201
|
Hollox EJ, Zuccherato LW, Tucci S. Genome structural variation in human evolution. Trends Genet 2021; 38:45-58. [PMID: 34284881 DOI: 10.1016/j.tig.2021.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.
Collapse
Affiliation(s)
- Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, UK.
| | - Luciana W Zuccherato
- Núcleo de Ensino e Pesquisa, Instituto Mário Penna, Belo Horizonte, Brazil; Departmento de Bioquímica e Imunologia, Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA
| |
Collapse
|
202
|
Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, Saribas S, Zhu Y, Li F, Wang X, Yang W, Li Q, Ho WZ, Hu W. Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids From Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:682272. [PMID: 34290591 PMCID: PMC8288463 DOI: 10.3389/fncel.2021.682272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human cerebral organoid (CO) is a three-dimensional (3D) cell culture system that recapitulates the developing human brain. While CO has proved an invaluable tool for studying neurological disorders in a more clinically relevant matter, there have still been several shortcomings including CO variability and reproducibility as well as lack of or underrepresentation of certain cell types typically found in the brain. As the technology to generate COs has continued to improve, more efficient and streamlined protocols have addressed some of these issues. Here we present a novel scalable and simplified system to generate microglia-containing CO (MCO). We characterize the cell types and dynamic development of MCOs and validate that these MCOs harbor microglia, astrocytes, neurons, and neural stem/progenitor cells, maturing in a manner that reflects human brain development. We introduce a novel technique for the generation of embryoid bodies (EBs) directly from induced pluripotent stem cells (iPSCs) that involves simplified steps of transitioning directly from 3D cultures as well as orbital shaking culture in a standard 6-well culture plate. This allows for the generation of MCOs with an easy-to-use system that is affordable and accessible by any general lab.
Collapse
Affiliation(s)
- Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yongang Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuan Lin
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yuanjun Zhu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenli Yang
- Institute for Regenerative Medicine and Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
203
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
204
|
The Moral Status of Cognitively Enhanced Monkeys and Other Novel Beings. Camb Q Healthc Ethics 2021; 30:492-503. [PMID: 34109929 DOI: 10.1017/s0963180120001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The discussion about the moral status of novel beings tends to focus on artificial intelligence, robots, and other man-made systems. We should, however, also consider a likelier kind of novel beings: animals that are genetically modified to develop human-like cognitive capabilities. This paper focuses on the possibility of conferring human characteristics on nonhuman primates (NHPs) in the context of neuroscientific research. It first discusses the use of NHPs for neuroscientific research and then, second, describes recent developments that promise to revolutionize the field and how that may lead to NHPs attaining human-like cognitive capabilities. Third, an account of moral status is developed to ground the central claim, that making the NHP brain more human-like is unproblematic as long as the NHPs do not become persons. In conclusion, this paper discusses the implications for the moral status of cognitively enhanced NHPs, as well as the implications for other novel beings.
Collapse
|
205
|
Falcone C, Mevises NY, Hong T, Dufour B, Chen X, Noctor SC, Martínez Cerdeño V. Neuronal and glial cell number is altered in a cortical layer-specific manner in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:2238-2253. [PMID: 34107793 DOI: 10.1177/13623613211014408] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT The cerebral cortex affected with autism spectrum disorder presents changes in the number of neurons and glia cells, possibly leading to a dysregulation of brain circuits and affecting behavior. However, little is known about cell number alteration in specific layers of the cortex in autism spectrum disorder. We found an increase in the number of neurons and a decrease in the number of astrocytes in specific layers of the prefrontal cortex in postmortem human brains from autism spectrum disorder cases. We hypothesize that this may be due to a failure in neural stem cells to shift differentiation from neurons to glial cells during prenatal brain development. These data provide key anatomical findings that contribute to the bases of autism spectrum disorder pathogenesis.
Collapse
Affiliation(s)
- Carmen Falcone
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Natalie-Ya Mevises
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Tiffany Hong
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Brett Dufour
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | - Xiaohui Chen
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| | | | - Verónica Martínez Cerdeño
- UC Davis School of Medicine, USA.,Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children of Northern California, USA
| |
Collapse
|
206
|
Rayon T, Briscoe J. Cross-species comparisons and in vitro models to study tempo in development and homeostasis. Interface Focus 2021; 11:20200069. [PMID: 34055305 PMCID: PMC8086913 DOI: 10.1098/rsfs.2020.0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of in vitro systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.
Collapse
|
207
|
Nomura T, Ohtaka-Maruyama C, Kiyonari H, Gotoh H, Ono K. Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes. Cell Rep 2021; 31:107592. [PMID: 32375034 DOI: 10.1016/j.celrep.2020.107592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022] Open
Abstract
The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan.
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| |
Collapse
|
208
|
Pinson A, Huttner WB. Neocortex expansion in development and evolution-from genes to progenitor cell biology. Curr Opin Cell Biol 2021; 73:9-18. [PMID: 34098196 DOI: 10.1016/j.ceb.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The evolutionary expansion of the neocortex, the seat of higher cognitive functions in humans, is primarily due to an increased and prolonged proliferation of neural progenitor cells during development. Basal progenitors, and in particular basal radial glial cells, are thought to have a key role in the increased generation of neurons that constitutes a foundation of neocortex expansion. Recent studies have identified primate-specific and human-specific genes and changes in gene expression that promote increased proliferative capacity of cortical progenitors. In many cases, the cell biological basis underlying this increase has been uncovered. Model systems such as mouse, ferret, nonhuman primates, and cerebral organoids have been used to establish the relevance of these genes for neocortex expansion.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
209
|
An Evolved Human-specific Epigenetic Mechanism for Cortical Expansion and Gyrification. Neurosci Bull 2021; 37:1370-1372. [PMID: 34076853 DOI: 10.1007/s12264-021-00719-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
|
210
|
Spatiotemporal 22q11.21 Protein Network Implicates DGCR8-Dependent MicroRNA Biogenesis as a Risk for Late-Fetal Cortical Development in Psychiatric Diseases. Life (Basel) 2021; 11:life11060514. [PMID: 34073122 PMCID: PMC8227527 DOI: 10.3390/life11060514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
The chromosome 22q11.21 copy number variant (CNV) is a vital risk factor that can be a genetic predisposition to neurodevelopmental disorders (NDD). As the 22q11.21 CNV affects multiple genes, causal disease genes and mechanisms affected are still poorly understood. Thus, we aimed to identify the most impactful 22q11.21 CNV genes and the potential impacted human brain regions, developmental stages and signaling pathways. We constructed the spatiotemporal dynamic networks of 22q11.21 CNV genes using the brain developmental transcriptome and physical protein–protein interactions. The affected brain regions, developmental stages, driver genes and pathways were subsequently investigated via integrated bioinformatics analysis. As a result, we first identified that 22q11.21 CNV genes affect the cortical area mainly during late fetal periods. Interestingly, we observed that connections between a driver gene, DGCR8, and its interacting partners, MECP2 and CUL3, also network hubs, only existed in the network of the late fetal period within the cortical region, suggesting their functional specificity during brain development. We also confirmed the physical interaction result between DGCR8 and CUL3 by liquid chromatography-tandem mass spectrometry. In conclusion, our results could suggest that the disruption of DGCR8-dependent microRNA biogenesis plays a vital role in NDD for late fetal cortical development.
Collapse
|
211
|
Wang Y, Guo B. The divergence of alternative splicing between ohnologs in teleost fishes. BMC Ecol Evol 2021; 21:98. [PMID: 34034651 PMCID: PMC8146666 DOI: 10.1186/s12862-021-01833-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication and alternative splicing (AS) are two distinct mechanisms generating new materials for genetic innovations. The evolutionary link between gene duplication and AS is still controversial, due to utilizing duplicates from inconsistent ages of duplication events in earlier studies. With the aid of RNA-seq data, we explored evolutionary scenario of AS divergence between duplicates with ohnologs that resulted from the teleost genome duplication event in zebrafish, medaka, and stickleback. RESULTS Ohnologs in zebrafish have fewer AS forms compared to their singleton orthologs, supporting the function-sharing model of AS divergence between duplicates. Ohnologs in stickleback have more AS forms compared to their singleton orthologs, which supports the accelerated model of AS divergence between duplicates. The evolution of AS in ohnologs in medaka supports a combined scenario of the function-sharing and the accelerated model of AS divergence between duplicates. We also found a small number of ohnolog pairs in each of the three teleosts showed significantly asymmetric AS divergence. For example, the well-known ovary-factor gene cyp19a1a has no AS form but its ohnolog cyp19a1b has multiple AS forms in medaka, suggesting that functional divergence between duplicates might have result from AS divergence. CONCLUSIONS We found that a combined scenario of function-sharing and accelerated models for AS evolution in ohnologs in teleosts and rule out the independent model that assumes a lack of correlation between gene duplication and AS. Our study thus provided insights into the link between gene duplication and AS in general and ohnolog divergence in teleosts from AS perspective in particular.
Collapse
Affiliation(s)
- Yuwei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
212
|
Heide M, Huttner WB. Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. Cells 2021; 10:1209. [PMID: 34063381 PMCID: PMC8156310 DOI: 10.3390/cells10051209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, human-specific genes have received increasing attention as potential major contributors responsible for the 3-fold difference in brain size between human and chimpanzee. Accordingly, mutations affecting these genes may lead to a reduction in human brain size and therefore, may cause or contribute to microcephaly. In this review, we will concentrate, within the brain, on the cerebral cortex, the seat of our higher cognitive abilities, and focus on the human-specific gene ARHGAP11B and on the gene family comprising the three human-specific genes NOTCH2NLA, -B, and -C. These genes are thought to have significantly contributed to the expansion of the cerebral cortex during human evolution. We will summarize the evolution of these genes, as well as their expression and functional role during human cortical development, and discuss their potential relevance for microcephaly. Furthermore, we will give an overview of other human-specific genes that are expressed during fetal human cortical development. We will discuss the potential involvement of these genes in microcephaly and how these genes could be studied functionally to identify a possible role in microcephaly.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| |
Collapse
|
213
|
Stepien BK, Vaid S, Huttner WB. Length of the Neurogenic Period-A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:676911. [PMID: 34055808 PMCID: PMC8155536 DOI: 10.3389/fcell.2021.676911] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex, a six-layer neuronal brain structure that arose during the evolution of, and is unique to, mammals, is the seat of higher order brain functions responsible for human cognitive abilities. Despite its recent evolutionary origin, it shows a striking variability in size and folding complexity even among closely related mammalian species. In most mammals, cortical neurogenesis occurs prenatally, and its length correlates with the length of gestation. The evolutionary expansion of the neocortex, notably in human, is associated with an increase in the number of neurons, particularly within its upper layers. Various mechanisms have been proposed and investigated to explain the evolutionary enlargement of the human neocortex, focussing in particular on changes pertaining to neural progenitor types and their division modes, driven in part by the emergence of human-specific genes with novel functions. These led to an amplification of the progenitor pool size, which affects the rate and timing of neuron production. In addition, in early theoretical studies, another mechanism of neocortex expansion was proposed—the lengthening of the neurogenic period. A critical role of neurogenic period length in determining neocortical neuron number was subsequently supported by mathematical modeling studies. Recently, we have provided experimental evidence in rodents directly supporting the mechanism of extending neurogenesis to specifically increase the number of upper-layer cortical neurons. Moreover, our study examined the relationship between cortical neurogenesis and gestation, linking the extension of the neurogenic period to the maternal environment. As the exact nature of factors promoting neurogenic period prolongation, as well as the generalization of this mechanism for evolutionary distinct lineages, remain elusive, the directions for future studies are outlined and discussed.
Collapse
Affiliation(s)
- Barbara K Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany.,Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| |
Collapse
|
214
|
Troskie RL, Jafrani Y, Mercer TR, Ewing AD, Faulkner GJ, Cheetham SW. Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome. Genome Biol 2021; 22:146. [PMID: 33971925 PMCID: PMC8108447 DOI: 10.1186/s13059-021-02369-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
Pseudogenes are gene copies presumed to mainly be functionless relics of evolution due to acquired deleterious mutations or transcriptional silencing. Using deep full-length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape.
Collapse
Affiliation(s)
- Robin-Lee Troskie
- Mater Research Institute-University of Queensland, TRI Building, QLD 4102 Woolloongabba, Australia
| | - Yohaann Jafrani
- Mater Research Institute-University of Queensland, TRI Building, QLD 4102 Woolloongabba, Australia
| | - Tim R. Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072 Australia
| | - Adam D. Ewing
- Mater Research Institute-University of Queensland, TRI Building, QLD 4102 Woolloongabba, Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute-University of Queensland, TRI Building, QLD 4102 Woolloongabba, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Seth W. Cheetham
- Mater Research Institute-University of Queensland, TRI Building, QLD 4102 Woolloongabba, Australia
| |
Collapse
|
215
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
216
|
Funato K, Smith RC, Saito Y, Tabar V. Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell 2021; 28:894-905.e7. [PMID: 33631117 PMCID: PMC8106629 DOI: 10.1016/j.stem.2021.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/04/2020] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
H3.3G34R-mutant gliomas are lethal tumors of the cerebral hemispheres with unknown mechanisms of regional specificity and tumorigenicity. We developed a human embryonic stem cell (hESC)-based model of H3.3G34R-mutant glioma that recapitulates the key features of the tumors with cell-type specificity to forebrain interneuronal progenitors but not hindbrain precursors. We show that H3.3G34R, ATRX, and TP53 mutations cooperatively impact alternative RNA splicing events, particularly suppression of intron retention. This leads to increased expression of components of the Notch pathway, notably NOTCH2NL, a human-specific gene family. We also uncover a parallel mechanism of enhanced NOTCH2NL expression via genomic amplification of its locus in some H3.3G34R-mutant tumors. These findings demonstrate a novel mechanism whereby evolutionary pathways that lead to larger brain size in humans are co-opted to drive tumor growth.
Collapse
Affiliation(s)
- Kosuke Funato
- Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics, Sloan Kettering Institute, New York, NY 10065, USA
| | - Ryan C Smith
- Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
217
|
Xing L, Kubik-Zahorodna A, Namba T, Pinson A, Florio M, Prochazka J, Sarov M, Sedlacek R, Huttner WB. Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility. EMBO J 2021; 40:e107093. [PMID: 33938018 PMCID: PMC8246068 DOI: 10.15252/embj.2020107093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neocortex expansion during human evolution provides a basis for our enhanced cognitive abilities. Yet, which genes implicated in neocortex expansion are actually responsible for higher cognitive abilities is unknown. The expression of human-specific ARHGAP11B in embryonic/foetal mouse, ferret and marmoset neocortex was previously found to promote basal progenitor proliferation, upper-layer neuron generation and neocortex expansion during development, features commonly thought to contribute to increased cognitive abilities. However, a key question is whether this phenotype persists into adulthood and if so, whether cognitive abilities are indeed increased. Here, we generated a transgenic mouse line with physiological ARHGAP11B expression that exhibits increased neocortical size and upper-layer neuron numbers persisting into adulthood. Adult ARHGAP11B-transgenic mice showed altered neurobehaviour, notably increased memory flexibility and a reduced anxiety level. Our data are consistent with the notion that neocortex expansion by ARHGAP11B, a gene implicated in human evolution, underlies some of the altered neurobehavioural features observed in the transgenic mice, such as the increased memory flexibility, a neocortex-associated trait, with implications for the increase in cognitive abilities during human evolution.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
218
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
219
|
Haisma S, Weersma RK, Joosse ME, de Koning BAE, de Meij T, Koot BGP, Wolters V, Norbruis O, Daly MJ, Stevens C, Xavier RJ, Koskela J, Rivas MA, Visschedijk MC, Verkade HJ, Barbieri R, Jansen DBH, Festen EAM, van Rheenen PF, van Diemen CC. Exome sequencing in patient-parent trios suggests new candidate genes for early-onset primary sclerosing cholangitis. Liver Int 2021; 41:1044-1057. [PMID: 33590606 PMCID: PMC8252477 DOI: 10.1111/liv.14831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is a rare bile duct disease strongly associated with inflammatory bowel disease (IBD). Whole-exome sequencing (WES) has contributed to understanding the molecular basis of very early-onset IBD, but rare protein-altering genetic variants have not been identified for early-onset PSC. We performed WES in patients diagnosed with PSC ≤ 12 years to investigate the contribution of rare genetic variants to early-onset PSC. METHODS In this multicentre study, WES was performed on 87 DNA samples from 29 patient-parent trios with early-onset PSC. We selected rare (minor allele frequency < 2%) coding and splice-site variants that matched recessive (homozygous and compound heterozygous variants) and dominant (de novo) inheritance in the index patients. Variant pathogenicity was predicted by an in-house developed algorithm (GAVIN), and PSC-relevant variants were selected using gene expression data and gene function. RESULTS In 22 of 29 trios we identified at least 1 possibly pathogenic variant. We prioritized 36 genes, harbouring a total of 54 variants with predicted pathogenic effects. In 18 genes, we identified 36 compound heterozygous variants, whereas in the other 18 genes we identified 18 de novo variants. Twelve of 36 candidate risk genes are known to play a role in transmembrane transport, adaptive and innate immunity, and epithelial barrier function. CONCLUSIONS The 36 candidate genes for early-onset PSC need further verification in other patient cohorts and evaluation of gene function before a causal role can be attributed to its variants.
Collapse
Affiliation(s)
- Sjoukje‐Marije Haisma
- Department of Paediatric Gastroenterology Hepatology and NutritionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Maria E. Joosse
- Department of Paediatric GastroenterologyErasmus University Medical CenterSophia Children's HospitalRotterdamThe Netherlands
| | - Barbara A. E. de Koning
- Department of Paediatric GastroenterologyErasmus University Medical CenterSophia Children's HospitalRotterdamThe Netherlands
| | - Tim de Meij
- Department of Pediatric GastroenterologyVU University Medical CenterAmsterdamThe Netherlands
| | - Bart G. P. Koot
- Pediatric GastroenterologyEmma Children's HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Victorien Wolters
- Department of Pediatric GastroenterologyUniversity Medical Center Utrecht – Wilhelmina Children's HospitalUtrechtThe Netherlands
| | - Obbe Norbruis
- Department of PediatricsIsala HospitalZwolleThe Netherlands
| | - Mark J. Daly
- Broad Institute of Harvard and Massachusetts Institute of TechnologyBostonMAUSA
| | - Christine Stevens
- Broad Institute of Harvard and Massachusetts Institute of TechnologyBostonMAUSA
| | | | - Jukka Koskela
- Massachusetts General Hospital, GastroenterologyBostonMAUSA,Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland,Clinic of Gastroenterology HelsinkiHelsinki University and Helsinki University HospitalHelsinkiFinland
| | | | - Marijn C. Visschedijk
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Henkjan J. Verkade
- Department of Paediatric Gastroenterology Hepatology and NutritionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ruggero Barbieri
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Dianne B. H. Jansen
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Eleonora A. M. Festen
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands,Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Patrick F. van Rheenen
- Department of Paediatric Gastroenterology Hepatology and NutritionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Cleo C. van Diemen
- Department of GeneticsUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
220
|
Shew CJ, Carmona-Mora P, Soto DC, Mastoras M, Roberts E, Rosas J, Jagannathan D, Kaya G, O'Geen H, Dennis MY. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol Biol Evol 2021; 38:3060-3077. [PMID: 34009325 PMCID: PMC8321529 DOI: 10.1093/molbev/msab131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD genes from 30 families between humans and chimpanzees and found expression patterns consistent with relaxed selection on or neofunctionalization of derived paralogs. In general, ancestral paralogs exhibited greatest expression conservation with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant ancestral functions. Concordantly, analysis of long-read isoform sequencing data sets from diverse human tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell lines (LCLs) and found no relationship between paralogous expression divergence and post-transcriptional regulation, sequence divergence, or copy-number variation. Considering cis-regulation, we reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene duplicates in humans.
Collapse
Affiliation(s)
- Colin J Shew
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Paulina Carmona-Mora
- Genome Center, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Mira Mastoras
- Genome Center, University of California Davis, CA, USA
| | | | - Joseph Rosas
- Genome Center, University of California Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA
| | | | - Gulhan Kaya
- Genome Center, University of California Davis, CA, USA
| | | | - Megan Y Dennis
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA.,Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
221
|
Ferrari R, Grandi N, Tramontano E, Dieci G. Retrotransposons as Drivers of Mammalian Brain Evolution. Life (Basel) 2021; 11:life11050376. [PMID: 33922141 PMCID: PMC8143547 DOI: 10.3390/life11050376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Retrotransposons, a large and diverse class of transposable elements that are still active in humans, represent a remarkable force of genomic innovation underlying mammalian evolution. Among the features distinguishing mammals from all other vertebrates, the presence of a neocortex with a peculiar neuronal organization, composition and connectivity is perhaps the one that, by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success. Among mammals, hominids and especially humans display an extraordinarily expanded cortical volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers of gene regulation in the brain, from transcriptional and post-transcriptional control to both local and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of neurodevelopmental and neurodegenerative conditions are being recognized to be associated with retrotransposon dysregulation. We review here a large body of recent studies lending support to the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of mammalian, primate and human peculiarities of brain morphology and function.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Monserrato, Italy
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence:
| |
Collapse
|
222
|
Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B, Ruffenach F, Negroni L, Koebel P, Jacob H, Riet F, Dijkstra AA, McFadden K, Clayton WA, Hong D, Miyahara H, Iwasaki Y, Sone J, Wang Z, Charlet-Berguerand N. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: The polyG diseases. Neuron 2021; 109:1825-1835.e5. [PMID: 33887199 PMCID: PMC8186563 DOI: 10.1016/j.neuron.2021.03.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/08/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5′ UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID. NIID is a neurodegenerative disease caused by expansion of GGC repeats in NOTCH2NLC These GGC repeats are translated into a polyglycine (polyG) protein The polyG protein is toxic and forms intranuclear inclusions in cells and animals Similarities between FXTAS and NIID define a new set of disorders: polyG diseases
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Véronique Pfister
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Hugues Jacob
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Fabrice Riet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam Neuroscience, VUmc, Amsterdam, the Netherlands
| | - Kathryn McFadden
- Department of Pathology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Wiley A Clayton
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan; Department of Neurology, Suzuka National Hospital, Suzuka 513-8501, Japan
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
223
|
Dannemann M, Gallego Romero I. Harnessing pluripotent stem cells as models to decipher human evolution. FEBS J 2021; 289:2992-3010. [PMID: 33876573 DOI: 10.1111/febs.15885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
The study of human evolution, long constrained by a lack of experimental model systems, has been transformed by the emergence of the induced pluripotent stem cell (iPSC) field. iPSCs can be readily established from noninvasive tissue sources, from both humans and other primates; they can be maintained in the laboratory indefinitely, and they can be differentiated into other tissue types. These qualities mean that iPSCs are rapidly becoming established as viable and powerful model systems with which it is possible to address questions in human evolution that were until now logistically and ethically intractable, especially in the quest to understand humans' place among the great apes, and the genetic basis of human uniqueness. In this review, we discuss the key lessons and takeaways of this nascent field; from the types of research, iPSCs make possible to lingering challenges and likely future directions. We provide a comprehensive overview of how the seemingly unlikely combination of iPSCs and explicit evolutionary frameworks is transforming what is possible in our understanding of humanity's past and present.
Collapse
Affiliation(s)
| | - Irene Gallego Romero
- Institute of Genomics, University of Tartu, Estonia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Australia.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Centre for Stem Cell Systems, The University of Melbourne, Parkville, Australia
| |
Collapse
|
224
|
Clifton BD, Jimenez J, Kimura A, Chahine Z, Librado P, Sánchez-Gracia A, Abbassi M, Carranza F, Chan C, Marchetti M, Zhang W, Shi M, Vu C, Yeh S, Fanti L, Xia XQ, Rozas J, Ranz JM. Understanding the Early Evolutionary Stages of a Tandem Drosophilamelanogaster-Specific Gene Family: A Structural and Functional Population Study. Mol Biol Evol 2021; 37:2584-2600. [PMID: 32359138 PMCID: PMC7475035 DOI: 10.1093/molbev/msaa109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 3' ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increased male expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandem multigene families can follow toward long-term consolidation in eukaryotic genomes.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Jamie Jimenez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Zeinab Chahine
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Pablo Librado
- Laboratoire AMIS CNRS UMR 5288, Faculté de Médicine de Purpan, Université Paul Sabatier, Toulouse, France
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadistica, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Mashya Abbassi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Francisco Carranza
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Carolus Chan
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Marcella Marchetti
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Rome, Italy.,Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Christine Vu
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Shudan Yeh
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA.,Department of Life Sciences, National Central University, Taoyuan City, Zhongli District, Taiwan
| | - Laura Fanti
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Rome, Italy.,Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadistica, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| |
Collapse
|
225
|
Gantner CW, Hunt CPJ, Niclis JC, Penna V, McDougall SJ, Thompson LH, Parish CL. FGF-MAPK signaling regulates human deep-layer corticogenesis. Stem Cell Reports 2021; 16:1262-1275. [PMID: 33836146 PMCID: PMC8185433 DOI: 10.1016/j.stemcr.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Despite heterogeneity across the six layers of the mammalian cortex, all excitatory neurons are generated from a single founder population of neuroepithelial stem cells. However, how these progenitors alter their layer competence over time remains unknown. Here, we used human embryonic stem cell-derived cortical progenitors to examine the role of fibroblast growth factor (FGF) and Notch signaling in influencing cell fate, assessing their impact on progenitor phenotype, cell-cycle kinetics, and layer specificity. Forced early cell-cycle exit, via Notch inhibition, caused rapid, near-exclusive generation of deep-layer VI neurons. In contrast, prolonged FGF2 promoted proliferation and maintained progenitor identity, delaying laminar progression via MAPK-dependent mechanisms. Inhibiting MAPK extended cell-cycle length and led to generation of layer-V CTIP2+ neurons by repressing alternative laminar fates. Taken together, FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis and provides a resource for generating layer-specific neurons for studying development and disease. FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis FGF/MAPK signaling maintains the progenitor pool and generates layer-VI neurons MAPK inhibition prolongs cell cycle to yield layer-V neurons, repressing other fates Protocols to generate layer-specific cortical neurons to study development and disease
Collapse
Affiliation(s)
- Carlos W Gantner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan C Niclis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vanessa Penna
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stuart J McDougall
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
226
|
Chan WK, Fetit R, Griffiths R, Marshall H, Mason JO, Price DJ. Using organoids to study human brain development and evolution. Dev Neurobiol 2021; 81:608-622. [PMID: 33773072 DOI: 10.1002/dneu.22819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/22/2022]
Abstract
Recent advances in methods for making cerebral organoids have opened a window of opportunity to directly study human brain development and disease, countering limitations inherent in non-human-based approaches. Whether freely patterned, guided into a region-specific fate or fused into assembloids, organoids have successfully recapitulated key features of in vivo neurodevelopment, allowing its examination from early to late stages. Although organoids have enormous potential, their effective use relies on understanding the extent of their limitations in accurately reproducing specific processes and components in the developing human brain. Here we review the potential of cerebral organoids to model and study human brain development and evolution and discuss the progress and current challenges in their use for reproducing specific human neurodevelopmental processes.
Collapse
Affiliation(s)
- Wai-Kit Chan
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Rosie Griffiths
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Helen Marshall
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - John O Mason
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
227
|
Nakamura N, Tsunoda K, Mitsutake A, Shibata S, Mano T, Nagashima Y, Ishiura H, Iwata A, Toda T, Tsuji S, Sawamura H. Clinical Characteristics of Neuronal Intranuclear Inclusion Disease-Related Retinopathy With CGG Repeat Expansions in the NOTCH2NLC Gene. Invest Ophthalmol Vis Sci 2021; 61:27. [PMID: 32931575 PMCID: PMC7500143 DOI: 10.1167/iovs.61.11.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose To report the ocular characteristics of neuronal intranuclear inclusion disease (NIID)–related retinopathy with expansion of the CGG repeats in the NOTCH2NLC gene. Methods Seven patients from six families (aged 66–81 years) diagnosed with adult-onset NIID were studied. Ophthalmologic examinations, including the best-corrected visual acuity (BCVA), Goldmann perimetry, fundus photography, fundus autofluorescence (FAF) imaging, optical coherence tomography (OCT), and full-field electroretinography (ERGs), were performed. The expansion of the CGG repeats in the NOTCH2NLC gene was determined. Results All patients had an expansion of the CGG repeats (length approximately from 330–520 bp) in the NOTCH2NLC gene. The most common symptoms of the five symptomatic cases were reduced BCVA and night blindness. The other two cases did not have any ocular symptoms. The decimal BCVA varied from 0.15 to 1.2. Goldmann perimetry was constricted in all four cases tested; physiological blind spot was enlarged in two of the cases. The FAF images showed an absence of autofluorescence (AF) around the optic disc in all cases and also showed mild hypo-AF or extinguished AF in the midperiphery. In all cases, the OCT images showed an absence of the ellipsoid zone of the photoreceptors in the peripapillary region, and hyperreflective dots were also present between the retinal ganglion cell layer and outer nuclear layer. The macular region was involved in the late stage of the retinopathy. The full-field ERGs showed rod-cone dysfunction. Conclusions Patients with adult-onset NIID with CGG repeats expansions in the NOTCH2NLC gene had similar ophthalmologic features, including rod-cone dysfunction with progressive retinal degeneration in the peripapillary and midperipheral regions. The primary site is most likely the photoreceptors. Because the ocular symptoms are often overlooked due to dementia and occasionally precede the onset of dementia, detailed ophthalmological examinations are important for the early diagnosis of NIID-related retinopathy.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan.,Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | | - Shota Shibata
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Yu Nagashima
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | | | - Atsushi Iwata
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | | |
Collapse
|
228
|
Huang Y, Jin G, Zhan QL, Tian Y, Shen L. Adult-onset neuronal intranuclear inclusion disease, with both stroke-like onset and encephalitic attacks: a case report. BMC Neurol 2021; 21:142. [PMID: 33789591 PMCID: PMC8011180 DOI: 10.1186/s12883-021-02164-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease, the clinical manifestations of which are complex and easily misdiagnosed. NIID clinical characteristics are varied, affecting the central and peripheral nervous systems and autonomic nerves. In this study, we present an NIID case with both stroke-like onset and encephalitic attacks, which is a rare case report. Case presentation A 68-year-old Chinese female presented with sudden aphasia and limb hemiplegia as the first symptoms, as well as fever, cognitive impairment and mental irritability from encephalitic attacks. During hospitalization, a brain magnetic resonance imaging (MRI) examination detected high signal intensity from diffusion-weighted imaging (DWI) of the bilateral frontal grey matter-white matter junction. Electrophysiological tests revealed the main site of injury was at the myelin sheath in the motor nerves. A skin biopsy revealed eosinophilic spherical inclusion bodies in the nuclei of small sweat gland cells, fibroblasts and fat cells, whilst immunohistochemistry revealed that p62 and ubiquitin antibodies were positive. From genetic analyses, the patient was not a carrier of the fragile X mental retardation 1 (FMR1) permutation, but repeated GGC sequences in the NOTCH2NLC gene confirmed an NIID diagnosis. Through antipsychotic and nutritional support therapy, the patient’s symptoms were completely relieved within 3 weeks. Conclusions This report of an NIID case with both stroke-like onset and encephalitic attacks provides new information for NIID diagnoses, and a comprehensive classification of clinical characteristics.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China.
| | - Ge Jin
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China
| | - Qun-Ling Zhan
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
229
|
Changeux JP, Goulas A, Hilgetag CC. A Connectomic Hypothesis for the Hominization of the Brain. Cereb Cortex 2021; 31:2425-2449. [PMID: 33367521 PMCID: PMC8023825 DOI: 10.1093/cercor/bhaa365] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
- Communications Cellulaires, Collège de France, 75005 Paris, France
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
230
|
Zhang L, Ren Z, Su Z, Liu Y, Yang T, Cao M, Jiang Y, Tang Y, Chen H, Zhang W, Gong R, Wei T, Peng Y, Liu B, Zhang W, Yang L, Hu Y, Li Z, Zhu J, Xu H, Shu Y, Luo H. Novel Recurrent Altered Genes in Chinese Patients With Anaplastic Thyroid Cancer. J Clin Endocrinol Metab 2021; 106:988-998. [PMID: 33428730 DOI: 10.1210/clinem/dgab014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a rare but lethal malignancy, and few systematic investigations on genomic profiles of ATC have been performed in Chinese patients. METHODS Fifty-four ATC patients in West China Hospital between 2010 to 2020 were retrospectively analyzed, while 29 patients with available samples were sequenced by whole-exome sequencing (WES). The associations between genomic alterations and clinical characteristics were statistically evaluated. RESULTS The median overall survival was 3.0 months in the entire cohort, which was impacted by multiple clinical features, including age, tumor size, and different treatment strategies. In the WES cohort, totally 797 nonsilent mutations were detected; the most frequently altered genes were TP53 (48%), BRAF (24%), PIK3CA (24%), and TERT promoter (21%). Although these mutations have been well-reported in previous studies, ethnic specificity was exhibited in terms of mutation frequency. Moreover, several novel significantly mutated genes were identified including RBM15 (17%), NOTCH2NL (14%), CTNNA3 (10%), and KATNAL2 (10%). WES-based copy number alteration analysis also revealed a high frequent gain of NOTCH2NL (41%), which induced its increased expression. Gene mutations and copy number alterations were enriched in phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin (mTOR), NOTCH, and WNT pathways. CONCLUSIONS This study reveals shared and ethnicity-specific genomic profiles of ATC in Chinese patients and suggests NOTCH2NL may act as a novel candidate driver gene for ATC tumorigenesis.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhixiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengzheng Su
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tian Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Tang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weihan Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rixiang Gong
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiguo Hu
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
231
|
Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, Wunderlich S, Martin U, Wray GA, McDole K, Lancaster MA. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 2021; 184:2084-2102.e19. [PMID: 33765444 PMCID: PMC8054913 DOI: 10.1016/j.cell.2021.02.050] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion. Human brain organoids are expanded relative to nonhuman apes prior to neurogenesis Ape neural progenitors go through a newly identified transition morphotype state Delayed morphological transition with shorter cell cycles underlie human expansion ZEB2 is as an evolutionary regulator of this transition
Collapse
Affiliation(s)
- Silvia Benito-Kwiecinski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefano L Giandomenico
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erlend S Riis
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Paula Freire-Pritchett
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC 27708, USA
| | - Kate McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
232
|
Sønderby IE, van der Meer D, Moreau C, Kaufmann T, Walters GB, Ellegaard M, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Bøen R, Cahn W, Calhoun VD, Caspers S, Ching CRK, Cichon S, Ciufolini S, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Desrivieres S, Doherty JL, Donohoe G, Draganski B, Ehrlich S, Eising E, Espeseth T, Fejgin K, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Ge T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hall J, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Holmes AJ, Homuth G, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Jørgensen NR, Kikuchi M, Knowles EEM, Kumar K, Le Hellard S, Leu C, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Maillard AM, Martin NG, Martin-Brevet S, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Meyer-Lindenberg A, Moberget T, Modenato C, Sánchez JM, Morris DW, Mühleisen TW, Murray RM, Nielsen J, Nordvik JE, Nyberg L, Loohuis LMO, Ophoff RA, et alSønderby IE, van der Meer D, Moreau C, Kaufmann T, Walters GB, Ellegaard M, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Bøen R, Cahn W, Calhoun VD, Caspers S, Ching CRK, Cichon S, Ciufolini S, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Desrivieres S, Doherty JL, Donohoe G, Draganski B, Ehrlich S, Eising E, Espeseth T, Fejgin K, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Ge T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hall J, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Holmes AJ, Homuth G, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Jørgensen NR, Kikuchi M, Knowles EEM, Kumar K, Le Hellard S, Leu C, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Maillard AM, Martin NG, Martin-Brevet S, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Meyer-Lindenberg A, Moberget T, Modenato C, Sánchez JM, Morris DW, Mühleisen TW, Murray RM, Nielsen J, Nordvik JE, Nyberg L, Loohuis LMO, Ophoff RA, Owen MJ, Paus T, Pausova Z, Peralta JM, Pike GB, Prieto C, Quinlan EB, Reinbold CS, Marques TR, Rucker JJH, Sachdev PS, Sando SB, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Silva AI, Sisodiya SM, Steen VM, Stein DJ, Strike LT, Suzuki IK, Tamnes CK, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Uhlmann A, Ulfarsson MO, van 't Ent D, van den Bree MBM, Vanderhaeghen P, Vassos E, Wen W, Wittfeld K, Wright MJ, Agartz I, Djurovic S, Westlye LT, Stefansson H, Stefansson K, Jacquemont S, Thompson PM, Andreassen OA. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Transl Psychiatry 2021; 11:182. [PMID: 33753722 PMCID: PMC7985307 DOI: 10.1038/s41398-021-01213-0] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
Collapse
Affiliation(s)
- Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Moreau
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - G Bragi Walters
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Maria Ellegaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, Kew, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
| | - Micael Andersson
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Manon Bernard
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - Dorret I Boomsma
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Rune Bøen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
- Altrecht Science, Utrecht, the Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- University Hospital Virgen del Rocío, IBiS, Centre de Investigació Biomédica en Red Salud Mental (CIBERSAM), Sevilla, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Shareefa Dalvie
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | | | - Sonja M C de Zwarte
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sylvane Desrivieres
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Kim Fejgin
- Signal Transduction, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, 1474, Nordbyhagen, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Frouin
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Life Science, Sokendai, Hayama, Japan
| | - Thomas Gareau
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David C Glahn
- Boston Children's Hospital, Boston, Massachusetts, USA
- Institute of Living, Hartford, Connecticut, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- St Olav's Hospital, Department of Radiology and Nuclear Medicine, Trondheim, Norway
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Osaka University, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Màxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Per Hoffmann
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Avram J Holmes
- Psychology Department, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik G Jönsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emma E M Knowles
- Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kuldeep Kumar
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Costin Leu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, United Kingdom
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Samuel R Mathias
- Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Modenato
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Jennifer Monereo Sánchez
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jacob Nielsen
- Signal Transduction, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | | | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Erin B Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tiago Reis Marques
- Department of Psychosis, Institute of Psychiatry, Psychology & Neuroscience, Kings College, London, United Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College, London, United Kingdom
| | - James J H Rucker
- Institute of Psychiatry, Psychology and Neuroscience, London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- University Hospital of Trondheim,Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Andrew J Schork
- Institute of Biological Psychiatry, Roskilde, Denmark
- The Translational Genetics Institute (TGEN), Phoenix, AZ, United States
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, United Kingdom
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Ikuo K Suzuki
- VIB Center for Brain & Disease Research, Stem Cell and Developmental Neurobiology Lab, Leuven, Belgium
- University of Brussels (ULB), Institute of Interdisciplinary Research (IRIBHM) ULB Neuroscience Institute, Brussels, Belgium
- The University of Tokyo, Department of Biological Sciences, Graduate School of Science, Tokyo, Japan
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Diana Tordesillas-Gutiérrez
- University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Magnus O Ulfarsson
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík, Iceland
| | - Dennis van 't Ent
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000, Leuven, Belgium
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070, Brussels, Belgium
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ingrid Agartz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Kari Stefansson
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
233
|
Tanaka Y, Cakir B, Xiang Y, Sullivan GJ, Park IH. Synthetic Analyses of Single-Cell Transcriptomes from Multiple Brain Organoids and Fetal Brain. Cell Rep 2021; 30:1682-1689.e3. [PMID: 32049002 PMCID: PMC7043376 DOI: 10.1016/j.celrep.2020.01.038] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Human brain organoid systems offer unprecedented opportunities to investigate both neurodevelopmental and neurological disease. Single-cell-based transcriptomics or epigenomics have dissected the cellular and molecular heterogeneity in the brain organoids, revealing a complex organization. Similar but distinct protocols from different labs have been applied to generate brain organoids, providing a large resource to perform a comparative analysis of brain developmental processes. Here, we take a systematic approach to compare the single-cell transcriptomes of various human cortical brain organoids together with fetal brain to define the identity of specific cell types and differentiation routes in each method. Importantly, we identify unique developmental programs in each protocol compared to fetal brain, which will be a critical benchmark for the utility of human brain organoids in the future. Tanaka et al. report integrative analyses of single-cell RNA-seq for human brain organoids derived from different protocols. They find a unique preference of cell differentiation routes across protocols and provide a benchmark for the use and the improvement of human brain organoids.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gareth J Sullivan
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hospital and University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
234
|
Haag D, Mack N, Benites Goncalves da Silva P, Statz B, Clark J, Tanabe K, Sharma T, Jäger N, Jones DTW, Kawauchi D, Wernig M, Pfister SM. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 2021; 39:407-422.e13. [PMID: 33545065 DOI: 10.1016/j.ccell.2021.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.
Collapse
Affiliation(s)
- Daniel Haag
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Norman Mack
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Britta Statz
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jessica Clark
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Koji Tanabe
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Tokyo 187-0031, Japan
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
235
|
Theut Riis P, Loft I, Yazdanyar S, Kjærsgaard Andersen R, Pedersen O, Ring H, Huber R, Sultan M, Loesche C, Saunte D, Jemec G. Full exome sequencing of 11 families with Hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2021; 35:1203-1211. [DOI: 10.1111/jdv.17095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Affiliation(s)
- P. Theut Riis
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - I.C. Loft
- Department of Clinical Immunology Naestved Hospital Naestved Denmark
| | - S. Yazdanyar
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | | | - O.B. Pedersen
- Department of Clinical Immunology Naestved Hospital Naestved Denmark
| | - H.C. Ring
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - R. Huber
- Novartis Institutes for BioMedical Research Basel Switzerland
| | - M. Sultan
- Novartis Institutes for BioMedical Research Basel Switzerland
| | - C. Loesche
- Novartis Institutes for BioMedical Research Basel Switzerland
| | - D.M.L. Saunte
- Department of Dermatology Zealand University Hospital Roskilde Denmark
- Department of Clinical Medicine Health Sciences Faculty University of Copenhagen Copenhagen Denmark
| | - G.B.E. Jemec
- Department of Dermatology Zealand University Hospital Roskilde Denmark
- Department of Clinical Medicine Health Sciences Faculty University of Copenhagen Copenhagen Denmark
| |
Collapse
|
236
|
Mora-Bermúdez F, Taverna E, Huttner WB. From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS J 2021; 289:1524-1535. [PMID: 33638923 DOI: 10.1111/febs.15793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023]
Abstract
Comparing the biology of humans to that of other primates, and notably other hominids, is a useful path to learn more about what makes us human. Some of the most interesting differences among hominids are closely related to brain development and function, for example behaviour and cognition. This makes it particularly interesting to compare the hominid neural cells of the neocortex, a part of the brain that plays central roles in those processes. However, well-preserved tissue from great apes is usually extremely difficult to obtain. A variety of new alternative tools, for example brain organoids, are now beginning to make it possible to search for such differences and analyse their potential biological and biomedical meaning. Here, we present an overview of recent findings from comparisons of the neural stem and progenitor cells (NSPCs) and neurons of hominids. In addition to differences in proliferation and differentiation of NSPCs, and maturation of neurons, we highlight that the regulation of the timing of these processes is emerging as a general foundational difference in the development of the neocortex of hominids.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
237
|
Saiki W, Ma C, Okajima T, Takeuchi H. Current Views on the Roles of O-Glycosylation in Controlling Notch-Ligand Interactions. Biomolecules 2021; 11:biom11020309. [PMID: 33670724 PMCID: PMC7922208 DOI: 10.3390/biom11020309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.
Collapse
Affiliation(s)
- Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-744-2068
| |
Collapse
|
238
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
239
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
240
|
Edwards SD, Schulze KV, Rosenfeld JA, Westerfield LE, Gerard A, Yuan B, Grigorenko EL, Posey JE, Bi W, Liu P. Clinical characterization of individuals with the distal 1q21.1 microdeletion. Am J Med Genet A 2021; 185:1388-1398. [PMID: 33576134 DOI: 10.1002/ajmg.a.62104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/09/2021] [Indexed: 11/12/2022]
Abstract
Distal 1q21.1 microdeletions have shown highly variable clinical expressivity and incomplete penetrance, with affected individuals manifesting a broad spectrum of nonspecific features. The goals of this study were to better describe the phenotypic spectrum of patients with distal 1q21.1 microdeletions and to compare the clinical features among affected individuals. We performed a retrospective chart review of 47 individuals with distal 1q21.1 microdeletions tested at a large clinical genetic testing laboratory, with most patients being clinically evaluated in the same children's hospital. Health information such as growth charts, results of imaging studies, developmental history, and progress notes were collected. Statistical analysis was performed using Fisher's exact test to compare clinical features among study subjects. Common features in our cohort include microcephaly (51.2%), seizures (29.8%), developmental delay (74.5%), failure to thrive (FTT) (68.1%), dysmorphic features (63.8%), and a variety of congenital anomalies such as cardiac abnormalities (23.4%) and genitourinary abnormalities (19.1%). Compared to prior literature, we found that seizures, brain anomalies, and FTT were more prevalent among our study cohort. Females were more likely than males to have microcephaly (p = 0.0199) and cardiac abnormalities (p = 0.0018). Based on existing genome-wide clinical testing results, at least a quarter of the cohort had additional genetic findings that may impact the phenotype of the individual. Our study represents the largest cohort of distal 1q21.1 microdeletion carriers available in the literature thus far, and it further illustrates the wide spectrum of clinical manifestations among symptomatic individuals. These results may allow for improved genetic counseling and management of affected individuals. Future studies may help to elucidate the underlying molecular mechanisms impacting the phenotypic variability observed with this microdeletion.
Collapse
Affiliation(s)
- Stacey D Edwards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Lauren E Westerfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Elena L Grigorenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,St. Petersburg State University, St Petersburg, Russia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
241
|
Linden SC, Watson CJ, Smith J, Chawner SJRA, Lancaster TM, Evans F, Williams N, Skuse D, Raymond FL, Hall J, Owen MJ, Linden DEJ, Green-Snyder L, Chung WK, Maillard AM, Jacquemont S, van den Bree MBM. The psychiatric phenotypes of 1q21 distal deletion and duplication. Transl Psychiatry 2021; 11:105. [PMID: 33542195 PMCID: PMC7862693 DOI: 10.1038/s41398-021-01226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Copy number variants are amongst the most highly penetrant risk factors for psychopathology and neurodevelopmental deficits, but little information about the detailed clinical phenotype associated with particular variants is available. We present the largest study of the microdeletion and -duplication at the distal 1q21 locus, which has been associated with schizophrenia and intellectual disability, in order to investigate the range of psychiatric phenotypes. Clinical and cognitive data from 68 deletion and 55 duplication carriers were analysed with logistic regression analysis to compare frequencies of mental disorders between carrier groups and controls, and linear mixed models to compare quantitative phenotypes. Both children and adults with copy number variants at 1q21 had high frequencies of psychopathology. In the children, neurodevelopmental disorders were most prominent (56% for deletion, 68% for duplication carriers). Adults had increased prevalence of mood (35% for deletion [OR = 6.6 (95% CI: 1.4-40.1)], 55% for duplication carriers [8.3 (1.4-55.5)]) and anxiety disorders (24% [1.8 (0.4-8.4)] and 55% [10.0 (1.9-71.2)]). The adult group, which included mainly genetically affected parents of probands, had an IQ in the normal range. These results confirm high prevalence of neurodevelopmental disorders associated with CNVs at 1q21 but also reveal high prevalence of mood and anxiety disorders in a high-functioning adult group with these CNVs. Because carriers of neurodevelopmental CNVs who show relevant psychopathology but no major cognitive impairment are not currently routinely receiving clinical genetic services widening of genetic testing in psychiatry may be considered.
Collapse
Affiliation(s)
- Stefanie C Linden
- Department of Health, Ethics and Society, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Cameron J Watson
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Jacqueline Smith
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Samuel J R A Chawner
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas M Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, University of Bath, Bath, UK
| | - Ffion Evans
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Nigel Williams
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David Skuse
- Behavioural and Brain Sciences Unit Institute of Child Health, University College London, London, UK
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jeremy Hall
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Live Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marianne B M van den Bree
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| |
Collapse
|
242
|
Bonnefont J, Vanderhaeghen P. Neuronal fate acquisition and specification: time for a change. Curr Opin Neurobiol 2021; 66:195-204. [PMID: 33412482 PMCID: PMC8064025 DOI: 10.1016/j.conb.2020.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
During embryonic development, neural stem/progenitor cells generate hundreds of different cell types through the combination of intrinsic and extrinsic cues. Recent data obtained in mouse and human cortical neurogenesis provide novel views about this interplay and how it evolves with time, whether during irreversible cell fate transitions that neural stem cells undergo to become neurons, or through gradual temporal changes of competence that lead to increased neuronal diversity from a common stem cell pool. In each case the temporal changes result from a dynamic balance between intracellular states and extracellular signalling factors. The underlying mechanisms are mostly conserved across species, but some display unique features in human corticogenesis, thereby linking temporal features of neurogenesis and human brain evolution.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
243
|
Zhuo X, Du AY, Pehrsson EC, Li D, Wang T. Epigenomic differences in the human and chimpanzee genomes are associated with structural variation. Genome Res 2021; 31:279-290. [PMID: 33303495 PMCID: PMC7849402 DOI: 10.1101/gr.263491.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Structural variation (SV), including insertions and deletions (indels), is a primary mechanism of genome evolution. However, the mechanism by which SV contributes to epigenome evolution is poorly understood. In this study, we characterized the association between lineage-specific indels and epigenome differences between human and chimpanzee to investigate how SVs might have shaped the epigenetic landscape. By intersecting medium-to-large human-chimpanzee indels (20 bp-50 kb) with putative promoters and enhancers in cranial neural crest cells (CNCCs) and repressed regions in induced pluripotent cells (iPSCs), we found that 12% of indels overlap putative regulatory and repressed regions (RRRs), and 15% of these indels are associated with lineage-biased RRRs. Indel-associated putative enhancer and repressive regions are approximately 1.3 times and approximately three times as likely to be lineage-biased, respectively, as those not associated with indels. We found a twofold enrichment of medium-sized indels (20-50 bp) in CpG island (CGI)-containing promoters than expected by chance. Lastly, from human-specific transposable element insertions, we identified putative regulatory elements, including NR2F1-bound putative CNCC enhancers derived from SVAs and putative iPSC promoters derived from LTR5s. Our results show that different types of indels are associated with specific epigenomic diversity between human and chimpanzee.
Collapse
Affiliation(s)
- Xiaoyu Zhuo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
244
|
Adhya D, Chennell G, Crowe JA, Valencia-Alarcón EP, Seyforth J, Hosny NA, Yasvoina MV, Forster R, Baron-Cohen S, Vernon AC, Srivastava DP. Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids. Mol Autism 2021; 12:4. [PMID: 33482917 PMCID: PMC7821651 DOI: 10.1186/s13229-021-00413-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes-in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. RESULTS Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. CONCLUSION We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - George Chennell
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James A Crowe
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Eva P Valencia-Alarcón
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - James Seyforth
- M Squared Life Ltd., The Surrey Technology Centre, 40 Occam Road, Guildford, UK
| | - Neveen A Hosny
- M Squared Life Ltd., The Surrey Technology Centre, 40 Occam Road, Guildford, UK
| | - Marina V Yasvoina
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert Forster
- M Squared Life Ltd., The Surrey Technology Centre, 40 Occam Road, Guildford, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Deepak P Srivastava
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
245
|
|
246
|
Bok I, Karreth FA. Strategies to Study the Functions of Pseudogenes in Mouse Models of Cancer. Methods Mol Biol 2021; 2324:287-304. [PMID: 34165722 DOI: 10.1007/978-1-0716-1503-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aberrant expression of pseudogenes has been observed in many cancer types. Deregulated pseudogenes engage in a multitude of biological processes at the DNA, RNA, and protein levels and eventually facilitate disease progression. To investigate pseudogene functions in cancer, cell lines and cell line transplantation models have been widely used. However, cancer biology is best studied in the context of an intact organism. Here, we present various strategies to investigate pseudogenes in genetically engineered mouse models and discuss advantages and disadvantages of the different approaches.
Collapse
Affiliation(s)
- Ilah Bok
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
247
|
Beversdorf DQ, Shah A, Jhin A, Noel-MacDonnell J, Hecht P, Ferguson BJ, Bruce D, Tilley M, Talebizadeh Z. microRNAs and Gene-Environment Interactions in Autism: Effects of Prenatal Maternal Stress and the SERT Gene on Maternal microRNA Expression. Front Psychiatry 2021; 12:668577. [PMID: 34290629 PMCID: PMC8288023 DOI: 10.3389/fpsyt.2021.668577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Genetics and environment both are critical in autism spectrum disorder (ASD), but their interaction (G × E) is less understood. Numerous studies have shown higher incidence of stress exposures during pregnancies with children later diagnosed with ASD. However, many stress-exposed mothers have unaffected children. The serotonin transporter (SERT) gene affects stress reactivity. Two independent samples have shown that the association between maternal stress exposure and ASD is greatest with maternal presence of the SERT short (S)-allele (deletion in the promoter region). MicroRNAs play a regulatory role in the serotonergic pathway and in prenatal stress and are therefore potential mechanistic targets in this setting. Design/methods: We profiled microRNA expression in blood from mothers of children with ASD, with known stress exposure during pregnancy. Samples were divided into groups based on SERT genotypes (LL/LS/SS) and prenatal stress level (high/low). Results: Two thousand five hundred mature microRNAs were examined. The ANOVA analysis showed differential expression (DE) of 119 microRNAs; 90 were DE in high- vs. low-stress groups (stress-dependent). Two (miR-1224-5p, miR-331-3p) were recently reported by our group to exhibit stress-dependent expression in rodent brain samples from embryos exposed to prenatal stress. Another, miR-145-5p, is associated with maternal stress. Across SERT genotypes, with high stress exposure, 20 significantly DE microRNAs were detected, five were stress-dependent. These microRNAs may be candidates for stress × SERT genotype interactions. This is remarkable as these changes were from mothers several years after stress-exposed pregnancies. Conclusions: Our study provides evidence for epigenetic alterations in relation to a G × E model (prenatal maternal stress × SERT gene) in ASD.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, United States.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Ayten Shah
- Children's Mercy Hospital, Kansas City, MO, United States
| | - Allison Jhin
- Kansas City University, Kansas City, MO, United States
| | - Janelle Noel-MacDonnell
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Patrick Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States.,Health Psychology, Radiology, and Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, United States
| | - Danielle Bruce
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Michael Tilley
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
248
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
249
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
250
|
Namba T, Nardelli J, Gressens P, Huttner WB. Metabolic Regulation of Neocortical Expansion in Development and Evolution. Neuron 2020; 109:408-419. [PMID: 33306962 DOI: 10.1016/j.neuron.2020.11.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
The neocortex, the seat of our higher cognitive abilities, has expanded in size during the evolution of certain mammals such as primates, including humans. This expansion occurs during development and is linked to the proliferative capacity of neural stem and progenitor cells (NPCs) in the neocortex. A number of cell-intrinsic and cell-extrinsic factors have been implicated in increasing NPC proliferative capacity. However, NPC metabolism has only recently emerged as major regulator of NPC proliferation. In this Perspective, we summarize recent insights into the role of NPC metabolism in neocortical development and neurodevelopmental disorders and its relevance for neocortex evolution. We discuss certain human-specific genes and microcephaly-implicated genes that operate in, or at, the mitochondria of NPCs and stimulate their proliferation by promoting glutaminolysis. We also discuss other metabolic pathways and develop a perspective on how metabolism mechanistically regulates NPC proliferation in neocortical development and how this contributed to neocortex evolution.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|