201
|
Pei Z, Cen J, Zhang X, Gong C, Sun M, Meng W, Mao G, Wan J, Hu B, He X, Xu Q, Han H, Xiao K. MiR-146a-5p delivered by hucMSC extracellular vesicles modulates the inflammatory response to sulfur mustard-induced acute lung injury. Stem Cell Res Ther 2023; 14:149. [PMID: 37254188 DOI: 10.1186/s13287-023-03375-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Sulfur mustard (SM) is a highly toxic chemical warfare agent that has caused numerous casualties during wars and conflicts in the past century. Specific antidotes or therapeutic strategies are rare due to the complicated mechanism of toxicity, which still awaits elucidation. Clinical data show that acute lung injury (ALI) is responsible for most mortality and morbidity after SM exposure. Extracellular vesicles are natural materials that participate in intercellular communication by delivering various substances and can be modified. In this study, we aim to show that extracellular vesicles derived from human umbilical cord mesenchymal stromal cells (hucMSC-EVs) could exert therapeutic effects on SM-induced ALI, and to explain the underlying mechanism of effects. METHODS MiR-146a-5p contained in hucMSC-EVs may be involved in the process of hucMSC-EVs modulating the inflammatory response to SM-induced ALI. We utilized miR-146a-5p delivered by extracellular vesicles and further modified hucMSCs with a miR-146a-5p mimic or inhibitor to collect miR-146a-5p-overexpressing extracellular vesicles (miR-146a-5p+-EVs) or miR-146a-5p-underexpressing extracellular vesicles (miR-146a-5p--EVs), respectively. Through in vivo and in vitro experiments, we investigated the mechanism. RESULTS The effect of miR-146a-5p+-EVs on improving the inflammatory reaction tied to SM injury was better than that of hucMSC-EVs. We demonstrated that miR-146a-5p delivered by hucMSC-EVs targeted TRAF6 to negatively regulate inflammation in SM-induced ALI models in vitro and in vivo. CONCLUSION In summary, miR-146a-5p delivered by hucMSC-EVs targeted TRAF6, causing hucMSC-EVs to exert anti-inflammatory effects in SM-induced ALI; thus, hucMSC-EVs treatment may be a promising clinical therapeutic after SM exposure.
Collapse
Affiliation(s)
- Zhipeng Pei
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Cen
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xinkang Zhang
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chuchu Gong
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenqi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Guanchao Mao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Bingyue Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowen He
- Origincell Technology Group Co., Ltd., Shanghai, 201203, China
| | - Qingqiang Xu
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Hua Han
- School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
202
|
Liu M, Chen R, Xu Y, Zheng J, Wang M, Wang P. Exosomal miR-141-3p from PDLSCs Alleviates High Glucose-Induced Senescence of PDLSCs by Activating the KEAP1-NRF2 Signaling Pathway. Stem Cells Int 2023; 2023:7136819. [PMID: 37274022 PMCID: PMC10238146 DOI: 10.1155/2023/7136819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
Human periodontal ligament stem cells (PDLSCs) are the most promising stem cells for periodontal tissue engineering. Senescent PDLSCs have diminished abilities to proliferate and differentiate, affecting the efficiency of periodontal tissue repair and regeneration. Stem cell-derived exosomes are important participants in intercellular information exchange and can help ameliorate senescence. In this study, we investigated PDLSC senescence in a high glucose microenvironment as well as the ability of human periodontal ligament stem cell-derived exosomes (PDLSC-Exos) to alleviate cellular senescence and the underlying mechanisms. Herein, PDLSCs and PDLSC-Exos were isolated and extracted. Then, cellular senescence indicators were evaluated after high glucose (25 mM) treatment of cultured PDLSCs. PDLSC-Exos were cocultured with senescent PDLSCs to further explore the role of PDLSC-Exos in cellular senescence and determine the differences in cellular oxidative stress levels after PDLSC-Exo treatment. Next, we investigated whether PDLSC-Exos alleviated cellular senescence by restoring the balance of oxidative stress signals and explored the underlying molecular pathways. We discovered that PDLSCs underwent premature senescence due to high glucose culture, but they were rejuvenated by PDLSC-Exos. The rejuvenating effects of PDLSC-Exos were notably reversed by cotreatment with ML385, an inhibitor of nuclear factor erythroid 2-related factor 2 (NRF2), indicating that this recovery depended on NRF2 activation. Further analyses revealed that microRNA-141-3p (miR-141-3p) was expressed at relatively high levels in PDLSC-Exos and was instrumental in PDLSC-Exo-mediated restoration by downregulating Kelch-like ECH-associated protein 1 (KEAP1), which is a negative regulator of NRF2 expression. Our findings suggest that PDLSC-Exos alleviate high glucose-induced senescence of PDLSCs by transferring miR-141-3p to activate the KEAP1-NRF2 signaling pathway. Based on this research, PDLSC-Exos may behave similarly to their parental PDLSCs and have significant effects on cellular senescence by delivering their encapsulated bioactive chemicals to target cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunxuan Xu
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiawen Zheng
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Wang
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
203
|
Huber J, Longaker MT, Quarto N. Circulating and extracellular vesicle-derived microRNAs as biomarkers in bone-related diseases. Front Endocrinol (Lausanne) 2023; 14:1168898. [PMID: 37293498 PMCID: PMC10244776 DOI: 10.3389/fendo.2023.1168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/31/2023] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNA molecules that regulate posttranscriptional gene expression by repressing messengerRNA-targets. MiRNAs are abundant in many cell types and are secreted into extracellular fluids, protected from degradation by packaging in extracellular vesicles. These circulating miRNAs are easily accessible, disease-specific and sensitive to small changes, which makes them ideal biomarkers for diagnostic, prognostic, predictive or monitoring purposes. Specific miRNA signatures can be reflective of disease status and development or indicators of poor treatment response. This is especially important in malignant diseases, as the ease of accessibility of circulating miRNAs circumvents the need for invasive tissue biopsy. In osteogenesis, miRNAs can act either osteo-enhancing or osteo-repressing by targeting key transcription factors and signaling pathways. This review highlights the role of circulating and extracellular vesicle-derived miRNAs as biomarkers in bone-related diseases, with a specific focus on osteoporosis and osteosarcoma. To this end, a comprehensive literature search has been performed. The first part of the review discusses the history and biology of miRNAs, followed by a description of different types of biomarkers and an update of the current knowledge of miRNAs as biomarkers in bone related diseases. Finally, limitations of miRNAs biomarker research and future perspectives will be presented.
Collapse
Affiliation(s)
- Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
204
|
Li Q, Liu X, Du Y, Zhang X, Xiang P, Chen G, Ling W, Wang D. Protocatechuic acid boosts continual efferocytosis in macrophages by derepressing KLF4 to transcriptionally activate MerTK. Sci Signal 2023; 16:eabn1372. [PMID: 37220181 DOI: 10.1126/scisignal.abn1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Macrophages clear apoptotic cells through a process called continual efferocytosis. We found that protocatechuic acid (PCA), a polyphenolic compound abundant in fruits and vegetables, increased the continual efferocytic capacity of macrophages and inhibited the progression of advanced atherosclerosis. PCA reduced the intracellular amounts of microRNA-10b (miR-10b) by promoting its secretion in extracellular vesicles, which led to an increase in the abundance of the miR-10b target Krüppel-like factor 4 (KLF4). In turn, KLF4 transcriptionally induced the gene encoding Mer proto-oncogene tyrosine kinase (MerTK), an efferocytic receptor for the recognition of apoptotic cells, resulting in increased continual efferocytic capacity. However, in naive macrophages, the PCA-induced secretion of miR-10b did not affect KLF4 and MerTK protein abundance or efferocytic capacity. In mice, oral administration of PCA increased continual efferocytosis in macrophages residing in the peritoneal cavities, thymi, and advanced atherosclerotic plaques through the miR-10b-KLF4-MerTK pathway. In addition, pharmacological inhibition of miR-10b with antagomiR-10b also increased the efferocytic capacity of efferocytic but not naive macrophages in vitro and in vivo. Together, these data describe a pathway that promotes continual efferocytosis in macrophages through miR-10b secretion and a KLF4-dependent increase in MerTK abundance, which can be activated by dietary PCA and which has implications for understanding the regulation of continual efferocytosis in macrophages.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xiuping Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Panyin Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
205
|
Mishra DD, Sahoo B, Maurya PK, Sharma R, Varughese S, Prasad N, Tiwari S. Therapeutic potential of urine exosomes derived from rats with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1157194. [PMID: 37251672 PMCID: PMC10213426 DOI: 10.3389/fendo.2023.1157194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Kidney disease is prevalent in diabetes. Urinary exosomes (uE) from animal models and patients with Diabetic nephropathy (DN) showed increased levels of miRs with reno-protective potential. We examined whether urinary loss of such miRs is associated with their reduced renal levels in DN patients. We also tested whether injecting uE can leverage kidney disease in rats. In this study (study-1) we performed microarray profiling of miRNA in uE and renal tissues in DN patients and subjects with diabetes without DN (controls). In study-2, diabetes was induced in Wistar rats by Streptozotocin (i.p. 50 mg/kg of body weight). Urinary exosomes were collected at 6th, 7th and 8th weeks, and injected back into the rats (100ug/biweekly, uE-treated n=7) via tail vein on weeks 9 and 10. Equal volume of vehicle was injected in controls (vehicle, n=7). uE from the human and rat showed the presence of exosome-specific proteins by immunoblotting. Microarray profiling revealed a set of 15 miRs having high levels in the uE, while lower in renal biopsies, from DN, compared to controls (n=5-9/group). Bioinformatic analysis also confirmed the Renoprotective potential of these miRs. Taqman qPCR confirmed the opposite regulation of miR-200c-3p and miR-24-3p in paired uE and renal biopsy samples from DN patients (n=15), relative to non-DN controls. A rise in 28 miRs levels, including miR-200c-3p, miR-24-3p, miR-30a-3p and miR-23a-3p were observed in the uE of DN rats, collected between 6th-8th weeks, relative to baseline (before diabetes induction). uE- treated DN rats had significantly reduced urine albumin-to-creatinine ratio, attenuated renal pathology, and lower miR-24-3p target fibrotic/inflammatory genes (TGF-beta, and Collagen IV), relative to vehicle treated DN rats. In uE treated rats, the renal expression of miR-24-3p, miR-30a-3p, let-7a-5p and miR-23a-3p was increased, relative to vehicle control. Patients with diabetic nephropathy had reduced renal levels, while higher uE abundance of miRs with reno-protective potential. Reverting the urinary loss of miRs by injecting uE attenuated renal pathology in diabetic rats.
Collapse
Affiliation(s)
- Deendayal Das Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Biswajit Sahoo
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pramod Kumar Maurya
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
206
|
Xiong J, Fu F, Yu F, He X. Advances of exosomal miRNAs in the diagnosis and treatment of ovarian cancer. Discov Oncol 2023; 14:65. [PMID: 37160813 PMCID: PMC10169985 DOI: 10.1007/s12672-023-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Ovarian cancer is a tumor with the highest fatalities among female malignant tumors. This disease has no typical symptoms in its early stage, and most of the patients are in an advanced stage when being treated. The treatment effect is poor and it is easy to develop chemotherapy resistance. Therefore, it is particularly urgent to clarify the pathogenesis of ovarian cancer, explore its early diagnosis of biomarkers, and discover new treatment methods. As a carrier of intercellular information and genetic material transfer, exosomes are widely distributed in body fluids (e.g. blood and urine), which are regarded as latent tumor markers and take effects on tumor occurrence and invasion. Several articles have recently signified that exosomal miRNAs are widely implicated in the formation of the ovarian cancer tumor microenvironment, disease initiation and progression, and the generation of chemotherapy resistance. This article reviews the research on exosomal miRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China.
| |
Collapse
|
207
|
Han J, Cui X, Yuan T, Yang Z, Liu Y, Ren Y, Wu C, Bian Y. Plasma-derived exosomal let-7c-5p, miR-335-3p, and miR-652-3p as potential diagnostic biomarkers for stable coronary artery disease. Front Physiol 2023; 14:1161612. [PMID: 37228823 PMCID: PMC10203605 DOI: 10.3389/fphys.2023.1161612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Objectives: Circulating exosomal microRNAs (miRNAs) have been identified as promising biomarkers for diagnosis of cardiovascular diseases. Nevertheless, the diagnostic potential of miRNAs in circulating exosomes for stable coronary artery disease (SCAD) remains unclear. We aim here to analyze the exosomal differentially expressed miRNAs (DEmiRNAs) in plasma of SCAD patients and investigate their diagnostic potential as SCAD biomarkers. Methods: Plasma was collected from SCAD patients and healthy controls, and exosomes were isolated by ultracentrifugation. Exosomal DEmiRNAs were analyzed by small RNA sequencing and were further validated by quantitative real-time PCR (qRT-PCR) in a larger set of plasma samples. Relationships between plasma exosomal let-7c-5p, miR-335-3p, miR-652-3p, genders and Gensini Scores in patients with SCAD were analyzed using correlation analyses. Moreover, we conducted receiver operating characteristic (ROC) curves for these DEmiRNAs and analyzed their possible functions and signaling pathways. Results: Vesicles isolated from plasma displayed all characteristics of exosomes. In the small RNA sequencing study, a total of 12 DEmiRNAs were identified, among which seven were verified to be statistically significant by qRT-PCR. The areas under the ROC curves of exosomal let-7c-5p, miR-335-3p, and miR-652-3p were 0.8472, 0.8029, and 0.8009, respectively. Exosomal miR-335-3p levels were positively correlated with Gensini scores of patients with SCAD. Bioinformatics analysis revealed that these DEmiRNAs may be involved in the pathogenesis of SCAD. Conclusion: Our findings indicated that plasma exosomal let-7c-5p, miR-335-3p, and miR-652-3p can be used as promising biomarkers for diagnosis of SCAD. In addition, plasma exosomal miR-335-3p levels coordinated with severity of SCAD.
Collapse
Affiliation(s)
- Jian Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Tianqi Yuan
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhiming Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yajuan Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
208
|
Li L, Cao J, Li S, Cui T, Ni J, Zhang H, Zhu Y, Mao J, Gao X, Midgley AC, Zhu M, Fan G. M2 Macrophage-Derived sEV Regulate Pro-Inflammatory CCR2 + Macrophage Subpopulations to Favor Post-AMI Cardiac Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202964. [PMID: 36950739 PMCID: PMC10190454 DOI: 10.1002/advs.202202964] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/21/2023] [Indexed: 05/18/2023]
Abstract
Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive RegulationTianjin Central Hospital of Gynecology ObstetricsTianjin300052China
| | - Sheng Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyu Ni
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Han Zhang
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| |
Collapse
|
209
|
Han Q, Tan S, Gong L, Li G, Wu Q, Chen L, Du S, Li W, Liu X, Cai J, Wang Z. Omental cancer-associated fibroblast-derived exosomes with low microRNA-29c-3p promote ovarian cancer peritoneal metastasis. Cancer Sci 2023; 114:1929-1942. [PMID: 36644823 PMCID: PMC10154903 DOI: 10.1111/cas.15726] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is characterized by frequent widespread peritoneal metastasis. Cancer-associated fibroblasts (CAFs) represent a critical stromal component of metastatic niche and promote omentum metastasis in OC patients. However, the role of exosomes derived from omental CAFs in metastasis remains unclear. We isolated exosomes from primary omental normal fibroblasts (NFs) and CAFs from OC patients (NF-Exo and CAF-Exo, respectively) and assessed their effect on metastasis. In mice bearing orthotopic OC xenografts, CAF-Exo treatment led to more rapid intraperitoneal tumor dissemination and shorter animal survival. Similar results were observed in mice undergoing intraperitoneal injection of tumor cells. Among the miRNAs downregulated in CAF-Exo, miR-29c-3p in OC tissues was associated with metastasis and survival in patients. Moreover, increasing miR-29c-3p in CAF-Exo significantly weakened the metastasis-promoting effect of CAF-Exo. Based on RNA sequencing, expression assays, and luciferase assays, matrix metalloproteinase 2 (MMP2) was identified as a direct target of miR-29c-3p. These results verify the significant contribution of exosomes from omental CAFs to OC peritoneal metastasis, which could be partially due to the relief of MMP2 expression inhibition mediated by low exosomal miR-29c-3p.
Collapse
Affiliation(s)
- Qing Han
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- China Three Gorges University People's HospitalChina Three Gorges UniversityYichangChina
| | - Shuran Tan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guoqing Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Le Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
210
|
Liao F, Zhong Q, Liang X, Zhao W, Liang T, Zhu L, Li T, Long J, Su L. A Potential Immune-Related miRNAs Regulatory Network and Corresponding Diagnostic Efficacy in Schizophrenia. Neurochem Res 2023:10.1007/s11064-023-03940-w. [PMID: 37100927 DOI: 10.1007/s11064-023-03940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE Immune-related pathways actively participate in the progression of schizophrenia (SCZ), however, roles of immune-related miRNAs in SCZ are still unclear. METHODS A microarray expression study was conducted to explored roles of immune-related genes in SCZ. Functional enrichment analysis by using "clusterProfiler" was used to identify molecular alterations of SCZ. Protein-protein interaction (PPI) network was constructed and helped core molecular factors identification. Based on The Cancer Genome Atlas (TCGA) database, clinical significances of hub immune-related genes in cancers were also been explored. Then, correlation analyses were used to determine immune-related miRNAs. We further validated that hsa-miR-1299 could be an effective diagnostic biomarker for SCZ via analyzing multi-cohorts' data and quantitative real-time PCR (qRT-PCR). RESULTS A total of 455 mRNAs and 70 miRNAs that were differentially expressed between SCZ and control samples. Functional enrichment analysis based on differentially expressed genes (DEGs) hinted that immune-related pathways were significantly correlated with SCZ. Furthermore, a total of 35 immune-related genes that involved in disease onset and showed significant co-expressed relationships. Hub immune-related gene CCL4 and CCL22 are valuable in tumor diagnosis and survival prediction. Furthermore, we also identified 22 immune-related miRNAs that play important roles in this disease. An immune-related miRNAs-mRNAs regulatory network was constructed to provide miRNAs regulatory roles in SCZ. Core miRNAs expression status of hsa-miR-1299 were also validated in another cohort, which suggested its diagnostic performance for SCZ. CONCLUSIONS Our study reports the downregulation of some miRNAs in the process of SCZ are important. Shared genomics characteristics between SCZ and cancers also provide novel insights for cancers. A significant alteration of hsa-miR-1299 expression is effective as biomarker for the diagnosis of SCZ, suggesting that this miRNA could be a specific biomarker.
Collapse
Affiliation(s)
- Fangping Liao
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qingqing Zhong
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xueying Liang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Wanshen Zhao
- Traditional Chinese medicine department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian Liang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Tongshun Li
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
211
|
Almeida C, Teixeira AL, Dias F, Morais M, Medeiros R. Extracellular Vesicles as Potential Therapeutic Messengers in Cancer Management. BIOLOGY 2023; 12:biology12050665. [PMID: 37237479 DOI: 10.3390/biology12050665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
A deeper understanding of the communication mechanisms of tumor cells in a tumor microenvironment can improve the development of new therapeutic solutions, leading to a more personalized approach. Recently, the field of extracellular vesicles (EVs) has drawn attention due to their key role in intercellular communication. EVs are nano-sized lipid bilayer vesicles that are secreted by all types of cells and can function as intermediators of intercellular communication with the ability to transfer different cargo (proteins, nucleic acids, sugar…) types among cells. This role of EVs is essential in a cancer context as it can affect tumor promotion and progression and contribute to the pre-metastatic niche establishment. Therefore, scientists from basic, translational, and clinical research areas are currently researching EVs with great expectations due to their potential to be used as clinical biomarkers, which are useful for disease diagnosis, prognosis, patient follow-up, or even as vehicles for drug delivery due to their natural carrier nature. The application of EVs presents numerous advantages as drug delivery vehicles, namely their capacity to overcome natural barriers, their inherent cell-targeting properties, and their stability in the circulation. In this review, we highlight the distinctive features of EVs, their application as efficient drug delivery systems, and their clinical applications.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRNorte), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
212
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
213
|
Guo C, Zhang J, Wang J, Su L, Ning X, Guo Y, Han J, Ma N. Vascular endothelial cell-derived exosomal miR-1246 facilitates posterior capsule opacification development by targeting GSK-3β in diabetes mellitus. Exp Eye Res 2023; 231:109463. [PMID: 37044287 DOI: 10.1016/j.exer.2023.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Posterior capsule opacification (PCO) is a serious complication after cataract surgery. Diabetes could increase the occurrence of PCO, but the mechanism is still unclear. The purpose of this study is to investigate the role of small extracellular vesicles (sEVs) derived from diabetic aqueous humor in PCO process. Intraoperatively-derived aqueous humor sEVs from patients with diabetic related cataract (DRC) promoted the epithelial-mesenchymal transition (EMT) and metastasis of human lens epithelial cells (LECs). Via mouse PCO surgical model and DiI labeled fluorescence detection of sEVs, the sEVs derived from vascular endothelium were discovered directly contacting with LECs. Furthermore, we demonstrated that high-glucose-cultured human umbilical vein endothelial cells (HUVEC) -derived sEVs facilitated EMT process of HLE-B3 using co-culture model in vitro. MiRNA-seq data and GEO datasets analysis revealed that miR-1246 was essential in EMT process with diabetes. The miR-1246 was highly expressed in diabetic aqueous humor sEVs and high-glucose-treated vascular-endothelial-cell-derived sEVs. Moreover, miR-1246 promoted the metastasis and EMT process of HLE-B3 cells by directly targeting GSK-3β. Inhibiting miR-1246 could negatively regulated EMT. This finding might serve as a potential therapy for diabetic PCO.
Collapse
Affiliation(s)
- Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jie Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jue Wang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Liping Su
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yong Guo
- Xi'an Purui Eye Hospital, Xi'an, 710068, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
214
|
Jiang Q, Wang Q, Tan S, Cai J, Ye X, Su G, Yang P. Effects of Plasma-Derived Exosomal miRNA-19b-3p on Treg/T Helper 17 Cell Imbalance in Behçet's Uveitis. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37093132 PMCID: PMC10148662 DOI: 10.1167/iovs.64.4.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Purpose To explore the potential role of plasma-derived exosomal microRNAs (miRNAs) in the development of regulatory T cell (Treg)/T helper 17 (Th17) cell imbalances in Behçet's uveitis (BU). Methods The exosome treatment was conducted to evaluate the effects of plasma exosomes from patients with active BU and healthy controls on the Treg/Th17 cell balance. miRNA sequencing analysis of plasma exosomes was conducted to identify differentially expressed miRNAs between patients with active BU and healthy controls. miRTarBase analysis and dual-luciferase reporter assays were conducted to identify the target genes of miR-19b-3p. CD4+T cells were transfected with miR-19b-3p mimic or inhibitor to evaluate its regulation of the Treg/Th17 cell balance. The Treg/Th17 cell balance in CD4+T cells was evaluated by flow cytometry and enzyme-linked immunosorbent assay. Results Exosomes from patients with active BU promoted Th17 cell differentiation and inhibited Treg cell differentiation. MiRNA sequencing analysis revealed 177 upregulated and 274 downregulated miRNAs in plasma exosomes of patients with active BU. Among them, miR-19b-3p was significantly elevated, and its target genes were identified as being involved in T-cell differentiation. miR-19b-3p overexpression downregulated CD46 expression and the Treg/Th17 cell ratio in CD4+T cells from healthy controls, whereas miR-19b-3p inhibition reversed these regulatory effects and restored the Treg/Th17 cell balance of CD4+T cells from patients with active BU. Conclusions Plasma-derived exosomes from patients with active BU showed a markedly differential miRNA expression in comparison to healthy controls. Highly expressed miRNA-19b-3p could induce a Treg/Th17 cell imbalance, probably by downregulating CD46 expression.
Collapse
Affiliation(s)
- Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jinyu Cai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
215
|
Zhu Y, Yang K, Cheng Y, Liu Y, Gu R, Liu X, Liu H, Zhang X, Liu Y. Apoptotic Vesicles Regulate Bone Metabolism via the miR1324/SNX14/SMAD1/5 Signaling Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205813. [PMID: 36670083 DOI: 10.1002/smll.202205813] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
216
|
Li W, Yang Y, Zhang X, Lin Y, Li H, Yao Y, Mu D. The preliminary study of exosomes derived from thymosin beta 4-treated adipose-derived stem cells in fat grafting. Genes Genomics 2023; 45:413-427. [PMID: 36445571 DOI: 10.1007/s13258-022-01329-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The retention rate in autologous fat grafting is an increasing concern for surgeons and patients. Our previous research verified that thymosin beta 4 (Tβ4) positively affected fat survival, while the mechanism was unknown. The endothelial cells (ECs) and exosomes derived from adipose-derived stem cells (ADSCs) were regarded to play a critical role in fat transplantation. OBJECTIVE This study aimed to evaluate the effect of exosomes derived from Tβ4-treated ADSCs on EC proliferation and to identify the exosomal microRNA (miRNA) profile compared with the Tβ4-untreated group. Additionally, this research intended to recognize the related molecules and signaling pathways in the Tβ4-treated group with potential roles in fat transplants. METHODS ADSCs were collected from patients who underwent liposuction surgery. Depending on whether the medium was supplemented with exogenous Tβ4 or not, exosomes derived from cultured ADSCs were divided into the Tβ4-Exos group and Con-Exos group. Exosome uptake and cell counting kit-8 (CCK-8) assays assessed the influence of Tβ4-Exos on EC proliferation. The exosomal miRNAs of the two groups were analyzed by next-generation sequencing. With the criteria at the |log2 (fold change)| ≥ 1 and p-value < 0.05, up-regulated and down-regulated differentially expressed miRNAs (DEMs) were obtained. Prediction databases were used to predict the downstream mRNAs for DEMs. And then, overlapping genes for the up-regulated DEMs and the down-regulated were screened out, followed by enrichment analysis, protein-protein interaction network construction, and the gene cluster and hub gene identification. RESULTS ADSCs were obtained from four female patients. The exosome uptake and CCK-8 assays showed that the Tβ4-Exos could increase cell growth rate compared with the control group (DMEM-H + PBS). In Tβ4-Exos and Con-Exos groups, 2651 exosomal miRNAs were recognized, with 80 up-regulated and 99 down-regulated DEMs according to the criteria. After the prediction, 621 overlapping genes for the up-regulated and 572 for the down-regulated DEMs were screened. The subsequent bioinformatics analysis found specific molecules and pathways related to the positive effect on fat survival. CONCLUSIONS The exosomes derived from Tβ4-treated ADSCs probably positively affect EC proliferation. Compared with the Con-Exos group, several exosomal DEMs, genes, and pathways were distinguished. These findings of this exploratory study provide the potential direction for future in-depth research on fat grafting.
Collapse
Affiliation(s)
- Wandi Li
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Yang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaoyu Zhang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Lin
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Haoran Li
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yu Yao
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Dali Mu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
217
|
Sanada Y, Ikuta Y, Ding C, Yimiti D, Kato Y, Nakasa T, Mizuno S, Takahashi S, Huang W, Lotz MK, Adachi N, Miyaki S. miR-26a deficiency is associated with bone loss and reduced muscle strength but does not affect severity of cartilage damage in osteoarthritis. Mech Ageing Dev 2023; 212:111806. [PMID: 37003368 DOI: 10.1016/j.mad.2023.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 305-8566
| | - Tomoyuki Nakasa
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA, 91010
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA, 92037
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552.
| |
Collapse
|
218
|
Yuan Y, Mei Z, Qu Z, Li G, Yu S, Liu Y, Liu K, Shen Z, Pu J, Wang Y, Wang C, Sun Z, Liu Q, Pang X, Wang A, Ren Z, Wang T, Liu Y, Hong J, Xie J, Li X, Wang Z, Du W, Yang B. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther 2023; 8:121. [PMID: 36967385 PMCID: PMC10040407 DOI: 10.1038/s41392-023-01336-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/01/2023] [Accepted: 01/29/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) patients in general have a higher risk of developing cancer. Several animal studies have indicated that cardiac remodeling and HF remarkably accelerate tumor progression, highlighting a cause-and-effect relationship between these two disease entities. Targeting ferroptosis, a prevailing form of non-apoptotic cell death, has been considered a promising therapeutic strategy for human cancers. Exosomes critically contribute to proximal and distant organ-organ communications and play crucial roles in regulating diseases in a paracrine manner. However, whether exosomes control the sensitivity of cancer to ferroptosis via regulating the cardiomyocyte-tumor cell crosstalk in ischemic HF has not yet been explored. Here, we demonstrate that myocardial infarction (MI) decreased the sensitivity of cancer cells to the canonical ferroptosis activator erastin or imidazole ketone erastin in a mouse model of xenograft tumor. Post-MI plasma exosomes potently blunted the sensitivity of tumor cells to ferroptosis inducers both in vitro in mouse Lewis lung carcinoma cell line LLC and osteosarcoma cell line K7M2 and in vivo with xenograft tumorigenesis model. The expression of miR-22-3p in cardiomyocytes and plasma-exosomes was significantly upregulated in the failing hearts of mice with chronic MI and of HF patients as well. Incubation of tumor cells with the exosomes isolated from post-MI mouse plasma or overexpression of miR-22-3p alone abrogated erastin-induced ferroptotic cell death in vitro. Cardiomyocyte-enriched miR-22-3p was packaged in exosomes and transferred into tumor cells. Inhibition of cardiomyocyte-specific miR-22-3p by AAV9 sponge increased the sensitivity of cancer cells to ferroptosis. ACSL4, a pro-ferroptotic gene, was experimentally established as a target of miR-22-3p in tumor cells. Taken together, our findings uncovered for the first time that MI suppresses erastin-induced ferroptosis through releasing miR-22-3p-enriched exosomes derived from cardiomyocytes. Therefore, targeting exosome-mediated cardiomyocyte/tumor pathological communication may offer a novel approach for the ferroptosis-based antitumor therapy.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhongting Mei
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhezhe Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guanghui Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuting Yu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhihua Shen
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaying Pu
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanquan Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Changhao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhiyong Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qian Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaochen Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ao Wang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zijing Ren
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhuan Hong
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiajie Xie
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhonghua Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
219
|
Szostak J, Gorący A, Durys D, Dec P, Modrzejewski A, Pawlik A. The Role of MicroRNA in the Pathogenesis of Diabetic Nephropathy. Int J Mol Sci 2023; 24:ijms24076214. [PMID: 37047185 PMCID: PMC10094215 DOI: 10.3390/ijms24076214] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic nephropathy is one of the most common and severe complications of diabetes mellitus, affecting one in every five patients suffering from diabetes. Despite extensive research, the exact pathogenesis of diabetic nephropathy is still unclear. Several factors and pathways are known to be involved in the development of the disease, such as reactive oxygen species or the activation of the renin–angiotensin–aldosterone system. The expression of those proteins might be extensively regulated by microRNA. Recent research suggests that in diabetic nephropathy patients, the profile of miRNA is significantly changed. In this review, we focus on the actions of miRNA in various pathways involved in the pathogenesis of diabetic nephropathy and the clinical usage of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Gorący
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Damian Durys
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
220
|
Morena E, Romano C, Marconi M, Diamant S, Buscarinu MC, Bellucci G, Romano S, Scarabino D, Salvetti M, Ristori G. Peripheral Biomarkers in Manifest and Premanifest Huntington's Disease. Int J Mol Sci 2023; 24:ijms24076051. [PMID: 37047023 PMCID: PMC10094222 DOI: 10.3390/ijms24076051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Huntington's disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein has been identified. In this review, we focus on known biomarkers (e.g., mHTT, neurofilament light chains) and on new biofluid biomarkers that can be quantified in plasma or peripheral blood mononuclear cells from mHTT carriers. Circulating biomarkers may fill current unmet needs in HD management: better stratification of patients amenable to etiologic treatment; the initiation of preventive treatment in premanifest HD; and the identification of peripheral pathogenic central nervous system cascades.
Collapse
Affiliation(s)
- Emanuele Morena
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Carmela Romano
- Department of Human Neurosciences, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Martina Marconi
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Selene Diamant
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Daniela Scarabino
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
221
|
Yang X, Yuan L, Xu Y, He B. Target-catalyzed self-assembled spherical G-quadruplex/hemin DNAzymes for highly sensitive colorimetric detection of microRNA in serum. Anal Chim Acta 2023; 1247:340879. [PMID: 36781247 DOI: 10.1016/j.aca.2023.340879] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The accurate and visual detection of circulating microRNA (miRNA) has attracted increasing interest due to its pivotal role in clinical disease diagnosis. Taking advantages of nucleic acid isothermal amplification and enzyme-catalyzed chromogenic reaction, here, a colorimetric sensing strategy was proposed for sensitive miRNA analysis. When the target miRNA was present, local catalytic hairpin assembly (CHA) would be triggered and proceed continuously to form dozens of double-stranded oligonucleotides with G-rich sticky ends on the gold nanoparticle, which could self-assemble into a spherical G-quadruplex (GQ)/hemin DNAzyme by binding with hemin and potassium ions. As a horseradish peroxidase-mimic, GQ/hemin DNAzyme could catalyze the redox reaction and color change of the substrates. Taking miRNA-21 as an example, the developed method exhibited satisfactory specificity as well as high sensitivity with a detection limit of 90.3 fM. Furthermore, the sensing platform has been successfully employed to detect miRNA-21 in spiked serum, providing a promising tool for early diagnosis of cancers.
Collapse
Affiliation(s)
- Xuejiao Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
222
|
Albano GD, Longo V, Montalbano AM, Aloi N, Barone R, Cibella F, Profita M, Paolo C. Extracellular vesicles from PBDE-47 treated M(LPS) THP-1 macrophages modulate the expression of markers of epithelial integrity, EMT, inflammation and muco-secretion in ALI culture of airway epithelium. Life Sci 2023; 322:121616. [PMID: 36958434 DOI: 10.1016/j.lfs.2023.121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
AIMS The lung epithelial cells form a physical barrier to the external environment acting as the first line of defence against potentially harmful environmental stimuli. These cells interact with several other cellular components, of which macrophages are some of the most relevant. We analysed the effects of the PBDE-47 on the microRNA cargo of THP-1 macrophage like derived small Extracellular Vesicles (sEVs) and the effects on A549 lung epithelial cells. MAIN METHODS sEVs from M(LPS) THP-1 macrophage-like cells after PBDE-47 treatment (sEVsPBDE+LPS) were characterized by nanoparticle tracking analysis and their microRNA cargo studied by qPCR. Confocal microscopy was applied to study sEVs cellular uptake by A549 cells. The expression of tight junctions (TJs), adhesion molecules, inflammation markers and mucus production in A549 cultured in air liquid interface (ALI) conditions were studied by Real Time PCR and confocal microscopy. KEY FINDINGS sEVsPBDE+LPS microRNA cargo analysis showed that the PBDE-47 modulated the expression of the miR-15a-5p, miR29a-3p, miR-143-3p and miR-122-5p. Furthermore, ALI cultured A549 cells incubated with sEVsPBDE+LPS showed that zonula occludens-1 (p ≤ 0.04), claudin (p ≤ 0.02), E-cadherin (p ≤ 0.006) and Vimentin (p ≤ 0.0008) mRNAs were increased in A549 cells after sEVsPBDE+LPS treatment. Indeed, Interleukin (IL)-8 (p ≤ 0.008) and mucin (MUC5AC and MUC5B) (p ≤ 0.03 and p ≤ 0.0001) mRNA expression were up- and down-regulated, respectively. SIGNIFICANCE PBDE-47 treated macrophages secrete sEVs with altered microRNA cargo that affect the mRNA expression of TJs, adhesion molecules, cytokines and EMT markers damaging the normal function of the lung epithelium, potentially contributing to the development of lung diseases.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology, National Research Council of Italy (IFT-CNR), Palermo, Italy
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Institute of Translational Pharmacology, National Research Council of Italy (IFT-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Mirella Profita
- Institute of Translational Pharmacology, National Research Council of Italy (IFT-CNR), Palermo, Italy.
| | - Colombo Paolo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy.
| |
Collapse
|
223
|
Guo CJ, Cao XL, Zhang YF, Yue KY, Han J, Yan H, Han H, Zheng MH. Exosome-mediated inhibition of microRNA-449a promotes the amplification of mouse retinal progenitor cells and enhances their transplantation in retinal degeneration mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:763-778. [PMID: 36937621 PMCID: PMC10020531 DOI: 10.1016/j.omtn.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Inherited and age-related retinal degenerations are the commonest causes of blindness without effective treatments. Retinal progenitor cells (RPCs), which have the multipotency to differentiate into various retinal cell types, are regarded as a promising source of cell transplantation therapy for retinal degenerative diseases. However, the self-limited expansion of RPCs causes difficulty in cell source supply and restrict its clinical treatment. In this work, we found that inhibition of microRNA-449a (miR-449a) in RPCs can promote proliferation and inhibit apoptosis of RPCs, partially through upregulating Notch signaling. Further optimization of transduction miR-449a inhibitor into RPCs by endothelial cell-derived exosomes can promote the survival of RPCs transplanted in vivo and reduce cell apoptosis in retinal degeneration mouse models. In summary, these studies have shown that exosome-miR-449a inhibitor can effectively promote the expansion of RPCs in vitro and enhance transplanted RPCs survival in vivo, which might provide a novel intervention strategy for retinal degenerations in the future.
Collapse
Affiliation(s)
- Chen Jun Guo
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Xiu Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Yu Fei Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kang Yi Yue
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Hua Han, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi’an 710032, China.
| | - Min Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Min-Hua Zheng, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, China.
| |
Collapse
|
224
|
Bilinska A, Pszczola M, Stachowiak M, Stachecka J, Garbacz F, Aksoy MO, Szczerbal I. Droplet Digital PCR Quantification of Selected Intracellular and Extracellular microRNAs Reveals Changes in Their Expression Pattern during Porcine In Vitro Adipogenesis. Genes (Basel) 2023; 14:genes14030683. [PMID: 36980955 PMCID: PMC10047974 DOI: 10.3390/genes14030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular miRNAs have attracted considerable interest because of their role in intercellular communication, as well as because of their potential use as diagnostic and prognostic biomarkers for many diseases. It has been shown that miRNAs secreted by adipose tissue can contribute to the pathophysiology of obesity. Detailed knowledge of the expression of intracellular and extracellular microRNAs in adipocytes is thus urgently required. The system of in vitro differentiation of mesenchymal stem cells (MSCs) into adipocytes offers a good model for such an analysis. The aim of this study was to quantify eight intracellular and extracellular miRNAs (miR-21a, miR-26b, miR-30a, miR-92a, miR-146a, miR-148a, miR-199, and miR-383a) during porcine in vitro adipogenesis using droplet digital PCR (ddPCR), a highly sensitive method. It was found that only some miRNAs associated with the inflammatory process (miR-21a, miR-92a) were highly expressed in differentiated adipocytes and were also secreted by cells. All miRNAs associated with adipocyte differentiation were highly abundant in both the studied cells and in the cell culture medium. Those miRNAs showed a characteristic expression profile with upregulation during differentiation.
Collapse
|
225
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
226
|
Song S, Lee JU, Jeon MJ, Kim S, Lee CN, Sim SJ. Precise profiling of exosomal biomarkers via programmable curved plasmonic nanoarchitecture-based biosensor for clinical diagnosis of Alzheimer's disease. Biosens Bioelectron 2023; 230:115269. [PMID: 37001292 DOI: 10.1016/j.bios.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of complex pathogenesis, with overt symptoms following disease progression. Early AD diagnosis is challenging due to the lack of robust biomarkers and limited patient access to diagnostics via neuroimaging and cerebrospinal fluid (CSF) tests. Exosomes present in body fluids are attracting attention as diagnostic biomarkers that directly reflect neuropathological features within the brain. In particular, exosomal miRNAs (exomiRs) signatures are involved in AD pathogenesis, showing a different expression between patients and the healthy controls (HCs). However, low yield and high homologous nature impede the accuracy and reproducibility of exosome blood-based AD diagnostics. Here, we developed a programmable curved plasmonic nanoarchitecture-based biosensor to analyze exomiRs in clinical serum samples for accurate AD diagnosis. To allow the detection of exomiRs in serum at attomolar levels, nanospaces (e.g., nanocrevice and nanocavity) were introduced into the nanostructures to dramatically increase the spectral sensitivity by adjusting the bending angle of the plasmonic nanostructure through sodium chloride concentration control. The developed biosensor classifies individuals into AD, mild cognitive impairment (MCI) patients, and HCs through profiling and quantifying exomiRs. Furthermore, integrating analysis expression patterns of multiple exosomal biomarkers improved serum-based diagnostic performance (average accuracy of 98.22%). Therefore, precise, highly sensitive serum-derived exosomal biomarker detection-based plasmonic biosensor has a robust capacity to predict the molecular pathologic of neurodegenerative disease, progression of cognitive decline, MCI/AD conversion, as well as early diagnosis and treatment.
Collapse
|
227
|
Yang H, Xu H, Wang Z, Li X, Wang P, Cao X, Xu Z, Lv D, Rong Y, Chen M, Tang B, Hu Z, Deng W, Zhu J. Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res Clin Pract 2023; 197:110573. [PMID: 36764461 DOI: 10.1016/j.diabres.2023.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The development of therapeutic strategies to improve wound healing in individual diabetic patients remains challenging. Stem cell-derived exosomes represent a promising nanomaterial, and microRNAs (miRNAs) can be isolated from them. It is important to identify the potential therapeutic role of specific miRNAs, given that miRNAs can play a therapeutic role. METHODS qPCR, flow cytometry, and western blotting were used to verify the effect of epidermal stem cell-derived exosomes (EpiSC-EXOs) on M2 macrophage polarization and SOCS3 expression. By screening key miRNAs targeting SOCS3 in EpiSC-EXOs by high-throughput sequencing, we verified the mechanism in vitro. Finally, an animal model was used to verify the effect of promoting healing. RESULTS The use of EpiSC-EXOs reduced SOCS3 expression and promoted M2 macrophage polarization. The abundant miR-203a-3p present in the EpiSC-EXOs specifically bound to SOCS3 and activated the JAK2/STAT3 signaling pathway to induce M2 macrophage polarization. Treatment of the db/db mouse wound model with miR-203a-3p agomir exerted a pro-healing effect. CONCLUSIONS Our results demonstrated that the abundant miR-203a-3p present in EpiSC-EXOs can promote M2 macrophage polarization by downregulating SOCS3 and suggested that diabetic wounds can obtain better healing effects through this mechanism.
Collapse
Affiliation(s)
- Hao Yang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Hailin Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaohui Li
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Peng Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaoling Cao
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhongye Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Dongming Lv
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Yanchao Rong
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Bing Tang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| |
Collapse
|
228
|
Sievänen T, Korhonen T, Jokela T, Ahtiainen M, Lahtinen L, Kuopio T, Lepistö A, Sillanpää E, Mecklin J, Seppälä TT, Laakkonen EK. Systemic circulating microRNA landscape in Lynch syndrome. Int J Cancer 2023; 152:932-944. [PMID: 36282188 PMCID: PMC10092425 DOI: 10.1002/ijc.34338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 01/06/2023]
Abstract
Circulating microRNAs (c-miRs) are small noncoding RNA molecules that migrate throughout the body and regulate gene expression. Global c-miR expression patterns (c-miRnomes) change with sporadic carcinogenesis and have predictive potential in early detection of cancers. However, there are no studies that have assessed whether c-miRnomes display similar potential in carriers of inherited pathogenic mismatch-repair gene variants (path_MMR), known as Lynch syndrome (LS), who are predisposed to highly increased cancer risk. Using high-throughput sequencing and bioinformatic approaches, we conducted an exploratory analysis to characterize systemic c-miRnomes of path_MMR carriers, sporadic rectal cancer patients and non-LS controls. We showed for the first time that cancer-free path_MMR carriers have a systemic c-miRnome of 40 differentially expressed c-miRs that can distinguish them from non-LS controls. The systemic c-miRnome of cancer-free path_MMR carriers also resembles the systemic c-miRnomes of cancer patients with or without path_MMR. Our pathway analysis linked the found differentially expressed c-miRs to carcinogenesis. A total of 508 putative target genes were identified for 32 out of 40 differentially expressed c-miRs, and 238 of them were enriched in cancer-related pathways. The most enriched c-miR-target genes include well-known oncogenes and tumor suppressor genes such as BCL2, AKT3, PIK3CA, KRAS, NRAS, CDKN1A and PIK3R1. Taken together, our findings suggest that LS and sporadic carcinogenesis share common biological pathways and alterations in these pathways can produce a c-miR signature which can track potential oncogenic stress in cancer-free path_MMR carriers. Therefore, c-miRs hold potential in monitoring the LS risk stratification patterns during clinical surveillance or cancer management.
Collapse
Affiliation(s)
- Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tia‐Marje Korhonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tiina Jokela
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Maarit Ahtiainen
- Department of Education and ResearchCentral Finland Health Care DistrictJyväskyläFinland
| | - Laura Lahtinen
- Department of PathologyCentral Finland Health Care DistrictJyväskyläFinland
| | - Teijo Kuopio
- Department of PathologyCentral Finland Health Care DistrictJyväskyläFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Lepistö
- Department of Surgery, Abdominal CenterHelsinki University HospitalHelsinkiFinland
| | - Elina Sillanpää
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Institute for Molecular Medicine Finland, University of HelsinkiHelsinkiFinland
| | - Jukka‐Pekka Mecklin
- Department of SurgeryCentral Finland Health Care DistrictJyväskyläFinland
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Toni T. Seppälä
- Department of Surgery, Abdominal CenterHelsinki University HospitalHelsinkiFinland
- Applied Tumor Genomics Research ProgramUniversity of HelsinkiHelsinkiFinland
| | - Eija K. Laakkonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
229
|
Xia H, Yu Z, Zhang L, Liu S, Zhao Y, Huang J, Fu D, Xie Q, Liu H, Zhang Z, Zhao Y, Wu M, Zhang W, Pang D, Chen G. Real-Time Dissection of the Transportation and miRNA-Release Dynamics of Small Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205566. [PMID: 36599707 PMCID: PMC9982592 DOI: 10.1002/advs.202205566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell-derived small EVs (T-sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin-mediated endocytosis by ECs, T-sEVs are transported to the perinuclear region in a typical three-stage pattern. Importantly, T-sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T-sEV transportation and cargo-release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD-based SPT technique will help uncover more secrets of sEV-mediated cell-cell communication.
Collapse
Affiliation(s)
- Hou‐Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Zi‐Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Li‐Juan Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Shu‐Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical Sciencesand College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yi Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of ProsthodonticsSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Jue Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Dan‐Dan Fu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Qi‐Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Hai‐Ming Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Zhi‐Ling Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Yi‐Fang Zhao
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical Sciencesand College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430071P. R. China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071P. R. China
| |
Collapse
|
230
|
Sun Z, Chen X, Niu R, Chen H, Zhu Y, Zhang C, Wang L, Mou H, Zhang H, Luo Y. Liposome fusogenic enzyme-free circuit enables high-fidelity determination of single exosomal RNA. Mater Today Bio 2023; 19:100613. [PMID: 37009069 PMCID: PMC10060373 DOI: 10.1016/j.mtbio.2023.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Accurate determination of single exosomal inclusions in situ presents a significant challenge due to their extremely low abundance as well sub-100 nm vesicle dimensions. Here, we created a Liposome Fusogenic Enzyme-free circuit (LIFE) approach for the high-fidelity identification of exosome-encapsulated cargoes without destroying the vesicle integrity. The probe-loaded cationic fusogenic liposome could capture and fuse with a single target exosome, enabling probes delivery and target biomolecule-initiated cascaded signal amplification in situ. Then the DNAzyme probe encountered conformal change upon exosomal microRNA activation, and generated a convex DNAzyme structure to cleave the RNA site of substrate probe. After that, the target microRNA could be released to introduce a cleavage cycle to yield amplified fluorescence readout. Therefore, trace cargoes in a single exosome could be accurately determined by elaborately controlling the ratio of introduced LIFE probe, paving the way toward the exploration of a universal sensing platform for the assessment of exosomal cargoes to facilitate early disease diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Zixin Sun
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Sanxia Hospital, Chongqing University, Chongqing, 404100, PR China
| | - Xiaohui Chen
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Key Laboratory for Biotechnological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Ruyan Niu
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Key Laboratory for Biotechnological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Hengyi Chen
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Ying Zhu
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Chong Zhang
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Key Laboratory for Biotechnological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Liu Wang
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Huaming Mou
- Sanxia Hospital, Chongqing University, Chongqing, 404100, PR China
- Corresponding author.
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
- Corresponding author.
| | - Yang Luo
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Corresponding author.
| |
Collapse
|
231
|
Potential Role of Circulating miRNAs for Breast Cancer Management in the Neoadjuvant Setting: A Road to Pave. Cancers (Basel) 2023; 15:cancers15051410. [PMID: 36900200 PMCID: PMC10000233 DOI: 10.3390/cancers15051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Recently, circulating microRNAs (miRNAs) have emerged as potential non-invasive biomarkers for breast cancer (BC) management. In the context of BC patients undergoing neoadjuvant chemotherapy (NAC), the possibility of obtaining repeated, non-invasive biological samples from patients before, during, and after treatment is incredibly convenient and provides the opportunity to investigate circulating miRNAs as diagnostic, predictive, and prognostic tools. The present review aims to summarize major findings in this setting, thus highlighting their potential applicability in daily clinical practice and their possible limitations. In all the contexts (diagnostic, predictive, and prognostic), circulating miR-21-5p and miR-34a-5p have emerged as the most promising non-invasive biomarkers for BC patients undergoing NAC. Specifically, their high baseline level could discriminate between BC patients and healthy controls. On the other hand, in predictive and prognostic investigations, low circulating miR-21-5p and miR-34a-5p levels may identify patients with better outcomes, in terms of both treatment response and invasive disease-free survival. However, the findings in this field have been very heterogeneous. Indeed, pre-analytical and analytical variables, as well as factors related to patients, may explain the inconsistency among different study results. Thus, further clinical trials, with more precise patient inclusion criteria and more standardized methodological approaches, are definitely needed to better define the potential role of these promising non-invasive biomarkers.
Collapse
|
232
|
Peng Y, Pang H, Gao Z, Li D, Lai X, Chen D, Zhang R, Zhao X, Chen X, Pei H, Tu J, Qiao B, Wu Q. Kinetics-accelerated one-step detection of MicroRNA through spatially localized reactions based on DNA tile self-assembly. Biosens Bioelectron 2023; 222:114932. [PMID: 36462429 DOI: 10.1016/j.bios.2022.114932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
The localization of isothermal amplification systems has elicited extensive attention due to the enhanced reaction kinetics when detecting ultra-trace small-molecule nucleic acids. Therefore, the seek for an appropriate localization cargo of spatially confined reactions is urgent. Herein, we have developed a novel approach to localize the catalytic hairpin assembly (CHA) system into the DNA tile self-assembly nanostructure. Thanks to the precise programming and robust probe loading capacity, this strategy achieved a 2.3 × 105-fold higher local reaction concentration than a classical CHA system with enhanced reaction kinetics in theory. From the experimental results, this strategy could reach the reaction plateau faster and get access to a magnified effect of 1.57-6.99 times higher in the linear range of microRNA (miRNA) than the simple CHA system. Meanwhile, this strategy satisfied the demand for the one-step detection of miRNA in cell lysates at room temperature with good sensitivity and specificity. These features indicated its excellent potential for ultra-trace molecule detection in clinical diagnosis and provided new insights into the field of bioassays based on DNA tile self-assembly nanotechnology.
Collapse
Affiliation(s)
- Yanan Peng
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Huajie Pang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Zhijun Gao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Dongxia Li
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Xiangde Lai
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Rui Zhang
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Xuan Zhao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China; Department of Clinical Laboratory, Hainan Cancer Hospital, Haikou, 570311, China
| | - Xinping Chen
- Department of Clinical Laboratory, Hainan Cancer Hospital, Haikou, 570311, China
| | - Hua Pei
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Bin Qiao
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| | - Qiang Wu
- Department of Clinical Laboratory of the Second Affiliated Hospital, School of Tropical Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
233
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
234
|
Diallo I, Jacob RA, Vion E, Kozak RA, Mossman K, Provost P. Altered microRNA Transcriptome in Cultured Human Airway Cells upon Infection with SARS-CoV-2. Viruses 2023; 15:v15020496. [PMID: 36851710 PMCID: PMC9962802 DOI: 10.3390/v15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1β, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Rajesh Abraham Jacob
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Elodie Vion
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Robert A. Kozak
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
235
|
Liu J, Wang H, Zeng D, Xiong J, Luo J, Chen X, Chen T, Xi Q, Sun J, Ren X, Zhang Y. The novel importance of miR-143 in obesity regulation. Int J Obes (Lond) 2023; 47:100-108. [PMID: 36528726 DOI: 10.1038/s41366-022-01245-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Obesity and substantially increased risk of metabolic diseases have become a global epidemic. microRNAs have attracted a great deal of attention as a potential therapeutic target for obesity. MiR-143 has been known to specifically promote adipocyte differentiation by downregulating extracellular signal-regulated kinase 5. Our latest study found that miR-143 knockout is against diet-induced obesity by promoting brown adipose tissue thermogenesis and inhibiting white adipose tissue adipogenesis. Moreover, LPS- or IL-6-induced inhibition of miR-143 expression in brown adipocytes promotes thermogenesis by targeting adenylate cyclase 9. In this review, we will summarize the expression and functions of miR-143 in different tissues, the influence of obesity on miR-143 in various tissues, the important role of adipose-derived miR-143 in the development of obesity, the role of miR-143 in immune cells and thermoregulation and discuss the potential significance and application prospects of miR-143 in obesity management.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
236
|
Capetini VC, Quintanilha BJ, de Oliveira DC, Nishioka AH, de Matos LA, Ferreira LRP, Ferreira FM, Sampaio GR, Hassimotto NMA, Lajolo FM, Fock RA, Rogero MM. Blood orange juice intake modulates plasma and PBMC microRNA expression in overweight and insulin-resistant women: impact on MAPK and NFκB signaling pathways. J Nutr Biochem 2023; 112:109240. [PMID: 36442716 DOI: 10.1016/j.jnutbio.2022.109240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
Abstract
Blood orange consumption presents potential health benefits and may modulate epigenetic mechanisms such as microRNAs (miRNAs) expression. MiRNAs are non-coding RNAs responsible for post-transcriptional gene regulation, and these molecules can also be used as biomarkers in body fluids. This study was designed to investigate the effect of chronic blood orange juice (BOJ) intake on the inflammatory response and miRNA expression profile in plasma and blood cells in overweight women. The study cohort was comprised of twenty women aged 18-40 years old, diagnosed as overweight, who consumed 500 mL/d of BOJ for four weeks. Clinical data were collected at baseline and after 4 weeks of juice consumption, e.g., anthropometric and hemodynamic parameters, food intake, blood cell count, and metabolic and inflammatory biomarkers. BOJ samples were analyzed and characterized. Additionally, plasma and blood cells were also collected for miRNA expression profiling and evaluation of the expression of genes and proteins in the MAPK and NFκB signaling pathways. BOJ intake increased the expression of miR-144-3p in plasma and the expression of miR-424-5p, miR-144-3p, and miR-130b-3p in peripheral blood mononuclear cells (PBMC). Conversely, the beverage intake decreased the expression of let-7f-5p and miR-126-3p in PBMC. Computational analyses identified different targets of the dysregulated miRNA on inflammatory pathways. Furthermore, BOJ intake increased vitamin C consumption and the pJNK/JNK ratio and decreased the expression of IL6 mRNA and NFκB protein. These results demonstrate that BOJ regulates the expression of genes involved in the inflammatory process and decreases NFкB-protein expression in PBMC.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo, Brazil
| | - Bruna J Quintanilha
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo, Brazil
| | - Dalila Cunha de Oliveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra Harumi Nishioka
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo, Brazil
| | - Luciene Assaf de Matos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- Morphology Department, Institute of Biological Sciences of the Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo, Brazil
| | - Franco Maria Lajolo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo, Brazil.
| |
Collapse
|
237
|
Extracellular Vesicles as Carriers of Adipokines and Their Role in Obesity. Biomedicines 2023; 11:biomedicines11020422. [PMID: 36830957 PMCID: PMC9953604 DOI: 10.3390/biomedicines11020422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) have lately arisen as new metabolic players in energy homeostasis participating in intercellular communication at the local and distant levels. These nanosized lipid bilayer spheres, carrying bioactive molecular cargo, have somehow changed the paradigm of biomedical research not only as a non-classic cell secretion mechanism, but as a rich source of biomarkers and as useful drug-delivery vehicles. Although the research about the role of EVs on metabolism and its deregulation on obesity and associated pathologies lagged slightly behind other diseases, the knowledge about their function under normal and pathological homeostasis is rapidly increasing. In this review, we are focusing on the current research regarding adipose tissue shed extracellular vesicles including their characterization, size profile, and molecular cargo content comprising miRNAs and membrane and intra-vesicular proteins. Finally, we will focus on the functional aspects attributed to vesicles secreted not only by adipocytes, but also by other cells comprising adipose tissue, describing the evidence to date on the deleterious effects of extracellular vesicles released by obese adipose tissue both locally and at the distant level by interacting with other peripheral organs and even at the central level.
Collapse
|
238
|
Lai H, Fan J, Zhang Y, Pan B, Pan W, Fang J, Ni K, Chen Z, Liu S, Lou C, He D. Overexpression of miR-148a-3p inhibits extracellular matrix degradation and alleviates IL-1β-induced intervertebral disc degeneration. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:157-163. [PMID: 36742139 PMCID: PMC9869879 DOI: 10.22038/ijbms.2022.64645.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/26/2022] [Indexed: 02/07/2023]
Abstract
Objectives Recently, studies on microRNAs (miRNAs) and their targets and related genes have provided new therapeutic opportunities for controlling intervertebral disc degeneration (IDD). We aimed to investigate the effects of miR-148a-3p overexpression on IDD progression. Materials and Methods This study used microRNA microarrays to analyze key regulators of IDD. Q-PCR was used to verify the IL-1β-induced down-regulation of miR-148a-3p expression both in nucleus pulposus (NP) tissues of IDD patients and in degenerated NP cells (NPCs) of rats. Rat NPC micromass cultures and ex vivo intervertebral disc (IVD) culture models were established, and histological staining was performed to verify the effect of miR-148a-3p on the general morphology and proteoglycan and collagen contents of IVDs. In addition, q-PCR and western blotting analyses were performed to examine the expression of ECM molecules and matrix-degrading enzymes. A luciferase reporter assay was used to confirm the target genes of miR-148a-3p. Results Our data revealed that miR-148a-3p was down-regulated in IDD. Overexpression of miR-148a-3p had no effect on ACAN or COL2A1 gene expression but decreased MMP3, MMP13, and ADAMTS5 gene expression. The matrix deposited by miR-148a-3p-overexpressing rat NPCs contained high levels of proteoglycans and collagen. The ex vivo experiments verified that agomiR-148a-3p alleviated the NPC matrix degradation induced by IL-1β. A luciferase reporter assay confirmed that miR-148a-3p directly targeted ADAMTS5 and MMP13. Conclusion We proved that miR-148a-3p can attenuate ECM loss and protect NP function by inhibiting matrix-degrading enzymes.
Collapse
Affiliation(s)
- Hehuan Lai
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University,,These authors contributed equally to this work
| | - Jialin Fan
- Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China ,These authors contributed equally to this work
| | - Yejin Zhang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Bin Pan
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Wenzheng Pan
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Jiawei Fang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Kainan Ni
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Zhenzhong Chen
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Shijie Liu
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Chao Lou
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University
| | - Dengwei He
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University,,Corresponding author: Dengwei He. Department of Orthopaedic Surgery, Affiliated Lishui Hospital of Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui 323000, Zhejiang Province, China.
| |
Collapse
|
239
|
Goswami B, Ahuja D, Pastré D, Ray PS. p53 and HuR combinatorially control the biphasic dynamics of microRNA-125b in response to genotoxic stress. Commun Biol 2023; 6:110. [PMID: 36707647 PMCID: PMC9883498 DOI: 10.1038/s42003-023-04507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
Post-transcriptional regulation of p53, by the microRNA miR-125b and the RNA-binding protein HuR, controls p53 expression under genotoxic stress. p53 mRNA translation is repressed by miR-125b, tightly regulating its basal level of expression. The repression is relieved upon DNA damage by a decrease in miR-125b level, contributing to pulsatile expression of p53. The pulse of p53, as also of HuR, in response to UV irradiation coincides with a time-dependent biphasic change in miR-125b level. We show that the cause for the decrease in miR-125b level immediately post DNA-damage is enhanced exosomal export mediated by HuR. The subsequent increase in miR-125b level is due to p53-mediated transcriptional upregulation and enhanced processing, demonstrating miR-125b as a transcriptional and processing target of p53. p53 activates the transcription of primary miR-125b RNA from a cryptic promoter in response to UV irradiation. Together, these regulatory processes constitute reciprocal feedback loops that determine the biphasic change in miR-125b level, ultimately contributing to the fine-tuned temporal regulation of p53 expression in response to genotoxic stress.
Collapse
Affiliation(s)
- Binita Goswami
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246 West Bengal India
| | - Deepika Ahuja
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246 West Bengal India
| | - David Pastré
- grid.460789.40000 0004 4910 6535SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Partho Sarothi Ray
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246 West Bengal India
| |
Collapse
|
240
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
241
|
Exosomes treating osteoarthritis: hope with challenge. Heliyon 2023; 9:e13152. [PMID: 36711315 PMCID: PMC9880404 DOI: 10.1016/j.heliyon.2023.e13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis (OA) has been proven as the second primary cause of pain and disability in the elderly population, impact patients both physically and mentally, as well as imposing a heavy burden on the global healthcare system. Current treatment methods, whether conservative or surgical, that aim at relieving symptoms can not delay or reverse the degenerative process in the structure. Scientists and clinicians are facing a revolution in OA treatment strategies. The emergence of exosomes brings hope for OA treatment based on pathology, which is attributed to its full potential in protecting chondrocytes from excessive death, alleviating inflammation, maintaining cartilage matrix metabolism, and regulating angiogenesis and subchondral bone remodeling. Therefore, we summarized the recent studies of exosomes in OA, aiming to comprehensively understand the functions and mechanisms of exosomes in OA treatment, which may provide direction and theoretical support for formulating therapeutic strategies in the future.
Collapse
|
242
|
Ikuma Y, Sakai A, Sakamoto A, Suzuki H. Increased extracellular release of microRNAs from dorsal root ganglion cells in a rat model of neuropathic pain caused by peripheral nerve injury. PLoS One 2023; 18:e0280425. [PMID: 36662897 PMCID: PMC9858844 DOI: 10.1371/journal.pone.0280425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
microRNAs (miRNAs) are extracellularly released by cells for intercellular communication, while intracellularly, they inhibit the expression of specific genes. An increasing number of studies suggest that extracellular miRNAs have great potential as both therapeutic targets and disease-specific biomarkers in a variety of diseases, including pain disorders. However, little is known about miRNA release from dorsal root ganglion (DRG) neurons in neuropathic pain caused by peripheral nerve injury. In this study, we investigated the changes in the extracellular release of miRNAs from DRG neurons in a rat model of neuropathic pain induced by chronic constriction injury of the sciatic nerve. We found increased release of six miRNAs (let-7d, miR-21, miR-142-3p, miR-146b, miR-203-3p and miR-221) from primary cultured DRG neurons prepared from rats 7 days after nerve injury. Among these, miR-221 was also increased in serum from days 7 to 28 after nerve injury. In contrast, serum miR-221 levels and its release from DRG neurons were unchanged in an inflammatory pain model produced by intraplantar injection of complete Freund's adjuvant. These results suggest that the increased release of specific miRNAs by DRG neurons may be involved in the pathophysiology of neuropathic pain through extracellular as well as intracellular mechanisms. Furthermore, serum miR-221 may be useful as a biomarker of neuropathic pain caused by peripheral nerve injury.
Collapse
Affiliation(s)
- Yuko Ikuma
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
243
|
Gil-Martínez M, Lorente-Sorolla C, Rodrigo-Muñoz JM, Lendínez MÁ, Núñez-Moreno G, de la Fuente L, Mínguez P, Mahíllo-Fernández I, Sastre J, Valverde-Monge M, Quirce S, Caballero ML, González-Barcala FJ, Arismendi E, Bobolea I, Valero A, Muñoz X, Cruz MJ, Martínez-Rivera C, Plaza V, Olaguibel JM, del Pozo V. Analysis of Differentially Expressed MicroRNAs in Serum and Lung Tissues from Individuals with Severe Asthma Treated with Oral Glucocorticoids. Int J Mol Sci 2023; 24:1611. [PMID: 36675122 PMCID: PMC9864670 DOI: 10.3390/ijms24021611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nowadays, microRNAs (miRNAs) are increasingly used as biomarkers due to their potential contribution to the diagnosis and targeted treatment of a range of diseases. The aim of the study was to analyze the miRNA expression profiles in serum and lung tissue from patients with severe asthma treated with oral corticosteroids (OCS) and those without OCS treatment. For this purpose, serum and lung tissue miRNAs of OCS and non-OCS asthmatic individuals were evaluated by miRNAs-Seq, and subsequently miRNA validation was performed using RT-qPCR. Additionally, pathway enrichment analysis of deregulated miRNAs was conducted. We observed altered expression by the next-generation sequencing (NGS) of 11 miRNAs in serum, of which five (hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) were validated by RT-qPCR, and three miRNAs in lung tissue (hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a). The best multivariate logistic regression model to differentiate individuals with severe asthma, treated and untreated with OCS, was to combine the serum miRNAs hsa-miR-221-5p and hsa-miR-769-5p. Expression of hsa-miR-148b-3p and hsa-miR-221-5p correlated with FEV1/FVC (%) and these altered miRNAs act in key signaling pathways for asthma disease and the regulated expression of some genes (FOXO3, PTEN, and MAPK3) involved in these pathways. In conclusion, there are miRNA profiles differentially expressed in OCS-treated individuals with asthma and could be used as biomarkers of OCS treatment.
Collapse
Affiliation(s)
- Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Clara Lorente-Sorolla
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miguel Ángel Lendínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Ignacio Mahíllo-Fernández
- Biostatistics and Epidemiology Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Marcela Valverde-Monge
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, 28046 Madrid, Spain
| | - María L. Caballero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, 28046 Madrid, Spain
| | - Francisco J. González-Barcala
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Ebymar Arismendi
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Irina Bobolea
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pulmonology and Allergy Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - María Jesús Cruz
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Pulmonology Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Medicine Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - José M. Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Severe Asthma Unit, Department of Allergy, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
244
|
Ares Blanco J, Lambert C, Fernandez-Sanjurjo M, Morales-Sanchez P, Pujante P, Pinto-Hernández P, Iglesias-Gutiérrez E, Menendez Torre E, Delgado E. miR-24-3p and Body Mass Index as Type 2 Diabetes Risk Factors in Spanish Women 15 Years after Gestational Diabetes Mellitus Diagnosis. Int J Mol Sci 2023; 24:ijms24021152. [PMID: 36674679 PMCID: PMC9861277 DOI: 10.3390/ijms24021152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance that is diagnosed for the first time during pregnancy. The objective of this study is to know the glucose tolerance status after 15 years of pregnancy in patients diagnosed with gestational diabetes and to assess the long-term effect of GDM on the circulating miRNA profile of these women. To answer these, 30 randomly selected women diagnosed with GDM during 2005-2006 were included in the study, and glucose tolerance was measured using the National Diabetes Data Group criteria. Additionally, four miRNAs (hsa-miR-1-3p, hsa-miR-24-3p, hsa-miR-329-3p, hsa-miR-543) were selected for their analysis in the plasma of women 15 years after the diagnosis of GDM. In our study we discovered that, fifteen years after the diagnosis of GDM, 50% of women have some degree of glucose intolerance directly related to body weight and body mass index during pregnancy. Dysglycemic women also showed a significantly increased level of circulating hsa-miR-24-3p. Thus, we can conclude that initial weight and BMI, together with circulating expression levels of hsa-miR-24-3p, could be good predictors of the future development of dysglycemia in women with a previous diagnosis of GDM.
Collapse
Affiliation(s)
- Jessica Ares Blanco
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Endocrinology and Nutrition Department, Asturias Central University Hospital, Av. Roma s/n, 33011 Oviedo, Spain
- Medicine Department, University of Oviedo, 33011 Oviedo, Spain
| | - Carmen Lambert
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- University of Barcelona, 08007 Barcelona, Spain
- Correspondence: (C.L.); (E.D.)
| | - Manuel Fernandez-Sanjurjo
- Department of Functional Biology, University of Oviedo, 33007 Oviedo, Spain
- Translational Health Interventions Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Paula Morales-Sanchez
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pedro Pujante
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- University of Barcelona, 08007 Barcelona, Spain
| | - Paola Pinto-Hernández
- Department of Functional Biology, University of Oviedo, 33007 Oviedo, Spain
- Translational Health Interventions Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, University of Oviedo, 33007 Oviedo, Spain
- Translational Health Interventions Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Edelmiro Menendez Torre
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Endocrinology and Nutrition Department, Asturias Central University Hospital, Av. Roma s/n, 33011 Oviedo, Spain
- Medicine Department, University of Oviedo, 33011 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elias Delgado
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Endocrinology and Nutrition Department, Asturias Central University Hospital, Av. Roma s/n, 33011 Oviedo, Spain
- Medicine Department, University of Oviedo, 33011 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (C.L.); (E.D.)
| |
Collapse
|
245
|
Fujiwara Y, Ding C, Sanada Y, Yimiti D, Ishikawa M, Nakasa T, Kamei N, Imaizumi K, Lotz MK, Akimoto T, Miyaki S, Adachi N. miR-23a/b clusters are not essential for the pathogenesis of osteoarthritis in mouse aging and post-traumatic models. Front Cell Dev Biol 2023; 10:1043259. [PMID: 36684425 PMCID: PMC9846268 DOI: 10.3389/fcell.2022.1043259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation and is caused by various risk factors including aging and traumatic injury. Most microRNAs (miRNAs) have been associated with pathogenesis of osteoarthritis (OA) using in vitro models. However, the role of many miRNAs in skeletal development and OA pathogenesis is uncharacterized in vivo using genetically modified mice. Here, we focused on miR-23-27-24 clusters. There are two paralogous miR-23-27-24 clusters: miR-23a-27a-24-2 (miR-23a cluster) and miR-23b-27b-24-1 (miR-23b cluster). Each miR-23a/b, miR-24, and miR-27a/b is thought to function coordinately and complementary to each other, and the role of each miR-23a/b, miR-24, and miR-27a/b in OA pathogenesis is still controversial. MiR-23a/b clusters are highly expressed in chondrocytes and the present study examined their role in OA. We analyzed miRNA expression in chondrocytes and investigated cartilage-specific miR-23a/b clusters knockout (Col2a1-Cre; miR-23a/bflox/flox: Cart-miR-23clus KO) mice and global miR-23a/b clusters knockout (CAG-Cre; miR-23a/bflox/flox: Glob-miR-23clus KO) mice. Knees of Cart- and Glob-miR-23a/b clusters KO mice were evaluated by histological grading systems for knee joint tissues using aging model (12 and/or 18 month-old) and surgically-induced OA model. miR-23a/b clusters were among the most highly expressed miRNAs in chondrocytes. Skeletal development of Cart- and Glob-miR-23clus KO mice was grossly normal although Glob-miR-23clus KO had reduced body weight, adipose tissue and bone density. In the aging model and surgically-induced OA model, Cart- and Glob-miR-23clus KO mice exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. However, the histological scores were not significantly different in terms of the severity of OA in Cart- and Glob-miR-23clus KO mice compared with control mice. Together, miR-23a/b clusters, composed of miR-23a/b, miR-24, miR-27a/b do not significantly contribute to OA pathogenesis.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Martin K. Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | | | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan,*Correspondence: Shigeru Miyaki,
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
246
|
Wang QY, Liao ZZ, Lai J, Xiao XH. Editorial: The role of exosomes and organokines in metabolic and endocrine disease. Front Endocrinol (Lausanne) 2023; 14:1198791. [PMID: 37152957 PMCID: PMC10162493 DOI: 10.3389/fendo.2023.1198791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Qi-Yu Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, United States
- *Correspondence: Xin-Hua Xiao, ; Jinping Lai,
| | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Jinping Lai,
| |
Collapse
|
247
|
Xia L, Guo H, Wu X, Xu Y, Zhao P, Yan B, Zeng Y, He Y, Chen D, Gale RP, Zhang Y, Zhang X. Human circulating small non-coding RNA signature as a non-invasive biomarker in clinical diagnosis of acute myeloid leukaemia. Theranostics 2023; 13:1289-1301. [PMID: 36923527 PMCID: PMC10008735 DOI: 10.7150/thno.80054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; AML is highly heterogeneous and involves abnormalities at multiple omics levels. Small non-coding RNAs (sncRNAs) present in body fluids are important regulatory molecules and considered promising non-invasive clinical diagnostic biomarkers for disease. However, the signature of sncRNA profile alteration in AML patient serum and bone marrow supernatant is still under exploration. Methods: We examined data for blood and bone marrow samples from 80 consecutive, newly-diagnosed patients with AML and 12 healthy controls for high throughput small RNA-sequencing. Differentially expressed sncRNAs were analysed to reveal distinct patterns between AML patients and controls. Machine learning methods were used to evaluate the efficiency of specific sncRNAs in discriminating individuals with AML from controls. The altered expression level of individual sncRNAs was evaluated by RT-PCR, Q-PCR, and northern blot. Correlation analysis was employed to assess sncRNA patterns between serum and bone marrow supernatant. Results: We identified over 20 types of sncRNA categories beyond miRNAs in both serum and bone marrow supernatant, with highly coordinated expression patterns between them. Non-classical sncRNAs, including rsRNA (62.86%), ysRNA (14.97%), and tsRNA (4.22%), dominated among serum sncRNAs and showed sensitive alteration patterns in AML patients. According to machine learning-based algorithms, the tsRNA-based signature robustly discriminated subjects with AML from controls and was more reliable than that comprising miRNAs. Our data also showed that serum tsRNAs to be closely associated with AML prognosis, suggesting the potential application of serum tsRNAs as biomarkers to assist in AML diagnosis. Conclusions: We comprehensively characterized the expression pattern of circulating sncRNAs in blood and bone marrow and their alteration signature between healthy controls and AML patients. This study enriches research of sncRNAs in the regulation of AML, and provides insights into the role of sncRNAs in AML.
Collapse
Affiliation(s)
- Lin Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Bingbing Yan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yundi He
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Dan Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
248
|
Liang Y, Fang D, Gao X, Deng X, Chen N, Wu J, Zeng M, Luo M. Circulating microRNAs as emerging regulators of COVID-19. Theranostics 2023; 13:125-147. [PMID: 36593971 PMCID: PMC9800721 DOI: 10.7150/thno.78164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has high incidence rates, spreads rapidly, and has caused more than 6.5 million deaths globally to date. Currently, several drugs have been used in the clinical treatment of COVID-19, including antivirals (e.g., molnupiravir, baricitinib, and remdesivir), monoclonal antibodies (e.g., etesevimab and tocilizumab), protease inhibitors (e.g., paxlovid), and glucocorticoids (e.g., dexamethasone). Increasing evidence suggests that circulating microRNAs (miRNAs) are important regulators of viral infection and antiviral immune responses, including the biological processes involved in regulating COVID-19 infection and subsequent complications. During viral infection, both viral genes and host cytokines regulate transcriptional and posttranscriptional steps affecting viral replication. Virus-encoded miRNAs are a component of the immune evasion repertoire and function by directly targeting immune functions. Moreover, several host circulating miRNAs can contribute to viral immune escape and play an antiviral role by not only promoting nonstructural protein (nsp) 10 expression in SARS coronavirus, but among others inhibiting NOD-like receptor pyrin domain-containing (NLRP) 3 and IL-1β transcription. Consequently, understanding the expression and mechanism of action of circulating miRNAs during SARS-CoV-2 infection will provide unexpected insights into circulating miRNA-based studies. In this review, we examined the recent progress of circulating miRNAs in the regulation of severe inflammatory response, immune dysfunction, and thrombosis caused by SARS-CoV-2 infection, discussed the mechanisms of action, and highlighted the therapeutic challenges involving miRNA and future research directions in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
249
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Short-term air pollution and temperature exposure and changes in the extracellular microRNA profile of Normative Aging Study (NAS) participants. ENVIRONMENT INTERNATIONAL 2023; 171:107735. [PMID: 36640488 PMCID: PMC10159015 DOI: 10.1016/j.envint.2023.107735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND While the health effects of air pollution and temperature are widely studied, the molecular effects are poorly understood. Extracellular microRNAs (ex-miRNAs) have the potential to serve as diagnostic or prognostic biomarkers and/or to act as intercellular signaling molecules that mediate the effects of environmental exposures on health outcomes. METHODS We examined the relationship between short-term exposure to air pollution and ambient temperature and the ex-miRNA profiles of participants in the Normative Aging Study (NAS) from 1999 to 2015. Our exposures were defined as same-day, two-day, three-day, one-week, two-week, and three-week moving averages of PM2.5, NO2, O3, and temperature which were derived from high-resolution spatio-temporal models. The ex-miRNA profiles of the subjects were obtained during follow-up visits. We analyzed the data using a longitudinal quantile regression model adjusted for individual covariates, batch effects, and time trends. We adjusted for multiple comparisons using a false discovery rate (FDR) correction. Ex-miRNAs that were significantly associated with exposures were further investigated using pathway analyses. RESULTS We found that all the examined exposures were associated with changes in ex-miRNA profiles in our study, particularly PM2.5 which was responsible for most of the statistically significant results. We found 110 statistically significant exposure-outcome relationships that revealed associations with the levels of 52 unique ex-miRNAs. Pathway analyses showed these ex-miRNAs have been linked to target mRNAs, genes, and biological mechanisms that could affect virtually every organ system, and as such may be linked to multiple clinical disease presentations such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSIONS Air pollution and temperature exposures were significantly associated with alterations in the ex-miRNA profiles of NAS subjects with possible biological consequences.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
250
|
Nalavade R, Singh M. Intracellular Compartmentalization: A Key Determinant of MicroRNA Functions. Microrna 2023; 12:114-130. [PMID: 37638608 DOI: 10.2174/2211536612666230330184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 08/29/2023]
Abstract
Being an integral part of the eukaryotic transcriptome, miRNAs are regarded as vital regulators of diverse developmental and physiological processes. Clearly, miRNA activity is kept in check by various regulatory mechanisms that control their biogenesis and decay pathways. With the increasing technical depth of RNA profiling technologies, novel insights have unravelled the spatial diversity exhibited by miRNAs inside a cell. Compartmentalization of miRNAs adds complexity to the regulatory circuits of miRNA expression, thereby providing superior control over the miRNA function. This review provides a bird's eye view of miRNAs expressed in different subcellular locations, thus affecting the gene regulatory pathways therein. Occurrence of miRNAs in diverse intracellular locales also reveals various unconventional roles played by miRNAs in different cellular organelles and expands the scope of miRNA functions beyond their traditionally known repressive activities.
Collapse
Affiliation(s)
- Rohit Nalavade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|