201
|
|
202
|
Vion AC, Alt S, Klaus-Bergmann A, Szymborska A, Zheng T, Perovic T, Hammoutene A, Oliveira MB, Bartels-Klein E, Hollfinger I, Rautou PE, Bernabeu MO, Gerhardt H. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J Cell Biol 2018; 217:1651-1665. [PMID: 29500191 PMCID: PMC5940299 DOI: 10.1083/jcb.201706151] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/01/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
How endothelial cells sense and react to flow during vascular remodeling is poorly understood. Vion et al. show that endothelial cells utilize their primary cilia to stabilize vessel connections during vascular remodeling. Molecularly, they identify enhanced sensitivity to BMP9 in ciliated endothelial cells, selectively under low flow. Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress–mediated remodeling.
Collapse
Affiliation(s)
- Anne-Clémence Vion
- Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, London, England, UK.,German Center for Cardiovascular Research, Berlin, Germany
| | - Silvanus Alt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Tuyu Zheng
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tijana Perovic
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adel Hammoutene
- Institut National de la Santé et de la Recherche Medicale, U970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Eireen Bartels-Klein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | | | - Pierre-Emmanuel Rautou
- Institut National de la Santé et de la Recherche Medicale, U970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departement Hospitalo-Universitaire Unity, Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, Hôpital Beaujon, Assistance Publique - Hopitaux de Paris, Clichy, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK.,Centre for Computational Science, Department of Chemistry, University College London, London, England, UK
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, London, England, UK.,German Center for Cardiovascular Research, Berlin, Germany.,Vascular Patterning Laboratory, VIB Center for Cancer Biology, Leuven, Belgium.,Vascular Patterning Laboratory, Department of Oncology, KU Leuven, Leuven, Belgium.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
203
|
Abstract
RNF213 is a susceptibility gene for moyamoya disease, yet its exact functions remain unclear. To evaluate the role of RNF213 in adaptation of cerebral blood flow (CBF) under cerebral hypoperfusion, we performed bilateral common carotid artery stenosis surgery using external microcoils on Rnf213 knockout (KO) and vascular endothelial cell-specific Rnf213 mutant (human p.R4810K orthologue) transgenic (EC-Tg) mice. Temporal CBF changes were measured by arterial spin-labelling magnetic resonance imaging. In the cortical area, no significant difference in CBF was found before surgery between the genotypes. Three of eight (37.5%) KO mice died after surgery but all wild-type and EC-Tg mice survived hypoperfusion. KO mice had a significantly more severe reduction in CBF on day 7 than wild-type mice (KO, 29.7% of baseline level; wild-type, 49.3%; p = 0.038), while CBF restoration on day 28 was significantly impaired in both KO (50.0%) and EC-Tg (56.1%) mice compared with wild-type mice (69.5%; p = 0.031 and 0.037, respectively). Changes in the subcortical area also showed the same tendency as the cortical area. Additionally, histological analysis demonstrated that angiogenesis was impaired in both EC-Tg and KO mice. These results are indicative of the essential role of RNF213 in the maintenance of CBF.
Collapse
|
204
|
Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull 2018; 139:38-47. [PMID: 29432795 DOI: 10.1016/j.brainresbull.2018.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 01/09/2023]
Abstract
The recent suggestion that growth differentiation factor 11 (GDF11) acts as a rejuvenation factor has remained controversial. However, in addition to its role in aging, the relationship between GDF11 and cerebral ischemia is still an important area that needs more investigation. Here we examined effects of GDF11 on angiogenesis and recovery of neurological function in a rat model of stroke. Exogenous recombinant GDF11 (rGDF11) at different doses were directly injected into the tail vein in rats subjected to cerebral ischemia/reperfusion (I/R). Neurobehavioral tests were performed, the proliferation of endothelial cells (ECs) and GDF11 downstream signal activin-like kinase 5 (ALK5) were assessed, and functional microvessels were measured. Results showed that rGDF11 at a dosage of 0.1 mg/kg/day could effectively activate cerebral angiogenesis in vivo. In addition, rGDF11 improved the modified neurological severity scores and the adhesive removal somatosensory test, promoted proliferation of ECs, induced ALK5 and increased vascular surface area and the number of vascular branch points in the peri-infarct cerebral cortex after cerebral I/R. These effects were suppressed by blocking ALK5. Our novel findings shed new light on the role of GDF11. Our results strongly suggest that GDF11 improves neurofunctional recovery from cerebral I/R injury and that this effect is mediated partly through its proangiogenic effect in the peri-infarct cerebral cortex, which is associated with ALK5. Thus, GDF11/ALK5 may represent new therapeutic targets for aiding recovery from stroke.
Collapse
|
205
|
Chen Y, Zhang X, He J, Xie Y, Yang Y. Delayed Administration of the Glucagon-Like Peptide 1 Analog Liraglutide Promoting Angiogenesis after Focal Cerebral Ischemia in Mice. J Stroke Cerebrovasc Dis 2018; 27:1318-1325. [PMID: 29395648 DOI: 10.1016/j.jstrokecerebrovasdis.2017.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) analogs administered before or after cerebral ischemia have been shown to provide neuroprotection. Here, we explored whether delayed administration of a GLP-1 analog, liraglutide, could improve long-term functional recovery and promote angiogenesis after stroke. MATERIALS AND METHODS In the present study, mice were established as a focal cerebral cortical ischemia model and were intraperitoneally administered liraglutide or normal saline (NS) daily for 14 consecutive days, starting 1 day after cerebral ischemia. The neurological deficits were evaluated using rotarod test. The microvessel density (MVD) and endothelial cell (EC) proliferation were assessed by immunohistochemical staining. The expression of vascular endothelial growth factor (VEGF) was assessed by Western blot analysis. RESULTS Liraglutide significantly reduced infarct volume and improved the rotarod test scores, compared with mice treated with NS. Liraglutide also greatly increased the MVD and EC proliferation and simultaneously upregulated the expression of VEGF in the cerebral ischemic area. CONCLUSIONS These results demonstrated that liraglutide promoted angiogenesis and long-term recovery of cerebral ischemia through increasing the expression of VEGF.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China.
| | - Junna He
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanzhao Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
206
|
Wu Y, Xu J, Xu J, Zheng W, Chen Q, Jiao D. Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia. Mol Med Rep 2018; 17:5007-5012. [PMID: 29393445 PMCID: PMC5865961 DOI: 10.3892/mmr.2018.8477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 01/30/2023] Open
Abstract
The present study aimed to investigate the mechanism by which the Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling pathway mediates cerebral ischemia and the efficacy of pharmaceutical intervention. The rat model of middle cerebral artery occlusion (MCAO) was established and confirmed via assessment of changes in the expression of phosphorylated (p)‑JAK2, p‑STAT3, high‑mobility group box 1 (HMGB1), and inflammatory factors using ELISA and western blot analysis. The effects of JAK2/STAT3 inhibitor and curcumin on the expression of p‑JAK2, p‑STAT3, HMGB1, and inflammatory factors after cerebral ischemia were observed with ELISA, western blotting and immunohistochemical staining. The concentrations of tumor necrosis factor (TNF)‑α and HMGB1 in brain tissue homogenate of MCAO group were significantly higher than in the sham group (P<0.01). The concentration of p‑JAK2/JAK2 and p‑STAT3/STAT3 in the brain tissue homogenate of MCAO group was significantly higher than in the sham group (P<0.05). The concentrations of TNF‑α, interleukin (IL)‑1β, IL‑6, and HMGB1 in the group treated with STAT3 inhibitor (MCAO + rapamycin), JAK2 inhibitor (MCAO + AG490), and MCAO + curcumin were significantly lower than in the MCAO group (P<0.01), as well as the relative content of p‑JAK2/JAK2 and p‑STAT3/STAT3 (P<0.05). Inhibition of the JAK2/STAT3 signaling pathway, such as curcumin can reduce the expression of HMGB1 in brain tissue after cerebral ischemia, which can significantly reduce the inflammatory response after cerebral ischemia.
Collapse
Affiliation(s)
- Yuquan Wu
- Department of Geriatrics, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Juan Xu
- Department of Geriatrics, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Xu
- Department of Geriatrics, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Wei Zheng
- Department of Geriatrics, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Qingyong Chen
- Department of Geriatrics, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Deming Jiao
- Department of Clinical Laboratory, Hangzhou Clinical College of The People's Liberation Army of Anhui Medical University, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
207
|
Iwasawa E, Ishibashi S, Suzuki M, Li F, Ichijo M, Miki K, Yokota T. Sphingosine-1-Phosphate Receptor 1 Activation Enhances Leptomeningeal Collateral Development and Improves Outcome after Stroke in Mice. J Stroke Cerebrovasc Dis 2018; 27:1237-1251. [PMID: 29337049 DOI: 10.1016/j.jstrokecerebrovasdis.2017.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Development of collateral circulation after acute ischemic stroke is triggered by shear stress that occurs in pre-existing arterioles. Recently, sphingosine-1-phosphate receptor 1 (S1P1) on endothelial cells was reported to sense shear stress and transduce its signaling pathways. METHODS BALB/c mice (n = 118) were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham operation. We investigated the effect of an S1P1-selective agonist SEW2871 on leptomeningeal collateral arteries and neurological outcome after pMCAO. RESULTS Immunohistochemistry showed that without treatment, the expression of S1P1 on endothelial cells of leptomeningeal arteries and capillaries increased early after pMCAO, peaking at 6 hours, whereas a significant increase in the expression of S1P1 in neurons was seen from 24 hours later. After intraperitoneal administration of SEW2871 for 7 days after pMCAO, the number of leptomeningeal collateral arteries was significantly increased, cerebral blood flow improved, infarct volume was decreased, and neurological outcome improved compared with the controls. Significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS) as early as 6 hours after pMCAO and higher expression of tight junction proteins at postoperative day 3 were observed with SEW2871 treatment as assessed by Western blot. Daily administration of SEW2871 also increased capillary density in peri-infarct regions and promoted monocyte/macrophage mobilization to the surface of ischemic cortex at 7 days after pMCAO. CONCLUSIONS An S1P1-selective agonist enhanced leptomeningeal collateral circulation via eNOS phosphorylation and promoted postischemic angiogenesis with reinforced blood-brain barrier integrity in a mouse model of acute ischemic stroke, leading to smaller infarct volume and better neurological outcome.
Collapse
Affiliation(s)
- Eri Iwasawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Motohiro Suzuki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - FuYing Li
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiko Ichijo
- Department of Neurology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Kazunori Miki
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
208
|
Long FQ, Su QJ, Zhou JX, Wang DS, Li PX, Zeng CS, Cai Y. LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a. Neural Regen Res 2018; 13:1919-1926. [PMID: 30233065 PMCID: PMC6183049 DOI: 10.4103/1673-5374.238717] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs regulate brain microvascular endothelial cell death, the inflammatory response and angiogenesis during and after ischemia/reperfusion and oxygen-glucose deprivation/reoxygenation (OGD/R) insults. The long non-coding RNA, SNHG12, is upregulated after ischemia/reperfusion and OGD/R in microvascular endothelial cells of the mouse brain. However, its role in ischemic stroke has not been studied. We hypothesized that SNHG12 positively regulates ischemic stroke, and therefore we investigated its mechanism of action. We established an OGD/R mouse cell model to mimic ischemic stroke by exposing brain microvascular endothelial cells to OGD for 0, 2, 4, 8, 16 or 24 hours and reoxygenation for 4 hours. Quantitative real-time polymerase chain reaction showed that SNHG12 levels in brain microvascular endothelial cells increased with respect to OGD exposure time. Brain microvascular endothelial cells were transfected with pcDNA-control, pcDNA-SNHG12, si-control, or si-SNHG12. After exposure to OGD for 16 hours, these cells were then analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, trypan blue exclusion, western blot, and capillary-like tube formation assays. Overexpression of SNHG12 inhibited brain microvascular endothelial cell death and the inflammatory response but promoted angiogenesis after OGD/R, while SNHG12 knockdown had the opposite effects. miR-199a was identified as a target of SNHG12, and SNHG12 overexpression reversed the effect of miR-199a on brain microvascular endothelial cell death, the inflammatory response, and angiogenesis. These findings suggest that SNHG12 suppresses endothelial cell injury induced by OGD/R by targeting miR-199a.
Collapse
Affiliation(s)
- Fa-Qing Long
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qing-Jie Su
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Jing-Xia Zhou
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - De-Sheng Wang
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Peng-Xiang Li
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Chao-Sheng Zeng
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yi Cai
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
209
|
El Amki M, Wegener S. Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke. Int J Mol Sci 2017; 18:ijms18122669. [PMID: 29232823 PMCID: PMC5751271 DOI: 10.3390/ijms18122669] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is caused by a disruption in blood supply to a region of the brain. It induces dysfunction of brain cells and networks, resulting in sudden neurological deficits. The cause of stroke is vascular, but the consequences are neurological. Decades of research have focused on finding new strategies to reduce the neural damage after cerebral ischemia. However, despite the incredibly huge investment, all strategies targeting neuroprotection have failed to demonstrate clinical efficacy. Today, treatment for stroke consists of dealing with the cause, attempting to remove the occluding blood clot and recanalize the vessel. However, clinical evidence suggests that the beneficial effect of post-stroke recanalization may be hampered by the occurrence of microvascular reperfusion failure. In short: recanalization is not synonymous with reperfusion. Today, clinicians are confronted with several challenges in acute stroke therapy, even after successful recanalization: (1) induce reperfusion, (2) avoid hemorrhagic transformation (HT), and (3) avoid early or late vascular reocclusion. All these parameters impact the restoration of cerebral blood flow after stroke. Recent advances in understanding the molecular consequences of recanalization and reperfusion may lead to innovative therapeutic strategies for improving reperfusion after stroke. In this review, we will highlight the importance of restoring normal cerebral blood flow after stroke and outline molecular mechanisms involved in blood flow regulation.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
210
|
Yu X, Peng Y, Liang H, Fu K, Zhao Z, Xie C, Zhou L, Zhang K. TSLP/TSLPR promote angiogenesis following ischemic stroke via activation of the PI3K/AKT pathway. Mol Med Rep 2017; 17:3411-3417. [PMID: 29257253 DOI: 10.3892/mmr.2017.8217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The current study aimed to investigate the effects of the thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) on angiogenesis following ischemic stroke in vivo and in vitro. Furthermore, whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway mediates the effects of TSLP/TSLPR on angiogenesis was explored. A rat middle cerebral artery occlusion (MCAO) model was established, and it was demonstrated that the expression levels of TSLP and TSLPR were significantly increased in the infarct area between 12 and 72 h after MCAO, as determined by ELISA and western blot analyses. TSLP injection was revealed to upregulate vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang‑2) expression levels in the infarct area following MCAO, as determined by western blot analysis. An in vitro MCAO model was constructed by exposing human umbilical vein endothelial cells (HUVECs) to oxygen‑glucose deprivation (OGD). It was revealed that the expression levels of TSLP and TSLPR were significantly increased in HUVECs subjected to OGD. TSLP treatment was revealed to induce in vitro angiogenesis by promoting cell proliferation and migration, and increasing tube length of OGD‑treated HUVECs, as determined by MTT, Transwell‑migration and tube formation assays, respectively. Furthermore, it was demonstrated that the PI3K/AKT pathway was activated by TSLP treatment. However, it was revealed that PI3K inhibitor, LY294002, could attenuate the effects of TSLP on in vitro angiogenesis of OGD‑treated HUVECs. In conclusion, to the best of our knowledge, this study demonstrated for the first time that TSLP/TSLPR promote angiogenesis following ischemic stroke in vivo and in vitro. Furthermore, it was demonstrated that the effects of TSLP/TSLPR on angiogenesis were, at least partially, mediated via activation of the PI3K/AKT pathway. TSLP/TSLPR may serve as a potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Yi Peng
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Hui Liang
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Ke Fu
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Zhihong Zhao
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Chun Xie
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Lin Zhou
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Kangnan Zhang
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
211
|
Liu J, Li Q, Zhang KS, Hu B, Niu X, Zhou SM, Li SG, Luo YP, Wang Y, Deng ZF. Downregulation of the Long Non-Coding RNA Meg3 Promotes Angiogenesis After Ischemic Brain Injury by Activating Notch Signaling. Mol Neurobiol 2017; 54:8179-8190. [PMID: 27900677 PMCID: PMC5684256 DOI: 10.1007/s12035-016-0270-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/30/2016] [Indexed: 12/29/2022]
Abstract
Angiogenesis after ischemic brain injury contributes to the restoration of blood supply in the ischemic zone. Strategies to improve angiogenesis may facilitate the function recovery after stroke. Recent researches have demonstrated that dysfunction of long non-coding RNAs are associated with angiogenesis. We have previously reported that long non-coding RNAs (lncRNAs) are aberrantly expressed in ischemic stroke. However, little is known about long non-coding RNAs and theirs role in angiogenesis after stroke. In this study, we identified a rat lncRNAs, Meg3, and found that Meg3 was significantly decreased after ischemic stroke. Overexpression of Meg3 suppressed functional recovery and decreased capillary density after ischemic stroke. Downregulation of Meg3 ameliorated brain lesion and increased angiogenesis after ischemic stroke. Silencing of Meg3 resulted in a proangiogenic effect evidenced by increased endothelial cell migration, proliferation, sprouting, and tube formation. Mechanistically, we showed that Meg3 negatively regulated notch pathway both in vivo and in vitro. Inhibition of notch signaling in endothelial cells reversed the proangiogenic effect induced by Meg3 downregulation. This study revealed the function of Meg3 in ischemic stroke and elucidated its mechanism in angiogenesis after ischemic stroke.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Kun-Shan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shu-Min Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Si-Guang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Ping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zhi-Feng Deng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
212
|
Biospecific isolation and characterization of angiogenesis-promoting ingredients in Buyang Huanwu decoction using affinity chromatography on rat brain microvascular endothelial cells combined with solid-phase extraction, and HPLC-MS/MS. Talanta 2017; 179:490-500. [PMID: 29310265 DOI: 10.1016/j.talanta.2017.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 02/03/2023]
Abstract
Buyang Huanwu decoction (BHD) was reported to exert angiogenesis-promoting effects, but its active ingredients remain unknown. In this study, we developed a method to screen potential angiogenesis-promoting compounds in BHD, which involved biospecific isolation using live rat brain microvascular endothelial cells (rBMECs) and characterization using solid-phase extraction (SPE) and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Six compounds showed binding affinity to rBMECs and were further identified as 6-hydroxykaempferol-di-O-glucoside, paeoniflorin, calycosin-7-O-β-D-glucoside, galloylpaeoniflorin, formononetin-7-O-β-D-glucoside, and (3R)-7,2'-hydroxy-3',4'-dimethoxy-isoflavan. The results indicated that five of them except 6-hydroxykaempferol-di-O-glucoside showed a protective effect against oxygen glucose deprivation/reperfusion injury in rBMECs and upregulated the secretion of vascular endothelial growth factor and basic fibroblast growth factor, suggesting a mechanism underlying their angiogenic activity. Our findings suggest that biospecific live cell-based isolation combined with SPE and HPLC-MS/MS is an effective method for screening potential bioactive components in traditional Chinese medicines.
Collapse
|
213
|
Wang X, Li G, Shen W. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Exp Ther Med 2017; 15:699-706. [PMID: 29399074 PMCID: PMC5772658 DOI: 10.3892/etm.2017.5509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of disability and death world-wide and there is currently a lack of effective treatments for acute stroke. D-Limonene is a common natural monocyclic monoterpene possessing various activities. The present study aimed to evaluate the therapeutic efficacy of D-limonene against ischemia-associated cerebral injury in hypertensive SHRsp rats. Although systolic blood pressure was not altered by ischemia, D-Limonene decreased the systolic blood pressure of SHRsp rats following stroke. Induction of stroke resulted in increased escape latency time, decreased time spent in the target quadrant in the probe trial, decreased capacity to distinguish between familiar objects and novel objects, and increased sensory neglect in the SHRsp rat, however these symptoms were significantly inhibited by D-limonene. D-limonene also decreased the cerebral infarct size in the SHRsp rats following stroke. D-Limonene markedly decreased the mRNA expression of interleukin-1β, monocyte chemoattractant protein-1 and cyclooxygenase-2 in SHRsp rats following stroke. The mRNA expression of vascular endothelial growth factor in the brain of SHRsp rats following stroke was significantly increased by D-Limonene. D-Limonene increased the activities of superoxide dismutase and catalase, decreased the malondialdehyde level, increased glutathione content and reduced the DHE-staining in SHRsp rats following stroke. Overall, inhibition of cerebral inflammation, vascular remodeling and antioxidant activities of D-Limonene may be involved in the protective effects against ischemia-induced damage in SHRsp rats. The present study identified D-Limonene as a potential therapeutic candidate for treatment of stroke-associated cerebral and vascular damage under conditions of hypertension.
Collapse
Affiliation(s)
- Xifeng Wang
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Gang Li
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Wei Shen
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
214
|
Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother 2017; 94:1057-1063. [DOI: 10.1016/j.biopha.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
|
215
|
Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, Zhu X, He T, Shen Z, Dong L, Zhao J, Wen Y, Zheng X, Li P. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem 2017; 143:87-99. [PMID: 28771727 DOI: 10.1111/jnc.14140] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoru Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiangjian Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Lili Cui
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Rong Chen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease; Shijiazhuang Hebei China
| | - Ye Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Cong Zhang
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xingyuan Zhu
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Tingting He
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Zuyuan Shen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Lipeng Dong
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Jingru Zhao
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Ya Wen
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiufen Zheng
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Pan Li
- Department of Neurology; Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| |
Collapse
|
216
|
Yanev P, Seevinck PR, Rudrapatna US, Bouts MJ, van der Toorn A, Gertz K, Kronenberg G, Endres M, van Tilborg GA, Dijkhuizen RM. Magnetic resonance imaging of local and remote vascular remodelling after experimental stroke. J Cereb Blood Flow Metab 2017; 37:2768-2779. [PMID: 27798270 PMCID: PMC5536787 DOI: 10.1177/0271678x16674737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pattern of vascular remodelling in relation to recovery after stroke remains largely unclear. We used steady-state contrast-enhanced magnetic resonance imaging to assess the development of cerebral blood volume and microvascular density in perilesional and exofocal areas from (sub)acutely to chronically after transient stroke in rats. Microvascular density was verified histologically after infusion with Evans Blue dye. At day 1, microvascular cerebral blood volume and microvascular density were reduced in and around the ischemic lesion (intralesional borderzone: microvascular cerebral blood volume = 72 ± 8%; microvascular density = 76 ± 8%) (P < 0.05), while total cerebral blood volume remained relatively unchanged. Perilesional microvascular cerebral blood volume and microvascular density subsequently normalized (day 7) and remained relatively stable (day 70). In remote ipsilateral areas in the thalamus and substantia nigra - not part of the ischemic lesion - microvascular density gradually increased between days 1 and 70 (thalamic ventral posterior nucleus: microvascular density = 119 ± 9%; substantia nigra: microvascular density = 122 ± 8% (P < 0.05)), which was confirmed histologically. Our data indicate that initial microvascular collapse, with maintained collateral flow in larger vessels, is followed by dynamic revascularization in perilesional tissue. Furthermore, progressive neovascularization in non-ischemic connected areas may offset secondary neuronal degeneration and/or contribute to non-neuronal tissue remodelling. The complex spatiotemporal pattern of vascular remodelling, involving regions outside the lesion territory, may be a critical endogenous process to promote post-stroke brain reorganization.
Collapse
Affiliation(s)
- Pavel Yanev
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Seevinck
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Umesh S Rudrapatna
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Jrj Bouts
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annette van der Toorn
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Gertz
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Golo Kronenberg
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,4 German Center for Cardiovascular Research (DZHK), Universitaetsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- 2 Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,3 Center for Stroke Research Berlin, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,4 German Center for Cardiovascular Research (DZHK), Universitaetsmedizin Berlin, Berlin, Germany.,5 German Center for Neurodegenerative Diseases (DZNE), Universitaetsmedizin Berlin, Berlin, Germany.,6 Berlin Institute of Health (BIH), Berlin, Germany
| | - Geralda A van Tilborg
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- 1 Biomedical MR Imaging and Spectroscopy Group, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
217
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
218
|
Chen CK, Hsu PY, Wang TM, Miao ZF, Lin RT, Juo SHH. TRPV4 Activation Contributes Functional Recovery from Ischemic Stroke via Angiogenesis and Neurogenesis. Mol Neurobiol 2017; 55:4127-4135. [PMID: 28597396 DOI: 10.1007/s12035-017-0625-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
The endothelial transient receptor potential cation channel subfamily V member 4 (TRPV4) plays a crucial role in vascular remodeling; however, TRPV4-mediated angiogenesis after ischemic neuronal death as a neurorestorative strategy has not yet been thoroughly examined. In this study, we first tested whether TRPV4 activation can improve functional recovery in rats subjected to transient brain ischemia. The possible mechanisms for TRPV4 activation-promoted functional recovery were explored. A TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD), was intravenously injected via the tail vein at 6 h and 1, 2, 3, 4 days after ischemic stroke. The treatment reduced infarct volume by almost 50% (14.7 ± 3.7 vs. 29.2 ± 6.2%; p < 0.0001) and improved functional outcomes (p = 0.03) on day 5. To explore the therapeutic mechanism, we measured endothelial nitric oxide synthase (eNOS) expression and phosphorylation, vascular endothelial growth factor A (VEGFA) signaling, and neural stem/progenitor cells (NPCs). TRPV4 activation significantly increased eNOS expression and phosphorylation (serine 1177) by more than 2-fold in the ischemic region. The expressions of VEGFA and VEGF receptor-2 were significantly higher in the treated animals, especially an increase of the proangiogenic VEGFA164a isoform while a decrease of the antiangiogenic VEGFA165b isoform. We evaluated angiogenesis by detecting microvessel density in ischemic region. Using the immunohistochemistry staining, we found that 4α-PDD treatment caused a 3.4-fold increase of microvessel density (p < 0.0001). In addition, NPC proliferation and migration in the ischemic hemisphere were increased by 3-fold and 5-fold, respectively. In conclusion, our data suggest that TRPV4 activation by 4α-PDD may improve poststroke functional improvement through angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Chun-Kai Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yuan Hsu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Ming Wang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ruey-Tay Lin
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Institute of New Drug Development, China Medical University, Taichung, Taiwan. .,Brain Disease Research Center, China Medical University, Taichung, Taiwan. .,Center for Myopia and Eye Disease, China Medical University, Taichung, Taiwan.
| |
Collapse
|
219
|
Deng G, Qiu Z, Li D, Fang Y, Zhang S. Delayed administration of guanosine improves long‑term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol Med Rep 2017; 15:3999-4004. [PMID: 28487988 PMCID: PMC5436205 DOI: 10.3892/mmr.2017.6521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Guanosine (GUO) is neuroprotective when administered acutely for the treatment of cerebral ischemia. The aim of the present study was to investigate whether delayed administration of GUO improved long‑term functional recovery following stroke, as well as to explore the potential underlying mechanisms. GUO (8 mg/kg) or a vehicle was administered intraperitoneally for 7 consecutive days beginning 24 h prior to photothrombosis‑induced stroke in male C57/B6J mice. Behaviour tests were performed at days 1, 3, 7, 14 and 28 post‑stroke. Infarct volume was measured using Nissl staining at day 7 post‑stroke. Neurogenesis and angiogenesis were evaluated by co‑labelling bromodeoxyuridine (BrdU) with doublecortin (DCX), neuronal nuclei (NeuN) and von Willebrand factor, in immunohistochemical studies. Brain‑derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) levels in the ipsilesional brain at day 28 post‑stroke were detected by western blot analysis. Delayed administration of GUO did not reduce infarct volume or affect neurological function at day 7 post‑stroke; however, it did improve functional recovery from day 14 post‑stroke, when compared with the vehicle group. GUO significantly increased the number of BrdU+ and BrdU+/DCX+ cells in the subventricular zone and subgranular zone at all examined time points, the number of Brdu+/NeuN+ cells in the peri‑infarction region at days 14 and 28 post‑stroke and microvessel density in the peri‑infarction region at day 28 post‑stroke compared with the vehicle group. In addition, the BDNF and VEGF levels in the ipsilesional brain were significantly elevated. Delayed administration of GUO at 24 h post‑stroke enhanced neurogenesis and angiogenesis, and increased BDNF and VEGF levels, which likely contributes to long‑term functional recovery following stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhandong Qiu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dayong Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Suming Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
220
|
Cai W, Zhang K, Li P, Zhu L, Xu J, Yang B, Hu X, Lu Z, Chen J. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res Rev 2017; 34:77-87. [PMID: 27697546 PMCID: PMC5384332 DOI: 10.1016/j.arr.2016.09.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022]
Abstract
Current understanding on the mechanisms of brain injury and neurodegeneration highlights an appreciation of multicellular interactions within the neurovascular unit (NVU), which include the evolution of blood-brain barrier (BBB) damage, neuronal cell death or degeneration, glial reaction, and immune cell infiltration. Aging is an important factor that influences the integrity of the NVU. The age-related physiological or pathological changes in the cellular components of the NVU have been shown to increase the vulnerability of the NVU to ischemia/reperfusion injury or neurodegeneration, and to result in deteriorated brain damage. This review describes the impacts of aging on each NVU component and discusses the mechanisms by which aging increases NVU sensitivity to stroke and neurodegenerative diseases. Prophylactic or therapeutic perspectives that may delay or diminish aging and thus prevent the incidence of these neurological disorders will also be reviewed.
Collapse
Affiliation(s)
- Wei Cai
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ling Zhu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Boyu Yang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China.
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
221
|
Lai J, Modi L, Ramai D, Tortora M. Tuberous sclerosis complex and polycystic kidney disease contiguous gene syndrome with Moyamoya disease. Pathol Res Pract 2017; 213:410-415. [PMID: 28237043 DOI: 10.1016/j.prp.2016.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are two diseases sharing close genetic loci on chromosome 16. Due to contiguous gene syndrome, also known as contiguous gene deletion syndrome, the proximity of TSC2 and PKD1 genes increases the risk of co-deletion resulting in a shared clinical presentation. Furthermore, Moyamoya disease (MMD) is a rare vaso-occlusive disease in the circle of Willis. We present the first case of TSC2/PKD1 contiguous gene syndrome in a patient with MMD along with detailed histopathologic, radiologic, and cytogenetic analyses. We also highlight the clinical presentation and surgical complications in this case.
Collapse
Affiliation(s)
- Jonathan Lai
- Department of Pathology, St. Barnabas Medical Center, 94 Old Short Hills Rd, Livingston, NJ 07039, United States
| | - Lopa Modi
- Department of Pathology, St. Barnabas Medical Center, 94 Old Short Hills Rd, Livingston, NJ 07039, United States
| | - Daryl Ramai
- Department of Pathology, St. Barnabas Medical Center, 94 Old Short Hills Rd, Livingston, NJ 07039, United States.
| | - Matthew Tortora
- Department of Pathology, St. Barnabas Medical Center, 94 Old Short Hills Rd, Livingston, NJ 07039, United States
| |
Collapse
|
222
|
Liu Y, Tang Q, Shao S, Chen Y, Chen W, Xu X. Lyophilized Powder of Catalpol and Puerarin Protected Cerebral Vessels from Ischemia by Its Anti-apoptosis on Endothelial Cells. Int J Biol Sci 2017; 13:327-338. [PMID: 28367097 PMCID: PMC5370440 DOI: 10.7150/ijbs.17751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
Catalpol and puerarin are two monomers of Rehmannia glutinosa and Lobed Kudzuvine Root, which are two herbs commonly used together in ancient prescriptions of traditional Chinese medicine for cerebral ischemia. Our previous study shows that the lyophilized powder of the two monomers improved the outcome of cerebral ischemia excellently in rodents. However, if it protects vessels from ischemia is unknown. The present research studied the protection of lyophilized powder of catalpol and puerarin (CP) on endothelial cells and the relative mechanism in vivo and in vitro. Middle cerebral artery occlusion (MCAO) rats were used to study the improvement of CP on neurological deficiency, regional cerebral blood flow (rCBF), and infarct volume. The morphology of vessels and the apoptosis of brain vascular endothelial cells (BVECs) were observed and detected by immunohistochemistry approaches. To study how CP protected primary BVECs (pBVECs) from ischemic penumbra, oxygen glucose deprivation (OGD)-damaged pBVECs were cultured in the condition of insufficient nutrition and low oxygen which recapitulate the low perfusion of ischemic penumbra. Using the cell model, the mechanism by which CP protected pBVECs was studied by shRNA and pathway inhibitors. CP at the dose of 65.4 mg/kg increased regional cerebral blood flow (rCBF), reduced infarct volume, protected vessel integrity and inhibited endothelial cell apoptosis in vivo. But it only improved rCBF, vessel integrity and BVECs apoptosis at the dose of 32.7 mg/kg. In vitro, the protection of CP on pBVECs was proved to be ERK/HIF-1a- and PI3K/AKT/mTOR/HIF-1a-dependent. This study indicates a possibility of CP being a new drug for cerebral ischemia. Besides, this research provides an alternative cell model for penumbra ECs study.
Collapse
Affiliation(s)
- Yang Liu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
- Institute of Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Pharmacological Evaluation, Chongqing 400715, China
| | - Qing Tang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
- Institute of Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Pharmacological Evaluation, Chongqing 400715, China
| | - Siying Shao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
- Institute of Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Pharmacological Evaluation, Chongqing 400715, China
| | - Yi Chen
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
- Institute of Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Pharmacological Evaluation, Chongqing 400715, China
| | - Weihai Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Xu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
- Institute of Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Centre for Pharmacological Evaluation, Chongqing 400715, China
| |
Collapse
|
223
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|
224
|
Hu GQ, Du X, Li YJ, Gao XQ, Chen BQ, Yu L. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway. Neural Regen Res 2017; 12:96-102. [PMID: 28250754 PMCID: PMC5319249 DOI: 10.4103/1673-5374.198992] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Guang-Qiang Hu
- Department of Anatomy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xi Du
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong-Jie Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiao-Qing Gao
- Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bi-Qiong Chen
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lu Yu
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
225
|
Li PY, Wang X, Stetler RA, Chen J, Yu WF. Anti-inflammatory signaling: the point of convergence for medical gases in neuroprotection against ischemic stroke. Med Gas Res 2016; 6:227-231. [PMID: 28217296 PMCID: PMC5223315 DOI: 10.4103/2045-9912.196906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies suggest that a variety of medical gases confer neuroprotective effects against cerebral ischemia, extending function beyond their regular clinical applications. The mechanisms underlying ischemic neuroprotection afforded by medical gases have been intensively studied over the past two decades. A number of signaling pathways have been proposed, among which anti-inflammatory signaling has been proven to be critical. Pursuit of the role for anti-inflammatory signaling may shed new light on the translational application of medical gas-afforded neuroprotection.
Collapse
Affiliation(s)
- Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
226
|
Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Med Gas Res 2016; 6:194-205. [PMID: 28217291 PMCID: PMC5223310 DOI: 10.4103/2045-9912.196901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Hailian Wang
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peiying Li
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Xu
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ling Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengfei Cai
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqin Gao
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
227
|
Magnetic resonance imaging detection of multiple ischemic injury produced in an adult rat model of minor stroke followed by mild transient cerebral ischemia. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:175-188. [PMID: 27815649 PMCID: PMC5364243 DOI: 10.1007/s10334-016-0597-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To determine whether cumulative brain damage produced adjacent to a minor stroke that is followed by a mild transient ischemia is detectable with MRI and histology, and whether acute or chronic recovery between insults influences this damage. MATERIALS AND METHODS A minor photothrombotic (PT) stroke was followed acutely (1-2 days) or chronically (7 days) by a mild transient middle cerebral artery occlusion (tMCAO). MRI was performed after each insult, followed by final histology. RESULTS The initial PT produced small hyperintense T2 and DW infarct lesions and peri-lesion regions of scattered necrosis and modestly increased T2. Following tMCAO, in a slice and a region adjacent to the PT, a region of T2 augmentation was observed when recovery between insults was acute but not chronic. Within the PT slice, a modest region of exacerbated T2 change proximate to the PT was also observed in the chronic group. Corresponding histological changes within regions of augmented T2 included increased vacuolation and cell death. CONCLUSION Within regions adjacent to an experimental minor stroke, a recurrence of a mild transient cerebral ischemia augmented T2 above increases produced by tMCAO alone, reflecting increased damage in this region. Exacerbation appeared broader with acute versus chronic recovery between insults.
Collapse
|
228
|
Ren C, Li S, Wang B, Han R, Li N, Gao J, Li X, Jin K, Ji X. Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain. Behav Brain Res 2016; 340:87-93. [PMID: 27780723 DOI: 10.1016/j.bbr.2016.10.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that limb remote ischemic conditioning (LRIC) treatment promotes arteriogenesis and increases Notch signaling activity during stroke recovery. METHODS Adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO). LRIC was applied after the onset of focal ischemia (per-conditioning), followed by repeated short episodes of remote ischemia 24h after reperfusion (post-conditioning). Cerebral blood flow (CBF) was measured by Laser Doppler Flowmetry. Immunohistochemistry was used to reveal α-smooth muscle actin (α-SMA) immunopositive cells in the arteries of the brain. The cerebral angioarchitecture was visualized with a latex perfusion technique. RESULTS LRIC treatment significantly elevated local cerebral blood flow and increased arteriogenesis as indicated by increased arterial diameter and vascular smooth muscle cell proliferation in the ischemic brain. The increased arteriogenesis significantly correlated with the functional outcome after stroke. Furthermore, LRIC treatment upregulated the expressions of Notch1 and Notch intracellular domain (NICD) in arteries surrounding the ischemic area. CONCLUSION These results suggest that the therapeutic effects of LRIC may involve the promotion of arteriogenesis during the recovery phase after focal cerebral ischemia and that Notch1 signaling seems to be an important player in limb remote ischemia-mediated arteriogenesis.
Collapse
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, TX 76107, USA; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Sijie Li
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Brian Wang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Rongrong Han
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Jinhuan Gao
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaohua Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Kunlin Jin
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China.
| |
Collapse
|
229
|
Li Y, Choi WJ, Qin W, Baran U, Habenicht LM, Wang RK. Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo. J Neurosci Methods 2016; 274:164-171. [PMID: 27751893 DOI: 10.1016/j.jneumeth.2016.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Arteriogenesis describes the active growth of the pre-existing collateral arterioles, which is a crucial tissue-saving process in occlusive vascular diseases. NEW METHOD We propose to use optical coherence tomography (OCT)-based microangiography (OMAG) to monitor arteriogenesis following artery transection in mouse ear and focal stroke in mouse brain. RESULTS Our longitudinal mouse ear study shows that the growth phase of arteriogenesis, indicated by changes in collateral vessel diameter and velocity, occurs between 12 and 24h after vessel transection. Additionally, the magnitude of local inflammation is consistent with the time course of arteriogenesis, judging by the tissue thickness measurement and lymphatic vessel signals in OCT. In the mouse brain study, collateral vessel morphology, blood flow velocity and directionality are identified, and an activation of the collateral flow at the arteriolo-arteriolar anastomoses (AAA) is observed during stroke. COMPARISON WITH EXISTING METHODS In comparison with histology and fluorescence imaging, OCT/OMAG is completely non-invasive and capable of producing consistent results of longitudinal changes in collateral vessel morphology and vasodynamics. CONCLUSION OCT/OMAG is a promising imaging tool for longitudinal study of collateral vessel remodeling in small animals. This technique can be applied in guiding the in vivo experiments of arteriogenesis stimulation to treat occlusive vascular diseases, including stroke.
Collapse
Affiliation(s)
- Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Woo June Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Wan Qin
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Utku Baran
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Lauren M Habenicht
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
230
|
Jiang X, Pu H, Hu X, Wei Z, Hong D, Zhang W, Gao Y, Chen J, Shi Y. A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Transl Stroke Res 2016; 7:548-561. [PMID: 27714669 DOI: 10.1007/s12975-016-0502-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 02/03/2023]
Abstract
White matter injury induced by ischemic stroke elicits sensorimotor impairments, which can be further deteriorated by persistent proinflammatory responses. We previously reported that delayed and repeated treatments with omega-3 polyunsaturated fatty acids (n-3 PUFAs) improve spatial cognitive functions and hippocampal integrity after ischemic stroke. In the present study, we report a post-stroke n-3 PUFA therapeutic regimen that not only confers protection against neuronal loss in the gray matter but also promotes white matter integrity. Beginning 2 h after 60 min of middle cerebral artery occlusion (MCAO), mice were randomly assigned to receive intraperitoneal docosahexaenoic acid (DHA) injections (10 mg/kg, daily for 14 days), alone or in combination with dietary fish oil (FO) supplements starting 5 days after MCAO. Sensorimotor functions, gray and white matter injury, and microglial responses were examined up to 28 days after MCAO. Our results showed that DHA and FO combined treatment-facilitated long-term sensorimotor recovery and demonstrated greater beneficial effect than DHA injections alone. Mechanistically, n-3 PUFAs not only offered direct protection on white matter components, such as oligodendrocytes, but also potentiated microglial M2 polarization, which may be important for white matter repair. Notably, the improved white matter integrity and increased M2 microglia were strongly linked to the mitigation of sensorimotor deficits after stroke upon n-3 PUFA treatments. Together, our results suggest that post-stroke DHA injections in combination with FO dietary supplement benefit white matter restoration and microglial responses, thereby dictating long-term functional improvements.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Zhishuo Wei
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Hong
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wenting Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
231
|
Ma J, Zhang L, He G, Tan X, Jin X, Li C. Transcutaneous auricular vagus nerve stimulation regulates expression of growth differentiation factor 11 and activin-like kinase 5 in cerebral ischemia/reperfusion rats. J Neurol Sci 2016; 369:27-35. [DOI: 10.1016/j.jns.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
232
|
Dong W, Xian Y, Yuan W, Huifeng Z, Tao W, Zhiqiang L, Shan F, Ya F, Hongli W, Jinghuan W, Lei Q, Li Z, Hongyi Q. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:169-179. [PMID: 27301615 DOI: 10.1016/j.jep.2016.06.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 05/25/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Catalpol is the main active component of the radix from Rehmannia glutinosa Libosch, which has pleiotropic protective effects in neurodegenerative diseases, ischemic stroke, metabolic disorders and others AIM Catalpol has been shown to have neuroprotective, neurorepair, and angiogenesis effects following ischemic brain injury. However, its molecular mechanisms are still poorly understood. In previous studies, the JAK2/STAT3 signaling pathway was found to play a role in neuroprotection and angiogenesis. This study investigated the role of catalpol in stimulating angiogenesis via the JAK2/STAT3 pathway after permanent focal cerebral ischemia (pMCAO). METHODS Rats were subjected to right middle cerebral artery occlusion through electrocoagulation and were treated with catalpol (5mg/kg), AG490 was also used to inhibit STAT3 phosphorylation (pSTAT3). RESULTS Following stroke, Catalpol improved the neuroethology deficit, increased the cerebral blood flow (CBF) of infarcted brain and upregulated EPO and EPOR. AG490 suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), ultimately inhibited VEGF mRNA expression, which reduced VEGF protein expression and inhibited stroke-induced angiogenesis. However, Catalpol enhanced stroke-induced STAT3 activation and subsequently restored STAT3 activity through the recovery of STAT3 binding to VEGF. Moreover, Catalpol reversed the effect of AG490 on STAT3 activation and nuclear translocation, restored the transcriptional activity of the VEGF promoter by recruiting STAT3 to the VEGF promoter, improved VEGF mRNA and protein expression, increased angiogenesis, reduced the difference in CBF between the infarcted and intact brain and ameliorated the neuroethology behaviors after stroke. CONCLUSION Catalpol affects neuroprotection and angiogenesis via the JAK2/STAT3 signaling pathway, which is mediated by STAT3 activation and VEGF expression. Catalpol may be used as a potential therapeutic drug for stroke.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Cerebral Arteries/drug effects
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebrovascular Circulation/drug effects
- Disease Models, Animal
- Erythropoietin/metabolism
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Iridoid Glucosides/pharmacology
- Janus Kinase 2/metabolism
- Male
- Neovascularization, Physiologic/drug effects
- Neuroprotective Agents/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transcriptional Activation
- Up-Regulation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Wan Dong
- Department of Emergency, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xian
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu 610041, China
| | - Wang Yuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zhu Huifeng
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Wang Tao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Liu Zhiqiang
- Department of Pharmacy, The First People's Hospital of Neijiang, Neijiang 641000, China
| | - Feng Shan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Fu Ya
- College of Chemistry and Chemical Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wang Hongli
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Wang Jinghuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qin Lei
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zou Li
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qi Hongyi
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
233
|
Ginsberg MD. Expanding the concept of neuroprotection for acute ischemic stroke: The pivotal roles of reperfusion and the collateral circulation. Prog Neurobiol 2016; 145-146:46-77. [PMID: 27637159 DOI: 10.1016/j.pneurobio.2016.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/22/2016] [Accepted: 09/10/2016] [Indexed: 12/27/2022]
Abstract
This review surveys the efforts taken to achieve clinically efficacious protection of the ischemic brain and underscores the necessity of expanding our purview to include the essential role of cerebral perfusion and the collateral circulation. We consider the development of quantitative strategies to measure cerebral perfusion at the regional and local levels and the application of these methods to elucidate flow-related thresholds of ischemic viability and to characterize the ischemic penumbra. We stress that the modern concept of neuroprotection must consider perfusion, the necessary substrate upon which ischemic brain survival depends. We survey the major mechanistic approaches to neuroprotection and review clinical neuroprotection trials, focusing on those phase 3 multicenter clinical trials for acute ischemic stroke that have been completed or terminated. We review the evolution of thrombolytic therapies; consider the lessons learned from the initial, negative multicenter trials of endovascular therapy; and emphasize the highly successful positive trials that have finally established a clinical role for endovascular clot removal. As these studies point to the brain's collateral circulation as key to successful reperfusion, we next review the anatomy and pathophysiology of collateral perfusion as it relates to ischemic infarction, as well as the molecular and genetic influences on collateral development. We discuss the current MR and CT-based diagnostic methods for assessing the collateral circulation and the prognostic significance of collaterals in ischemic stroke, and we consider past and possible future therapeutic directions.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
234
|
Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 2016; 28:556-64. [PMID: 26402408 DOI: 10.1097/wco.0000000000000248] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Angiogenesis or vascular reorganization plays a role in recovery after stroke and traumatic brain injury (TBI). In this review, we have focused on two major events that occur during stroke and TBI from a vascular perspective - what is the process and time course of blood-brain barrier (BBB) breakdown? and how does the surrounding vasculature recover and facilitate repair? RECENT FINDINGS Despite differences in the primary injury, the BBB changes overlap between stroke and TBI. Disruption of BBB involves a series of events: formation of caveolae, trans and paracellular disruption, tight junction breakdown and vascular disruption. Confounding factors that need careful assessment and standardization are the severity, duration and extent of the stroke and TBI that influences BBB disruption. Vascular repair proceeds through long-term neovascularization processes: angiogenesis, arteriogenesis and vasculogenesis. Enhancing each of these processes may impart beneficial effects in endogenous recovery. SUMMARY Our understanding of BBB breakdown acutely after the cerebrovascular injury has come a long way; however, we lack a clear understanding of the course of BBB disruption and BBB recovery and the evolution of individual cellular events associated with BBB change. Neovascularization responses have been widely studied in stroke for their role in functional recovery but the role of vascular reorganization after TBI in recovery is much less defined.
Collapse
|
235
|
Pu H, Jiang X, Hu X, Xia J, Hong D, Zhang W, Gao Y, Chen J, Shi Y. Delayed Docosahexaenoic Acid Treatment Combined with Dietary Supplementation of Omega-3 Fatty Acids Promotes Long-Term Neurovascular Restoration After Ischemic Stroke. Transl Stroke Res 2016; 7:521-534. [PMID: 27566736 DOI: 10.1007/s12975-016-0498-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
Abstract
Prophylactic dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been shown to remarkably ameliorate ischemic brain injury. However, the therapeutic efficacy of n-3 PUFA administration post-stroke, especially its impact on neurovascular remodeling and long-term neurological recovery, has not been fully characterized thus far. In this study, we investigated the effect of n-3 PUFA supplementation, as well as in combination with docosahexaenoic acid (DHA) injections, on long-term stroke outcomes. Mice were subjected to transient middle cerebral artery occlusion (MCAO) before randomly assigned to four groups to receive the following: (1) low dose of n-3 PUFAs as the vehicle control, (2) intraperitoneal DHA injections, (3) n-3 PUFA dietary supplement, or (4) combined treatment of (2) and (3). Neurological deficits and brain atrophy, neurogenesis, angiogenesis, and glial scar formation were assessed up to 28 days after MCAO. Results revealed that groups 2 and 3 showed only marginal reduction in post-stroke tissue loss and attenuation of cognitive deficits. Interestingly, group 4 exhibited significantly reduced tissue atrophy and improved cognitive functions compared to groups 2 and 3 with just a single treatment. Mechanistically, the combined treatment promoted post-stroke neurogenesis and angiogenesis, as well as reduced glial scar formation, all of which significantly correlated with the improved spatial memory in the Morris water maze. These results demonstrate an effective therapeutic regimen to enhance neurovascular restoration and long-term cognitive recovery in the mouse model of MCAO. Combined post-stroke DHA treatment and n-3 PUFA dietary supplementation thus may be a potential clinically translatable therapy for stroke or related brain disorders.
Collapse
Affiliation(s)
- Hongjian Pu
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.,State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jinchao Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Hong
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wenting Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jun Chen
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA. .,State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Yejie Shi
- Geriatric Research, Educational, and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA. .,Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
236
|
Yousuf S, Atif F, Sayeed I, Wang J, Stein DG. Neuroprotection by progesterone after transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Horm Behav 2016; 84:29-40. [PMID: 27283379 DOI: 10.1016/j.yhbeh.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/11/2016] [Accepted: 06/04/2016] [Indexed: 11/26/2022]
Abstract
We investigated the neuroprotective effects of progesterone (P4) treatment in stroke-prone spontaneously hypertensive rats (SHRSPs) given 60-min transient middle cerebral artery occlusion (tMCAO). The treatment groups were: (1) Wistar-Kyoto (normotensive sham), (2) SHRSP (hypertensive sham), (3) tMCAO SHRSPs (SHRSP+tMCAO), and (4) SHRSP+tMCAO+P4. P4 (8mg/kg) was administered 1h after occlusion and then daily for 14days. We measured cerebral infarction volume, blood pressure and body weight. Behavioral outcomes were analyzed at post-stroke days 3, 9, and 14. To assess morphological protection we measured activation of microglia and astrocytes, oxidative stress, apoptosis, expression of vascular endothelial growth factor (VEGF), an angiogenic marker, and IL-1β, a marker of inflammation, on day 14 post-stroke. There was no effect of P4 on body weight or systolic blood pressure compared to the SHRSP+tMCAO group. However, grip strength and sensory neglect measures in the P4 group were improved compared to SHRSP+tMCAO. In addition, significantly larger infarct volumes were seen in the SHRSP+tMCAO group compared to SHRSP+tMCAO+P4. Increased markers of the injury cascade such as macrophages, activated astrocytes, superoxide anion and apoptotic cells observed in the SHRSP+tMCAO group were significantly decreased by P4. We conclude that, despite hypertensive comorbidity, P4 improves functional outcomes and attenuates stroke infarct in hypertensive rats by reducing superoxide anion expression and by decreasing inflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Seema Yousuf
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Jun Wang
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
237
|
He B, Yao Q, Liang Z, Lin J, Xie Y, Li S, Wu G, Yang Z, Xu P. The Dose of Intravenously Transplanted Bone Marrow Stromal Cells Determines the Therapeutic Effect on Vascular Remodeling in a Rat Model of Ischemic Stroke. Cell Transplant 2016; 25:2173-2185. [PMID: 27480476 DOI: 10.3727/096368916x692627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The therapeutic benefits of bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation for ischemic stroke have been extensively demonstrated. However, studies on the optimal cell dose for intravenous administration are still limited. This study aimed to determine an appropriate cell dose for BM-MSC intravenous transplantation and to investigate the effect of cell dose on vascular remodeling in a rat model of ischemic stroke. BM-MSCs at doses of 5104 (low-dose group), 5105 (medium-dose group), and 2106 (high-dose group) were intravenously injected into rats at 72 h after ischemia. The therapeutic efficacy of BM-MSCs was evaluated by measuring infarct volume, vascular diameters, capillary area in the peri-infarct zone, level of basic fibroblast growth factor (bFGF) in the peri-infarct zone, and serum vascular endothelial growth factor (VEGF) level at 7 days after ischemia. Compared with the low-dose and control groups, medium-dose and high-dose BM-MSC transplantation significantly reduced the volume of the infarct area, enlarged the diameters of pial vessels and the basilar artery, and increased the capillary area in the peri-infarct zone of the cerebral cortex. Furthermore, transplanted BM-MSCs elevated the expressions of bFGF in the peri-infarct zone and the serum VEGF level. Administration of 5105 BM-MSCs is an appropriate cell dose for ischemic stroke therapy in rats. These findings may be helpful for designing future clinical trials.
Collapse
|
238
|
Cen Y, Liu J, Qin Y, Liu R, Wang H, Zhou Y, Wang S, Hu Z. Denervation in Femoral Artery-Ligated Hindlimbs Diminishes Ischemic Recovery Primarily via Impaired Arteriogenesis. PLoS One 2016; 11:e0154941. [PMID: 27175510 PMCID: PMC4866779 DOI: 10.1371/journal.pone.0154941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/21/2016] [Indexed: 12/03/2022] Open
Abstract
Aims Multiple factors regulate arteriogenesis. Peripheral nerves play a crucial role in vascular remodeling, but the function of peripheral nerves during arteriogenesis is obscure. Our study investigated the contribution of denervation to arteriogenesis during post-ischemic recovery from hindlimb femoral artery ligation. Methods and Results Sprague-Dawley rats were randomly allocated into four groups of normal control (NC), hindlimb ischemia (HI), hindlimb ischemia with denervation (HID) and hindlimb simple denervation (HD). Hindlimb ischemic recovery was assessed by clinical assessment and tibialis anterior muscle remodeling on day 28 post-surgery. Blood flow was determined by laser Doppler imaging on day 0, 3, 7, 14 and 28 post-surgery. Collateral number of hindlimb was observed by angiography and gracilis muscles were tested by immunostaining on day 7 and 28 post-surgery. Angiogenesis was accessed by counting CD31 positive capillaries in tibialis anterior muscles on day 28 post-surgery. Group HID showed impaired ischemic recovery compared with the other 3 groups and impaired blood flow recovery compared with group HI on day 28 post-surgery. The collateral number and capillary density of group HID were lower than group HI. The collateral diameter of both group HID and group HI significantly increased compared with group NC. However, the lumen diameter was much narrower and the vessel wall was much thicker in group HID than group HI. We also demonstrated that the thickened neointima of collaterals in group HID comprised of smooth muscle cells and endothelial cells. Conclusions Denervation of the ligated femoral artery in the hindlimb impairs ischemic recovery via impaired perfusion. The possible mechanisms of impaired perfusion are lower collateral number, lower capillary density and most likely narrower lumen, which damage ischemic recovery. This study illustrates the crucial role of peripheral nerves in arteriogenesis using a model combined ischemia with denervation in hindlimb.
Collapse
Affiliation(s)
- Yinghuan Cen
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuansen Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huijin Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Zhou
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuojun Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
239
|
Iwasawa E, Ichijo M, Ishibashi S, Yokota T. Acute development of collateral circulation and therapeutic prospects in ischemic stroke. Neural Regen Res 2016; 11:368-71. [PMID: 27127459 PMCID: PMC4828985 DOI: 10.4103/1673-5374.179033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein.
Collapse
Affiliation(s)
- Eri Iwasawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiko Ichijo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
240
|
A new method for evaluating regional cerebral blood flow changes: Laser speckle contrast imaging in a C57BL/6J mouse model of photothrombotic ischemia. ACTA ACUST UNITED AC 2016; 36:174-180. [PMID: 27072958 DOI: 10.1007/s11596-016-1562-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/23/2015] [Indexed: 10/22/2022]
Abstract
The present study aimed to improve the processing of data acquired from laser speckle contrast imaging (LSCI) to provide a standardization method to explore changes in regional cerebral blood flow (rCBF) and to determine the correlations among rCBF, cerebral ischemic lesion volume and microvascular density over time in a focal ischemic region. C57BL/6J mice were subjected to focal photothrombotic (PT) ischemia. rCBF was measured using LSCI at different time points before and after PT ischemia through an intact skull. Standardized rCBF (SrCBF), defined as the ratio of rCBF measured in the ipsilateral region of interest (ROI) to that in the corresponding contralateral region, was calculated to evaluate potential changes. In addition, the volume of the ischemic lesion and the microvascular density were determined using Nissl staining and immunofluorescence, respectively. The relationships among the ischemic lesion volume, microvascular density and SrCBF were analyzed over time. The results showed that the cortical rCBF measured using LSCI following PT ischemia in the C57BL/6J mice gradually increased. Changes in the cerebral ischemic lesion volume were negatively correlated with SrCBF in the ischemic region. Changes in the microvascular density were similar to those observed in SrCBF. Our findings indicate that LSCI is a practical technique for observing changes in murine cortical rCBF without skull opening and for analyzing the relationships among the ischemic lesion volume, microvascular density and SrCBF following focal cerebral ischemia. Preliminary results also suggest that the use of LSCI to observe the formation of collateral circulation is feasible.
Collapse
|
241
|
Hayakawa K, Pham LDD, Seo JH, Miyamoto N, Maki T, Terasaki Y, Sakadžić S, Boas D, van Leyen K, Waeber C, Kim KW, Arai K, Lo EH. CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. J Cereb Blood Flow Metab 2016; 36:781-93. [PMID: 26661156 PMCID: PMC4821018 DOI: 10.1177/0271678x15606148] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023]
Abstract
There are numerous barriers to white matter repair after central nervous system injury and the underlying mechanisms remain to be fully understood. In this study, we propose the hypothesis that inflammatory macrophages in damaged white matter attack oligodendrocyte precursor cells via toll-like receptor 4 signaling thus interfering with this endogenous progenitor recovery mechanism. Primary cell culture experiments demonstrate that peritoneal macrophages can attack and digest oligodendrocyte precursor cells via toll-like receptor 4 signaling, and this phagocytosis of oligodendrocyte precursor cells can be inhibited by using CD200-Fc to downregulate toll-like receptor 4. In an in vivo model of white matter ischemia induced by endothelin-1, treatment with CD200-Fc suppressed toll-like receptor 4 expression in peripherally circulating macrophages, thus restraining macrophage phagocytosis of oligodendrocyte precursor cells and leading to improved myelination. Taken together, these findings suggest that deleterious macrophage effects may occur after white matter ischemia, whereby macrophages attack oligodendrocyte precursor cells and interfere with endogenous recovery responses. Targeting this pathway with CD200 may offer a novel therapeutic approach to amplify endogenous oligodendrocyte precursor cell-mediated repair of white matter damage in mammalian brain.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Ji Hae Seo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Yasukazu Terasaki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Sava Sakadžić
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - David Boas
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Kyu-Won Kim
- NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| |
Collapse
|
242
|
Abstract
Stroke not only causes initial cell death, but also a limited process of repair and recovery. As an overall biological process, stroke has been most often considered from the perspective of early phases of ischemia, how these inter-relate and lead to expansion of the infarct. However, just as the biology of later stages of stroke becomes better understood, the clinical realities of stroke indicate that it is now more a chronic disease than an acute killer. As an overall biological process, it is now more important to understand how early cell death leads to the later, limited recovery so as develop an integrative view of acute to chronic stroke. This progression from death to repair involves sequential stages of primary cell death, secondary injury events, reactive tissue progenitor responses, and formation of new neuronal circuits. This progression is radial: from the tissue that suffers the infarct secondary injury signals, including free radicals and inflammatory cytokines, radiate out from the stroke core to trigger later regenerative events. Injury and repair processes occur not just in the local stroke site, but are also triggered in the connected networks of neurons that had existed in the stroke center: damage signals are relayed throughout a brain network. From these relayed, distributed damage signals, reactive astrocytosis, inflammatory processes, and the formation of new connections occur in distant brain areas. In short, emerging data in stroke cell death studies and the development of the field of stroke neural repair now indicate a continuum in time and in space of progressive events that can be considered as the 3 Rs of stroke biology: radial, relayed, and regenerative.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
243
|
Abstract
The Pangu Stroke Conference has been held annually in China since 2012 and is based on the successful templates of the Princeton Stroke Conference in the United States and the Marburg Conference on Cerebral Ischemia in Germany. All participants in the Pangu Stroke Conference are expert stroke clinicians or stroke basic science researchers of Chinese origin. This conference promotes collaboration between clinicians and basic science researchers and between stroke researchers in mainland China and other parts of the world. The Pangu Stroke Conference fosters translational stroke research, discussions of stroke research milestones, and proposals for future directions. Some of the keynote presentations in the third Pangu Stroke Conference are included in this special issue.
Collapse
|
244
|
Zhang Q, You J, Volkow ND, Choi J, Yin W, Wang W, Pan Y, Du C. Chronic cocaine disrupts neurovascular networks and cerebral function: optical imaging studies in rodents. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26006. [PMID: 26868475 PMCID: PMC4750463 DOI: 10.1117/1.jbo.21.2.026006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/14/2016] [Indexed: 05/05/2023]
Abstract
Cocaine abuse can lead to cerebral strokes and hemorrhages secondary to cocaine's cerebrovascular effects, which are poorly understood. We assessed cocaine's effects on cerebrovascular anatomy and function in the somatosensory cortex of the rat's brain. Optical coherence tomography was used for in vivo imaging of three-dimensional cerebral blood flow (CBF) networks and to quantify CBF velocities (CBFv), and multiwavelength laser-speckle-imaging was used to simultaneously measure changes in CBFv, oxygenated (Δ[HbO2] ) and deoxygenated hemoglobin (Δ[HbR] ) concentrations prior to and after an acute cocaine challenge in chronically cocaine exposed rats. Immunofluorescence techniques on brain slices were used to quantify microvasculature density and levels of vascular endothelial growth factor (VEGF). After chronic cocaine (2 and 4 weeks), CBFv in small vessels decreased, whereas vasculature density and VEGF levels increased. Acute cocaine further reduced CBFv and decreased Δ[HbO2] and this decline was larger and longer lasting in 4 weeks than 2 weeks cocaine-exposed rats, which indicates that risk for ischemia is heightened during intoxication and that it increases with chronic exposures. These results provide evidence of cocaine-induced angiogenesis in cortex. The CBF reduction after chronic cocaine exposure, despite the increases in vessel density, indicate that angiogenesis was insufficient to compensate for cocaine-induced disruption of cerebrovascular function.
Collapse
Affiliation(s)
- Qiujia Zhang
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
- Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Department of Neurology, Wuhan 430030, China
| | - Jiang You
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20857, United States
| | - Jeonghun Choi
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
| | - Wei Yin
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
| | - Wei Wang
- Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Department of Neurology, Wuhan 430030, China
| | - Yingtian Pan
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
| | - Congwu Du
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
- Address all correspondence to: Congwu Du, E-mail:
| |
Collapse
|
245
|
Chang SW, Huang YC, Lin LC, Yang JT, Weng HH, Tsai YH, Lee TH. Effect of dehydration on the development of collaterals in acute middle cerebral artery occlusion. Eur J Neurol 2016; 23:494-500. [PMID: 26801969 DOI: 10.1111/ene.12841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/03/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Recent large series studies have demonstrated that dehydration is common amongst stroke subjects and is associated with poor outcome. However, the effects of hydration status on the development of collaterals have never been discussed. In this study, the hypothesis that hydration status is an important factor for developing collaterals after acute middle cerebral artery (MCA) infarction was tested. METHODS Eighty-seven patients with acute infarction due to occlusion of the MCA were enrolled. Two collateral markers, posterior cerebral artery (PCA) laterality and fluid-attenuated inversion recovery hyperintense vessels (HVs) were assessed from magnetic resonance imaging. Dehydration status was defined by a nitrogen to creatinine ratio ≧ of 15. The associations between dehydration status and the development of collaterals were estimated. RESULTS Sixty-one of 87 patients (70.1%) were identified as dehydrated. The development of PCA laterality and HVs shows a significant difference between dehydrated and euhydrated patients. A serum nitrogen to creatinine ratio <15, diastolic blood pressure and the presence of a dense MCA on computed tomography were significantly associated with the development of PCA laterality. A serum nitrogen to creatinine ratio <15, the initial National Institutes of Health Stroke Scale score, the presence of a dense MCA and calcifications of the internal carotid artery on computed tomography were significantly associated with the development of HVs. Dehydration remained an independent negative predictor for the development of PCA laterality and HVs in the multivariate analysis. CONCLUSIONS Hydration status is associated with the development of collateral flow after acute MCA occlusion. This preliminary study provides an imaging clue that hydration status and early hydration therapy could be important for acute stroke management.
Collapse
Affiliation(s)
- S-W Chang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y-C Huang
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - L-C Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - J-T Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - H-H Weng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y-H Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - T-H Lee
- Stroke Center and Department of Neurology, Linkou Medical Center, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
246
|
Chen J, Leak RK, Yang GY. Perspective for stroke and brain injury research: mechanisms and potential therapeutic targets. CNS Neurosci Ther 2015; 21:301-3. [PMID: 25809674 DOI: 10.1111/cns.12392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
247
|
Liu Y, Wan Y, Fang Y, Yao E, Xu S, Ning Q, Zhang G, Wang W, Huang X, Xie M. Epoxyeicosanoid Signaling Provides Multi-target Protective Effects on Neurovascular Unit in Rats After Focal Ischemia. J Mol Neurosci 2015; 58:254-65. [DOI: 10.1007/s12031-015-0670-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023]
|
248
|
Caleo M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience 2015; 311:180-94. [PMID: 26493858 DOI: 10.1016/j.neuroscience.2015.10.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
Ischemic injuries within the motor cortex result in functional deficits that may profoundly impact activities of daily living in patients. Current rehabilitation protocols achieve only limited recovery of motor abilities. The brain reorganizes spontaneously after injury, and it is believed that appropriately boosting these neuroplastic processes may restore function via recruitment of spared areas and pathways. Here I review studies on circuit reorganization, neuronal and glial plasticity and axonal sprouting following ischemic damage to the forelimb motor cortex, with a particular focus on rodent models. I discuss evidence pointing to compensatory take-over of lost functions by adjacent peri-lesional areas and the role of the contralesional hemisphere in recovery. One key issue is the need to distinguish "true" recovery (i.e. re-establishment of original movement patterns) from compensation in the assessment of post-stroke functional gains. I also consider the effects of physical rehabilitation, including robot-assisted therapy, and the potential mechanisms by which motor training induces recovery. Finally, I describe experimental approaches in which training is coupled with delivery of plasticizing drugs that render the remaining, undamaged pathways more sensitive to experience-dependent modifications. These combinatorial strategies hold promise for the definition of more effective rehabilitation paradigms that can be translated into clinical practice.
Collapse
Affiliation(s)
- M Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
249
|
Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J. G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 2015; 272:135-44. [PMID: 25585014 PMCID: PMC4499024 DOI: 10.1016/j.expneurol.2014.12.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Neonatal hypoxia occurs in approximately 60% of premature births and is associated with a multitude of neurological disorders. While various treatments have been developed, translating them from bench to bedside has been limited. We previously showed G-CSF administration was neuroprotective in a neonatal hypoxia-ischemia rat pup model, leading us to hypothesize that G-CSF inactivation of GSK-3β via the PI3K/Akt pathway may attenuate neuroinflammation and stabilize the blood-brain barrier (BBB). METHODS P10 Sprague-Dawley rat pups were subjected to unilateral carotid artery ligation followed by hypoxia for 2.5h. We assessed inflammation by measuring expression levels of IKKβ, NF-κB, TNF-α, IL-1β, IL-10, and IL-12 as well as neutrophil infiltration. BBB stabilization was evaluated by measuring Evans blue extravasation, and Western blot analysis of Claudin-3, Claudin-5, ICAM-1, and VCAM-1. MEASUREMENTS AND MAIN RESULTS First, the time course study showed that p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels peaked at 48h post-HI. The knockdown of GSK-3β with siRNA prevented the HI-induced increase of p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels 48h after HI. G-CSF treatment reduced brain water content and neuroinflammation by downregulating IKKβ, NF-κB, TNF-α, IL-1β, and IL-12 and upregulating IL-10, thereby reducing neutrophil infiltration. Additionally, G-CSF stabilizes the BBB by downregulating VCAM-1 and ICAM-1, as well as upregulating Claudins 3 and 5 in endothelial cells. G-CSFR knockdown by siRNA and Akt inhibition by Wortmannin reversed G-CSF's neuroprotective effects. CONCLUSIONS We demonstrate G-CSF plays a pivotal role in attenuating neuroinflammation and BBB disruption following HI by inactivating GSK-3β through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li Li
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Devin W McBride
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Brandon J Dixon
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Paul R Krafft
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
250
|
Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, Ihara M, Daimon T, Yamahara K, Doi K, Kohara N, Nishimura H, Matsuyama T, Naritomi H, Sakai N, Nagatsuka K. Intravenous Autologous Bone Marrow Mononuclear Cell Transplantation for Stroke: Phase1/2a Clinical Trial in a Homogeneous Group of Stroke Patients. Stem Cells Dev 2015; 24:2207-18. [PMID: 26176265 PMCID: PMC4582686 DOI: 10.1089/scd.2015.0160] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The goal of this clinical trial was to assess the feasibility and safety of transplanting autologous bone marrow mononuclear cells into patients suffering severe embolic stroke. Major inclusion criteria included patients with cerebral embolism, age 20–75 years, National Institute of Health Stroke Scale (NIHSS) score displaying improvement of ≤5 points during the first 7 days after stroke, and NIHSS score of ≥10 on day 7 after stroke. Bone marrow aspiration (25 or 50 mL; N = 6 patients in each case) was performed 7–10 days poststroke, and bone marrow mononuclear cells were administrated intravenously. Mean total transplanted cell numbers were 2.5 × 108 and 3.4 × 108 cells in the lower and higher dose groups, respectively. No apparent adverse effects of administering bone marrow cells were observed. Compared with the lower dose, patients receiving the higher dose of bone marrow cells displayed a trend toward improved neurologic outcomes. Compared with 1 month after treatment, patients receiving cell therapy displayed a trend toward improved cerebral blood flow and metabolic rate of oxygen consumption 6 months after treatment. In comparison with historical controls, patients receiving cell therapy had significantly better neurologic outcomes. Our results indicated that intravenous transplantation of autologous bone marrow mononuclear cells is safe and feasible. Positive results and trends favoring neurologic recovery and improvement in cerebral blood flow and metabolism by cell therapy underscore the relevance of larger scale randomized controlled trials using this approach.
Collapse
Affiliation(s)
- Akihiko Taguchi
- 1 Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation , Kobe, Japan .,2 Department of Neurology, National Cerebral and Cardiovascular Center , Suita, Japan
| | - Chiaki Sakai
- 3 Department of Endovascular Therapy, Institute of Biomedical Research and Innovation , Kobe, Japan .,4 Department of Neurosurgery, Kobe City Medical Center General Hospital , Kobe, Japan
| | - Toshihiro Soma
- 5 Department of Hematology, Hyogo College of Medicine , Nishinomiya, Japan
| | - Yukiko Kasahara
- 1 Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation , Kobe, Japan
| | - David M Stern
- 6 Executive Dean's Office, University of Tennessee , Memphis, Tennessee
| | - Katsufumi Kajimoto
- 2 Department of Neurology, National Cerebral and Cardiovascular Center , Suita, Japan
| | - Masafumi Ihara
- 1 Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation , Kobe, Japan .,2 Department of Neurology, National Cerebral and Cardiovascular Center , Suita, Japan
| | - Takashi Daimon
- 7 Department of Biostatistics, Hyogo College of Medicine , Nishinomiya, Japan
| | - Kenichi Yamahara
- 8 Department of Regenerative Medicine, National Cerebral and Cardiovascular Center , Suita, Japan
| | - Kaori Doi
- 9 Department of Nursing, National Cerebral and Cardiovascular Center , Suita, Japan
| | - Nobuo Kohara
- 10 Department of Neurology, Kobe City Medical Center General Hospital , Kobe, Japan
| | - Hiroyuki Nishimura
- 11 Department of Neurology, Nishinomiya Kyoritsu Neurosurgical Hospital , Nishinomiya, Japan
| | - Tomohiro Matsuyama
- 12 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Nishinomiya, Japan
| | - Hiroaki Naritomi
- 2 Department of Neurology, National Cerebral and Cardiovascular Center , Suita, Japan
| | - Nobuyuki Sakai
- 3 Department of Endovascular Therapy, Institute of Biomedical Research and Innovation , Kobe, Japan .,4 Department of Neurosurgery, Kobe City Medical Center General Hospital , Kobe, Japan
| | - Kazuyuki Nagatsuka
- 2 Department of Neurology, National Cerebral and Cardiovascular Center , Suita, Japan
| |
Collapse
|