201
|
Tian C, Zhang X, He J, Yu H, Wang Y, Shi B, Han Y, Wang G, Feng X, Zhang C, Wang J, Qi J, Yu R, Jiao Y. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol Syst Biol 2014; 10:755. [PMID: 25358340 PMCID: PMC4299377 DOI: 10.15252/msb.20145470] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/14/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
Abstract
Gene regulatory networks (GRNs) control development via cell type-specific gene expression and interactions between transcription factors (TFs) and regulatory promoter regions. Plant organ boundaries separate lateral organs from the apical meristem and harbor axillary meristems (AMs). AMs, as stem cell niches, make the shoot a ramifying system. Although AMs have important functions in plant development, our knowledge of organ boundary and AM formation remains rudimentary. Here, we generated a cellular-resolution genomewide gene expression map for low-abundance Arabidopsis thaliana organ boundary cells and constructed a genomewide protein-DNA interaction map focusing on genes affecting boundary and AM formation. The resulting GRN uncovers transcriptional signatures, predicts cellular functions, and identifies promoter hub regions that are bound by many TFs. Importantly, further experimental studies determined the regulatory effects of many TFs on their targets, identifying regulators and regulatory relationships in AM initiation. This systems biology approach thus enhances our understanding of a key developmental process.
Collapse
Affiliation(s)
- Caihuan Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Xiaoni Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China College of Life Sciences, Capital Normal University, Beijing, China
| | - Jun He
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Haopeng Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Bihai Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Guoxun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Cui Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Jin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Jiyan Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Rong Yu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| |
Collapse
|
202
|
Shin J, Ming GL, Song H. Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nat Neurosci 2014; 17:1463-75. [PMID: 25349913 DOI: 10.1038/nn.3814] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/14/2014] [Indexed: 02/07/2023]
Abstract
The mammalian brain is an evolutionary marvel in which engraving and re-engraving of cellular states enable complex information processing and lifelong maintenance. Understanding the mechanisms by which neurons alter and maintain their molecular signatures during information processing is a fundamental goal of neuroscience. Next-generation sequencing (NGS) technology is rapidly transforming the ability to probe the molecular basis of neuronal function. NGS can define not only the complete molecular signatures of cells by transcriptome analyses but also the cascade of events that induce or maintain such signatures by epigenetic analyses. Here we offer some general and practical information to demystify NGS technology and highlight its potential to the neuroscience field. We start with discussion of the complexity of the nervous system, then introduce various applications of NGS with practical considerations and describe basic principles underlying various NGS technologies. Finally, we discuss emerging NGS-related technologies for the neuroscience field.
Collapse
Affiliation(s)
- Jaehoon Shin
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guo-li Ming
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [3] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongjun Song
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [3] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
203
|
Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, Sun H, Akbarian S, Allis CD, Nestler EJ. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat Neurosci 2014; 17:1476-90. [PMID: 25349914 DOI: 10.1038/nn.3816] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022]
Abstract
Over the past decade, rapid advances in epigenomics research have extensively characterized critical roles for chromatin regulatory events during normal periods of eukaryotic cell development and plasticity, as well as part of aberrant processes implicated in human disease. Application of such approaches to studies of the CNS, however, is more recent. Here we provide a comprehensive overview of available tools for analyzing neuroepigenomics data, as well as a discussion of pending challenges specific to the field of neuroscience. Integration of numerous unbiased genome-wide and proteomic approaches will be necessary to fully understand the neuroepigenome and the extraordinarily complex nature of the human brain. This will be critical to the development of future diagnostic and therapeutic strategies aimed at alleviating the vast array of heterogeneous and genetically distinct disorders of the CNS.
Collapse
Affiliation(s)
- Ian Maze
- 1] Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ningyi Shao
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amanda Mitchell
- 1] Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - HaoSheng Sun
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- 1] Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Eric J Nestler
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
204
|
Abstract
The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome.
Collapse
|
205
|
Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. PLANT PHYSIOLOGY 2014; 166:455-69. [PMID: 24868032 PMCID: PMC4213079 DOI: 10.1104/pp.114.239392] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/26/2014] [Indexed: 05/18/2023]
Abstract
Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.
Collapse
Affiliation(s)
- Mily Ron
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Kaisa Kajala
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Germain Pauluzzi
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Dongxue Wang
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Mauricio A Reynoso
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Kristina Zumstein
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Jasmine Garcha
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Sonja Winte
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Helen Masson
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Soichi Inagaki
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Fernán Federici
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Neelima Sinha
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Roger B Deal
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Julia Bailey-Serres
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| | - Siobhan M Brady
- Department of Plant Biology (M.R., K.K., K.Z., J.G., S.W., H.M., S.I., N.S., S.M.B.) and Genome Center (M.R., K.K., J.G., S.W., H.M., S.I., S.M.B.), University of California, Davis, California 95616;Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, California 92521 (G.P., M.A.R., J.B.-S.);Department of Biology, Emory University, Atlanta, Georgia 30322 (D.W., R.B.D.);Department of Integrated Genetics, National Institute of Genetics, Mishima 411-8540, Japan (S.I.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (F.F.)
| |
Collapse
|
206
|
Luo C, Lam E. Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq. Methods Mol Biol 2014; 1112:177-93. [PMID: 24478015 DOI: 10.1007/978-1-62703-773-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genome-wide quantitative profiling of chromatin modifications is a critical experimental approach to study epigenetic and transcriptional control mechanisms. Since first being reported in 2007, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) has soon became a popular method-of-choice for profiling chromatin modifications and transcription factor-binding sites in eukaryote genomes. ChIP-seq has the advantage over the earlier ChIP-chip approach in multiple aspects including the lower amount of input DNA required, an expanded dynamic range and compatibility with sample multiplexing. Here we describe a detailed protocol for profiling histone modification in the Arabidopsis thaliana genome with ChIP-seq using the SOLiD™ 2.0 high-throughput sequencing platform. As read length and sequencing depth are two critical factors determining data quality and cost, we have developed bioinformatics approach to evaluate the effect of read length and sequencing depth on the alignment accuracy and the generated chromatin profile, respectively. Our analyses suggest that 2-3 million high quality sequencing tags with a read length of 35 nucleotides would be sufficient to profile the majority of histone modifications in this popular model plant species.
Collapse
Affiliation(s)
- Chongyuan Luo
- Department of Plant Biology & Pathology, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
207
|
Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT, Sabo PJ, Sandstrom R, Thurman RE, Neph S, Reynolds AP, Stergachis AB, Vernot B, Johnson AK, Haugen E, Sullivan ST, Thompson A, Neri FV, Weaver M, Diegel M, Mnaimneh S, Yang A, Hughes TR, Nemhauser JL, Queitsch C, Stamatoyannopoulos JA. Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep 2014; 8:2015-2030. [PMID: 25220462 DOI: 10.1016/j.celrep.2014.08.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 08/07/2014] [Indexed: 01/23/2023] Open
Abstract
Our understanding of gene regulation in plants is constrained by our limited knowledge of plant cis-regulatory DNA and its dynamics. We mapped DNase I hypersensitive sites (DHSs) in A. thaliana seedlings and used genomic footprinting to delineate ∼ 700,000 sites of in vivo transcription factor (TF) occupancy at nucleotide resolution. We show that variation associated with 72 diverse quantitative phenotypes localizes within DHSs. TF footprints encode an extensive cis-regulatory lexicon subject to recent evolutionary pressures, and widespread TF binding within exons may have shaped codon usage patterns. The architecture of A. thaliana TF regulatory networks is strikingly similar to that of animals in spite of diverged regulatory repertoires. We analyzed regulatory landscape dynamics during heat shock and photomorphogenesis, disclosing thousands of environmentally sensitive elements and enabling mapping of key TF regulatory circuits underlying these fundamental responses. Our results provide an extensive resource for the study of A. thaliana gene regulation and functional biology.
Collapse
Affiliation(s)
| | - Andrej A Arsovski
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Janne Lempe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Peter J Sabo
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Robert E Thurman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shane Neph
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alex P Reynolds
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrew B Stergachis
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin Vernot
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Audra K Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Haugen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shawn T Sullivan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Agnieszka Thompson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Fidencio V Neri
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Molly Weaver
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Morgan Diegel
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanie Mnaimneh
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto ON M5S 3E1, Canada
| | - Ally Yang
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto ON M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto ON M5S 3E1, Canada; Canadian Institute for Advanced Research (CIFAR) Program in Genetic Networks, Toronto ON M5G 1Z8, Canada
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
208
|
Otsuki L, Cheetham SW, Brand AH. Freedom of expression: cell-type-specific gene profiling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:429-43. [PMID: 25174322 DOI: 10.1002/wdev.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/17/2022]
Abstract
Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.
Collapse
Affiliation(s)
- Leo Otsuki
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
209
|
Luo C, Dong J, Zhang Y, Lam E. Decoding the role of chromatin architecture in development: coming closer to the end of the tunnel. FRONTIERS IN PLANT SCIENCE 2014; 5:374. [PMID: 25191327 PMCID: PMC4140164 DOI: 10.3389/fpls.2014.00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Form and function in biology are intimately related aspects that are often difficult to untangle. While the structural aspects of chromatin organization were apparent from early cytological observations long before the molecular details of chromatin functions were deciphered, the extent to which genome architecture may impact its output remains unclear. A major roadblock to resolve this issue is the divergent scales, both temporal and spatial, of the experimental approaches for examining these facets of chromatin biology. Recent advances in high-throughput sequencing and informatics to model and monitor genome-wide chromatin contact sites provide the much-needed platform to close this gap. This mini-review will focus on discussing recent efforts applying new technologies to elucidate the roles of genome architecture in coordinating global gene expression output. Our discussion will emphasize the potential roles of differential genome 3-D structure as a driver for cell fate specification of multicellular organisms. An integrated approach that combines multiple new methodologies may finally have the necessary temporal and spatial resolution to provide clarity on the roles of chromatin architecture during development.
Collapse
Affiliation(s)
- Chongyuan Luo
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
- The Waksman Institute of Microbiology, Rutgers the State University of New JerseyPiscataway, NJ, USA
| | - Yi Zhang
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| | - Eric Lam
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
210
|
Tallafuss A, Washbourne P, Postlethwait J. Temporally and spatially restricted gene expression profiling. Curr Genomics 2014; 15:278-92. [PMID: 25132798 PMCID: PMC4133951 DOI: 10.2174/1389202915666140602230106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/02/2022] Open
Abstract
Identifying gene function in specific cells is critical for understanding the processes that make cells unique. Several different methods are available to isolate actively transcribed RNA or actively translated RNA in specific cells at a chosen time point. Cell-specific mRNA isolation can be accomplished by the expression of transgenes in cells of interest, either directly from a specific promoter or using a modular system such as Gal4/UAS or Cre/lox. All of the methods described in this review, namely thiol-labeling of RNA (TU-tagging or RABT), TRAP (translating ribosome affinity purification) and INTACT (isolation of nuclei tagged in specific cell types), allow next generation sequencing, permitting the identification of enriched gene transcripts within the specific cell-type. We describe here the general concept of each method, include examples, evaluate possible problems related to each technique, and suggest the types of questions for which each method is best suited.
Collapse
Affiliation(s)
- Alexandra Tallafuss
- Institute of Neuroscience, 1254-University of Oregon, 1425 E. 13th Avenue, Eugene, OR-97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, 1254-University of Oregon, 1425 E. 13th Avenue, Eugene, OR-97403, USA
| | - John Postlethwait
- Institute of Neuroscience, 1254-University of Oregon, 1425 E. 13th Avenue, Eugene, OR-97403, USA
| |
Collapse
|
211
|
Abstract
ENCODE projects exist for many eukaryotes, including humans, but as of yet no defined project exists for plants. A plant ENCODE would be invaluable to the research community and could be more readily produced than its metazoan equivalents by capitalizing on the preexisting infrastructure provided from similar projects. Collecting and normalizing plant epigenomic data for a range of species will facilitate hypothesis generation, cross-species comparisons, annotation of genomes, and an understanding of epigenomic functions throughout plant evolution. Here, we discuss the need for such a project, outline the challenges it faces, and suggest ways forward to build a plant ENCODE.
Collapse
Affiliation(s)
- Amanda K Lane
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | | | | | | |
Collapse
|
212
|
Becker JD, Takeda S, Borges F, Dolan L, Feijó JA. Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC PLANT BIOLOGY 2014; 14:197. [PMID: 25080170 PMCID: PMC4236730 DOI: 10.1186/s12870-014-0197-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/14/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Current views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants. RESULTS We developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis. CONCLUSIONS Our results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells.
Collapse
Affiliation(s)
- Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Seiji Takeda
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Present address: Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Filipe Borges
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor 11724, NY, USA
| | - Liam Dolan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park 20742-5815, MD, USA
| |
Collapse
|
213
|
Stress induces cell dedifferentiation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:378-84. [PMID: 25086338 DOI: 10.1016/j.bbagrm.2014.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Accumulating evidence lends support to the proposal that a major theme in plant responses to stresses is dedifferentiation, whereby mature cells acquire stem cell features (e.g. open chromatin conformation) prior to acquisition of a new cell fate. In this review, we discuss data addressing plant cell plasticity and provide evidence linking stress, dedifferentiation and a switch in cell fate. We emphasize the epigenetic modifications associated with stress-induced global changes in chromatin structure and conclude with the implications for genetic variation and for induced pluripotent stem cells in animals. It appears that stress is perceived as a signal that directs plant cells to undergo reprogramming (dedifferentiation) as a means for adaptation and in preparation for a stimulus-based acquisition of a new cell fate. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
214
|
Widiez T, Symeonidi A, Luo C, Lam E, Lawton M, Rensing SA. The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:67-81. [PMID: 24779858 DOI: 10.1111/tpj.12542] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 05/23/2023]
Abstract
The moss Physcomitrella patens is an important model organism for evo-devo studies. Here, we determined the genome-wide chromatin landscape of five important histone three (H3) modifications (H3K4me3, H3K27me3, H3K27Ac, H3K9Ac and H3K9me2) and describe the changes to these histone marks in two contrasted situations, developmental transition and abiotic (drought) stress. Integrative analysis of these histone H3 modifications revealed their preferential association into 15 chromatin states (CS) in genic regions of the P. patens genome. Synergistic relationships that influence expression levels were revealed for the three activating marks H3K4me3, H3K27Ac and H3K9Ac, while an antagonistic relationship was found between CS containing the H3K27me3 and H3K27Ac marks, suggesting that H3K27 is a key indexing residue regarding transcriptional output. Concerning the alteration of histone marks in response to developmental transition (juvenile to adult) and drought stress, the three activating marks H3K4me3, H3K27Ac and H3K9Ac show significant changes in both situations. However, changes to H3K27me3 are central only for genes differentially expressed during development. Interestingly, genes induced during drought stress show significant histone mark toggling during developmental transition. This situation suggests that drought induced adult (gametophore expressed) genes are primed to respond to this stress during the juvenile to adult transition.
Collapse
Affiliation(s)
- Thomas Widiez
- Department of Plant Biology & Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA; Department of Plant Biology, Sciences III, University of Geneva, Geneva, CH-1211, Switzerland
| | | | | | | | | | | |
Collapse
|
215
|
Aubry S, Kneřová J, Hibberd JM. Endoreduplication is not involved in bundle-sheath formation in the C4 species Cleome gynandra. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3557-66. [PMID: 24220652 PMCID: PMC4085951 DOI: 10.1093/jxb/ert350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There is currently significant interest in engineering the two-celled C4 photosynthesis pathway into crops such as rice in order to increase yield. This will require alterations to the biochemistry of photosynthesis in both mesophyll (M) and bundle-sheath (BS) cells, but also alterations to leaf anatomy. For example, the BS of C4 species is enlarged compared with that in C3 species. Because cell and nucleus size are often correlated, this study investigated whether nuclear endoreduplication is associated with increased differentiation and expansion of BS cells. Nuclei in the BS of C4 Cleome gynandra were tagged with green fluorescent protein. Confocal laser-scanning microscopy and flow cytometry of isolated nuclei were used to quantify size and DNA content in BS cells. The results showed a significant endoreduplication in BS cells of C. gynandra but not in additional C4 lineages from both the monocotyledonous and dicotyledenous plants. Furthermore, in the C3 species Arabidopsis thaliana, BS cells undergo endoreduplication. Due to this significant endoreduplication in the small BS cells of C3 A. thaliana, it was concluded that endoreduplication of BS nuclei in C4 plants is not linked to expansion and differentiation of BS cells, and therefore that alternative strategies to increase this compartment need to be sought in order to engineer C4 traits into C3 crops such as rice.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jana Kneřová
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
216
|
Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Hörstedt P, Ikeda Y, Stepanova AN, Alonso JM, Grebe M. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat Commun 2014; 4:2779. [PMID: 24240534 PMCID: PMC3868209 DOI: 10.1038/ncomms3779] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/16/2013] [Indexed: 01/14/2023] Open
Abstract
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.
Collapse
Affiliation(s)
- Stefano Pietra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.
Collapse
|
218
|
Sequeira-Mendes J, Aragüez I, Peiró R, Mendez-Giraldez R, Zhang X, Jacobsen SE, Bastolla U, Gutierrez C. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. THE PLANT CELL 2014; 26:2351-2366. [PMID: 24934173 PMCID: PMC4114938 DOI: 10.1105/tpc.114.124578] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 05/18/2023]
Abstract
Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Irene Aragüez
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ramón Peiró
- Bioinformatics Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Raul Mendez-Giraldez
- Bioinformatics Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Xiaoyu Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Steven E Jacobsen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Ugo Bastolla
- Bioinformatics Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
219
|
Kajala K, Ramakrishna P, Fisher A, C. Bergmann D, De Smet I, Sozzani R, Weijers D, Brady SM. Omics and modelling approaches for understanding regulation of asymmetric cell divisions in arabidopsis and other angiosperm plants. ANNALS OF BOTANY 2014; 113:1083-1105. [PMID: 24825294 PMCID: PMC4030820 DOI: 10.1093/aob/mcu065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Asymmetric cell divisions are formative divisions that generate daughter cells of distinct identity. These divisions are coordinated by either extrinsic ('niche-controlled') or intrinsic regulatory mechanisms and are fundamentally important in plant development. SCOPE This review describes how asymmetric cell divisions are regulated during development and in different cell types in both the root and the shoot of plants. It further highlights ways in which omics and modelling approaches have been used to elucidate these regulatory mechanisms. For example, the regulation of embryonic asymmetric divisions is described, including the first divisions of the zygote, formative vascular divisions and divisions that give rise to the root stem cell niche. Asymmetric divisions of the root cortex endodermis initial, pericycle cells that give rise to the lateral root primordium, procambium, cambium and stomatal cells are also discussed. Finally, a perspective is provided regarding the role of other hormones or regulatory molecules in asymmetric divisions, the presence of segregated determinants and the usefulness of modelling approaches in understanding network dynamics within these very special cells. CONCLUSIONS Asymmetric cell divisions define plant development. High-throughput genomic and modelling approaches can elucidate their regulation, which in turn could enable the engineering of plant traits such as stomatal density, lateral root development and wood formation.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Priya Ramakrishna
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Adam Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dominique C. Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, The Netherlands
| | - Siobhan M. Brady
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
220
|
Lee E, Lucas JR, Goodrich J, Sack FD. Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and FAMA transcription factor genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:566-77. [PMID: 24654956 DOI: 10.1111/tpj.12516] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Arabidopsis guard cell (GC) fate is conferred via a transient pulse of expression of FAMA that encodes a bHLH transcription factor. Stomata often function for years, suggesting that the FAMA expression window stabilizes long-term GC identity or that additional factors operate. Transgenic lines harboring a copy of a FAMA transgene were found to induce the fate resetting of mature GCs to that of lineage-specific stem cells causing new stomata to arise within shells of the old, a Stoma-in-Stoma (SIS) phenotype. These lines disrupt the normal trimethylation on lysine 27 of histone3 (H3K27me3) on stomatal stem cell genes, a phenotype rescued by constitutive expression of the Polycomb Group (PcG) gene CURLY LEAF. Thus the stability of stomatal fate is enforced by a PcG-mediated reduction in the transcriptional accessibility of stem cell genes and by the endogenous FAMA gene itself. Moreover, a transgenic FOUR LIPS gene, which encodes a MYB protein that is not required for GC fate, also induces a SIS phenotype and disrupts H3K27 trimethylation. Thus FLP might indirectly enforce GC fate as well.
Collapse
Affiliation(s)
- Eunkyoung Lee
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
221
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Ma J, Weake VM. Affinity-based isolation of tagged nuclei from Drosophila tissues for gene expression analysis. J Vis Exp 2014. [PMID: 24686501 DOI: 10.3791/51418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Collapse
Affiliation(s)
- Jingqun Ma
- Department of Biochemistry, Purdue University
| | | |
Collapse
|
223
|
Wellmer F, Graciet E, Riechmann JL. Specification of floral organs in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1-9. [PMID: 24277279 DOI: 10.1093/jxb/ert385] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Floral organs are specified by the activities of a small group of transcriptional regulators, the floral organ identity factors. Extensive genetic and molecular analyses have shown that these proteins act as master regulators of flower development, and function not only in organ identity determination but also during organ morphogenesis. Although it is now well established that these transcription factors act in higher order protein complexes in the regulation of transcription, the gene expression programmes controlled by them have remained largely elusive. Only recently, detailed insights into their functions have been obtained through the combination of a wide range of experimental methods, including transcriptomic and proteomic approaches. Here, we review the progress that has been made in the characterization of the floral organ identity factors from the main model plant Arabidopsis thaliana, and we discuss what is known about the processes acting downstream of these regulators. We further outline open questions, which we believe need to be addressed to obtain a more complete view of the molecular processes that govern floral organ development and specification.
Collapse
Affiliation(s)
- Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
224
|
Graciet E, O'Maoiléidigh DS, Wellmer F. Next-generation sequencing applied to flower development: ChIP-Seq. Methods Mol Biol 2014; 1110:413-429. [PMID: 24395273 DOI: 10.1007/978-1-4614-9408-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the past 20 years, classic genetic approaches have shown that the developmental program underlying flower formation involves a large number of transcriptional regulators. However, the target genes of these transcription factors, as well as the gene regulatory networks they control, remain largely unknown. Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-Seq), which allows the identification of transcription factor binding sites on a genome-wide scale, has been successfully applied to a number of transcription factors in Arabidopsis. The ChIP-Seq procedure involves chemical cross-linking of proteins to DNA, followed by chromatin fragmentation and immunoprecipitation of specific protein-DNA complexes. The regions of the genome bound by a specific transcription factor can then be identified after next-generation sequencing.
Collapse
|
225
|
Wang Y, Jiao Y. Translating ribosome affinity purification (TRAP) for cell-specific translation profiling in developing flowers. Methods Mol Biol 2014; 1110:323-8. [PMID: 24395267 DOI: 10.1007/978-1-4614-9408-9_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of a multicellular organism is accompanied by cell differentiation. In fact, many biological processes have cell specificity, such that distinct cell types respond differently to endogenous or environmental cues. To obtain cell-specific gene expression profiles, translating ribosome affinity purification (TRAP) has been developed to label polysomes containing translating mRNAs in genetically defined cell types. Here, we describe the immunopurification of epitope-labeled polysomes and associated RNAs from target cell types. TRAP has the additional advantage of obtaining only translating mRNAs, which are a better proxy to the proteome than a standard mRNA preparation.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
226
|
Athman A, Tanz SK, Conn VM, Jordans C, Mayo GM, Ng WW, Burton RA, Conn SJ, Gilliham M. Protocol: a fast and simple in situ PCR method for localising gene expression in plant tissue. PLANT METHODS 2014; 10:29. [PMID: 25250056 PMCID: PMC4171716 DOI: 10.1186/1746-4811-10-29] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/10/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND An important step in characterising the function of a gene is identifying the cells in which it is expressed. Traditional methods to determine this include in situ hybridisation, gene promoter-reporter fusions or cell isolation/purification techniques followed by quantitative PCR. These methods, although frequently used, can have limitations including their time-consuming nature, limited specificity, reliance upon well-annotated promoters, high cost, and the need for specialized equipment. In situ PCR is a relatively simple and rapid method that involves the amplification of specific mRNA directly within plant tissue whilst incorporating labelled nucleotides that are subsequently detected by immunohistochemistry. Another notable advantage of this technique is that it can be used on plants that are not easily genetically transformed. RESULTS An optimised workflow for in-tube and on-slide in situ PCR is presented that has been evaluated using multiple plant species and tissue types. The protocol includes optimised methods for: (i) fixing, embedding, and sectioning of plant tissue; (ii) DNase treatment; (iii) in situ RT-PCR with the incorporation of DIG-labelled nucleotides; (iv) signal detection using colourimetric alkaline phosphatase substrates; and (v) mounting and microscopy. We also provide advice on troubleshooting and the limitations of using fluorescence as an alternative detection method. Using our protocol, reliable results can be obtained within two days from harvesting plant material. This method requires limited specialized equipment and can be adopted by any laboratory with a vibratome (vibrating blade microtome), a standard thermocycler, and a microscope. We show that the technique can be used to localise gene expression with cell-specific resolution. CONCLUSIONS The in situ PCR method presented here is highly sensitive and specific. It reliably identifies the cellular expression pattern of even highly homologous and low abundance transcripts within target tissues, and can be completed within two days of harvesting tissue. As such, it has considerable advantages over other methods, especially in terms of time and cost. We recommend its adoption as the standard laboratory technique of choice for demonstrating the cellular expression pattern of a gene of interest.
Collapse
Affiliation(s)
- Asmini Athman
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Sandra K Tanz
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Vanessa M Conn
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Charlotte Jordans
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Gwenda M Mayo
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
- Adelaide Microscopy Waite Facility, University of Adelaide, Glen Osmond, SA, Australia
| | - Weng W Ng
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, University of Adelaide, Glen Osmond, SA, Australia
| | - Simon J Conn
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
- Centre for Cancer Biology, Division Immunology, Level 3, Frome Road, Adelaide, SA, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, SA, Australia
- Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
227
|
She W, Baroux C. Chromatin dynamics during plant sexual reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:354. [PMID: 25104954 PMCID: PMC4109563 DOI: 10.3389/fpls.2014.00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 05/19/2023]
Abstract
Plants have the remarkable ability to establish new cell fates throughout their life cycle, in contrast to most animals that define all cell lineages during embryogenesis. This ability is exemplified during sexual reproduction in flowering plants where novel cell types are generated in floral tissues of the adult plant during sporogenesis, gametogenesis, and embryogenesis. While the molecular and genetic basis of cell specification during sexual reproduction is being studied for a long time, recent works disclosed an unsuspected role of global chromatin organization and its dynamics. In this review, we describe the events of chromatin dynamics during the different phases of sexual reproduction and discuss their possible significance particularly in cell fate establishment.
Collapse
Affiliation(s)
| | - Célia Baroux
- *Correspondence: Célia Baroux, Institute of Plant Biology – Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland e-mail:
| |
Collapse
|
228
|
Abstract
Cellular context can be crucial when studying developmental processes as well as responses to environmental variation. Several different tools have been developed in recent years to isolate specific tissues or cell types. Laser-assisted microdissection (LAM) allows for the isolation of such specific tissue or single cell-types purely based on morphology and cytology. This has the advantage that (1) cell types that are rare can be isolated from heterogeneous tissue, (2) no marker line with cell type-specific expression needs to be established, and (3) the method can be applied to non-model species and species that are difficult to genetically transform. The rapid development of next-generation sequencing (NGS) approaches has greatly advanced the possibilities to perform molecular analyses in diverse organisms. However, there is a mismatch between currently available cell isolation tools and their applicability to non-model organisms. Therefore, LAM will become increasingly popular in the study of diverse agriculturally or ecologically relevant plant species. Here, we describe a protocol that has been successfully used for LAM to isolate either whole floral organs or even single cell types in plants, e.g., Arabidopsis thaliana, Boechera spp., or tomato.
Collapse
Affiliation(s)
- Samuel E Wuest
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
229
|
Ó'Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development. THE NEW PHYTOLOGIST 2014; 201:16-30. [PMID: 23952532 DOI: 10.1111/nph.12444] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/08/2013] [Indexed: 05/05/2023]
Abstract
The formation of flowers is one of the main models for studying the regulatory mechanisms that underlie plant development and evolution. Over the past three decades, extensive genetic and molecular analyses have led to the identification of a large number of key floral regulators and to detailed insights into how they control flower morphogenesis. In recent years, genome-wide approaches have been applied to obtaining a global view of the gene regulatory networks underlying flower formation. Furthermore, mathematical models have been developed that can simulate certain aspects of this process and drive further experimentation. Here, we review some of the main findings made in the field of Arabidopsis thaliana flower development, with an emphasis on recent advances. In particular, we discuss the activities of the floral organ identity factors, which are pivotal for the specification of the different types of floral organs, and explore the experimental avenues that may elucidate the molecular mechanisms and gene expression programs through which these master regulators of flower development act.
Collapse
Affiliation(s)
| | - Emmanuelle Graciet
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
230
|
Schauer T, Schwalie PC, Handley A, Margulies CE, Flicek P, Ladurner AG. CAST-ChIP maps cell-type-specific chromatin states in the Drosophila central nervous system. Cell Rep 2013; 5:271-82. [PMID: 24095734 DOI: 10.1016/j.celrep.2013.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/23/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023] Open
Abstract
Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP), a broadly applicable biochemical procedure. RNA polymerase II (Pol II) CAST-ChIP identifies ~1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.
Collapse
Affiliation(s)
- Tamás Schauer
- Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Ludwig Maximilians University of Munich, Butenandtstrasse 5, 81377 Munich, Germany; European Molecular Biology Laboratory International PhD Program, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
231
|
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. THE PLANT CELL 2013; 25:3657-83. [PMID: 24179125 PMCID: PMC3877793 DOI: 10.1105/tpc.113.117523] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.
Collapse
Affiliation(s)
- Anireddy S.N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
- Address correspondence to
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Maria Kalyna
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
232
|
Lehrach H. DNA sequencing methods in human genetics and disease research. F1000PRIME REPORTS 2013; 5:34. [PMID: 24049638 PMCID: PMC3768324 DOI: 10.12703/p5-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA sequencing has revolutionized biological and medical research, and is poised to have a similar impact in medicine. This tool is just one of a number of developments in our capability to identify, quantitate and functionally characterize the components of the biological networks keeping us healthy or making us sick, but in many respects it has played the leading role in this process. The new technologies do, however, also provide a bridge between genotype and phenotype, both in man and model (as well as all other) organisms, revolutionize the identification of elements involved in a multitude of human diseases or other phenotypes, and generate a wealth of medically relevant information on every single person, as the basis of a truly personalized medicine of the future.
Collapse
Affiliation(s)
- Hans Lehrach
- Max Planck Institute for Molecular GeneticsIhnestrasse 73, 14195, BerlinGermany
- Dahlem Centre for Genome Research and Medical Systems BiologyFabeckstrasse 60-62, 14195 BerlinGermany
- Alacris Theranostics GmbHFabeckstrasse. 60-62, 14195 BerlinGermany
| |
Collapse
|
233
|
Palovaara J, Saiga S, Weijers D. Transcriptomics approaches in the early Arabidopsis embryo. TRENDS IN PLANT SCIENCE 2013; 18:514-21. [PMID: 23726727 DOI: 10.1016/j.tplants.2013.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 05/20/2023]
Abstract
Early plant embryogenesis condenses the fundamental processes underlying plant development into a short sequence of predictable steps. The main tissues, as well as stem cells for their post-embryonic maintenance, are specified through genetic control networks. A key question is how cell fates are instructed by unique cellular transcriptomes, and important insights have recently been gained through cell type-specific transcriptomics during post-embryonic development. However, the poor accessibility and small size of Arabidopsis (Arabidopsis thaliana) embryos have obstructed similar progress during embryogenesis. Here, we review the current situation in plant embryo transcriptomics, and discuss how the recent development of novel cell-specific analysis technologies will enable the identification of cellular transcriptomes in the early Arabidopsis embryo.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | |
Collapse
|
234
|
Yuet KP, Tirrell DA. Chemical tools for temporally and spatially resolved mass spectrometry-based proteomics. Ann Biomed Eng 2013; 42:299-311. [PMID: 23943069 DOI: 10.1007/s10439-013-0878-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022]
Abstract
Accurate measurements of the abundances, synthesis rates and degradation rates of cellular proteins are critical for understanding how cells and organisms respond to changes in their environments. Over the past two decades, there has been increasing interest in the use of mass spectrometry for proteomic analysis. In many systems, however, protein diversity as well as cell and tissue heterogeneity limit the usefulness of mass spectrometry-based proteomics. As a result, researchers have had difficulty in systematically identifying proteins expressed within specified time intervals, or low abundance proteins expressed in specific tissues or in a few cells in complex microbial systems. In this review, we present recently-developed tools and strategies that probe these two subsets of the proteome: proteins synthesized during well-defined time intervals--temporally resolved proteomics--and proteins expressed in predetermined cell types, cells or cellular compartments--spatially resolved proteomics--with a focus on chemical and biological mass spectrometry-based methodologies.
Collapse
Affiliation(s)
- Kai P Yuet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
235
|
Magnetic fractionation and proteomic dissection of cellular organelles occupied by the late replication complexes of Semliki Forest virus. J Virol 2013; 87:10295-312. [PMID: 23864636 DOI: 10.1128/jvi.01105-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alphavirus replicase complexes are initially formed at the plasma membrane and are subsequently internalized by endocytosis. During the late stages of infection, viral replication organelles are represented by large cytopathic vacuoles, where replicase complexes bind to membranes of endolysosomal origin. In addition to viral components, these organelles harbor an unknown number of host proteins. In this study, a fraction of modified lysosomes carrying functionally intact replicase complexes was obtained by feeding Semliki Forest virus (SFV)-infected HeLa cells with dextran-covered magnetic nanoparticles and later magnetically isolating the nanoparticle-containing lysosomes. Stable isotope labeling with amino acids in cell culture combined with quantitative proteomics was used to reveal 78 distinct cellular proteins that were at least 2.5-fold more abundant in replicase complex-carrying vesicles than in vesicles obtained from noninfected cells. These host components included the RNA-binding proteins PCBP1, hnRNP M, hnRNP C, and hnRNP K, which were shown to colocalize with the viral replicase. Silencing of hnRNP M and hnRNP C expression enhanced the replication of SFV, Chikungunya virus (CHIKV), and Sindbis virus (SINV). PCBP1 silencing decreased SFV-mediated protein synthesis, whereas hnRNP K silencing increased this synthesis. Notably, the effect of hnRNP K silencing on CHIKV- and SINV-mediated protein synthesis was opposite to that observed for SFV. This study provides a new approach for analyzing the proteome of the virus replication organelle of positive-strand RNA viruses and helps to elucidate how host RNA-binding proteins exert important but diverse functions during positive-strand RNA viral infection.
Collapse
|
236
|
Wendrich JR, Weijers D. The Arabidopsis embryo as a miniature morphogenesis model. THE NEW PHYTOLOGIST 2013; 199:14-25. [PMID: 23590679 DOI: 10.1111/nph.12267] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/12/2013] [Indexed: 05/06/2023]
Abstract
Four basic ingredients of morphogenesis, oriented cell division and expansion, cell-cell communication and cell fate specification allow plant cells to develop into a wide variety of organismal architectures. A central question in plant biology is how these cellular processes are regulated and orchestrated. Here, we present the advantages of the early Arabidopsis embryo as a model for studying the control of morphogenesis. All ingredients of morphogenesis converge during embryogenesis, and the highly predictable nature of embryo development offers unprecedented opportunities for understanding their regulation in time and space. In this review we describe the morphogenetic principles underlying embryo patterning and discuss recent advances in their regulation. Morphogenesis is under tight transcriptional control and most genes that were identified as important regulators of embryo patterning encode transcription factors or components of signaling pathways. There exists, therefore, a large gap between the transcriptional control of embryo morphogenesis and the cellular execution. We describe the first such connections, and propose future directions that should help bridge this gap and generate comprehensive understanding of the control of morphogenesis.
Collapse
Affiliation(s)
- Jos R Wendrich
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| |
Collapse
|
237
|
Lan P, Li W, Lin WD, Santi S, Schmidt W. Mapping gene activity of Arabidopsis root hairs. Genome Biol 2013; 14:R67. [PMID: 23800126 PMCID: PMC3707065 DOI: 10.1186/gb-2013-14-6-r67] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants. Results Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance. Conclusions The integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components.
Collapse
|
238
|
Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 2013; 26:101-12. [PMID: 23792147 PMCID: PMC3714590 DOI: 10.1016/j.devcel.2013.05.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates. TaDa is a method for cell-type-specific profiling of chromatin binding proteins TaDa does not require cell sorting, fixation, or affinity purification This is a highly sensitive and robust technique for transcriptional profiling We report differential RNA Pol II binding in clonally related stem cells
Collapse
Affiliation(s)
- Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | |
Collapse
|
239
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
240
|
Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. THE PLANT CELL 2013; 25:2132-54. [PMID: 23898029 PMCID: PMC3723617 DOI: 10.1105/tpc.113.112896] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 05/18/2023]
Abstract
Plant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis. Through the use of a new high-resolution spatio-temporal transcriptional map, we identify the key hormone signaling pathways that regulate specific transcriptional programs, predict their spatial domain of action, and link the activity of these pathways to the regulation of specific phases of growth. We use tissue-specific approaches to suppress the abscisic acid (ABA) signaling pathway and demonstrate that ABA likely acts in select tissue layers to regulate spatially localized transcriptional programs and promote growth recovery. Finally, we show that salt also regulates many tissue-specific and time point-specific transcriptional responses that are expected to modify water transport, Casparian strip formation, and protein translation. Together, our data reveal a sophisticated assortment of regulatory programs acting together to coordinate spatially patterned biological changes involved in the immediate and long-term response to a stressful shift in environment.
Collapse
Affiliation(s)
- Yu Geng
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Rui Wu
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Choon Wei Wee
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Fei Xie
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Xueliang Wei
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Penny Mei Yeen Chan
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Cliff Tham
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Lina Duan
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - José R. Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Address correspondence to
| |
Collapse
|
241
|
Yao X, Feng H, Yu Y, Dong A, Shen WH. SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS One 2013; 8:e56537. [PMID: 23483879 PMCID: PMC3585709 DOI: 10.1371/journal.pone.0056537] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/10/2013] [Indexed: 01/25/2023] Open
Abstract
Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell activity has remained largely unclear. Here, we investigate the sdg2 mutant root phenotype and demonstrate that SDG2 is required for primary root stem cell niche (SCN) maintenance as well as for lateral root SCN establishment. Loss of SDG2 results in drastically reduced H3K4me3 levels in root SCN and differentiated cells and causes the loss of auxin gradient maximum in the root quiescent centre. Elevated DNA damage is detected in the sdg2 mutant, suggesting that impaired genome integrity may also have challenged the stem cell activity. Genetic interaction analysis reveals that SDG2 and CHROMATIN ASSEMBLY FACTOR-1 act synergistically in root SCN and genome integrity maintenance but not in telomere length maintenance. We conclude that SDG2-mediated H3K4me3 plays a distinctive role in the regulation of chromatin structure and genome integrity, which are key features in pluripotency of stem cells and crucial for root growth and development.
Collapse
Affiliation(s)
- Xiaozhen Yao
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Haiyang Feng
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Fudan University, Shanghai, PR China
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, France
- * E-mail:
| |
Collapse
|
242
|
Wuest SE, Schmid MW, Grossniklaus U. Cell-specific expression profiling of rare cell types as exemplified by its impact on our understanding of female gametophyte development. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:41-9. [PMID: 23276786 DOI: 10.1016/j.pbi.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/03/2012] [Indexed: 05/20/2023]
Abstract
Expression profiling of single cells can yield insights into cell specification, cellular differentiation processes, and cell type-specific responses to environmental stimuli. Recent work has established excellent tools to perform genome-wide expression studies of individual cell types, even if the cells of interest occur at low frequency within an organ. We review the advances and impact of gene expression studies of rare cell types, as exemplified by recently gained insights into the development and function of the angiosperm female gametophyte. The detailed transcriptional characterization of different stages during female gametophyte development has significantly helped to improve our understanding of cellular specification or cell-cell communication processes. Next-generation sequencing approaches--used increasingly for expression profiling--will now allow for comparative approaches that focus on agriculturally, ecologically or evolutionarily relevant aspects of plant reproduction.
Collapse
Affiliation(s)
- Samuel E Wuest
- Institute of Evolutionary Biology and Environmental Studies & Zürich-Basel Plant Science Center, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
243
|
Chitwood DH, Sinha NR. A census of cells in time: quantitative genetics meets developmental biology. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:92-9. [PMID: 23218243 DOI: 10.1016/j.pbi.2012.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 05/09/2023]
Abstract
Quantitative genetics has become a popular method for determining the genetic basis of natural variation. Combined with genomic methods, it provides a tool for discerning the genetic basis of gene expression. So-called genetical genomics approaches yield a wealth of genomic information, but by necessity, because of cost and time, fail to resolve the differences between organs, tissues, and/or cell types. Similarly, quantitative approaches in development that might potentially address these issues are seldom applied to quantitative genetics. We discuss recent advances in cell type-specific isolation methods, the quantitative analysis of phenotype, and developmental modeling that are compatible with quantitative genetics and, with time, promise to bridge the gap between these two powerful disciplines yielding unprecedented biological insight.
Collapse
Affiliation(s)
- Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, Davis, CA 95616, United States
| | | |
Collapse
|
244
|
Ryu KH, Zheng X, Huang L, Schiefelbein J. Computational modeling of epidermal cell fate determination systems. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:5-10. [PMID: 23287386 DOI: 10.1016/j.pbi.2012.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 05/10/2023]
Abstract
Cell fate decisions are of primary importance for plant development. Their simple 'either-or' outcome and dynamic nature has attracted the attention of computational modelers. Recent efforts have focused on modeling the determination of several epidermal cell types in the root and shoot of Arabidopsis where many molecular components have been defined. Results of integrated modeling and molecular biology experimentation in these systems have highlighted the importance of competitive positive and negative factors and interconnected feedback loops in generating flexible yet robust mechanisms for establishing distinct gene expression programs in neighboring cells. These models have proven useful in judging hypotheses and guiding future research.
Collapse
Affiliation(s)
- Kook Hui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
245
|
De Lucas M, Brady SM. Gene regulatory networks in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2013. [PMID: 23196272 DOI: 10.1016/j.pbi.2012.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Thanks to the increasing use of high-throughput tools in genetics, genomics, proteomics and metabolomics, a tremendous amount of information has been generated in the recent years. How these genes, transcripts, proteins and metabolites are inter-connected in a spatiotemporal context is one of the most ambitious goals that fundamental biology needs to answer. Owing to high quality data that are available, Arabidopsis thaliana has become an ideal organism for the application of bioinformatics and systems biology studies. The radially symmetrical structure of the Arabidopsis root and the ability to track developmental time in constrained cell files make this organ the perfect model to investigate different types of biological networks at a cell type-specific level. In this review we present the latest findings in this field as well as our perspective on the future of root biological networks.
Collapse
Affiliation(s)
- Miguel De Lucas
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
246
|
Grafi G, Ohad N. Plant Epigenetics: A Historical Perspective. EPIGENETIC MEMORY AND CONTROL IN PLANTS 2013. [DOI: 10.1007/978-3-642-35227-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
247
|
Qiao Z, Libault M. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. FRONTIERS IN PLANT SCIENCE 2013; 4:484. [PMID: 24324480 PMCID: PMC3840615 DOI: 10.3389/fpls.2013.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/07/2013] [Indexed: 05/17/2023]
Abstract
Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because -omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e., uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes), the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000~mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.
Collapse
Affiliation(s)
| | - Marc Libault
- *Correspondence: Marc Libault, Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA e-mail:
| |
Collapse
|
248
|
Gan ES, Huang J, Ito T. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:115-61. [DOI: 10.1016/b978-0-12-407695-2.00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
249
|
Bailey-Serres J. Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:293-325. [PMID: 23451787 DOI: 10.1146/annurev-arplant-050312-120035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The expression of nuclear protein-coding genes is controlled by dynamic mechanisms ranging from DNA methylation, chromatin modification, and gene transcription to mRNA maturation, turnover, and translation and the posttranslational control of protein function. A genome-scale assessment of the spatiotemporal regulation of gene expression is essential for a comprehensive understanding of gene regulatory networks. However, there are major obstacles to the precise evaluation of gene regulation in multicellular plant organs; these include the monitoring of regulatory processes at levels other than steady-state transcript abundance, resolution of gene regulation in individual cells or cell types, and effective assessment of transient gene activity manifested during development or in response to external cues. This review surveys the advantages and applications of microgenomics technologies that enable panoramic quantitation of cell-type-specific expression in plants, focusing on the importance of querying gene activity at multiple steps in the continuum, from histone modification to selective translation.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
250
|
Luo C, Sidote DJ, Zhang Y, Kerstetter RA, Michael TP, Lam E. Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:77-90. [PMID: 22962860 DOI: 10.1111/tpj.12017] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/24/2012] [Accepted: 09/05/2012] [Indexed: 05/09/2023]
Abstract
Genome-wide analyses of epigenomic and transcriptomic profiles provide extensive resources for discovering epigenetic regulatory mechanisms. However, the construction of functionally relevant hypotheses from correlative patterns and the rigorous testing of these hypotheses may be challenging. We combined bioinformatics-driven hypothesis building with mutant analyses to identify potential epigenetic mechanisms using the model plant Arabidopsis thaliana. Genome-wide maps of nine histone modifications produced by ChIP-seq were used together with a strand-specific RNA-seq dataset to profile the epigenome and transcriptome of Arabidopsis. Combinatorial chromatin patterns were described by 42 major chromatin states with selected states validated using the re-ChIP assay. The functional relevance of chromatin modifications was analyzed using the ANchored CORrelative Pattern (ANCORP) method and a newly developed state-specific effects analysis (SSEA) method, which interrogates individual chromatin marks in the context of combinatorial chromatin states. Based on results from these approaches, we propose the hypothesis that cytosine methylation (5mC) and histone methylation H3K36me may synergistically repress production of natural antisense transcripts (NATs) in the context of actively expressed genes. Mutant analyses supported this proposed model at a significant proportion of the tested loci. We further identified polymerase-associated factor as a potential repressor for NAT abundance. Although the majority of tested NATs were found to localize to the nucleus, we also found evidence for cytoplasmically partitioned NATs. The significance of the subcellular localization of NATs and their biological functions remain to be defined.
Collapse
Affiliation(s)
- Chongyuan Luo
- Department of Plant Biology & Pathology, Rutgers - The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | - David J Sidote
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Yi Zhang
- Department of Plant Biology & Pathology, Rutgers - The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Randall A Kerstetter
- Department of Plant Biology & Pathology, Rutgers - The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Todd P Michael
- Department of Plant Biology & Pathology, Rutgers - The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Eric Lam
- Department of Plant Biology & Pathology, Rutgers - The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| |
Collapse
|