201
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Premature Vertebral Mineralization in hmx1-Mutant Zebrafish. Cells 2022; 11:cells11071088. [PMID: 35406651 PMCID: PMC8997757 DOI: 10.3390/cells11071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development, and mutations in HMX1 are linked to an ocular defect termed oculoauricular syndrome of Schorderet–Munier–Franceschetti (OAS) (MIM #612109). Recently, additional altered orofacial features have been reported, including short mandibular rami, asymmetry of the jaws, and altered premaxilla. We found that in two mutant zebrafish lines termed hmx1mut10 and hmx1mut150, precocious mineralization of the proximal vertebrae occurred. Zebrafish hmx1mut10 and hmx1mut150 report mutations in the SD1 and HD domains, which are essential for dimerization and activity of hmx1. In hmx1mut10, the bone morphogenetic protein (BMP) antagonists chordin and noggin1 were downregulated, while bmp2b and bmp4 were highly expressed and specifically localized to the dorsal region prior to the initiation of the osteogenic process. The osteogenic promoters runx2b and spp1 were also upregulated. Supplementation with DMH1—an inhibitor of the BMP signaling pathway—at the specific stage in which bmp2b and bmp4 are highly expressed resulted in reduced vertebral mineralization, resembling the wildtype mineralization progress of the axial skeleton. These results point to a possible role of hmx1 as part of a complex gene network that inhibits bmp2b and bmp4 in the dorsal region, thus regulating early axial skeleton development.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Jules-Gonin Eye Hospital, Unit of Gene Therapy and Stem Cell Biology, 1004 Lausanne, Switzerland
- Correspondence:
| | - Gaëtan Pinton
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Nathalie Allaman-Pillet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
| | - Daniel F. Schorderet
- IRO—Institute for Research in Ophthalmology, 1950 Sion, Switzerland; (G.P.); (N.A.-P.); (D.F.S.)
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
202
|
Jung JJ, Ahmad AA, Rajendran S, Wei L, Zhang J, Toczek J, Nie L, Kukreja G, Salarian M, Gona K, Ghim M, Chakraborty R, Martin KA, Tellides G, Heistad D, Sadeghi MM. Differential BMP Signaling Mediates the Interplay Between Genetics and Leaflet Numbers in Aortic Valve Calcification. JACC Basic Transl Sci 2022; 7:333-345. [PMID: 35540096 PMCID: PMC9079798 DOI: 10.1016/j.jacbts.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Expression of a neuropilin-like protein, DCBLD2, is reduced in human calcific aortic valve disease (CAVD). DCBLD2-deficient mice develop bicuspid aortic valve (BAV) and CAVD, which is more severe in BAV mice compared with tricuspid littermates. In vivo and in vitro studies link this observation to up-regulated bone morphogenic protein (BMP)2 expression in the presence of DCBLD2 down-regulation, and enhanced BMP2 signaling in BAV, indicating that a combination of genetics and BAV promotes aortic valve calcification and stenosis. This pathway may be a therapeutic target to prevent CAVD progression in BAV.
Collapse
Key Words
- BAV, bicuspid aortic valve
- BMP, bone morphogenic protein
- CAVD, calcific aortic valve disease
- DCBLD2, discoidin, CUB and LCCL domain containing 2
- EC, endothelial cell
- RT-PCR, reverse-transcription polymerase chain reaction
- SMAD, homolog of Caenorhabditis elegans Sma and the Drosophila mad, mothers against decapentaplegic
- TAV, tricuspid aortic valve
- VIC, valvular interstitial cell
- WT, wild type
- aortic stenosis
- aortic valve
- bicuspid aortic valve
- calcification
- mouse models
- pVIC, porcine valvular interstitial cell
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Azmi A. Ahmad
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Saranya Rajendran
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Linyan Wei
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Gunjan Kukreja
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Mani Salarian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Kiran Gona
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Mean Ghim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Raja Chakraborty
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathleen A. Martin
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Donald Heistad
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mehran M. Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Address for correspondence: Dr Mehran M. Sadeghi, Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, 300 George Street, Room 770G, New Haven, Connecticut 06511, USA.
| |
Collapse
|
203
|
Piechowska A, Kruszniewska-Rajs C, Kimsa-Dudek M, Kołomańska M, Strzałka-Mrozik B, Gola J, Głuszek S. The role of miR-370 and miR-138 in the regulation of BMP2 suppressor gene expression in colorectal cancer: preliminary studies. J Cancer Res Clin Oncol 2022; 148:1569-1582. [PMID: 35292840 DOI: 10.1007/s00432-022-03977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the fourth-most common cancer worldwide and the second most common cancer cause of death in the world. The components of the TGFβ-signalling pathway, which are often affected by miRNAs, are involved in the regulation of apoptosis and cell cycle. Therefore, in the current study, the expression of BMP2 gene in CRC tissues at different clinical stages compared to the non-tumour tissues has been assessed. Moreover, the plasma BMP2 protein concentration in the same group of CRC patients has been validated. Due to the constant necessity to conduct further research of the correlation between specific miRNAs and mRNAs in CRC, in silico analysis has been performed to select miRNAs that regulate BMP2 mRNA. METHODS The cDNA samples from tumor and non-tumor tissue were used in a qPCR reaction to determine the mRNA expression of the BMP2 gene and the expression of selected miRNAs. The concentration of BMP2 protein in plasma samples was also measured. RESULTS It was indicated that BMP2 was downregulated in CRC tissue. Moreover, miR-370 and miR-138 expression showed an upward trend. Decreased BMP2 with accompanied increasing miR-370 and miR-138 expression was relevant to the malignant clinicopathological features of CRC and consequently poor patient prognosis. CONCLUSION Our data suggest that miR-370 with its clear expression in plasma samples may be a potential diagnostic marker to determine the severity of the disease in patients at a later stage of colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Piechowska
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kołomańska
- Department of Anatomy, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland.,Department of Clinic General Oncological and Endocrinological Surgery, Regional Hospital, Kielce, Poland
| |
Collapse
|
204
|
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Front Mol Neurosci 2022; 15:827275. [PMID: 35370542 PMCID: PMC8965007 DOI: 10.3389/fnmol.2022.827275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are a group of potent morphogens which are critical for the patterning, development, and function of the central nervous system. The appropriate function of the BMP pathway depends on its interaction with other signaling pathways involved in neural differentiation, leading to synergistic or antagonistic effects and ultimately favorable biological outcomes. These opposite or cooperative effects are observed when BMP interacts with fibroblast growth factor (FGF), cytokines, Notch, Sonic Hedgehog (Shh), and Wnt pathways to regulate the impact of BMP-induced signaling in neural differentiation. Herein, we review the cross-talk between BMP signaling and the prominent signaling pathways involved in neural differentiation, emphasizing the underlying basic molecular mechanisms regarding the process of neural differentiation. Knowing these cross-talks can help us to develop new approaches in regenerative medicine and stem cell based therapy. Recently, cell therapy has received significant attention as a promising treatment for traumatic or neurodegenerative diseases. Therefore, it is important to know the signaling pathways involved in stem cell differentiation toward neural cells. Our better insight into the cross-talk of signaling pathways during neural development would improve neural differentiation within in vitro tissue engineering approaches and pre-clinical practices and develop futuristic therapeutic strategies for patients with neurological disease.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University, Mashhad, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Hassan Niknejad
| |
Collapse
|
205
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
206
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
207
|
Groenewoud D, Shye A, Elkon R. Incorporating regulatory interactions into gene-set analyses for GWAS data: A controlled analysis with the MAGMA tool. PLoS Comput Biol 2022; 18:e1009908. [PMID: 35316269 PMCID: PMC8939811 DOI: 10.1371/journal.pcbi.1009908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
To date, genome-wide association studies have identified thousands of statistically-significant associations between genetic variants, and phenotypes related to a myriad of traits and diseases. A key goal for human-genetics research is to translate these associations into functional mechanisms. Popular gene-set analysis tools, like MAGMA, map variants to genes they might affect, and then integrate genome-wide association study data (that is, variant-level associations for a phenotype) to score genes for association with a phenotype. Gene scores are subsequently used in competitive gene-set analyses to identify biological processes that are enriched for phenotype association. By default, variants are mapped to genes in their proximity. However, many variants that affect phenotypes are thought to act at regulatory elements, which can be hundreds of kilobases away from their target genes. Thus, we explored the idea of augmenting a proximity-based mapping scheme with publicly-available datasets of regulatory interactions. We used MAGMA to analyze genome-wide association study data for ten different phenotypes, and evaluated the effects of augmentation by comparing numbers, and identities, of genes and gene sets detected as statistically significant between mappings. We detected several pitfalls and confounders of such "augmented analyses", and introduced ways to control for them. Using these controls, we demonstrated that augmentation with datasets of regulatory interactions only occasionally strengthened the enrichment for phenotype association amongst (biologically-relevant) gene sets for different phenotypes. Still, in such cases, genes and regulatory elements responsible for the improvement could be pinpointed. For instance, using brain regulatory-interactions for augmentation, we were able to implicate two acetylcholine receptor subunits involved in post-synaptic chemical transmission, namely CHRNB2 and CHRNE, in schizophrenia. Collectively, our study presents a critical approach for integrating regulatory interactions into gene-set analyses for genome-wide association study data, by introducing various controls to distinguish genuine results from spurious discoveries.
Collapse
Affiliation(s)
- David Groenewoud
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Avinoam Shye
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
208
|
Wan HY, Shin RLY, Chen JCH, Assunção M, Wang D, Nilsson SK, Tuan RS, Blocki A. Dextran sulfate-amplified extracellular matrix deposition promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2022; 140:163-177. [PMID: 34875356 DOI: 10.1016/j.actbio.2021.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
The development of bone-like tissues in vitro that exhibit key features similar to those in vivo is needed to produce tissue models for drug screening and the study of bone physiology and disease pathogenesis. Extracellular matrix (ECM) is a predominant component of bone in vivo; however, as ECM assembly is sub-optimal in vitro, current bone tissue engineering approaches are limited by an imbalance in ECM-to-cell ratio. We amplified the deposition of osteoblastic ECM by supplementing dextran sulfate (DxS) into osteogenically induced cultures of human mesenchymal stem cells (MSCs). DxS, previously implicated to act as a macromolecular crowder, was recently demonstrated to aggregate and co-precipitate major ECM components, including collagen type I, thereby amplifying its deposition. This effect was re-confirmed for MSC cultures undergoing osteogenic induction, where DxS supplementation augmented collagen type I deposition, accompanied by extracellular osteocalcin accumulation. The resulting differentiated osteoblasts exhibited a more mature osteogenic gene expression profile, indicated by a strong upregulation of the intermediate and late osteogenic markers ALP and OCN, respectively. The associated cellular microenvironment was also enriched in bone morphogenetic protein 2 (BMP-2). Interestingly, the resulting decellularized matrices exhibited the strongest osteo-inductive effects on re-seeded MSCs, promoted cell proliferation, osteogenic marker expression and ECM calcification. Taken together, these findings suggest that DxS-mediated enhancement of osteogenic differentiation by MSCs is mediated by the amplified ECM, which is enriched in osteo-inductive factors. We have thus established a simple and reproducible approach to generate ECM-rich bone-like tissue in vitro with sequestration of osteo-inductive factors. STATEMENT OF SIGNIFICANCE: As extracellular matrix (ECM) assembly is significantly retarded in vitro, the imbalance in ECM-to-cell ratio hampers current in vitro bone tissue engineering approaches in their ability to faithfully resemble their in vivo counterpart. We addressed this limitation by leveraging a poly-electrolyte mediated co-assembly and amplified deposition of ECM during osteogenic differentiation of human mesenchymal stem cells (MSCs). The resulting pericelluar space in culture was enriched in organic and inorganic bone ECM components, as well as osteo-inductive factors, which promoted the differentiation of MSCs towards a more mature osteoblastic phenotype. These findings thus demonstrated a simple and reproducible approach to generate ECM-rich bone-like tissue in vitro with a closer recapitulation of the in vivo tissue niche.
Collapse
|
209
|
Human Sex Matters: Y-Linked Lysine Demethylase 5D Drives Accelerated Male Craniofacial Osteogenic Differentiation. Cells 2022; 11:cells11050823. [PMID: 35269444 PMCID: PMC8909072 DOI: 10.3390/cells11050823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Female sex is increasingly associated with a loss of bone mass during aging and an increased risk of developing nonunion fractures. Hormonal factors and cell-intrinsic mechanisms are suggested to drive these sexual dimorphisms, although underlying molecular mechanisms are still a matter of debate. Here, we observed a decreased capacity of calvarial bone recovery in female rats and a profound sexually dimorphic osteogenic differentiation in human adult neural crest-derived stem cells (NCSCs). Next to an elevated expression of pro-osteogenic regulators, global transcriptomics revealed Lysine Demethylase 5D (KDM5D) to be highly upregulated in differentiating male NCSCs. Loss of function by siRNA or pharmacological inhibition of KDM5D significantly reduced the osteogenic differentiation capacity of male NCSCs. In summary, we demonstrated craniofacial osteogenic differentiation to be sexually dimorphic with the expression of KDM5D as a prerequisite for accelerated male osteogenic differentiation, emphasizing the analysis of sex-specific differences as a crucial parameter for treating bone defects.
Collapse
|
210
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
211
|
Wang X, Song Y, Shi Y, Yang D, Li J, Yin B. SNHG3 could promote prostate cancer progression through reducing methionine dependence of PCa cells. Cell Mol Biol Lett 2022; 27:13. [PMID: 35123415 PMCID: PMC8903624 DOI: 10.1186/s11658-022-00313-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
In recent years, morbidity and mortality of prostate cancer (PCa) have increased dramatically, while mechanistic understanding of its onset and progression remains unmet. LncRNA SNHG3 has been proved to stimulate malignant progression of multiple cancers, whereas its functional mechanism in PCa needs to be deciphered. In this study, our analysis in the TCGA database revealed high SNHG3 expression in PCa tissue. Further analysis in starBase, TargetScan, and mirDIP databases identified the SNHG3/miR-152-3p/SLC7A11 regulatory axis. FISH was conducted to assess the distribution of SNHG3 in PCa tissue. Dual-luciferase reporter gene and RIP assays confirmed the relationship among the three objects. Next, qRT-PCR and western blot were conducted to measure expression levels of SNHG3, miR-152-3p, and SLC7A11. CCK-8, colony formation, Transwell, and flow cytometry were carried out to assess proliferation, migration, invasion, methionine dependence, apoptosis, and the cell cycle. It was noted that SNHG3 as a molecular sponge of miR-152-3p stimulated proliferation, migration, and invasion, restrained methionine dependence and apoptosis, and affected the cell cycle of PCa cells via targeting SLC7A11. Additionally, we constructed xenograft tumor models in nude mice and confirmed that knockdown of SNHG3 could restrain PCa tumor growth and elevate methionine dependence in vivo. In conclusion, our investigation improved understanding of the molecular mechanism of SNHG3 modulating PCa progression, thereby generating novel insights into clinical therapy for PCa.
Collapse
|
212
|
Habeeb N, Najafi S, Perron JC. Assessment of BMP responses in an in vitro model of acute ethanol toxicity. MethodsX 2022; 9:101631. [PMID: 35242615 PMCID: PMC8857558 DOI: 10.1016/j.mex.2022.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
The assay presented here was designed to assess the immediate effects of ethanol (EtOH) exposure on intracellular signaling activated by BMPs (Bone Morphogenetic Proteins). Previous reports of the relationship between EtOH exposure and BMP-dependent signaling have primarily assessed the expression of individual BMPs, changes in BMP target genes or effects on the phosphorylation level of key downstream mediators after days or weeks of in vivo EtOH exposure. What happens to BMP-stimulated signaling immediately following exposure to EtOH remains largely unexplored. Here, the early events of BMP-evoked intracellular signaling were examined in an in vitro model of acute EtOH toxicity. The BMP/Ethanol Stimulation Assay involved first stimulating cultured cells with recombinant BMPs. BMP-evoked intracellular signaling was then allowed to develop for 30 minutes. Next, the cells were exposed to a range of EtOH concentrations for an additional 30 minutes. Finally, the cultures were processed for Western blot analysis or immunofluorescent labeling. This short-term assay: • Permits investigation of EtOH exposure during the initial signaling events downstream of BMP receptor activation • Enables assessment of how the presence of BMPs might protect against cellular injury caused by toxic EtOH levels
Collapse
|
213
|
Min D, Byun J, Lee EJ, Khan AA, Liu C, Loudig O, Hu W, Zhao Y, Herlyn M, Tycko B, Cole PA, Ryu B. Epigenetic Silencing of BMP6 by the SIN3A-HDAC1/2 Repressor Complex Drives Melanoma Metastasis via FAM83G/PAWS1. Mol Cancer Res 2022; 20:217-230. [PMID: 34610961 PMCID: PMC9744461 DOI: 10.1158/1541-7786.mcr-21-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Aberrant epigenetic transcriptional regulation is linked to metastasis, a primary cause of cancer-related death. Dissecting the epigenetic mechanisms controlling metastatic progression may uncover important insights to tumor biology and potential therapeutic targets. Here, we investigated the role of the SIN3A histone deacetylase 1 and 2 (SIN3A-HDAC1/2) complex in cancer metastasis. Using a mouse model of melanoma metastasis, we found that the SIN3A-HDAC1/2 transcription repressor complex silences BMP6 expression, causing increased metastatic dissemination and tumor growth via suppression of BMP6-activated SMAD5 signaling. We further discovered that FAM83G/PAWS1, a downstream effector of BMP6-SMAD5 signaling, contributes critically to metastatic progression by promoting actin-dependent cytoskeletal dynamics and cell migration. Pharmacologic inhibition of the SIN3A-HDAC1/2 complex reduced the numbers of melanoma cells in the circulation and inhibited metastatic tumor growth by inducing disseminated cell dormancy, highlighting the SIN3A-HDAC1/2 repressor complex as a potential therapeutic target for blocking cancer metastasis. IMPLICATIONS: This study identifies the novel molecular links in the metastatic progression to target cytoskeletal dynamics in melanoma and identifies the SIN3A-HDAC1/2 complex and FAM83G/PAWS1 as potential targets for melanoma adjuvant therapy.
Collapse
Affiliation(s)
- Dongkook Min
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Eun-Joon Lee
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Abdul A Khan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Oliver Loudig
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA,John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA,Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
| | - Wei Hu
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA,John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program. Wistar Institute, Philadelphia, PA 19104, USA
| | - Benjamin Tycko
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA,John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA,Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
| | - Phillip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Byungwoo Ryu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA,John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA,Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20057, USA
| |
Collapse
|
214
|
Clark AR, Marshall J, Zhou Y, Montesinos MS, Chen H, Nguyen L, Chen F, Greka A. Single-Cell Transcriptomics Reveal Disrupted Kidney Filter Cell-Cell Interactions after Early and Selective Podocyte Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:281-294. [PMID: 34861215 PMCID: PMC8892500 DOI: 10.1016/j.ajpath.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
The health of the kidney filtration barrier requires communication among podocytes, endothelial cells, and mesangial cells. Disruption of these cell-cell interactions is thought to contribute to disease progression in chronic kidney diseases (CKDs). Podocyte ablation via doxycycline-inducible deletion of an essential endogenous molecule, CTCF [inducible podocyte-specific CTCF deletion (iCTCFpod-/-)], is sufficient to drive progressive CKD. However, the earliest events connecting podocyte injury to disrupted intercellular communication within the kidney filter remain unclear. Single-cell RNA sequencing of kidney tissue from iCTCFpod-/- mice after 1 week of doxycycline induction was performed to generate a map of the earliest transcriptional effects of podocyte injury on cell-cell interactions at single-cell resolution. A subset of podocytes had the earliest signs of injury due to disrupted gene programs for cytoskeletal regulation and mitochondrial function. Surviving podocytes up-regulated collagen type IV ɑ5, causing reactive changes in integrin expression in endothelial populations and mesangial cells. Intercellular interaction analysis revealed several receptor-ligand-target gene programs as drivers of endothelial cell injury and abnormal matrix deposition. This analysis reveals the earliest disruptive changes within the kidney filter, pointing to new, actionable targets within a therapeutic window that may allow us to maximize the success of much needed therapeutic interventions for CKDs.
Collapse
Affiliation(s)
- Abbe R. Clark
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jamie Marshall
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Yiming Zhou
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Monica S. Montesinos
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Haiqi Chen
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Lan Nguyen
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Fei Chen
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Anna Greka
- Kidney Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts,Address correspondence to Anna Greka, M.D., Ph.D., Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Blackfan Circle, 5th Floor, Boston, MA 02115.
| |
Collapse
|
215
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
216
|
Erythroferrone in iron regulation and beyond. Blood 2022; 139:319-321. [PMID: 35050338 DOI: 10.1182/blood.2021014326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 01/10/2023] Open
|
217
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
218
|
Differentiation of Cells Isolated from Human Femoral Heads into Functional Osteoclasts. J Dev Biol 2022; 10:jdb10010006. [PMID: 35225960 PMCID: PMC8883933 DOI: 10.3390/jdb10010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Proper formation of the skeleton during development is crucial for the mobility of humans and the maintenance of essential organs. The production of bone is regulated by osteoblasts and osteoclasts. An imbalance of these cells can lead to a decrease in bone mineral density, which leads to fractures. While many studies are emerging to understand the role of osteoblasts, less studies are present about the role of osteoclasts. This present study utilized bone marrow cells isolated directly from the bone marrow of femoral heads obtained from osteoarthritic (OA) patients after undergoing hip replacement surgery. Here, we used tartrate resistant acid phosphatase (TRAP) staining, Cathepsin K, and nuclei to identity osteoclasts and their functionality after stimulation with macrophage-colony stimulation factor (M-CSF) and receptor activator of nuclear factor kappa-β ligand (RANKL). Our data demonstrated that isolated cells can be differentiated into functional osteoclasts, as indicated by the 92% and 83% of cells that stained positive for TRAP and Cathepsin K, respectively. Furthermore, isolated cells remain viable and terminally differentiate into osteoclasts when stimulated with RANKL. These data demonstrate that cells isolated from human femoral heads can be differentiated into osteoclasts to study bone disorders during development and adulthood.
Collapse
|
219
|
Iranzo-Tatay C, Hervas-Marin D, Rojo-Bofill LM, Garcia D, Vaz-Leal FJ, Calabria I, Beato-Fernandez L, Oltra S, Sandoval J, Rojo-Moreno L. Genome-wide DNA methylation profiling in anorexia nervosa discordant identical twins. Transl Psychiatry 2022; 12:15. [PMID: 35013117 PMCID: PMC8748827 DOI: 10.1038/s41398-021-01776-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Up until now, no study has looked specifically at epigenomic landscapes throughout twin samples, discordant for Anorexia nervosa (AN). Our goal was to find evidence to confirm the hypothesis that epigenetic variations play a key role in the aetiology of AN. In this study, we quantified genome-wide patterns of DNA methylation using the Infinium Human DNA Methylation EPIC BeadChip array ("850 K") in DNA samples isolated from whole blood collected from a group of 7 monozygotic twin pairs discordant for AN. Results were then validated performing a genome-wide DNA methylation profiling using DNA extracted from whole blood of a group of non-family-related AN patients and a group of healthy controls. Our first analysis using the twin sample revealed 9 CpGs associated to a gene. The validation analysis showed two statistically significant CpGs with the rank regression method related to two genes associated to metabolic traits, PPP2R2C and CHST1. When doing beta regression, 6 of them showed statistically significant differences, including 3 CpGs associated to genes JAM3, UBAP2L and SYNJ2. Finally, the overall pattern of results shows genetic links to phenotypes which the literature has constantly related to AN, including metabolic and psychological traits. The genes PPP2R2C and CHST1 have both been linked to the metabolic traits type 2 diabetes through GWAS studies. The genes UBAP2L and SYNJ2 have been related to other psychiatric comorbidity.
Collapse
Affiliation(s)
- C Iranzo-Tatay
- Psychiatry Service, Hospital la Fe, Valencia, Spain
- Department of Psychiatry, Medicine School, University of Valencia, Valencia, Spain
| | - D Hervas-Marin
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | | | - D Garcia
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - F J Vaz-Leal
- Department of Psychiatry, Medicine School, University of Extremadura, Badajoz, Spain
| | - I Calabria
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - L Beato-Fernandez
- Eating Disorders and Children's Psychiatry Department, Hospital General, Ciudad Real, Spain
| | - S Oltra
- Genetics and Prenatal Diagnosis Unit, Hospital La fe, Valencia, Spain
| | - J Sandoval
- Epigenomics Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
- Biomarkers and Precision Medicine Unit (UByMP), Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - L Rojo-Moreno
- Psychiatry Service, Hospital la Fe, Valencia, Spain
- Department of Psychiatry, Medicine School, University of Valencia, Valencia, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
220
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
221
|
Jin Y, Park S, Park SY, Lee CY, Eum DY, Shim JW, Choi SH, Choi YJ, Park SJ, Heo K. G9a Knockdown Suppresses Cancer Aggressiveness by Facilitating Smad Protein Phosphorylation through Increasing BMP5 Expression in Luminal A Type Breast Cancer. Int J Mol Sci 2022; 23:ijms23020589. [PMID: 35054776 PMCID: PMC8776044 DOI: 10.3390/ijms23020589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, reports regarding the relationship between G9a and its possible downstream factors regulating breast tumor growth are scarce. Therefore, we aimed to verify the role of G9a and its presumable downstream regulators during malignant progression of breast cancer. G9a-depleted MCF7 and T47D breast cancer cells exhibited suppressed motility, including migration and invasion, and an improved response to ionizing radiation. To identify the possible key factors underlying these effects, microarray analysis was performed, and a TGF-β superfamily member, BMP5, was selected as a prominent target gene. It was found that BMP5 expression was markedly increased by G9a knockdown. Moreover, reduction in the migration/invasion ability of MCF7 and T47D breast cancer cells was induced by BMP5. Interestingly, a G9a-depletion-mediated increase in BMP5 expression induced the phosphorylation of Smad proteins, which are the intracellular signaling mediators of BMP5. Accordingly, we concluded that the observed antitumor effects may be based on the G9a-depletion-mediated increase in BMP5 expression and the consequent facilitation of Smad protein phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kyu Heo
- Correspondence: (S.-J.P.); (K.H.)
| |
Collapse
|
222
|
Wang S, Jiang H, Zheng C, Gu M, Zheng X. Secretion of BMP-2 by tumor-associated macrophages (TAM) promotes microcalcifications in breast cancer. BMC Cancer 2022; 22:34. [PMID: 34983451 PMCID: PMC8729115 DOI: 10.1186/s12885-021-09150-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction Breast microcalcifications is a characteristic feature in diagnostic imaging and a prognostic factor of breast cancer. However, the underlying mechanisms of breast microcalcifications formation are not fully understood. Previous studies have shown that upregulation of bone morphogenetic protein 2 (BMP-2) is associated with the occurrence of microcalcifications and tumor-associated macrophages (TAMs) in the tumor microenvironment can secrete BMP-2. The aim of this study is to elucidate the role of secretion of BMP-2 by TAMs in promoting microcalcifications of breast cancer through immunohistochemical staining and co-culturing of breast cancer cells with TAMs. Methods A total of 272 patients diagnosed with primary invasive breast cancer from January 2010 to January 2012 in the First Hospital of China Medical University were included in this study. Immunohistochemical staining of CD68 (marker of entire macrophages), CD168 (marker of the M2-like macrophages) and BMP-2 were performed on 4-μm tissue microarray (TMA) sections. Following induction, THP-1 cells were differentiated to M2-like TAMs and were then co-cultured with breast cancer cells (MCF-7). Calcifications and BMP-2 expression were analyzed by Alizarin Red S staining and western blot, respectively. Results Immunohistochemical analysis showed that the expression of CD168 was significantly increased in tissues with microcalcifications and was correlated with the expression of BMP-2 and poor prognosis. The formation of cellular microcalcifications and BMP-2 expression were significantly increased in MCF-7 cells co-cultured with TAMs compared with MCF-7 cells alone. Conclusions These findings support the hypothesis that TAMs secrete BMP-2 to induce microcalcifications in breast cancer cells and influence prognosis via multiple pathways including BMP-2 and its downstream factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09150-3.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Haiyang Jiang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Caiwei Zheng
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ming Gu
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xinyu Zheng
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China. .,Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
223
|
Eggington HR, Mulholland EJ, Leedham SJ. Morphogen regulation of stem cell plasticity in intestinal regeneration and carcinogenesis. Dev Dyn 2022; 251:61-74. [PMID: 34716737 DOI: 10.1002/dvdy.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
The intestinal epithelium is a tissue with high cell turnover, supported by adult intestinal stem cells. Intestinal homeostasis is underpinned by crypt basal columnar stem cells, marked by expression of the LGR5 gene. However, recent research has demonstrated considerable stem cell plasticity following injury, with dedifferentiation of a range of other intestinal cell populations, induced by a permissive microenvironment in the regenerating mucosa. The regulation of this profound adaptive cell reprogramming response is the subject of current research. There is a demonstrable contribution from disruption of key homeostatic signaling pathways such as wingless-related integration site and bone morphogenetic protein, and an emerging signaling hub role for the mechanoreceptor transducers Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif, negatively regulated by the Hippo pathway. However, a number of outstanding questions remain, including a need to understand how tissues sense damage, and how pathways intersect to mediate dynamic changes in the stem cell population. Better understanding of these pathways, associated functional redundancies, and how they may be both enhanced for recovery of inflammatory diseases, and co-opted in neoplasia development, may have significant clinical implications, and could lead to development of more targeted molecular therapies which target individual stem or stem-like cell populations.
Collapse
Affiliation(s)
- Holly R Eggington
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
224
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
225
|
Wu Q, Yamawaki I, Taguchi Y, Shiomi K, Kimura D, Takahashi T, Umeda M. Glucose Affects the Quality and Properties of Hard Tissue in Diabetes Mellitus Model. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qingchao Wu
- Department of Periodontology, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University
| | | | - Kei Shiomi
- Department of Periodontology, Osaka Dental University
| | | | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
226
|
Fang F, Sup M, Luzzi A, Ferrer X, Thomopoulos S. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol 2022; 105:87-103. [PMID: 34954379 PMCID: PMC8821161 DOI: 10.1016/j.matbio.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling has been widely acknowledged to play essential roles in many developmental processes, including endochondral ossification and growth plate maintenance. Furthermore, a rising number of studies have shown that Hh signaling is necessary for tendon enthesis development. Specifically, the well-tuned regulation of Hh signaling during development drives the formation of a mineral gradient across the tendon enthesis fibrocartilage. However, aberrant Hh signaling can also lead to pathologic heterotopic ossification in tendon or osteophyte formation at the enthesis. Therefore, the therapeutic potential of Hh signaling modulation for treating tendon and enthesis diseases remains uncertain. For example, increased Hh signaling may enhance tendon-to-bone healing by promoting the formation of mineralized fibrocartilage at the healing interface, but pathologic heterotopic ossification may also be triggered in the adjacent tendon. Further work is needed to elucidate the distinct functions of Hh signaling in the tendon and enthesis to support the development of therapies that target the pathway.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - McKenzie Sup
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew Luzzi
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Xavier Ferrer
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
227
|
Wu L, Li J, Zhao F, Xiang Y. MiR-340-5p inhibits Müller cell activation and pro-inflammatory cytokine production by targeting BMP4 in experimental diabetic retinopathy. Cytokine 2022; 149:155745. [PMID: 34689058 DOI: 10.1016/j.cyto.2021.155745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 01/20/2023]
Abstract
Diabetic retinopathy (DR) is a disease that can cause blindness. Bone morphogenetic protein-4 (BMP4) was reported be overexpressed in DR model. However, the specific mechanism of BMP4 in DR development has not been explored. MiR-340-5p and BMP4 levels were detected by RT-qPCR in MIO-M1 cells and retinas of mice. Western blot analysis was used to examine GFAP, BMP4 and BRB junction protein levels. Inflammatory cytokine secretion and the retina structure were examined by ELISA and H&E staining, respectively. The interaction between miR-340-5p and BMP4 was identified by luciferase reporter assay. In HG-stimulated MIO-M1 cells, BMP4 was upregulated. Mechanically, BMP4 was targeted by miR-340-5p and negatively regulated by miR-340-5p. In rescue assays, BMP4 countervailed the suppressive effects of miR-340-5p on activation of Müller cells and release of inflammatory cytokines. Additionally, miR-18a-3p overexpression alleviated BRB injury to inhibit DR progression in vivo. In conclusion, miR-340-5p inhibits DR progression by targeting BMP4, which may offer a new pathway for treatment of DR.
Collapse
Affiliation(s)
- Li Wu
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Jing Li
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Fang Zhao
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Yi Xiang
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China.
| |
Collapse
|
228
|
Yoon J, Kumar V, Goutam RS, Kim SC, Park S, Lee U, Kim J. Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos. Cells 2021; 11:44. [PMID: 35011606 PMCID: PMC8750265 DOI: 10.3390/cells11010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023] Open
Abstract
Gastrulation is a critical step in the establishment of a basic body plan during development. Convergence and extension (CE) cell movements organize germ layers during gastrulation. Noncanonical Wnt signaling has been known as major signaling that regulates CE cell movement by activating Rho and Rac. In addition, Bmp molecules are expressed in the ventral side of a developing embryo, and the ventral mesoderm region undergoes minimal CE cell movement while the dorsal mesoderm undergoes dynamic cell movements. This suggests that Bmp signal gradient may affect CE cell movement. To investigate whether Bmp signaling negatively regulates CE cell movements, we performed microarray-based screening and found that the transcription of Xenopus Arhgef3.2 (Rho guanine nucleotide exchange factor) was negatively regulated by Bmp signaling. We also showed that overexpression or knockdown of Xarhgef3.2 caused gastrulation defects. Interestingly, Xarhgef3.2 controlled gastrulation cell movements through interacting with Disheveled (Dsh2) and Dsh2-associated activator of morphogenesis 1 (Daam1). Our results suggest that Bmp gradient affects gastrulation cell movement (CE) via negative regulation of Xarhgef3.2 expression.
Collapse
Affiliation(s)
- Jaeho Yoon
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
- National Cancer Institute, Frederick, MD 21702, USA
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| | - Sung-Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea;
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.Y.); (V.K.); (R.S.G.); (S.-C.K.)
| |
Collapse
|
229
|
Sconocchia T, Sconocchia G. Regulation of the Immune System in Health and Disease by Members of the Bone Morphogenetic Protein Family. Front Immunol 2021; 12:802346. [PMID: 34925388 PMCID: PMC8674571 DOI: 10.3389/fimmu.2021.802346] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are potent signaling molecules initially described as osteopromoting proteins. BMPs represent one of the members of the larger TGFβ family and today are recognized for their important role in numerous processes. Among the wide array of functions recently attributed to them, BMPs were also described to be involved in the regulation of components of the innate and adaptive immune response. This review focuses on the signaling pathway of BMPs and highlights the effects of BMP signaling on the differentiation, activation, and function of the main cell types of the immune system.
Collapse
Affiliation(s)
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
230
|
Facioli FL, da Silva AN, Dos Santos ED, de Camargo J, Warpechowski MB, da Oliveira Cruz J, Lof LM, Zanella R. From Mendel laws to whole genetic association study to decipher the swine mulefoot phenotype. Res Vet Sci 2021; 143:58-65. [PMID: 34974356 DOI: 10.1016/j.rvsc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
The swine mulefoot (SM) is a rare condition characterized by a non-cloven hoof due to the partial or total fusion of the phalanges. No comprehensive study has been conducted to identify associated markers with this phenotype until now. We aimed to characterize the association between SNP and the mulefoot phenotype using a Genome-Wide Association Study (GWAS). An experimental population was produced using a half-sib mating where the male had the mulefoot phenotype and the females (n = 6) had cloven hoofs. The cross resulted in 27 (47%) animals with the mulefoot characteristic and 30 (53%) normal animals, indicating the possible dominant gene action. Animals were further genotyped using the Illumina PorcineSNP50k BeadChip, and SNPs were tested for associations. Twenty-nine SNPs located on the SSC15, SSC4, and SSCX were associated with the mulefoot phenotype (p-value <5 × 10-5). Six markers were found in the intronic regions of VWC2L, CATIP, PDK3, PCYT1B, and POLA1 genes. The marker rs81277626, on SSC15:116,886,110 bp, is located in the Von Willebrand Factor C Domain (VWC2L), a possible functional candidate gene. The VWC2L is part of a biological process involved with the bone morphogenetic protein (BMP) signaling pathway, previously associated with syndactyly in other species. In conclusion, the identified markers suggest the involvement of the VWC2L gene in the SM phenotype in this population.
Collapse
Affiliation(s)
- Fernanda Luiza Facioli
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Arthur Nery da Silva
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ezequiel Davi Dos Santos
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Janine de Camargo
- Programa de Pós Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária,Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Marson Bruck Warpechowski
- Departamento de Zootecnia, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Juliano da Oliveira Cruz
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lucas Mallmann Lof
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Ricardo Zanella
- Faculdade de Agronomia e Medicina Veterinária, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós Graduação em Bioexperimentação, Faculdade de Agronomia e Medicina Veterinária,Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
231
|
Gordeev MN, Bakhmet EI, Tomilin AN. Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
232
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
233
|
Ding P, Chen W, Yan X, Zhang J, Li C, Zhang G, Wang Y, Li Y. BMPER alleviates ischemic brain injury by protecting neurons and inhibiting neuroinflammation via Smad3-Akt-Nrf2 pathway. CNS Neurosci Ther 2021; 28:593-607. [PMID: 34904361 PMCID: PMC8928915 DOI: 10.1111/cns.13782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Bone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action. Methods A mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting. Results BMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons. Conclusion BMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, PLA 983 Hospital, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinxiang Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
234
|
Liu D, Liu J, Li Y, Liu H, Hassan HM, He W, Li M, Zhou Y, Fu X, Zhan J, Wang Z, Yang S, Chen P, Xu D, Wang X, DiSanto ME, Zeng G, Zhang X. Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Prostate 2021; 81:1435-1449. [PMID: 34553788 DOI: 10.1002/pros.24241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
Collapse
Affiliation(s)
- Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hassan M Hassan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Pediatric Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
235
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
236
|
Sox9-Increased miR-322-5p Facilitates BMP2-Induced Chondrogenic Differentiation by Targeting Smad7 in Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:9778207. [PMID: 34777504 PMCID: PMC8589527 DOI: 10.1155/2021/9778207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) induces effective chondrogenesis of mesenchymal stem cells (MSCs) by promoting Sox9 expression. However, BMP2 also induces chondrocyte hypertrophy and endochondral ossification by upregulating Smad7 expression, which leads to the disruption of chondrogenesis. In addition, Smad7 can be inhibited by Sox9. Therefore, the underlying mechanism is not clear. Currently, an increasing number of studies have shown that microRNAs play a pivotal role in chondrogenic and pathophysiological processes of cartilage. The purpose of this study was to determine which microRNA is increased by Sox9 and targets Smad7, thus assisting BMP2 in maintaining stable chondrogenesis. We found that miR-322-5p meets the requirement through next-generation sequencing (NGS) and bioinformatic analysis. The targeting relationship between miR-322-5p and Smad7 was confirmed by dual-luciferase reporter assays, qPCR, and western blotting (WB). The in vitro study indicated that overexpression of miR-322-5p significantly inhibited Smad7 expression, thus causing increased chondrogenic differentiation and decreased hypertrophic differentiation, while silencing of miR-322-5p led to the opposite results. Flow cytometry (FCM) analysis indicated that overexpression of miR-322-5p significantly decreased the rate of early apoptosis in BMP2-stimulated MSCs, while silencing of miR-322-5p increased the rate. A mouse limb explant assay revealed that the expression of miR-322-5p was negatively correlated with the length of the BMP2-stimulated hypertrophic zone of the growth plate. An in vivo study also confirmed that miR-322-5p assisted BMP2 in chondrogenic differentiation. Taken together, our results suggested that Sox9-increased miR-322-5p expression can promote BMP2-induced chondrogenesis by targeting Smad7, which can be exploited for effective tissue engineering of cartilage.
Collapse
|
237
|
Au J, Requena DF, Rishik H, Kallol S, Tekkatte C, Farah OA, Kittle R, Meads M, Wakeland A, Soncin F. Role of autocrine bone morphogenetic protein Signaling in trophoblast stem cells. Biol Reprod 2021; 106:540-550. [PMID: 34791028 PMCID: PMC8934699 DOI: 10.1093/biolre/ioab213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extra-embryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mTSC and hTSC expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extra-embryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.
Collapse
Affiliation(s)
- Jennie Au
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniela F Requena
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah Rishik
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sampada Kallol
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chandana Tekkatte
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Omar A Farah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Kittle
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Wakeland
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
238
|
Dentin Matrix Protein 1 on Titanium Surface Facilitates Osteogenic Differentiation of Stem Cells. Molecules 2021; 26:molecules26226756. [PMID: 34833848 PMCID: PMC8621853 DOI: 10.3390/molecules26226756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) contains a large number of acidic domains, multiple phosphorylation sites, a functional arginine-glycine-aspartate (RGD) motif, and a DNA binding domain, and has been shown to play essential regulatory function in dentin and bone mineralization. DMP1 could also orchestrate bone matrix formation, but the ability of DMP1 on Ti to human mesenchymal stem cell (hMSC) conversion to osteoblasts has not been studied. There is importance to test if the DMP1 coated Ti surface would promote cell migration and attachment to the metal surface and promote the differentiation of the attached stem cells to an osteogenic lineage. This study aimed to study the human mesenchymal stem cells (hMSCs) attachment and proliferation on DMP1 coated titanium (Ti) disks compared to non-coated disks, and to assess possible osteoblastic differentiation of attached hMSCs. Sixty-eight Ti disks were divided into two groups. Group 1 disks were coated with dentin matrix protein 1 and group 2 disks served as control. Assessment with light microscopy was used to verify hMSC attachment and proliferation. Cell viability was confirmed through fluorescence microscopy and mitochondrial dehydrogenase activity. Real-time polymerase chain reaction analysis was done to study the gene expression. The proliferation assay showed significantly greater cell proliferation with DMP1 coated disks compared to the control group (p-value < 0.001). Cell vitality analysis showed a greater density of live cells on DMP1 coated disks compared to the control group. Alkaline phosphatase staining revealed higher enzyme activity on DMP1 coated disks and showed itself to be significantly higher than the control group (p-value < 0.001). von Kossa staining revealed higher positive areas for mineralized deposits on DMP1 coated disks than the control group (p-value < 0.05). Gene expression analysis confirmed upregulation of runt-related transcription factor 2, osteoprotegerin, osteocalcin, osteopontin, and alkaline phosphatase on DMP1 coated disks (p-value < 0.001). The dentin matrix protein promoted the adhesion, proliferation, facilitation differentiation of hMSC, and mineralized matrix formation.
Collapse
|
239
|
Tarulli GA, Cripps SM, Pask AJ, Renfree MB. Spatiotemporal map of key signaling factors during early penis development. Dev Dyn 2021; 251:609-624. [PMID: 34697862 PMCID: PMC9539974 DOI: 10.1002/dvdy.433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
The formation of the external genitalia is a highly complex developmental process, considering it involves a wide range of cell types and results in sexually dimorphic outcomes. Development is controlled by several secreted signalling factors produced in complex spatiotemporal patterns, including the hedgehog (HH), bone morphogenic protein (BMP), fibroblast growth factor (FGF) and WNT signalling families. Many of these factors act on or are influenced by the actions of the androgen receptor (AR) that is critical to masculinisation. This complexity of expression makes it difficult to conceptualise patterns of potential importance. Mapping expression during key stages of development is needed to develop a comprehensive model of how different cell types interact in formation of external genitalia, and the global regulatory networks at play. This is particularly true in light of the sensitivity of this process to environmental disruption during key stages of development. The goal of this review is to integrate all recent studies on gene expression in early penis development to create a comprehensive spatiotemporal map. This serves as a resource to aid in visualising potentially significant interactions involved in external genital development. Diagrams of published RNA and protein localisation data for key secreted signalling factors during early penis development. Unconventional expression patterns are identified that suggest novel signalling axes during development. Key research gaps and limitations are identified and discussed.
Collapse
Affiliation(s)
- Gerard A Tarulli
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
240
|
Non-Smad, BMP-dependent signaling protects against the effects of acute ethanol toxicity. Toxicol Lett 2021; 353:118-126. [PMID: 34687774 DOI: 10.1016/j.toxlet.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 01/20/2023]
Abstract
This study explores the effect of acute Ethanol (EtOH) exposure on Bone Morphogenetic Protein (BMP)-evoked intracellular signaling, and the concomitant morphological changes induced by EtOH in C2C12 cells and DRG (Dorsal root ganglion) neurons in an in vitro model related to Fetal Alcohol Syndrome Disorder (FASD). All assays were performed within 30 min of BMP stimulation to specifically investigate the earliest events occurring in BMP-evoked intracellular signaling pathways. We show that Smad phosphorylation and nuclear translocation stimulated by BMPs was not altered following acute exposure to EtOH. In contrast, acute EtOH exposure alone caused a striking concentration-dependent decrease in Akt phosphorylation, as well as a loss of adhesion in C2C12 cells. The addition of BMPs before exposure to EtOH was associated with maintenance of Akt phosphorylation, greater cell adhesion in C2C12 cells, and preservation of growth cone complexity in DRG neurons. Thus, for both C2C12 cells and DRG neurons, BMPs, acting through non-canonical BMP signaling pathways, appear to impart some protection against the profound effects of acute EtOH exposure on cellular adhesion and structure.
Collapse
|
241
|
Hsieh FK, Ji F, Damle M, Sadreyev RI, Kingston RE. HERVH-derived lncRNAs negatively regulate chromatin targeting and remodeling mediated by CHD7. Life Sci Alliance 2021; 5:5/1/e202101127. [PMID: 34663690 PMCID: PMC8548210 DOI: 10.26508/lsa.202101127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in CHD7 are diagnostic for human CHARGE syndrome. RNAs expressed from the HERVH repeats modulate CHD7 function providing one mechanism for regulation of differentiation of pluripotent cells. Chd7 encodes an ATP-dependent chromatin remodeler which has been shown to target specific genomic loci and alter local transcription potentially by remodeling chromatin structure. De novo mutations in CHD7 are the major cause of CHARGE syndrome which features multiple developmental defects. We examined whether nuclear RNAs might contribute to its targeting and function and identified a preferential interaction between CHD7 and lncRNAs derived from HERVH loci in pluripotent stem cells. Knockdown of HERVH family lncRNAs using LNAs or knockout of an individual copy of HERVH by CRISPR-Cas9 both resulted in increased binding of CHD7 and increased levels of H3K27ac at a subset of enhancers. Depletion of HERVH family RNAs led to the activation of multiple genes. CHD7 bound HERVH RNA with high affinity but low specificity and this interaction decreased the ability of CHD7 to bind and remodel nucleosomes. We present a model in which HERVH lncRNAs act as a decoy to modulate the dynamics of CHD7 binding to enhancers in pluripotent cells and the activation of numerous genes that might impact the differentiation process.
Collapse
Affiliation(s)
- Fu-Kai Hsieh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA .,Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
242
|
Zhang G, Lübke L, Chen F, Beil T, Takamiya M, Diotel N, Strähle U, Rastegar S. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells 2021; 10:cells10102794. [PMID: 34685774 PMCID: PMC8534405 DOI: 10.3390/cells10102794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Centre of Organismal Studies, University Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Correspondence: (U.S.); (S.R.)
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Correspondence: (U.S.); (S.R.)
| |
Collapse
|
243
|
Klemmer VA, Khera N, Siegenthaler BM, Bhattacharya I, Weber FE, Ghayor C. Effect of N-Vinyl-2-Pyrrolidone (NVP), a Bromodomain-Binding Small Chemical, on Osteoblast and Osteoclast Differentiation and Its Potential Application for Bone Regeneration. Int J Mol Sci 2021; 22:ijms222011052. [PMID: 34681710 PMCID: PMC8541071 DOI: 10.3390/ijms222011052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.
Collapse
Affiliation(s)
- Viviane A. Klemmer
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Nupur Khera
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Barbara M. Siegenthaler
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (F.E.W.); (C.G.)
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Correspondence: (F.E.W.); (C.G.)
| |
Collapse
|
244
|
Effect of Bone Morphogenetic Protein-2 in the Treatment of Long Bone Non-Unions. J Clin Med 2021; 10:jcm10194597. [PMID: 34640615 PMCID: PMC8509770 DOI: 10.3390/jcm10194597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Delayed fracture healing continues to cause significant patient morbidity and an economic burden to society. Biological stimulation of non-unions includes application of recombinant bone morphogenetic protein-2 (rhBMP-2). However, rhBMP-2 use continues to be a matter of controversy as literature shows scarce evidence for treatment effectiveness. Questions: The objective of this study was to evaluate the effectiveness of rhBMP-2 treatment on long bone non-unions measuring union rate and time to union. Furthermore, we assess risk factors for treatment failure. Methods and patients: A total of 91 patients with non-unions of long bones were treated with rhBMP-2 (n = 72) or standard care without BMP (n = 19) at our institution. Patient characteristics, comorbidities, nicotine consumption, and complications were recorded. Bone healing was assessed by plane X-rays and clinical examination. Patients were followed up with for 24 months. Results: Overall, there was significantly faster bone healing after rhBMP-2 application compared to the no-BMP group (p < 0.001; HR = 2.78; 95% CI 1.4–5.6). Union rates differed significantly between rhBMP-2 compared to the no-BMP group (89% vs. 47%; p < 0.001). At the humerus, there was neither a significantly higher union rate in the rhBMP-2 (83%) compared to the no-BMP group (50%) (p = 0.26; n = 12) nor a faster bone healing with a median time of 9 months in both groups (HR = 2.01; 95% CI 0.49–8.61; p = 0.315). The 33 femora treated using rhBMP-2 healed significantly faster than 9 femora in the no-BMP group (HR = 2.93; 95% CI 1.00–8.4; p = 0.023) with significant differences in union rate with 85% and 44%, respectively (p = 0.022). Regarding tibia non-unions, 25 out of 27 (93%) healed with a median of 9 months after rhBMP-2 application with no significant difference in the no-BMP group (33%) in time to union (p = 0.097) but a significantly higher union rate (p = 0.039). There was no effect of comorbidities, age, sex, soft tissue damage, or nicotine use on time to union, union rate, or secondary interventions. Conclusion: Consistent with the literature, overall, significantly higher union rates with reduced time to union were achieved after rhBMP-2 application. Femoral and tibial non-unions in particular seem to profit from rhBMP-2 application.
Collapse
|
245
|
Sharma R, Gogoi G, Saikia S, Sharma A, Kalita DJ, Sarma A, Limaye AM, Gaur MK, Bhattacharyya J, Jaganathan BG. BMP4 enhances anoikis resistance and chemoresistance of breast cancer cells through canonical BMP signaling. J Cell Commun Signal 2021; 16:191-205. [PMID: 34608584 DOI: 10.1007/s12079-021-00649-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.
Collapse
Affiliation(s)
- Renu Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College, Dibrugarh, Assam, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anupam Sarma
- Department of Oncopathology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Manish Kumar Gaur
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India. .,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
246
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
247
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
248
|
Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E. Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2569. [PMID: 34685010 PMCID: PMC8538947 DOI: 10.3390/nano11102569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Nano-hydroxyapatite (nHA) has been widely used as an orthopedic biomaterial and vehicle for drug delivery owing to its chemical and structural similarity to bone minerals. Several studies have demonstrated that nHA based biomaterials have a potential effect for bone regeneration with very minimal to no toxicity or inflammatory response. This systematic review aims to provide an appraisal of the effectiveness of nHA as a delivery system for bone regeneration and whether the conjugation of proteins, antibiotics, or other bioactive molecules to the nHA further enhances osteogenesis in vivo. Out of 282 articles obtained from the literature search, only 14 articles met the inclusion criteria for this review. These studies showed that nHA was able to induce bone regeneration in various animal models with large or critical-sized bone defects, open fracture, or methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis. The conjugations of drugs or bioactive molecules such as bone-morphogenetic protein-2 (BMP-2), vancomycin, calcitriol, dexamethasone, and cisplatin were able to enhance the osteogenic property of nHA. Thus, nHA is a promising delivery system for a variety of compounds in promoting bone regeneration in vivo.
Collapse
Affiliation(s)
- Anis Syauqina Mohd Zaffarin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, W.P. Kuala Lumpur, Malaysia;
| | - Shiow-Fern Ng
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, W.P. Kuala Lumpur, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, W.P. Kuala Lumpur, Malaysia;
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, W.P. Kuala Lumpur, Malaysia;
| |
Collapse
|
249
|
Wang L, Yang X, Zhou S, Lyu T, Shi L, Dong Y, Zhang H. Comparative transcriptome analysis revealed omnivorous adaptation of the small intestine of Melinae. Sci Rep 2021; 11:19162. [PMID: 34580368 PMCID: PMC8476558 DOI: 10.1038/s41598-021-98561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
As the main digestive organ, the small intestine plays a vital role in the digestion of animals. At present, most of the research on animal feeding habits focuses on carnivores and herbivores. However, the mechanism of feeding and digestion in omnivores remains unclear. This study aims to reveal the molecular basis of the omnivorous adaptive evolution of Melinae by comparing the transcriptome of the small intestines of Asian Badgers (Meles leucurus) and Northern Hog Badgers (Arctonyx albogularis). We obtained high-quality small intestinal transcriptome data from these two species. Key genes and signalling pathways were analysed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and other databases. Research has mainly found that orthologous genes related to six enzymes have undergone adaptive evolution. In addition, the study also found three digestion-related pathways (cGMP-PKG, cAMP, and Hippo). They are related to the digestion and absorption of nutrients, the secretion of intestinal fluids, and the transport of food through the small intestine, which may help omnivorous animals adapt to an omnivorous diet. Our study provides insight into the adaptation of Melinae to omnivores and affords a valuable transcriptome resource for future research.
Collapse
Affiliation(s)
| | | | | | | | - Lupeng Shi
- Qufu Normal University, Qufu, 273165, China
| | | | | |
Collapse
|
250
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|