201
|
Rodríguez Mesa XM, Contreras Bolaños LA, Modesti Costa G, Mejia AL, Santander González SP. A Bidens pilosa L. Non-Polar Extract Modulates the Polarization of Human Macrophages and Dendritic Cells into an Anti-Inflammatory Phenotype. Molecules 2023; 28:7094. [PMID: 37894572 PMCID: PMC10608814 DOI: 10.3390/molecules28207094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Different communities around the world traditionally use Bidens pilosa L. for medicinal purposes, mainly for its anti-inflammatory, antinociceptive, and antioxidant properties; it is used as an ingredient in teas or herbal medicines for the treatment of pain, inflammation, and immunological disorders. Several studies have been conducted that prove the immunomodulatory properties of this plant; however, it is not known whether the immunomodulatory properties of B. pilosa are mediated by its ability to modulate antigen-presenting cells (APCs) such as macrophages (MØs) and dendritic cells (DCs) (through polarization or the maturation state, respectively). Different polar and non-polar extracts and fractions were prepared from the aerial part of B. pilosa. Their cytotoxic and immunomodulatory effects were first tested on human peripheral blood mononuclear cells (PBMCs) and phytohemagglutinin (PHA)-stimulated PBMCs, respectively, via an MTT assay. Then, the non-cytotoxic plant extracts and fractions that showed the highest immunomodulatory activity were selected to evaluate their effects on human MØ polarization and DC maturation (cell surface phenotype and cytokine secretion) through multiparametric flow cytometry. Finally, the chemical compounds of the B. pilosa extract that showed the most significant immunomodulatory effects on human APCs were identified using gas chromatography coupled with mass spectrometry. The petroleum ether extract and the ethyl acetate and hydroalcoholic fractions obtained from B. pilosa showed low cytotoxicity and modulated the PHA-stimulated proliferation of PBMCs. Furthermore, the B. pilosa petroleum ether extract induced M2 polarization or a hybrid M1/M2 phenotype in MØs and a semi-mature status in DCs, regardless of exposure to a maturation stimulus. The immunomodulatory activity of the non-polar (petroleum ether) extract of B. pilosa on human PBMC proliferation, M2 polarization of MØs, and semi-mature status in DCs might be attributed to the low-medium polarity components in the extract, such as phytosterol terpenes and fatty acid esters.
Collapse
Affiliation(s)
| | | | - Geison Modesti Costa
- Phytochemistry Research Group (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Antonio Luis Mejia
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá 111161, Colombia
| | | |
Collapse
|
202
|
Gao Q, Li X, Li Y, Long J, Pan M, Wang J, Yang F, Zhang Y. Bibliometric analysis of global research trends on regulatory T cells in neurological diseases. Front Neurol 2023; 14:1284501. [PMID: 37900596 PMCID: PMC10603183 DOI: 10.3389/fneur.2023.1284501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
This bibliometric study aimed to summarize and visualize the current research status, emerging trends, and research hotspots of regulatory T (Treg) cells in neurological diseases. Relevant documents were retrieved from the Web of Science Core Collection. Tableau Public, VOSviewer, and CiteSpace software were used to perform bibliometric analysis and network visualization. A total of 2,739 documents were included, and research on Treg cells in neurological diseases is still in a prolific period. The documents included in the research were sourced from 85 countries/regions, with the majority of them originating from the United States, and 2,811 organizations, with a significant proportion of them coming from Harvard Medical School. Howard E Gendelman was the most prolific author in this research area. Considering the number of documents and citations, impact factors, and JCR partitions, Frontiers in Immunology was the most popular journal in this research area. Keywords "multiple sclerosis," "inflammation," "regulatory T cells," "neuroinflammation," "autoimmunity," "cytokines," and "immunomodulation" were identified as high-frequency keywords. Additionally, "gut microbiota" has recently emerged as a new topic of interest. The study of Treg cells in neurological diseases continues to be a hot topic. Immunomodulation, gut microbiota, and cytokines represent the current research hotspots and frontiers in this field. Treg cell-based immunomodulatory approaches have shown immense potential in the treatment of neurological diseases. Modifying gut microbiota or regulating cytokines to boost the numbers and functions of Treg cells represents a promising therapeutic strategy for neurological diseases.
Collapse
Affiliation(s)
- Qian Gao
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junzi Long
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyang Pan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Fangjie Yang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yasu Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
203
|
Glaubitz J, Asgarbeik S, Lange R, Mazloum H, Elsheikh H, Weiss FU, Sendler M. Immune response mechanisms in acute and chronic pancreatitis: strategies for therapeutic intervention. Front Immunol 2023; 14:1279539. [PMID: 37881430 PMCID: PMC10595029 DOI: 10.3389/fimmu.2023.1279539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
204
|
Hung M, Kelly R, Mohajeri A, Reese L, Badawi S, Frost C, Sevathas T, Lipsky MS. Factors Associated with Periodontitis in Younger Individuals: A Scoping Review. J Clin Med 2023; 12:6442. [PMID: 37892578 PMCID: PMC10607667 DOI: 10.3390/jcm12206442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Periodontitis is a disease that affects many young adults, and if left untreated, it can have lasting and permanent effects on an individual's oral health. The purpose of this scoping review was to review the recent literature to identify factors that place young individuals at risk of stage II or III periodontitis. Using the PRISMA guidelines for scoping reviews, three databases were systematically searched for peer-reviewed human studies published in English that investigated risk factors associated with stage II and/or III periodontitis in individuals less than 40 years of age. This review excluded abstracts, literature reviews, including narrative, scoping, and systematic reviews and meta-analyses, conference proceedings, letters to the editor, and editorials. The authors then extracted data from the relevant studies using a predefined form to summarize the aims, design, results, risk factors examined, and the type and severity of periodontitis. Among a total of 2676 articles screened, only three articles met the review's inclusion criteria. Of these articles, one was a longitudinal case-control study and two were cross-sectional studies. Identified risk factors associated with stage II or III periodontitis included self-reported bleeding when brushing, low bone mineral density, being overweight, and smoking in young adults. Of note, only three studies met the inclusion criteria, suggesting a gap in the research literature.
Collapse
Affiliation(s)
- Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Department of Orthopaedic Surgery Operations, University of Utah, Salt Lake City, UT 84112, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Roah Kelly
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Amir Mohajeri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Logan Reese
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Sarah Badawi
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Cole Frost
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Taroniar Sevathas
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Martin S. Lipsky
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Institute on Aging, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
205
|
Luo Z, Xu Y, Qiu L, Lv S, Zeng C, Tan A, Ou D, Song X, Yang J. Optimization of ultrasound-assisted extraction based on response surface methodology using HPLC-DAD for the analysis of red clover ( Trifolium pretense L.) isoflavones and its anti-inflammatory activities on LPS-induced 3D4/2 cell. Front Vet Sci 2023; 10:1279178. [PMID: 37854095 PMCID: PMC10580807 DOI: 10.3389/fvets.2023.1279178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Trifolium pratense L. has anti-inflammatory, antioxidant, cardiovascular disease prevention, and estrogen-like effects. The existing method for the assay of effective components is commonly based on a spectrophotometer, which could not meet the requirement of quality control. Furthermore, although there have been many studies on the anti-inflammation effect of red clover, a few have been reported on the regulatory effect of red clover isoflavones (RCI) on lipopolysaccharide (LPS)-induced inflammatory response in porcine alveolar macrophages (3D4/2 cells), and its mechanism of action is still unclear. Methods The main components of RCI including daidzein, genistein, and biochanin A were accurately quantified by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) after optimizing the extraction process through response surface methodology. The anti-inflammatory potential of RCI was carried out by detecting the level of inflammatory cytokines and mRNA expression of related genes. Furthermore, its anti-inflammatory mechanism was explored by investigating two signaling pathways (NF-κB and MAPK). Results The optimal extraction conditions of RCI were as follows: the concentration of ethanol is 86% and the solid-liquid ratio is 1:29, with the herb particle size of 40 mesh sieve. Under the optimal conditions, the total extraction of target components of RCI was 2,641.469 μg/g. The RCI could significantly suppress the production and expression of many pro-inflammatory cytokines. The results of the Western blot revealed that RCI dramatically reduced the expression of p65, p-p65, IκB-α, p38, and p-p38. These results are associated with the suppression of the signal pathway of p38 MAPK, and on the contrary, activating the NF-κB pathway. Collectively, our data demonstrated that RCI reversed the transcription of inflammatory factors and inhibited the expression of p65, p-p65, IκB-α, and p38, indicating that RCI had excellent anti-inflammatory properties through disturbing the activation of p38 MAPK and NF-κB pathways. Conclusion The extraction conditions of RCI were optimized by HPLC-DAD combined with response surface methodology, which will contribute to the quality control of RCI. RCI had anti-inflammatory effects on the LPS-induced 3D4/2 cells. Its mechanism is to control the activation of NF-κB and p38 MAPK pathways, thereby reducing the expression of inflammatory-related genes and suppressing the release of cytokines.
Collapse
Affiliation(s)
- Zhengqin Luo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yidan Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Longxin Qiu
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology in Fujian Province, Longyan University, Longyan, Fujian, China
| | - Shiming Lv
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Zeng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Aijuan Tan
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
206
|
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of premature birth, imposing a significant and potentially life-long burden on patients and their families. Despite advances in our understanding of the mechanisms that contribute to patterns of lung injury and dysfunctional repair, current therapeutic strategies remain non-specific with limited success. Contemporary definitions of BPD continue to rely on clinician prescribed respiratory support requirements at specific time points. While these criteria may be helpful in broadly identifying infants at higher risk of adverse outcomes, they do not offer any precise information regarding the degree to which each compartment of the lung is affected. In this review we will outline the different pulmonary phenotypes of BPD and discuss important features in the pathogenesis, clinical presentation, and management of these frequently overlapping scenarios.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
207
|
Edsfeldt A, Gonçalves I, Vigren I, Jovanović A, Engström G, Shore AC, Natali A, Khan F, Nilsson J. Circulating soluble IL-6 receptor associates with plaque inflammation but not with atherosclerosis severity and cardiovascular risk. Vascul Pharmacol 2023; 152:107214. [PMID: 37634789 DOI: 10.1016/j.vph.2023.107214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The residual cardiovascular risk in subjects receiving guideline-recommended therapy is related to persistent vascular inflammation and IL-6 represents a target for its treatment. IL-6 binds to receptors on leukocytes and hepatocytes and/or by forming complexes with soluble IL-6 receptors (sIL-6R) binding to gp130 which is present on all cells. Here we aimed to estimate the associations of these two pathways with risk of cardiovascular disease (CVD). METHODS IL-6 and sIL-6R were analyzed using the proximity extension assay. Baseline plasma samples were obtained from participants in the prospective Malmö Diet and Cancer (MDC) study (n = 4661), the SUMMIT VIP study (n = 1438) and the Carotid Plaque Imaging Project (CPIP, n = 285). Incident clinical events were obtained through national registers. Plaques removed at surgery were analyzed by immunohistochemistry and biochemical methods. RESULTS During 23.1 ± 7.0 years follow-up, 575 subjects in the MDC cohort suffered a first myocardial infarction. Subjects in the highest tertile of IL-6 had an increased risk compared to the lowest tertile (HR and 95% CI 2.60 [2.08-3.25]). High plasma IL-6 was also associated with more atherosclerosis, increased arterial stiffness, and impaired endothelial function in SUMMIT VIP, but IL-6 was only weakly associated with plaque inflammation in CPIP. sIL-6R showed no independent association with risk of myocardial infarction, atherosclerosis severity or vascular function, but was associated with plaque inflammation. CONCLUSIONS Our findings show that sIL-6R is a poor marker of CVD risk and associated vascular changes. However, the observation that sIL-6R reflects plaque inflammation highlights the complexity of the role of IL-6 in CVD.
Collapse
Affiliation(s)
- Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Cardiology, Skåne University Hospital, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Sweden; Department of Cardiology, Skåne University Hospital, Sweden
| | - Isa Vigren
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Anja Jovanović
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Faisel Khan
- Division of Systems Medicine, University of Dundee, Dundee, UK
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden.
| |
Collapse
|
208
|
Tran QH, Nguyen QT, Tran TTN, Tran TD, Le MT, Trinh DTT, Tran VT, Tran VH, Thai KM. Identification of small molecules as potential inhibitors of interleukin 6: a multi-computational investigation. Mol Divers 2023; 27:2315-2330. [PMID: 36319930 PMCID: PMC9628397 DOI: 10.1007/s11030-022-10558-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could form strong interactions and build stable protein-ligand complexes with IL-6. These potential compounds may serve as a basis for further developing small molecule IL-6 inhibitors in the future.
Collapse
Affiliation(s)
- Que-Huong Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
- Department of Pharmaceutical Chemistry Da, Nang University of Medical Technology and Pharmacy, Da Nang, 500000 Vietnam
| | - Quoc-Thai Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
| | - Thi-Thuy Nga Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
- Department of Pharmaceutical Chemistry Da, Nang University of Medical Technology and Pharmacy, Da Nang, 500000 Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
| | - Minh-Tri Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung Ward., Thu Duc Dist., Ho Chi Minh City, 700000 Vietnam
| | - Dieu-Thuong Thi Trinh
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 100000 Vietnam
| | - Van-Thanh Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
| | - Viet-Hung Tran
- Institute of Drug Quality Control Ho Chi Minh City, Ho Chi Minh City, 100000 Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang St., Dist. 1, Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
209
|
da Silva Nascimento M, Dos Santos PH, de Abreu FF, Shan AYKV, Amaral RG, Andrade LN, Souto EB, Santos MIS, de Souza Graça A, Souza JB, Raimundo E Silva JP, Tavares JF, de Oliveira E Silva AM, Correa CB, Montalvão MM, Piacente S, Pizza C, Camargo EA, Dos Santos Estevam C. Schinus terebinthifolius Raddi (Brazilian pepper) leaves extract: in vitro and in vivo evidence of anti-inflammatory and antioxidant properties. Inflammopharmacology 2023; 31:2505-2519. [PMID: 37639162 PMCID: PMC10518276 DOI: 10.1007/s10787-023-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of ethyl acetate extract obtained from the leaves of Brazilian peppertree Schinus terebinthifolius Raddi (EAELSt). Total phenols and flavonoids, chemical constituents, in vitro antioxidant activity (DPPH and lipoperoxidation assays), and cytotoxicity in L929 fibroblasts were determined. In vivo anti-inflammatory and antioxidant properties were evaluated using TPA-induced ear inflammation model in mice. Phenol and flavonoid contents were 19.2 ± 0.4 and 93.8 ± 5.2 of gallic acid or quercetin equivalents/g, respectively. LC-MS analysis identified 43 compounds, of which myricetin-O-pentoside and quercetin-O-rhamnoside were major peaks of chromatogram. Incubation with EAELSt decreased the amount of DPPH radical (EC50 of 54.5 ± 2.4 µg/mL) and lipoperoxidation at 200-500 µg/mL. The incubation with EAELSt did not change fibroblast viability up to 100 µg/mL. Topical treatment with EAELSt significantly reduced edema and myeloperoxidase activity at 0.3, 1, and 3 mg/ear when compared to the vehicle-treated group. In addition, EAELSt decreased IL-6 and TNF-α levels and increased IL-10 levels. Besides, it modulated markers of oxidative stress (reduced total hydroperoxides and increased sulfhydryl contents and ferrium reduction potential) and increased the activity of catalase and superoxide dismutase, without altering GPx activity.
Collapse
Affiliation(s)
- Marcel da Silva Nascimento
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Péligris H Dos Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Fabiula F de Abreu
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Andrea Y K V Shan
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Ricardo G Amaral
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil.
| | - Luciana N Andrade
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Matheus I S Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Ariel de Souza Graça
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Jesica B Souza
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Joanda P Raimundo E Silva
- Health Sciences Center, Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, 58051-970, Brazil
| | - Josean F Tavares
- Health Sciences Center, Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, 58051-970, Brazil
| | | | - Cristiane B Correa
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Monalisa M Montalvão
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Sonia Piacente
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano, Salerno, Italy
| | - Cosimo Pizza
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano, Salerno, Italy
| | - Enilton A Camargo
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| | - Charles Dos Santos Estevam
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49000-100, Brazil
| |
Collapse
|
210
|
De Roover A, Escribano-Núñez A, Monteagudo S, Lories R. Fundamentals of osteoarthritis: Inflammatory mediators in osteoarthritis. Osteoarthritis Cartilage 2023; 31:1303-1311. [PMID: 37353140 DOI: 10.1016/j.joca.2023.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVES As more has become known of the pathophysiology of osteoarthritis (OA), evidence that inflammation plays a critical role in its development and progression has accumulated. Here, we aim to review current knowledge of the complex inflammatory network in the OA joint. DESIGN This narrative review is presented in three main sections: local inflammation, systemic inflammation, and therapeutic implications. We focused on inflammatory mediators and their link to OA structural changes in the joint. RESULTS OA is characterized by chronic and low-grade inflammation mediated mostly by the innate immune system, which results in cartilage degradation, bone remodeling and synovial changes. Synovitis is regarded as an OA characteristic and associated with increased severity of symptoms and joint dysfunction. However, the articular cartilage and the subchondral bone also produce several pro-inflammatory mediators thus establishing a complex interplay between the different tissues of the joint. In addition, systemic low-grade inflammation induced by aging, obesity and metabolic syndrome can contribute to OA development and progression. The main inflammatory mediators associated with OA include cytokines, chemokines, growth factors, adipokines, and neuropeptides. CONCLUSIONS Future research is needed to deeper understand the molecular pathways mediating the inflammation in OA to provide new therapeutics that target these pathways, or to repurpose existing drugs.
Collapse
Affiliation(s)
- Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ana Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
211
|
Mukherjee S, Ghosh S, Bawali S, Chatterjee R, Saha A, Sengupta A, Keswani T, Sarkar S, Ghosh P, Chakraborty S, Khamaru P, Bhattacharyya A. Administration of soluble gp130Fc disrupts M-1 macrophage polarization, dendritic cell activation, MDSC expansion and Th-17 induction during experimental cerebral malaria. Int Immunopharmacol 2023; 123:110671. [PMID: 37494839 DOI: 10.1016/j.intimp.2023.110671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Regulatory effect of IL-6 on various immune cells plays a crucial role during experimental cerebral malaria pathogenesis. IL-6 neutralization can restore distorted ratios of myeloid dendritic cells and plasmacytoid dendritic cells as well as the balance between Th-17 and T-regulatory cells. IL-6 can also influence immune cells through classical and trans IL-6 signalling pathways. As trans IL-6 signalling is reportedly involved during malaria pathogenesis, we focused on studying the effects of trans IL-6 signalling blockade on various immune cell populations and how they regulate ECM progression. Results show that administration of sgp130Fc recombinant chimera protein lowers the parasitemia, increases the survivability of Plasmodium berghei ANKA infected mice, and restores the distorted ratios of M1/M2 macrophage, mDC/pDC, and Th-17/Treg. IL-6 trans signalling blockade has been found to affect both expansion of myeloid derived suppressor cells (MDSCs) and expression of inflammatory markers on them during Plasmodium berghei ANKA infection indicating that trans IL-6 signalling might regulate various immune cells and their function during ECM. In this work for the first time, we delineate the effect of sgp130Fc administration on influencing the immunological changes within the host secondary lymphoid organ during ECM induced by Plasmodium berghei ANKA infection.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sriparna Bawali
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Rimbik Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Atreyee Saha
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA 149 13th Street Charlestown, MA 02129, USA
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Pronabesh Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta. 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India.
| |
Collapse
|
212
|
Khan S, Yang J, Cobo ER, Wang Y, Xu M, Wang T, Shi Y, Liu G, Han B. Streptococcus uberis induced expressions of pro-inflammatory IL-6, TNF-α, and IFN-γ in bovine mammary epithelial cells associated with inhibited autophagy and autophagy flux formation. Microb Pathog 2023; 183:106270. [PMID: 37499842 DOI: 10.1016/j.micpath.2023.106270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Autophagy is a highly conserved cellular defensive mechanism that can eliminate bacterial pathogens such as Streptococcus uberis, that causes mastitis in cows. However, S. uberis induced autophagy is still unclear. In this study, we tested if certain inflammatory cytokines such as IL-6, TNF-α, and IFN-γ, critical in mastitis due to S. uberis infection, regulate autophagy activation in bovine mammary epithelial cells (bMECs). Using Western blot and laser scanning confocal microscope in bMECs challenged by S. uberis, showed that the expression of IL-6, TNF-α, IFN-γ oscillated with the expressions of autophagic Atg5, ULK1, PTEN, P62, and LC3ӀӀ/LC3Ӏ. S. uberis infection induced autophagosomes and LC3 puncta in bMECs with upregulation of Atg5, ULK1, PTEN, LC3ӀӀ/LC3Ӏ, and downregulation of P62. The levels of IL-6, TNF-α, and IFN-γ increased during autophagy flux formation to decrease during autophagy induction. Autophagy inhibition increased the expression of IL-6, TNF-α, and IFN-γ and increased S. uberis burden. This study indicates autophagy is induced during S. uberis infection and IL-6, TNF-α, and IFN-γ contribute to autophagy and autophagy flux formation.
Collapse
Affiliation(s)
- Sohrab Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Maolin Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Tian Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
213
|
Mor B, Görmez A, Demirci B. Immunopathological investigation of a gerbil model of cutaneous leishmaniasis. Acta Trop 2023; 246:106991. [PMID: 37479161 DOI: 10.1016/j.actatropica.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Leishmaniasis, caused by Leishmania species (intracellular protozoans), is a chronic, systemic disease that causes skin (cutaneous) and internal organ infections (visceral). Its prevalence has increased in recent years. Leishmania species are considered important pathogens that affect public health. After infecting an individual, the pathogen disrupts the immune system, but, there are not enough studies on which immune mechanisms are affected. The aim of this study was to establish a Leishmania major infection model (the causative agent of cutaneous leishmaniasis) in gerbils (Meriones unguiculatus) and to investigate the immune response in this model by examining the expression of important inflammatory genes (IL-1β, IL-2, IL-6, IFN-ɣ and TNF-α). The presence of parasites was confirmed by microscopic examination of samples taken from the lesions and culture studies. The expression of inflammatory cytokine genes was significantly increased in infected gerbils. The changes indicated that both the Th1 and Th2 pathways are activated in cutaneous leishmaniasis infection. Hence, different immunopathological mechanisms should be evaluated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Baycan Mor
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, 36100, Kars, Türkiye.
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Berna Demirci
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, 36100, Kars, Türkiye
| |
Collapse
|
214
|
Caldú X, Prats-Soteras X, García-García I, Prunell-Castañé A, Sánchez-Garre C, Cano N, Tor E, Sender-Palacios MJ, Ottino-González J, Garolera M, Jurado MÁ. Body mass index, systemic inflammation and cognitive performance in adolescents: A cross-sectional study. Psychoneuroendocrinology 2023; 156:106298. [PMID: 37295218 DOI: 10.1016/j.psyneuen.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive body weight has been related to lower cognitive performance. One of the mechanisms through which excess body weight may affect cognition is inflammation. HYPOTHESIS Our hypothesis is that both body mass index (BMI) and circulating levels of inflammatory biomarkers will be negatively related to cognitive performance. DESIGN Cross-sectional study. SETTING Users of the public health centres of the Consorci Sanitari de Terrassa (Terrassa, Spain) between 2010 and 2017 aged 12-21 years. PARTICIPANTS One hundred and five adolescents (46 normoweight, 18 overweight, 41 obese). MEASUREMENTS Levels of high sensitivity C-reactive protein, interleukin 6, tumour necrosis factor α (TNFα) and fibrinogen were determined from blood samples. Cognitive performance was evaluated and six cognitive composites were obtained: working memory, cognitive flexibility, inhibitory control, decision-making, verbal memory, and fine motor speed. A single multivariate general lineal model was used to assess the influence of the four inflammatory biomarkers, as well as participants' BMI, sex, and age on the 6 cognitive indexes. RESULTS An inverse relationship between BMI and inhibitory control (F = 5.688, p = .019; β = -0.212, p = .031), verbal memory (F = 5.404, p = .022; β = -0.255, p = .009) and fine motor speed (F = 9.038, p = .003; β = -0.319, p = .001) was observed. Levels of TNFα and fibrinogen were inversely related to inhibitory control (F = 5.055, p = .027; β = -0.226, p = .021) and verbal memory (F = 4.732, p = .032; β = -0.274, p = .005), respectively. LIMITATIONS The cross-sectional nature of the study, the use of cognitive tests designed for clinical purposes, and the use of BMI as a proxy for adiposity are limitations of our study that must be taken into account when interpreting results. CONCLUSIONS Our data indicate that some components of executive functions, together with verbal memory, are sensitive to specific obesity-related inflammatory agents at early ages.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Xavier Prats-Soteras
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Isabel García-García
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Clinique la Prairie, Montreux, Rue du Lac 142, 1815 Clarens, Switzerland
| | - Anna Prunell-Castañé
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Consuelo Sánchez-Garre
- Unitat d'Endocrinologia Pediàtrica, Departament de Pediatria, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain
| | - Neus Cano
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain; Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain
| | - Encarnació Tor
- Centre d'Atenció Primària Terrassa Nord, Consorci Sanitari de Terrassa, Av del Vallès 451, 08226 Terrassa, Spain
| | - María-José Sender-Palacios
- Centre d'Atenció Primària Terrassa Nord, Consorci Sanitari de Terrassa, Av del Vallès 451, 08226 Terrassa, Spain
| | - Jonatan Ottino-González
- Division of Endocrinology, The Saban Research Institute, Children's Hospital Los Angeles, United States
| | - Maite Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain; Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain.
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
215
|
Shi C, Jian C, Wang L, Gao C, Yang T, Fu Z, Wu T. Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy. J Nanobiotechnology 2023; 21:347. [PMID: 37752555 PMCID: PMC10521411 DOI: 10.1186/s12951-023-02106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer therapeutic vaccine can induce antigen-specific immune response, which has shown great potential in cancer immunotherapy. As the key factor of vaccine, antigen plays a central role in eliciting antitumor immunity. However, the insufficient antigen delivery and low efficiency of antigen presentation by dendritic cells (DCs) have greatly restricted the therapeutic efficiency of vaccine. Here we developed a kind of DC hybrid zinc phosphate nanoparticles to co-deliver antigenic peptide and photosensitive melanin. Owing to the chelating ability of Zn2+, the nanoparticles can co-encapsulate antigenic peptide and melanin with high efficiency. The nanovaccine showed good physiological stability with the hydration particle size was approximately 30 nm, and zeta potential was around - 10 mV. The nanovaccine showed homologous targeting effect to DCs in vivo and in vitro, efficiently delivering antigen to DCs. Meanwhile, the nanovaccine could effectively reflux to the tumor-draining lymph nodes. When combined with near-infrared irradiation, the nanovaccine induced effective mild heat in vitro and in vivo to promote antigen presentation. After administrating to MC38 tumor-bearing mice, the hybrid nanovaccine effectively promoted the maturation of DCs, the expansion of cytotoxic T lymphocytes and helper T cells, and the secretion of immunostimulatory cytokines, thereby significantly inhibiting tumor growth.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yang
- Affiliated Hospital of Yunnan University, Kunming, 650000, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
216
|
Zeng T, Zang W, Xiao H, Jiang Y, Lin S, Wang M, Li S, Li L, Li C, Lu C, Yang H. Carrier-Free Nanovaccine: An Innovative Strategy for Ultrahigh Melanoma Neoantigen Loading. ACS NANO 2023; 17:18114-18127. [PMID: 37695697 DOI: 10.1021/acsnano.3c04887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In personalized cancer immunotherapy, developing an effective neoantigen nanovaccine with high immunogenicity is a significant challenge. Traditional nanovaccine delivery systems often require nanocarriers, which can hinder the delivery of the neoantigen and cause significant toxicity. In this study, we present an innovative strategy of carrier-free nanovaccine achieved through direct self-assembly of 2'-fluorinated CpG (2'F-CpG) with melanoma neoantigen peptide (Obsl1). Molecular dynamics simulations demonstrated that the introduction of a fluorine atom into CpG increases the noncovalent interaction between 2'F-CpG and Obsl1, which enhanced the loading of Obsl1 on 2'F-CpG, resulting in the spontaneous formation of a hybrid 2'F-CpG/Obsl1 nanovaccine. This nanovaccine without extra nanocarriers showed ultrahigh Obsl1 loading up to 83.19 wt %, increasing the neoantigen peptide uptake by antigen-presenting cells (APCs). In C57BL/6 mice models, we demonstrated the long-term preventive and therapeutic effects of the prepared 2'F-CpG/Obsl1 nanovaccine against B16F10 melanoma. Immunocellular analysis revealed that the nanovaccine activated innate and adaptive immune responses to cancer cells. Hence, this study established a simple, safe, and effective preparation strategy for a carrier-free neoantigen nanovaccine, which could be adapted for the future design of personalized cancer vaccines in clinical settings.
Collapse
Affiliation(s)
- Tao Zeng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Weijie Zang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Han Xiao
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Sang Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Liannishang Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
217
|
Song M, Wang Y, Annex BH, Popel AS. Experiment-based computational model predicts that IL-6 classic and trans-signaling exhibit similar potency in inducing downstream signaling in endothelial cells. NPJ Syst Biol Appl 2023; 9:45. [PMID: 37735165 PMCID: PMC10514195 DOI: 10.1038/s41540-023-00308-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Inflammatory cytokine mediated responses are important in the development of many diseases that are associated with angiogenesis. Targeting angiogenesis as a prominent strategy has shown limited effects in many contexts such as cardiovascular diseases and cancer. One potential reason for the unsuccessful outcome is the mutual dependent role between inflammation and angiogenesis. Inflammation-based therapies primarily target inflammatory cytokines such as interleukin-6 (IL-6) in T cells, macrophages, cancer cells, and muscle cells, and there is a limited understanding of how these cytokines act on endothelial cells. Thus, we focus on one of the major inflammatory cytokines, IL-6, mediated intracellular signaling in endothelial cells by developing a detailed computational model. Our model quantitatively characterized the effects of IL-6 classic and trans-signaling in activating the signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and mitogen-activated protein kinase (MAPK) signaling to phosphorylate STAT3, extracellular regulated kinase (ERK) and Akt, respectively. We applied the trained and validated experiment-based computational model to characterize the dynamics of phosphorylated STAT3 (pSTAT3), Akt (pAkt), and ERK (pERK) in response to IL-6 classic and/or trans-signaling. The model predicts that IL-6 classic and trans-signaling induced responses are IL-6 and soluble IL-6 receptor (sIL-6R) dose-dependent. Also, IL-6 classic and trans-signaling showed similar potency in inducing downstream signaling; however, trans-signaling induces stronger downstream responses and plays a dominant role in the overall effects from IL-6 due to the in vitro experimental setting of abundant sIL-6R. In addition, both IL-6 and sIL-6R levels regulate signaling strength. Moreover, our model identifies the influential species and kinetic parameters that specifically modulate the downstream inflammatory and/or angiogenic signals, pSTAT3, pAkt, and pERK responses. Overall, the model predicts the effects of IL-6 classic and/or trans-signaling stimulation quantitatively and provides a framework for analyzing and integrating experimental data. More broadly, this model can be utilized to identify potential targets that influence IL-6 mediated signaling in endothelial cells and to study their effects quantitatively in modulating STAT3, Akt, and ERK activation.
Collapse
Affiliation(s)
- Min Song
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Youli Wang
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, GA, 30912, USA
| | - Brian H Annex
- Department of Medicine, Augusta University Medical College of Georgia, Augusta, GA, 30912, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
218
|
Tan Y, Taibl KR, Dunlop AL, Barr DB, Panuwet P, Yakimavets V, Kannan K, Corwin EJ, Ryan PB, Eatman JA, Liang D, Eick SM. Association between a Mixture of Per- and Polyfluoroalkyl Substances (PFAS) and Inflammatory Biomarkers in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13419-13428. [PMID: 37649345 PMCID: PMC10900195 DOI: 10.1021/acs.est.3c04688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort (N = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, 10016, NY, USA
| | | | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Jasmin A. Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
219
|
Eriksen E, Afanou AK, Straumfors A, Graff P. Bioaerosol-induced in vitro activation of toll-like receptors and inflammatory biomarker expression in waste workers. Int Arch Occup Environ Health 2023; 96:985-998. [PMID: 37243736 PMCID: PMC10361871 DOI: 10.1007/s00420-023-01984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE Occupational exposure to bioaerosols during waste handling remains a health concern for exposed workers. However, exposure-related health effects and underlying immunological mechanisms are still poorly described. METHODS The present study assessed the inflammatory potential of work-air samples (n = 56) in vitro and investigated biomarker expression in exposed workers (n = 69) compared to unexposed controls (n = 25). These quantitative results were compared to self-reported health conditions. RESULTS Personal air samples provoked an activation of TLR2 and TLR4 HEK reporter cells in one-third of all samples, indicating that the work environment contained ligands capable of inducing an immune response in vitro. Monocyte levels, as well as plasma biomarker levels, such as IL-1Ra, IL-18 and TNFα were significantly higher in exposed workers, compared to the control group when confounding factors such as BMI, sex, age and smoking habits were accounted for. Furthermore, a significant exposure-related increase in midweek IL-8 levels was measured among exposed workers. Tendencies of increased prevalence of health effects of the respiratory tract were identified in exposed workers. CONCLUSION Inhalable dust provoked TLR activation in vitro, indicating that an exposure-related immune response may be expected in susceptible workers. However, despite significant differences in inflammatory plasma biomarker levels between exposed and unexposed workers, prevalence of self-reported health effects did not differ between the groups. This may be due to the healthy worker effect, or other factors such as adequate use of personal protective respiratory devices or adaptation to the work environment with reduced activation of the immune system.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
220
|
Lin A, Yan X, Xu R, Wang H, Su Y, Zhu W. Effects of lactic acid bacteria-fermented formula milk supplementation on colonic microbiota and mucosal transcriptome profile of weaned piglets. Animal 2023; 17:100959. [PMID: 37688970 DOI: 10.1016/j.animal.2023.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023] Open
Abstract
Supplemental probiotic fermented milk as a gut modulator can improve growth performance for weaned piglets by promoting the development of the small intestine in digestion and immune function. The effect on colon health might also play a considerable part in the favourable role of probiotic fermented milk in the growth performance improvement of weaned piglets; however, it has yet to be reported. This study aimed to investigate the effects of supplementation with lactic acid bacteria-fermented formula milk (LFM) on colonic morphology, microbiota composition, and mucosal transcriptome profile in weaned piglets. A total of 24 male weaned piglets were randomly divided into two groups: a control (CON) treatment or the LFM-supplemented treatment. Each group consisted of six replicates (cages) with two piglets per cage, and each piglet in the LFM group was supplemented with 80 mL LFM three times a day for 21 d, while the CON group was treated with the same amount of drinking water. Results showed that supplementation of LFM reduced the colonic histological damage scores and significantly increased the number of goblet cells per crypt. Furthermore, LFM consumption decreased the levels of pro-inflammation cytokines in the colonic mucosa. LFM downregulated the expression of inflammatory genes (CXCL9 and CXCL10) involving Toll-like receptor signalling pathway, immune response, and response to bacterium, and up-regulated two active genes (S100A8 and S100A9) involving the IL-17 signalling pathway and Toll-like receptor 4 binding. In addition, LFM could increase the potential probiotic genera containing Lachnospira and Anaerorhabdus furcosa group, which were positively related to short-chain fatty acid (SCFA) production. Correspondingly, LFM-fed piglets had higher total bacterial load and total SCFA concentration in the colonic digesta compared with the CON group. These novel findings support the benefits of LFM in enhancing intestinal homoeostasis and ameliorating weaning stress for weaned piglets, which is associated with the modulation of gut microbiota composition and immune-related genes.
Collapse
Affiliation(s)
- A Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - X Yan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - R Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - H Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Y Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - W Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
221
|
Sgambellone S, Marri S, Villano S, Masini E, Provensi G, Bastia E, Galli C, Brambilla S, Impagnatiello F, Lucarini L. NCX 470 Exerts Retinal Cell Protection and Enhances Ophthalmic Artery Blood Flow After Ischemia/Reperfusion Injury of Optic Nerve Head and Retina. Transl Vis Sci Technol 2023; 12:22. [PMID: 37750744 PMCID: PMC10541723 DOI: 10.1167/tvst.12.9.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Purpose The purpose of this study was to assess the retinal protective activity and ocular hemodynamics after NCX 470 (0.1%) compared to bimatoprost administered as the US Food and Drug Administration (FDA)-approved drug (Lumigan - 0.01% ophthalmic solution, LUM) and at an equimolar dose (0.072%, BIM) to that released by NCX 470. Methods Endothelin-1 (ET-1) induced ischemia/reperfusion injury model in rabbits was used. ET-1 was injected nearby the optic nerve head (ONH) twice/week for 6 weeks. Starting on week 3, the animals received vehicle (VEH), NCX 470, LUM, or BIM (30 µL/eye, twice daily, 6 days/week) until the end of ET-1 treatment. Intraocular pressure (IOP), ophthalmic artery resistive index (OA-RI), and electroretinogram (ERG) data were collected prior to dosing and at different time points postdosing. Reduced glutathione, 8-Hydroxy 2-deoxyguanosine, and Caspase-3 were determined in the retina of treated eyes. DNA fragmentation was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. Results ET-1 increased IOP (VEHIOP_Baseline = 20.5 ± 0.8 and VEHIOP_Week6 = 24.8 ± 0.3 mmHg) and OA-RI (VEHOA-RI_Baseline = 0.36 ± 0.02 and VEHOA-RI_Week6 = 0.55 ± 0.01) and reduced rod/cone responses over time. Oxidative stress, inflammation, and apoptotic markers increased in ET-1-treated eyes. NCX 470 prevented IOP (NCX 470IOP_Week6 = 18.1 ± 0.6 mmHg) and OA-RI changes (NCX 470OA-RI_Week6 = 0.33 ± 0.01) and restored ERG amplitude leaving unaltered the respective latency; these effects were only partially demonstrated by LUM or BIM. Additionally, NCX 470 reduced oxidative stress, inflammation, and apoptosis in the retinas of treated eyes. BIM and LUM were numerically less effective on these parameters. Conclusions NCX 470 repeated ocular dosing ameliorates ocular hemodynamics and retinal cell dysfunction caused by ischemia/reperfusion via nitric oxide- and bimatoprost-mediated mechanisms. Translational Relevance If confirmed in clinical setting our data may open new therapeutic opportunities to reduce visual field loss in glaucoma.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Silvia Marri
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Serafina Villano
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Emanuela Masini
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | - Laura Lucarini
- Department of Neuroscience, Phycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
222
|
Partridge E, Adam E, Wood C, Parker J, Johnson M, Horohov D, Page A. Residual effects of intra-articular betamethasone and triamcinolone acetonide in an equine acute synovitis model. Equine Vet J 2023; 55:905-915. [PMID: 36397207 DOI: 10.1111/evj.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intra-articular (IA) corticosteroids are regularly used in equine athletes for the control of joint inflammation. OBJECTIVES The goal of this study was to use an acute synovitis inflammation model to determine the residual effects of IA betamethasone and triamcinolone acetonide on various inflammatory parameters and lameness. STUDY DESIGN Crossover randomised trial. METHODS Five mixed-breed, 2-year-old horses were randomly allocated to an IA treatment of the radiocarpal joint with 9 mg of either betamethasone or triamcinolone acetonide. Two weeks following treatment, horses were injected with 1 μg of lipopolysaccharide (LPS) diluted in 1 ml of saline. Following LPS injection, horses were crossed-over and both sets of injections were repeated after a washout period. Blood samples were collected at multiple time points for mRNA analysis, as well as serum amyloid A (SAA) and cortisol determination. At each time point, lameness was also subjectively scored. Additional injections with saline-only or LPS-only (twice) were conducted as negative and positive controls, respectively. Two-way repeated measures analysis of variance was used to analyse all data. RESULTS Corticosteroid-only treatments result in significant mRNA expression differences, as well as significant and prolonged cortisol suppression. Following LPS injection, there was a residual treatment effect with triamcinolone evidenced by a significant treatment effect on IL-6 and PTGS1 (cyclooxygenase-1), lameness, SAA and cortisol concentrations, while only IL-6 expression was affected by betamethasone. MAIN LIMITATIONS The acute synovitis model used here results in significant inflammation and is not representative of the low-grade inflammation seen with typical joint disease and residual anti-inflammatory effects may be more profound in naturally occurring joint disease. CONCLUSIONS Current regulatory guidelines may be insufficient if the concern is residual anti-inflammatory effects. Additionally, intra-articular corticosteroid administration is not without risk, as evidenced by a significant suppression of serum cortisol concentration and, as such, the benefits of their administration should be weighed against those risks.
Collapse
Affiliation(s)
- Emma Partridge
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, USA
| | - Emma Adam
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, USA
| | - Courtney Wood
- Lincoln Memorial University, Harrogate, Tennessee, USA
| | - Jordan Parker
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, USA
| | - Mackenzie Johnson
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, USA
| | - David Horohov
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, USA
| | - Allen Page
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, Kentucky, USA
| |
Collapse
|
223
|
Jaillardon L, Kaiser M. Pathogenesis of the crosstalk between reproductive function and stress in animals - part 2: Prolactin, thyroid, inflammation and oxidative stress. Reprod Domest Anim 2023; 58 Suppl 2:137-143. [PMID: 37724656 DOI: 10.1111/rda.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Stress has a significant impact on reproductive health and fertility in both humans as well as various animal species. In particular, chronic stress can disrupt the delicate balance of the hormonal system that regulates reproductive function, leading to a variety of reproductive disorders and fertility issues. Beside the action of the hypothalamic-pituitary-adrenal (HPA) system and the sympatho-adrenomedullary system (SAM), other subsequent mechanisms have been incriminated. Thus, stress has also been associated with increased prolactin level, resulting in an inhibition of the hypothalamo-pituitary-gonadal (HPG) system leading to several reproductive disorders. Thyroid function is inhibited during chronic stress, and therefore considered an important regulator of reproductive function. Thus, and in particular by interfering with the HPA system, stress-induced immune dysregulation can have adverse effects on reproduction. In addition, oxidative stress and inflammation have been proposed as potential mechanisms by which chronic stress affects reproductive function. This is caused by an increase in reactive oxygen species (ROS) production that has a harmful effect on cells. Furthermore, inflammation can lead to tissue damage and scarring, which can affect fertility. The present review completes the complex mechanism linking stress and reproduction through the current knowledge in various animal species in a comparative point of view.
Collapse
Affiliation(s)
- Laetitia Jaillardon
- Oniris, LabOniris, Nantes Atlantic National College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| | - Marianne Kaiser
- Management and Modelling, Department of Animal and Veterinary Sciences, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
224
|
Shangguan F, Chen Z, Lv Y, Zhang XY. Interaction between high interleukin-2 and high cortisol levels is associated with psychopathology in patients with chronic schizophrenia. J Psychiatr Res 2023; 165:255-263. [PMID: 37541091 DOI: 10.1016/j.jpsychires.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Both cortisol and interleukins appear at abnormal levels in schizophrenia. Our previous study has shown that cortisol and interleukins are associated with psychopathology and response to antipsychotic medications in a relatively small sample size of patients with schizophrenia. The current study was designed to investigate how cortisol, interleukins (ILs) and their interactions would correlate with clinical presentation in a relatively large sample size of patients with schizophrenia. METHODS We compared serum cortisol, IL-2, IL-6, and IL-8 levels in 162 medicated schizophrenia patients (including 27 patients in remission) and 62 healthy controls. Serum levels of cortisol and interleukins were measured by radioimmunoassay and quantitative ELISA, respectively. Clinical symptoms were assessed according to the Positive and Negative Syndrome Scale (PANSS). RESULTS Patients with schizophrenia had significantly higher levels of cortisol and IL-2 compared to controls. Patients in remission had higher levels of IL-6 than non-remitting patients. PANSS positive symptoms, general psychopathology, cortisol and IL-2 were the most central nodes in the cortisol-IL-symptom network. The interaction between cortisol and IL-2 was associated with PANSS positive symptoms, general psychopathology and depressive factor. For patients with cortisol level above the median, IL-2 was negatively associated with PANSS positive symptoms and general psychopathology. CONCLUSIONS Our results indicated that the interaction between cytokines and cortisol may be associated with the pathophysiology of some symptoms in chronic schizophrenia. In particular, the interaction between cortisol and IL-2 is associated with the clinical phenotypes of schizophrenia.
Collapse
Affiliation(s)
- Fangfang Shangguan
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Ziwei Chen
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Yue Lv
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100037, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
225
|
Zavez AE, McSorley EM, Yeates AJ, Thurston SW. A Bayesian Partial Membership Model for Multiple Exposures with Uncertain Group Memberships. JOURNAL OF AGRICULTURAL, BIOLOGICAL, AND ENVIRONMENTAL STATISTICS 2023; 28:377-400. [PMID: 39492941 PMCID: PMC11530226 DOI: 10.1007/s13253-023-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 02/16/2023]
Abstract
We present a Bayesian partial membership model that estimates the associations between an outcome, a small number of latent variables, and multiple observed exposures where the number of latent variables is specified a priori. We assign one observed exposure as the sentinel marker for each latent variable. The model allows non-sentinel exposures to have complete membership in one latent group, or partial membership across two or more latent groups. MCMC sampling is used to determine latent group partial memberships for the non-sentinel exposures, and estimate all model parameters. We compare the performance of our model to competing approaches in a simulation study and apply our model to inflammatory marker data measured in a large mother-child cohort of the Seychelles Child Development Study (SCDS). In simulations, our model estimated model parameters with little bias, adequate coverage, and tighter credible intervals compared to competing approaches. Under our partial membership model with two latent groups, SCDS inflammatory marker classifications generally aligned with the scientific literature. Incorporating additional SCDS inflammatory markers and more latent groups produced similar groupings of markers that also aligned with the literature. Associations between covariates and birth weight were similar across latent variable models and were consistent with earlier work in this SCDS cohort.
Collapse
Affiliation(s)
- Alexis E Zavez
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
226
|
Kandilarov I, Gardjeva P, Georgieva-Kotetarova M, Zlatanova H, Vilmosh N, Kostadinova I, Katsarova M, Atliev K, Dimitrova S. Effect of Plant Extracts Combinations on TNF-α, IL-6 and IL-10 Levels in Serum of Rats Exposed to Acute and Chronic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3049. [PMID: 37687297 PMCID: PMC10490550 DOI: 10.3390/plants12173049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of two combined plant extracts, rich in flavonoids, on the levels of the cytokines TNF-α, IL-6, and IL-10 in rats subjected to models of acute cold stress and chronic unpredictable stress. The study utilized common medicinal plants such as Valeriana officinalis, Melissa officinalis, Crataegus monogyna, Hypericum perforatum, and Serratula coronata, which were combined in two unique combinations-Antistress I and Antistress II. The compositions of the used extracts were determined by HPLC methods. Pro- and anti-inflammatory cytokines in rats' serum were measured with Enzyme-linked immunosorbent assay. The results from the acute stress model revealed that the individual extract of Crataegus monogyna decreased levels of TNF-α, while Serratula coronata, Hypericum perforatum, and Valeriana officinalis effectively reduced IL-6 levels. Both combinations, Antistress I and Antistress II, were effective in reducing TNF-α and IL-6 levels, with Antistress II also increasing IL-10 levels. In the chronic stress model, Hypericum perforatum extract decreased the levels of the pro-inflammatory cytokines TNF-α and IL-6, whereas extracts of Serratula coronata and Valeriana officinalis only reduced TNF-α levels. The two combined extracts, Antistress I and Antistress II, decreased TNF-α and IL-6 levels, while Antistress I also reduced the levels of the anti-inflammatory cytokine IL-10. The combinations of plant extracts used in our experiment have not been previously studied or documented in the available literature. However, based on our own experimental results, we can draw the conclusion that the combinations exhibit a more pronounced effect in reducing cytokine levels compared to the individual plant extracts.
Collapse
Affiliation(s)
- Ilin Kandilarov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Petya Gardjeva
- Department of Medical Microbiology and Immunology „Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Maria Georgieva-Kotetarova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Hristina Zlatanova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Natalia Vilmosh
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Ivanka Kostadinova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria; (I.K.); (M.G.-K.); (H.Z.); (N.V.); (I.K.)
| | - Mariana Katsarova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Kiril Atliev
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
| | - Stela Dimitrova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov, 4002 Plovdiv, Bulgaria
| |
Collapse
|
227
|
Alalem M, Dabous E, Awad AM, Alalem N, Guirgis AA, El-Masry S, Khalil H. Influenza a virus regulates interferon signaling and its associated genes; MxA and STAT3 by cellular miR-141 to ensure viral replication. Virol J 2023; 20:183. [PMID: 37596622 PMCID: PMC10439583 DOI: 10.1186/s12985-023-02146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
The antiviral response against influenza A virus (IAV) infection includes the induction of the interferon (IFN) signaling pathway, including activation of the STATs protein family. Subsequently, antiviral myxovirus resistance (MxA) protein and other interferon-stimulated genes control virus replication; however, the molecular interaction of viral-mediated IFN signaling needs more investigation. Host microRNAs (miRNAs) are small non-coding molecules that posttranscriptionally regulate gene expression. Here, we sought to investigate the possible involvement of miR-141 in IAV-mediated IFN signaling. Accordingly, the microarray analysis of A549 cells transfected with precursor miR-141 (pre-miR-141) was used to capture the potentially regulated genes in response to miR-141 overexpression independent of IAV infection. The downregulation of targeted genes by miR-141, in addition to viral gene expression, was investigated by quantitative real-time PCR, western blot analysis, and flow cytometric assay. Our findings showed a significant upregulation of miR-141 in infected A549 cells with different strains of IAV. Notably, IAV replication was firmly interrupted in cells transfected with the miR-141 inhibitor. While its replication significantly increased in cells transfected with pre-miR-141 confirming the crucial role of miRNA-141 in supporting virus replication. Interestingly, the microarray data of miR-141 transduced A549 cells showed many downregulated genes, including MxA, STAT3, IFI27, and LAMP3. The expression profile of MxA and STAT3 was significantly depleted in infected cells transfected with the pre-miR-141, while their expression was restored in infected cells transfected with the miR-141 inhibitor. Unlike interleukin 6 (IL-6), the production of IFN-β markedly decreased in infected cells that transfected with pre-miR-141, while it significantly elevated in infected cells transfected with miR-141 inhibitor. These data provide evidence for the crucial role of miR-141 in regulating the antiviral gene expression induced by IFN and IL-6 signaling during IAV infection to ensure virus replication.
Collapse
Affiliation(s)
- Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Samir El-Masry
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt.
| |
Collapse
|
228
|
Blay Mensah LB, Ken-Amoah S, Essuman MA, Anane-Fenin B, Agbeno EK, Eliason S, Essien-Baidoo S. Cervical Microbiota Influences Cytokine Diversity in Cervical Intraepithelial Neoplasia among Rural Women in the Akyemansa District of Ghana. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5129709. [PMID: 37635942 PMCID: PMC10450155 DOI: 10.1155/2023/5129709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Background In recent times, cervical dysbiosis which mostly causes and aggravates infections is highlighted for its role in immune modulation in cervical dysplasia, which promotes the shifting of Th1 phenotype immunity to Th2 phenotype immunity. This study therefore estimated and compared the levels of circulatory IL-4, IL-6, IL-10, TNF-α, and IFN-γ cytokines among adult women identified to have different grades of cervical intraepithelial neoplasia (CIN) and with cervicovaginal infection. Methods A total of 157 participants were recruited from the Akyemansa District of Ghana, and cervical swabs and blood samples were taken. The Pap smear test, microbiological culture, and ELISA were employed for cytology analysis, bacteria isolation, and identification and estimation of IL-4, IL-6, IL-10, TNF-α, and IFN-γ cytokines, respectively. Results Overall, 14/157 (8.9%) had CIN with 7.6% having CIN 1 and 1.3% having CIN 2. The main predictor for CIN was age above 46 years (OR 11.16, 95% CI: 2.4-51.8). Bacterial vaginosis (p = 0.003) and Candida infection (p = 0.012) were significantly higher in CIN. Again, Staphylococcus aureus (60% vs. 17.6%, p = 0.005), Citrobacter sp. (40.0% vs. 13.2%, p = 0.017), and Morganella morganii (40.0% vs. 4.4%, p = 0.002) isolates were significantly higher in CIN-positive participants. IL-10 and TNF-α concentrations were elevated in participants with CIN 1+ (TNF-α NIL vs. CIN 1+ only, p < 0.05) while IL-6 was decreased among participants with CIN 1+. In the presence of vaginal infection, TNF-α decreased among CIN 1+ participants while IL-10 remained elevated. Conclusion The findings of this study suggest that cervical dysbiosis causes immune suppression, which creates a suitable microenvironment for the development of CIN.
Collapse
Affiliation(s)
- Loretta Betty Blay Mensah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sebastian Ken-Amoah
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mainprice Akuoko Essuman
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Betty Anane-Fenin
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Evans Kofi Agbeno
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sebastian Eliason
- Department of Community Medicine, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Essien-Baidoo
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
229
|
Astore S, Baciarello G, Cerbone L, Calabrò F. Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:517-546. [PMID: 37842234 PMCID: PMC10571064 DOI: 10.20517/cdr.2023.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 10/17/2023]
Abstract
The introduction of first-line combinations had improved the outcomes for metastatic renal cell carcinoma (mRCC) compared to sunitinib. However, some patients either have inherent resistance or develop resistance as a result of the treatment. Depending on the kind of therapy employed, many factors underlie resistance to systemic therapy. Angiogenesis and the tumor immune microenvironment (TIME), nevertheless, are inextricably linked. Although angiogenesis and the manipulation of the tumor microenvironment are linked to hypoxia, which emerges as a hallmark of renal cell carcinoma (RCC) pathogenesis, it is only one of the potential elements involved in the distinctive intra- and inter-tumor heterogeneity of RCC that is still dynamic. We may be able to more correctly predict therapy response and comprehend the mechanisms underlying primary or acquired resistance by integrating tumor genetic and immunological markers. In order to provide tools for patient selection and to generate hypotheses for the development of new strategies to overcome resistance, we reviewed the most recent research on the mechanisms of primary and acquired resistance to immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) that target the vascular endothelial growth factor receptor (VEGFR).We can choose patients' treatments and cancer preventive strategies using an evolutionary approach thanks to the few evolutionary trajectories that characterize ccRCC.
Collapse
Affiliation(s)
- Serena Astore
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | | | - Linda Cerbone
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
| | - Fabio Calabrò
- Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy
- Medical Oncology, IRCSS, National Cancer Institute Regina Elena, Rome 00128, Italy
| |
Collapse
|
230
|
Chen Y, Zhou J, Xu S, Nie J. Role of Interleukin-6 Family Cytokines in Organ Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:239-253. [PMID: 37900004 PMCID: PMC10601952 DOI: 10.1159/000530288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 10/31/2023]
Abstract
Background Organ fibrosis remains an important cause of high incidence rate and mortality worldwide. The prominent role of interleukin-6 (IL-6) family members represented by IL-6 in inflammation has been extensively studied, and drugs targeting IL-6 have been used clinically. Because of the close relationship between inflammation and fibrosis, researches on the role of IL-6 family members in organ fibrosis are also gradually emerging. Summary In this review, we systematically reviewed the role of IL-6 family members in fibrosis and their possible mechanisms. We listed the role of IL-6 family members in organ fibrosis and drew two diagrams to illustrate the downstream signal transductions of IL-6 family members. We also summarized the effect of some IL-6 family members' antagonists in a table. Key Messages Fibrosis contributes to organ structure damage, organ dysfunction, and eventually organ failure. Although IL-6 family cytokines have similar downstream signal pathways, different members play various roles in an organ-specific manner which might be partly due to their different target cell populations. The pathogenic role of individual member in various diseases needs to be deciphered carefully.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Zhou
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihui Xu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Nie
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
231
|
Simon CB, Bishop MD, Wallace MR, Staud R, DelRocco N, Wu SS, Dai Y, Borsa PA, Greenfield WH, Fillingim RB, George SZ. Circulating Inflammatory Biomarkers Predict Pain Change Following Exercise-Induced Shoulder Injury: Findings From the Biopsychosocial Influence on Shoulder Pain Preclinical Trial. THE JOURNAL OF PAIN 2023; 24:1465-1477. [PMID: 37178095 PMCID: PMC10523877 DOI: 10.1016/j.jpain.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Shoulder pain is a highly prevalent musculoskeletal condition that frequently leads to suboptimal clinical outcomes. This study tested the extent to which circulating inflammatory biomarkers are associated with reports of shoulder pain and upper-extremity disability for a high-risk genetic by psychological subgroup (catechol-O-methyltransferase [COMT] variation by pain catastrophizing [PCS]). Pain-free adults meeting high-risk COMT × PCS subgroup criteria completed an exercise-induced muscle injury protocol. Thirteen biomarkers were collected and analyzed from plasma 48 hours after muscle injury. Shoulder pain intensity and disability (Quick-DASH) were reported at 48 and 96 hours to calculate change scores. Using an extreme sampling technique, 88 participants were included in this analysis. After controlling for age, sex, and BMI, there were moderate positive associations between higher c-reactive protein (CRP; βˆ = .62; 95% confidence interval [CI] = -.03, 1.26), interleukin-6 (IL-6; βˆ = 3.13; CI = -.11, 6.38), and interleukin-10 (IL-10; βˆ = 2.51; CI = -.30, 5.32); and greater pain reduction from 48 to 96 hours post exercise muscle injury. Using an exploratory multivariable model to predict pain changes from 48 to 96 hours, we found participants with higher IL-10 were less likely to experience a high increase in pain (βˆ = -10.77; CI = -21.25, -2.69). Study findings suggest CRP, IL-6, and IL-10 are related to shoulder pain change for a preclinical high-risk COMT × PCS subgroup. Future studies will translate to clinical shoulder pain and decipher the complex and seemingly pleiotropic interplay between inflammatory biomarkers and shoulder pain change. PERSPECTIVE: In a preclinical high-risk COMT × PCS subgroup, 3 circulating inflammatory biomarkers (CRP, IL-6, and IL-10) were moderately associated with pain improvement following exercise-induced muscle injury.
Collapse
Affiliation(s)
- Corey B Simon
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Mark D Bishop
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, Florida
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Natalie DelRocco
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Yunfeng Dai
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Paul A Borsa
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | | | - Roger B Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, Florida; Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida
| | - Steven Z George
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
232
|
Govender Y, Morrison CS, Chen PL, Gao X, Yamamoto H, Chipato T, Anderson S, Barbieri R, Salata R, Doncel GF, Fichorova RN. Cervical and systemic innate immunity predictors of HIV risk linked to genital herpes acquisition and time from HSV-2 seroconversion. Sex Transm Infect 2023; 99:311-316. [PMID: 36104248 PMCID: PMC10011014 DOI: 10.1136/sextrans-2022-055458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To examine innate immunity predictors of HIV-1 acquisition as biomarkers of HSV-2 risk and biological basis for epidemiologically established HIV-1 predisposition in HSV-2 infected women. METHODS We analysed longitudinal samples from HIV-1 negative visits of 1019 women before and after HSV-2 acquisition. We measured cervical and serum biomarkers of inflammation and immune activation previously linked to HIV-1 risk. Protein levels were Box-Cox transformed and ORs for HSV-2 acquisition were calculated based on top quartile or below/above median levels for all HSV-2 negative visits. Bivariate analysis determined the likelihood of HSV-2 acquisition by biomarker levels preceding infection. Linear mixed-effects models evaluated if biomarkers differed by HSV-2 status defined as negative, incident or established infections with an established infection cut-off starting at 6 months. RESULTS In the cervical compartment, two biomarkers of HIV-1 risk (low SLPI and high BD-2) also predicted HSV-2 acquisition. In addition, HSV-2 acquisition was associated with IL-1β, IL-6, IL-8, MIP-3α, ICAM-1 and VEGF when below median levels. Systemic immunity predictors of HSV-2 acquisition were high sCD14 and IL-6, with highest odds when concomitantly increased (OR=2.23, 1.49-3.35). Concomitant systemic and mucosal predictors of HSV-2 acquisition risk included (1) serum top quartile sCD14 with cervical low SLPI, VEGF and ICAM-1, or high BD-2; (2) serum high IL-6 with cervical low VEGF and ICAM-1, SLPI, IL-1β and IL-6; and (3) serum low C reactive protein with cervical high BD-2 (the only combination also predictive of HIV-1 acquisition). Most cervical biomarkers were decreased after HSV-2 acquisition compared with the HSV-2 negative visits, with incident infections associated with a larger number of suppressed cervical biomarkers and lower serum IL-6 levels compared with established infections. CONCLUSIONS A combination of systemic immunoinflammatory and cervical immunosuppressed states predicts HSV-2 acquisition. A persistently suppressed innate immunity during incident HSV-2 infection may add to the increased HIV-1 susceptibility.
Collapse
Affiliation(s)
- Yashini Govender
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Charles S Morrison
- Global Health and Population Research, FHI 360, Durham, North Carolina, USA
| | - Pai-Lien Chen
- Global Health and Population Research, FHI 360, Durham, North Carolina, USA
| | - Xiaoming Gao
- Global Health and Population Research, FHI 360, Durham, North Carolina, USA
| | - Hidemi Yamamoto
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tsungai Chipato
- Obstetrics and Gynecology, University of Zimbabwe, Harare, Zimbabwe
| | - Sharon Anderson
- Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Robert Barbieri
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Salata
- Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gustavo F Doncel
- Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- CONRAD, Arlington, Virginia, USA
| | - Raina Nakova Fichorova
- Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
233
|
Silva C, Requicha J, Dias I, Bastos E, Viegas C. Genomic Medicine in Canine Periodontal Disease: A Systematic Review. Animals (Basel) 2023; 13:2463. [PMID: 37570272 PMCID: PMC10417655 DOI: 10.3390/ani13152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Genomic medicine has become a growing reality; however, it is still taking its first steps in veterinary medicine. Through this approach, it will be possible to trace the genetic profile of a given individual and thus know their susceptibility to certain diseases, namely periodontal disease. This condition is one of the most frequently diagnosed in companion animal clinics, especially in dogs. Due to the limited existing information and the lack of comprehensive studies, the objective of the present study was to systematically review the existing scientific literature regarding genomic medicine in canine periodontal disease and determine which genes have already been studied and their probable potential. This study followed the recommendations of the PRISMA 2020 methodology. Canine periodontal disease allied to genomic medicine were the subjects of this systematic review. Only six articles met all of the inclusion criteria, and these were analyzed in detail. These studies described genetic variations in the following genes: interleukin-6, interleukin-10, interleukin-1, lactotransferrin, toll-like receptor 9, and receptor activator of nuclear factor-kappa B. Only in two of them, namely interleukin-1 and toll-like receptor 9 genes, may the identified genetic variations explain the susceptibility that certain individuals have to the development of periodontal disease. It is necessary to expand the studies on the existing polymorphic variations in genes and their relationship with the development of periodontal disease. Only then will it be possible to fully understand the biological mechanisms that are involved in this disease and that determine the susceptibility to its development.
Collapse
Affiliation(s)
- Carolina Silva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Isabel Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Estela Bastos
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| |
Collapse
|
234
|
Yamamoto T, Sugimoto K, Ichikawa S, Suzuki K, Wakabayashi H, Dohi K, Yamamoto N. Impact of body composition on patient prognosis after SARS-Cov-2 infection. PLoS One 2023; 18:e0289206. [PMID: 37506083 PMCID: PMC10381082 DOI: 10.1371/journal.pone.0289206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Since the first outbreak of coronavirus disease 2019 (COVID-19), it has been reported that several factors, including hypertension, type 2 diabetes mellitus, and obesity, have close relationships with a severe clinical course. However, the relationship between body composition and the prognosis of COVID-19 has not yet been fully studied. METHODS The present study enrolled 76 consecutive COVID-19 patients with computed tomography (CT) scans from the chest to the pelvis at admission. The patients who needed intubation and mechanical ventilation were defined as severe cases. Patients were categorized into four groups according to their body mass index (BMI). The degree of hepatic steatosis was estimated by the liver/spleen (L/S) ratio of the CT values. Visceral fat area (VFA), psoas muscle area (PMA), psoas muscle mass index (PMI), and intra-muscular adipose tissue content (IMAC) were measured by CT scan tracing. These parameters were compared between non-severe and severe cases. RESULTS Severe patients had significantly higher body weight, higher BMI, and greater VFA than non-severe patients. However, these parameters did not have an effect on disease mortality. Furthermore, severe cases had higher IMAC than non-severe cases in the non-obese group. CONCLUSIONS Our data suggest high IMAC can be a useful predictor for severe disease courses of COVID-19 in non-obese Japanese patients, however, it does not predict either disease severity in obese patients or mortality in any obesity grade.
Collapse
Affiliation(s)
| | - Kazushi Sugimoto
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Syuhei Ichikawa
- Department of General Medicine, Mie University Hospital, Tsu, Japan
| | - Kei Suzuki
- Department of Infectious Disease, Mie University Hospital, Tsu, Japan
| | | | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Japan
| | | |
Collapse
|
235
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
236
|
Terada Y, Obara A, Briones JC, Luo X, Espulgar WV, Saito M, Takamatsu H, Tamiya E. Development of Nano-Micro Fused LSPR Chip for In Situ Single-Cell Secretion Analysis. MICROMACHINES 2023; 14:1404. [PMID: 37512715 PMCID: PMC10384685 DOI: 10.3390/mi14071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Single-cell analysis has become increasingly important in uncovering cell heterogeneity, which has great implications in medicine and biology for a deep understanding of cell characteristics. Owing to its significance, it is vital to create novel devices that can reveal special or unique cells. In this work, we developed a single-cell secretion detection chip consisting of microwells that can trap single cells. Each well is surrounded by Au nanopillars capable of localized surface plasmon resonance (LSPR) measurement. Using microfabrication and nanofabrication techniques, Au nanopillar and microwell structures were fabricated on a COP film. The Au nanopillar was modified with IL-6 antibodies for the direct detection of single-cell secreted IL-6 via LSPR absorbance peak shift. Specific IL-6 detection was successfully demonstrated using a null and IL-6 oversecreting Jurkat cell. A high single-cell trapping efficiency of over 80% was also achieved. Overall, the development of this single-cell secretion detection chip with a simple LSPR measurement setup represents a significant development in the field of cell biology and immunology, providing researchers with a powerful tool for studying individual cells and their secreted cytokines, and is useful for point-of-care testing (POCT) diagnostics.
Collapse
Affiliation(s)
- Yuhei Terada
- Environmental Management Research Institute (EMRI), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Ibaraki, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Suita 565-0871, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Ain Obara
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Suita 565-0871, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Jonathan Campos Briones
- Life and Medical Photonics Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Osaka, Japan
| | - Xi Luo
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Suita 565-0871, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Wilfred Villariza Espulgar
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Suita 565-0871, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Masato Saito
- Life and Medical Photonics Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
- Laboratory of Autoimmune Diseases, Department of Clinical Research Center for Autoimmune Diseases, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Osaka, Japan
| | - Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Suita 565-0871, Osaka, Japan
- SANKEN, Osaka University, Ibaraki 567-0047, Osaka, Japan
| |
Collapse
|
237
|
Martonik D, Parfieniuk-Kowerda A, Starosz A, Grubczak K, Moniuszko M, Flisiak R. Effect of antiviral and immunomodulatory treatment on a cytokine profile in patients with COVID-19. Front Immunol 2023; 14:1222170. [PMID: 37483627 PMCID: PMC10358833 DOI: 10.3389/fimmu.2023.1222170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The severity of COVID-19 is associated with an elevated level of a variety of inflammatory mediators. Increasing evidence suggests that the Th17 response contributes to the severity of COVID-19 pneumonia, whereas Th22 response plays a regulatory role in SARS-CoV-2 infection. Two main types of available COVID-19 treatments are antivirals and immunomodulatory drugs; however, their effect on a cytokine profile is yet to be determined. Methods This study aim to analyse a cytokine profile in peripheral blood from patients with COVID-19 (n=44) undergoing antiviral or/and immunomodulatory treatment and healthy controls (n=20). Circulating CD4+ and CD8+ T cells and their intracellular expression of IL-17A and IL-22 were assessed by flow cytometry. Results Initial results showed an overexpression of IL-17F, IL-17A, CCL5/RANTES, GM-CSF, IL-4, IL-10, CXCL-10/IP-10 and IL-6 in COVID-19 patients compared to healthy controls. Treatment with remdesivir resulted in a significant decline in concentrations of IL-6, IL-10, IFN-alpha and CXCL10/IP-10. Immunomodulatory treatment contributed to a significant downregulation of IL-10, IFN-alpha, CXCL10/IP-10 and B7-H3 as well as upregulation of IL-22 and IL-1 beta. A combination of an antiviral and immunomodulatory treatment resulted in a significant decrease in IL-17F, IL-10, IFN-alpha, CXCL10/IP-10 and B7-H3 levels as well as an increase in IL-17A and IL-1 beta. We found significantly higher percentage of both CD4+ and CD8+ T cells producing IL-17A and CD4+ T cells producing IL-22 in patients with COVID-19. Conclusion Administration of antiviral or/and immunomodulatory treatment resulted in a significant downregulation of pro-inflammatory cytokine expression and an upregulation of T cell absolute counts in most cases, thus showing effectiveness of treatment in COVID-19. SARS-CoV-2 infection induced cytokine overexpression in hospitalized patients with COVID-19 as well as lymphopenia, particularly a decrease in CD4+ and CD8+ T cell counts. Moreover, despite the reduced counts of CD4+ and CD8+ T cells, both subsets showed overactivation and increased expression of IL-17A and IL-22, thus targeting Th17 response might alleviate inflammatory response in severe disease.
Collapse
Affiliation(s)
- Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
238
|
Mongan D, Raj Susai S, Föcking M, Byrne JF, Zammit S, Cannon M, Cotter DR. Associations between plasma inflammatory markers and psychotic disorder, depressive disorder and generalised anxiety disorder in early adulthood: A nested case-control study. Brain Behav Immun 2023; 111:90-100. [PMID: 37004760 DOI: 10.1016/j.bbi.2023.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Low-grade inflammation may occur in association with several mental disorders of early adulthood, though associations with markers of chronic inflammation such as soluble urokinase plasminogen activator receptor (suPAR) are less well-established. We aimed to examine associations between acute and chronic inflammatory markers and mental disorders, as well as psychiatric co-morbidity, in young adults aged 24 years in the Avon Longitudinal Study of Parents and Children. METHODS Included were 781 participants (of 4019 who attended at age 24 years) who completed psychiatric assessments and provided plasma samples. Of these, 377 met criteria for psychotic disorder, depressive disorder or generalised anxiety disorder and 404 did not. Plasma concentrations of IFN-γ, IL-6, IL-8, IL-10, TNF-α, CRP, sVCAM1, sICAM1, suPAR and alpha-2-macroglobulin were measured using immunoassays. Logistic regression compared standardised inflammatory marker levels in cases and controls. Negative binomial regression evaluated associations between inflammatory markers and co-morbidity (number of mental disorders). Models were adjusted for sex, body mass index, cigarette smoking, cannabis use and employment status, then additionally for childhood trauma. RESULTS For psychotic disorder, there was evidence for associations with IL-6 (odds ratio[OR] 1.68, 95 %CI 1.20-2.34) and suPAR (OR 1.74, 95 %CI 1.17-2.58). There was weaker evidence for an association between suPAR and depressive disorder (OR 1.31, 95 %CI 1.05-1.62). There was little evidence for associations between inflammatory markers and generalised anxiety disorder. There was weak evidence for an association between suPAR and co-morbidity (β 0.10, 95 %CI 0.01-0.19). There was little evidence for additional confounding by childhood trauma. CONCLUSIONS There was evidence that 24-year-olds with psychotic disorder had raised plasma IL-6 and suPAR concentrations compared to controls. These findings have implications regarding the role of inflammation in mental disorders in early adulthood.
Collapse
Affiliation(s)
- David Mongan
- Centre for Public Health, Queen's University Belfast, Northern Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Subash Raj Susai
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jonah F Byrne
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stan Zammit
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
239
|
Patel R, Hall S, Lanford H, Ward N, Grespin RT, Figueroa M, Mattia V, Xiong Y, Mukherjee R, Jones J, Ruddy JM. Signaling through the IL-6-STAT3 Pathway Promotes Proteolytically-Active Macrophage Accumulation Necessary for Development of Small AAA. Vasc Endovascular Surg 2023; 57:433-444. [PMID: 36639147 PMCID: PMC10238619 DOI: 10.1177/15385744231152961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Elevated interleukin-6 (IL-6) plasma levels have been associated with abdominal aortic aneurysm (AAA), but whether this cytokine plays a causative role in the degenerative remodeling or represents an effect from the inflammatory cascades initiated by infiltrating leukocytes remained unclear. This project aims to demonstrate that within the aortic wall, signaling from IL-6 through the STAT3 transcription factor is necessary for infiltration of proteolytically-active macrophages and development of small AAA. METHODS Following measurement of baseline infrarenal aortic diameter (AoD, digital microscopy), C57Bl/6 and IL-6 knockout (IL-6KO) mice underwent AAA induction by application of peri-adventitial CaCl2 (0.5 M) +/- implantation of an osmotic mini-pump delivering IL-6 (4.36 µg/kg/day over 21 days). At the terminal procedure, AoDs were measured by digital microscopy and aortas harvested for immunoblot (pSTAT3/STAT3), matrix metalloproteinase (MMP) quantification, or flow cytometric analysis of macrophage content. Plasma was collected for cytokine analysis. RESULTS IL-6 infusion significantly increased the plasma IL-6 levels in C57Bl/6 and IL-6KO animals. The C57Bl/6 + CaCl2 group developed AAA (AoD >50% above baseline) but IL-6KO + CaCl2 did not. In the IL-6KO + IL-6+CaCl2 group, AAA developed to match that of C57Bl/6 + CaCl2 mice. STAT3 activity was significantly increased in animals with advanced stages of dilation (>40% from baseline), compared to those with ectasia (≤25%). Although cytokine profiles did not support T-cells or neutrophils as being active contributors in this stage of aortic remodeling, changes in the profile of elaborated MMPs suggested macrophage activity with a trend toward alternatively activated pathways. Flow cytometry confirmed significantly increased macrophage abundance specifically in animals with upregulated STAT3 activity and advanced aortic dilation. CONCLUSION In this murine model of AAA, progressive dilation to development of true AAA was only accomplished when IL-6 signaling upregulated STAT3 activity to effect accumulation of proteolytically-active macrophages. This pathway warrants further investigation to identify potential therapeutic avenues to abrogate growth of small AAA.
Collapse
Affiliation(s)
- Raj Patel
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hayes Lanford
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Nicholas Ward
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - R. Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
240
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
241
|
O’Brien JG, Willis AB, Long AM, Kwon J, Lee G, Li F, Page PG, Vo AH, Hadhazy M, Crosbie RH, Demonbreun AR, McNally EM. The super-healing MRL strain promotes muscle growth in muscular dystrophy through a regenerative extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547098. [PMID: 37425960 PMCID: PMC10327155 DOI: 10.1101/2023.06.29.547098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic background shifts the severity of muscular dystrophy. In mice, the DBA/2J strain confers a more severe muscular dystrophy phenotype, whereas the Murphy's Roth Large (MRL) strain has "super-healing" properties that reduce fibrosis. A comparative analysis of the Sgcg null model of Limb Girdle Muscular Dystrophy in the DBA/2J versus MRL strain showed the MRL background was associated with greater myofiber regeneration and reduced structural degradation of muscle. Transcriptomic profiling of dystrophic muscle in the DBA/2J and MRL strains indicated strain-dependent expression of the extracellular matrix (ECM) and TGF-β signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized "myoscaffolds". Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-β1 and TGF-β3 throughout the matrix, and dystrophic myoscaffolds from the MRL background were enriched in myokines. C2C12 myoblasts were seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J matrices. Acellular myoscaffolds from the dystrophic MRL background induced myoblast differentiation and growth compared to dystrophic myoscaffolds from the DBA/2J matrices. These studies establish that the MRL background also generates its effect through a highly regenerative ECM, which is active even in muscular dystrophy.
Collapse
Affiliation(s)
- Joseph G. O’Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashlee M. Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Frank Li
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patrick G.T. Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
242
|
Zhu X, Liu Y, Xu N, Ai X, Yang Y. Molecular Characterization and Expression Analysis of IL-10 and IL-6 in Channel Catfish ( Ictalurus punctatus). Pathogens 2023; 12:886. [PMID: 37513733 PMCID: PMC10384647 DOI: 10.3390/pathogens12070886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
IL-10 and IL-6 play important roles in protecting against inflammation and clearing pathogens from the body. In this study, homologous compounds of IL-10 and IL-6 were identified in channel catfish, and their immune responses were analyzed. The CDS sequences of IL-10 and IL-6 were 549 bp and 642 bp, respectively, and showed the highest homology with Ameiurus melas. In addition, the expression of the IL-10 and IL-6 genes was ubiquitous in 10 tissues examined. IL-10 is highly expressed in the liver and slightly expressed in the gill. The high expression of the IL-6 gene was observed in the spleen, heart, and gonad, with the lowest levels in the liver. LPS, Poly(I:C), PHA, and PMA showed a highly significant increase in IL-10 and IL-6 expression 48 h after CCK stimulation (p < 0.01). Otherwise, Yersinia ruckeri, Streptococcus iniae, channel catfish virus, and deltamethrin induced IL-10 and IL-6 expression, varying in intensity between different organs. Our results suggest that IL-10 and IL-6 are involved in the immune response of the host against the pathogen.
Collapse
Affiliation(s)
- Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
243
|
Arredondo-Hernández R, Schcolnik-Cabrera A, Orduña P, Juárez-López D, Varela-Salinas T, López-Vidal Y. Identification of peptides presented through the MHC-II of dendritic cells stimulated with Mycobacterium avium. Immunobiology 2023; 228:152416. [PMID: 37429053 DOI: 10.1016/j.imbio.2023.152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Mycobacterium avium (M. avium) represents a species of concern, because of its ability to modulate the host's innate immune response, and therefore influence trajectory of adaptative immunity. Since eradicative response against mycobacteria, and M. tuberculosis/M. avium, relies on peptides actively presented on a Major Histocompatibility complex-II (MHC-II) context, we assessed paradoxical stimulation of Dendritic Cell resulting on immature immunophenotype characterized by membrane minor increase of MHC-II and CD40 despite of high expression of the pro-inflammatory tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in supernatants. Identification of M. avium leucine rich peptides forming short α-helices shutting down Type 1T helper (Th1), contribute to the understanding of immune evasion of an increasingly prevalent pathogen, and may provide a basis for future immunotherapy to infectious and non-infectious disease.
Collapse
Affiliation(s)
- René Arredondo-Hernández
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - Tania Varela-Salinas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
244
|
Xiao R, Lei C, Zhang Y, Zhang M. Interleukin-6 in retinal diseases: From pathogenesis to therapy. Exp Eye Res 2023:109556. [PMID: 37385535 DOI: 10.1016/j.exer.2023.109556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/03/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that participates in immunomodulation, inflammation, increases vascular permeability, hematopoiesis, and stimulates cell proliferation, among other biological processes. It exerts effects primarily through the classic and trans-signaling pathways. Many studies have demonstrated that IL-6 plays a critical role in the development of retinal diseases including diabetic retinopathy, uveitis, age-related macular degeneration, glaucoma, retinal vein occlusion, central serous chorioretinopathy and proliferative vitreoretinopathy. Thus, the progressive development of drugs targeting IL-6 and IL-6 receptor may play a role in the treatment of multiple retinal diseases. In this article, we comprehensively review the IL-6's biological functions of and its mechanisms in the pathogenesis of various retinal diseases. Furthermore, we summarize the drugs targeting IL-6 and its receptor and prospect their potential application in retinal diseases, hoping to provide new ideas for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyan Lei
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
245
|
Yusop N, Moseley R, Waddington RJ. Hyperglycemia exerts disruptive effects on the secretion of TGF-β 1 and its matrix ligands, decorin and biglycan, by mesenchymal sub-populations and macrophages during bone repair. FRONTIERS IN DENTAL MEDICINE 2023; 4:1200122. [PMID: 39916897 PMCID: PMC11797960 DOI: 10.3389/fdmed.2023.1200122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 02/09/2025] Open
Abstract
Introduction Bone has a high capacity for repair, but for patients with uncontrolled type 2 diabetes mellitus (T2DM), the associated hyperglycemia can significantly delay osteogenic processes. These patients respond poorly to fracture repair and bone grafts, leading to lengthy care plans due to arising complications. Mesenchymal stromal cells (MSCs) and M2 macrophages are both major sources of transforming growth factor-β1 (TGF-β1), a recognized mediator for osteogenesis and whose bioavailability and activities are further regulated by matrix small leucine-rich proteoglycans (SLRPs), decorin and biglycan. The aim of this study was to investigate how in vivo and in vitro hyperglycemic (HGly) environments can influence the levels of TGF-β1, decorin, and biglycan during bone repair, with additional consideration for how long-term glucose exposure and cell aging can also influence this process. Results Following bone healing within a T2DM in vivo model, histological and immunolabeling analyses of bone tissue sections confirmed delayed healing, which was associated with significantly elevated TGF-β1 levels within the bone matrices of young diabetic rats, compared with their normoglycemic (Norm) and aged counterparts. Studies continued to assess in vitro the effects of normal (5.5 mM) and high (25 mM) glucose exposure on the osteogenic differentiation of compact bone-derived mesenchymal stromal cells (CB-MSCs) at population doubling (PD)15, characterized to contain populations of lineage-committed osteoblasts, and at PD150, where transit-amplifying cells predominate. Short-term glucose exposure increased TGF-β1 and decorin secretion by committed osteoblasts but had a lesser effect on transit-amplifying cells. In contrast, the long-term exposure of CB-MSCs to high glucose was associated with decreased TGF-β1 and increased decorin secretion. Similar assessments on macrophage populations indicated high glucose inhibited TGF-β1 secretion, preventing M2 formation. Discussion Collectively, these findings highlight how hyperglycemia associated with T2DM can perturb TGF-β1 and decorin secretion by MSCs and macrophages, thereby potentially influencing TGF-β1 bioavailability and signaling during bone repair.
Collapse
Affiliation(s)
- Norhayati Yusop
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
246
|
Al-Rasheed M, Ball C, Parthiban S, Ganapathy K. Evaluation of protection and immunity induced by infectious bronchitis vaccines administered by oculonasal, spray or gel routes in commercial broiler chicks. Vaccine 2023:S0264-410X(23)00642-4. [PMID: 37316407 DOI: 10.1016/j.vaccine.2023.05.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Broiler chicks' responses following combined IBV live attenuated Massachusetts and 793B strains through gel, spray or oculonasal (ON) vaccination routes were cross-compared. Subsequently, the responses following IBV M41 challenge of the unvaccinated and vaccinated groups were also assessed. Post-vaccination humoral and mucosal immune responses, alongside viral load kinetics in swabs and tissues, were determined using commercial ELISA assays, monoclonal antibody-based IgG and IgA ELISA assays and qRT-PCR respectively. After challenged with IBV-M41 strain, humoral and mucosal immune responses, ciliary protection, viral load kinetics, and immune gene mRNA transcriptions between the three vaccination methods were examined and compared. Findings showed that post-vaccinal humoral and mucosal immune responses were similar in all three vaccination methods. Post vaccinal viral load kinetics is influenced by method of administration. The viral load peaked in the ON group within the tissues and the OP/CL swabs in the first and third weeks respectively. Following M41 challenge, ciliary protection and mucosal immune responses were not influenced by vaccination methods as all three methods offered equal ciliary protection. Immune gene mRNA transcriptions varied by vaccination methods. Significant up-regulation of MDA5, TLR3, IL-6, IFN-α and IFN-β genes were recorded for ON method. For both spray and gel methods, significant up-regulation of only MDA5 and IL-6 genes were noted. The spray and gel-based vaccination methods gave equivalent levels of ciliary protection and mucosal immunity to M41 virulent challenge comparable to those provided by the ON vaccination. Analysis of viral load and patterns of immune gene transcription of the vaccinated-challenged groups revealed high similarity between turbinate and choanal cleft tissues compared to HG and trachea. With regards to immune gene mRNA transcription, for all the vaccinated-challenged groups, similar results were found except for IFN-α, IFN-β and TLR3, which were up-regulated only in ON compared to gel and spray vaccination methods.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK; College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia; Avian Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| | - Sivamurthy Parthiban
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK; Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kannan Ganapathy
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK.
| |
Collapse
|
247
|
Sarlon J, Partonen T, Lang UE. Potential links between brown adipose tissue, circadian dysregulation, and suicide risk. Front Neurosci 2023; 17:1196029. [PMID: 37360180 PMCID: PMC10288144 DOI: 10.3389/fnins.2023.1196029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Circadian desynchronizations are associated with psychiatric disorders as well as with higher suicidal risk. Brown adipose tissue (BAT) is important in the regulation of body temperature and contributes to the homeostasis of the metabolic, cardiovascular, skeletal muscle or central nervous system. BAT is under neuronal, hormonal and immune control and secrets batokines: i.e., autocrine, paracrine and endocrine active substances. Moreover, BAT is involved in circadian system. Light, ambient temperature as well as exogen substances interact with BAT. Thus, a dysregulation of BAT can indirectly worsen psychiatric conditions and the risk of suicide, as one of previously suggested explanations for the seasonality of suicide rate. Furthermore, overactivation of BAT is associated with lower body weight and lower level of blood lipids. Reduced body mass index (BMI) or decrease in BMI respectively, as well as lower triglyceride concentrations were found to correlate with higher risk of suicide, however the findings are inconclusive. Hyperactivation or dysregulation of BAT in relation to the circadian system as a possible common factor is discussed. Interestingly, substances with proven efficacy in reducing suicidal risk, like clozapine or lithium, interact with BAT. The effects of clozapine on fat tissue are stronger and might differ qualitatively from other antipsychotics; however, the significance remains unclear. We suggest that BAT is involved in the brain/environment homeostasis and deserves attention from a psychiatric point of view. Better understanding of circadian disruptions and its mechanisms can contribute to personalized diagnostic and therapy as well as better assessment of suicide risk.
Collapse
Affiliation(s)
- Jan Sarlon
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Undine E. Lang
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
248
|
Yang Y, Li J, Zhou Z, Wu S, Zhao J, Jia W, Liu M, Shen X, He F, Cheng R. Gut Microbiota Perturbation in Early Life Could Influence Pediatric Blood Pressure Regulation in a Sex-Dependent Manner in Juvenile Rats. Nutrients 2023; 15:2661. [PMID: 37375565 DOI: 10.3390/nu15122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to investigate whether gut dysbiosis induced by ceftriaxone in early life could influence pediatric blood pressure regulation in childhood with or without exposure to a high-fat diet (HFD). Sixty-three newborn pups of Sprague-Dawley rats were administered ceftriaxone sodium or saline solution until weaning at 3 weeks, and the rats were fed a HFD or regular diet from 3 to 6 weeks. Tail-cuff blood pressure, the expression levels of genes of the renin-angiotensin system (RAS), the concentrations of IL-1β, IL-6, and TNF-α in the colon and prefrontal cortex, and the composition of fecal microbiota were analyzed. Ceftriaxone treatment significantly increased the diastolic blood pressure of male rats at 3 weeks. At 6 weeks, systolic blood pressure (SBP) was significantly increased only in ceftriaxone treated male rats fed with HFD. The RAS showed increased activation in the kidney, heart, hypothalamus, and thoracic and abdominal aorta of male rats, but only in the kidney, heart, and hypothalamus of female rats. HFD-fed female rats showed a decreased level of IL-6 in the colon. α diversity of gut microbiota decreased and the Firmicutes to Bacteroidetes ratio increased in both male and female rats at 3 weeks; however, these parameters recovered to various degrees in female rats at 6 weeks. These results revealed that early-life gut dysbiosis induced by antibiotics combined with a HFD in childhood could be involved in pediatric blood pressure regulation and an increase in SBP in juvenile rats, and these effects occurred in a sex-dependent manner.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhimo Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meixun Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
249
|
Purwaningrum M, Giachelli CM, Osathanon T, Rattanapuchpong S, Sawangmake C. Dissecting specific Wnt components governing osteogenic differentiation potential by human periodontal ligament stem cells through interleukin-6. Sci Rep 2023; 13:9055. [PMID: 37270571 PMCID: PMC10239497 DOI: 10.1038/s41598-023-35569-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) play a significant role on periodontal tissue and alveolar bone homeostasis. During inflammation, interleukin (IL)-6 serves as one of key cytokine players controlling tissue reaction as well as alveolar bone tissue remodeling. It is believed that periodontal tissue inflammation causes periodontium degradation, especially alveolar bone. However, in this study, we show that an inflammatory mediator, IL-6, may serve another direction on alveolar bone homeostasis during inflammatory condition. We found that, IL-6 at 10 and 20 ng/mL was not cytotoxic and dose-dependently exerted beneficial effects on osteogenic differentiation of human PDLSCs (hPDLSCs), as demonstrated by increased alkaline phosphatase activity, mRNA expression of osteogenic markers, and matrix mineralization. The presence of physiological and inflammatory level of IL-6, the osteogenic differentiation potential by hPDLSCs was enhanced by several possible mechanisms including transforming growth factor (TGF), Wnt, and Notch pathways. After in-depth and thorough exploration, we found that Wnt pathway serves as key regulator controlling osteogenic differentiation by hPDLSCs amid the IL-6 presentation. Surprisingly, apart from other mesenchymal stem cells, distinct Wnt components are employed by hPDLSCs, and both canonical and non-canonical Wnt pathways are triggered by different mechanisms. Further validation by gene silencing, treatment with recombinant Wnt ligands, and β-catenin stabilization/translocation confirmed that IL-6 governed the canonical Wnt/β-catenin pathway via either WNT2B or WNT10B and employed WNT5A to activate the non-canonical Wnt pathway. These findings fulfill the homeostasis pathway governing periodontal tissue and alveolar bone regeneration and may serve for further therapeutic regimen design for restoring the tissues.
Collapse
Affiliation(s)
- Medania Purwaningrum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
250
|
Beaudoin JJ, Clemens L, Miedel MT, Gough A, Zaidi F, Ramamoorthy P, Wong KE, Sarangarajan R, Battista C, Shoda LKM, Siler SQ, Taylor DL, Howell BA, Vernetti LA, Yang K. The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury. Int J Mol Sci 2023; 24:9692. [PMID: 37298645 PMCID: PMC10253699 DOI: 10.3390/ijms24119692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.
Collapse
Affiliation(s)
- James J. Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lara Clemens
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Mark T. Miedel
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Albert Gough
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Fatima Zaidi
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Kari E. Wong
- Metabolon Inc., Durham, NC 27713, USA (P.R.); (K.E.W.); (R.S.)
| | | | - Christina Battista
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lisl K. M. Shoda
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Scott Q. Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Brett A. Howell
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| | - Lawrence A. Vernetti
- Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA (A.G.); (D.L.T.)
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA (S.Q.S.)
| |
Collapse
|