expression levels were upregulated, while Ifn-γ and Tnf-α mRNA expression levels were significantly downregulated in the Treatment 1 group, compared to the DSS-CT group. NF-κB p65 expression level was elevated due to ulcerative colitis in the DSS-CT group, but was significantly downregulated in the Treatment 1 group. Overall, KMRC011 showed protective effects against murine colitis by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Jun-Young Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea,GC Biopharma Corporation, Gyeonggi-do, 16924, Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Han-Woong Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea,Regenerative Dental Medicine Institute, Hysensbio, Gyeonggi-do, 13814, Republic of Korea
| | - Woo-Jong Lee
- CONNEXT Co. Ltd, Daegu, 41061, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6113 Fax: +82-2-450-3037 E-mail:
| |
Collapse
|
247
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
248
|
Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives. Int J Mol Sci 2023; 24:ijms24032079. [PMID: 36768404 PMCID: PMC9917083 DOI: 10.3390/ijms24032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
Collapse
|
249
|
Differential Effects of Cytokine Versus Hypoxic Preconditioning of Human Mesenchymal Stromal Cells in Pulmonary Sepsis Induced by Antimicrobial-Resistant Klebsiella pneumoniae. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Pulmonary sepsis is a leading cause of hospital mortality, and sepses arising from antimicrobial-resistant (AMR) bacterial strains are particularly difficult to treat. Here we investigated the potential of mesenchymal stromal cells (MSCs) to combat established Klebsiella pneumoniae pneumosepsis and further evaluated MSC preconditioning and pre-activation methods. Methods: The potential for naïve and preconditioned MSCs to enhance wound healing, reduce inflammation, preserve metabolic activity, and enhance bacterial killing was assessed in vitro. Rats were subjected to intratracheal K. pneumoniae followed by the intravenous administration of MSCs. Physiological indices, blood, bronchoalveolar lavage (BAL), and tissues were obtained 72 h later. Results: In vitro assays confirmed that preconditioning enhances MSC function, accelerating pulmonary epithelial wound closure, reducing inflammation, attenuating cell death, and increasing bacterial killing. Cytomix-pre-activated MSCs are superior to naïve and hypoxia-exposed MSCs in attenuating Klebsiella pneumosepsis, improving lung compliance and oxygenation, reducing bacteria, and attenuating histologic injuries in lungs. BAL inflammatory cytokines were reduced, correlating with decreases in polymorphonuclear (PMN) cells. MSCs increased PMN apoptosis and the CD4:CD8 ratio in BAL. Systemically, granulocytes, classical monocytes, and the CD4:CD8 ratio were reduced, and nonclassical monocytes were increased. Conclusions: Preconditioning with cytokines, but not hypoxia, enhances the therapeutic potential of MSCs in clinically relevant models of K. pneumoniae-induced pneumosepsis.
Collapse
|
250
|
Zamri NA, Ghani N, Ismail CAN, Zakaria R, Shafin N. Honey on brain health: A promising brain booster. Front Aging Neurosci 2023; 14:1092596. [PMID: 36733498 PMCID: PMC9887050 DOI: 10.3389/fnagi.2022.1092596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Since ancient times, honey has been employed in many aspects of everyday life, the most popular of which is as a natural sweetener. Honey is used not only as a nutritional product but also in health as a supplement and in various applications, especially related to brain booster health. Brain health is the capacity to carry out all mental functions necessary for cognition, such as learning and judging, utilizing language, and recalling. This review presents the current trend of research on honey, particularly the interest in underlying mechanisms related to brain booster health. A total of 34 original articles addressing brain health from the consumption of honey were analyzed. We identified four main brain health benefits, which are memory booster, neuroprotective effect, anti-stress, and anti-nociceptive potentials with the proposed underlying mechanism. A lot of attention has been paid to the role that honey plays in brain health research, with the goal of examining the link between honey and brain health as well as the mechanism underlying it, the findings from this review may be potentially beneficial to develop new therapeutic roles for honey to help determine the best and most promising to benefit and boost overall brain health.
Collapse
Affiliation(s)
- Nurul Ashykin Zamri
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurhafizah Ghani
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia,*Correspondence: Nazlahshaniza Shafin,
| |
Collapse
|