201
|
Hoang CT, Hong Y, Truong AD, Lee J, Lee K, Hong YH. Molecular cloning of chicken interleukin-17B, which induces proinflammatory cytokines through activation of the NF-κB signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:40-48. [PMID: 28416436 DOI: 10.1016/j.dci.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Interleukin (IL)-17B is a little known member of the IL-17 cytokine family, which plays an important role in immunity by regulating the expression of proinflammatory cytokines. In this study, we determined the coding sequence and biological functions of a novel chicken IL-17B (chIL-17B). The full-length chIL-17B coding sequence includes 567 nucleotides encoding 188 amino acids, which was identified in small intestinal epithelial cells. The chIL-17B protein shares 96.48% amino acid sequence identity with turkey, 92.57% with duck, and 44.92-64.06% with mammalian IL-17B proteins. ChIL-17B shares three exons and two introns with mammals, turkey, and duck. Moreover, IL-17B mRNA was more highly expressed than IL-17A mRNA in several organs of chickens infected with Salmonella and was upregulated in chicken cell lines following LPS stimulation. In addition, in chicken cell lines, chIL-17B induced the mRNA expression of several proinflammatory cytokines, including IL-1β, IL-6, LITAF, and INF-γ, but not IL-17A, and activated MyD88, TAK1, NF-κB1, and SOCS1, which are associated with the NF-κB signaling pathway. Taken together, chicken interleukin-17B plays a critical role in host defense against the bacterial pathogens, and regulates proinflammatory cytokines by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cong Thanh Hoang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
202
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
203
|
Spontaneous activation of a MAVS-dependent antiviral signaling pathway determines high basal interferon-β expression in cardiac myocytes. J Mol Cell Cardiol 2017; 111:102-113. [PMID: 28822807 DOI: 10.1016/j.yjmcc.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
Viral myocarditis is a leading cause of sudden death in young adults as the limited turnover of cardiac myocytes renders the heart particularly vulnerable to viral damage. Viruses induce an antiviral type I interferon (IFN-α/β) response in essentially all cell types, providing an immediate innate protection. Cardiac myocytes express high basal levels of IFN-β to help pre-arm them against viral infections, however the mechanism underlying this expression remains unclear. Using primary cultures of murine cardiac and skeletal muscle cells, we demonstrate here that the mitochondrial antiviral signaling (MAVS) pathway is spontaneously activated in unstimulated cardiac myocytes but not cardiac fibroblasts or skeletal muscle cells. Results suggest that MAVS association with the mitochondrial-associated ER membranes (MAM) is a determinant of high basal IFN-β expression, and demonstrate that MAVS is essential for spontaneous high basal expression of IFN-β in cardiac myocytes and the heart. Together, results provide the first mechanism for spontaneous high expression of the antiviral cytokine IFN-β in a poorly replenished and essential cell type.
Collapse
|
204
|
Wang H, Xu Q, Xu X, Hu Y, Hou Q, Zhu Y, Hu C. Ctenopharyngodon idella IKKβ interacts with PKR and IκBα. Acta Biochim Biophys Sin (Shanghai) 2017; 49:729-736. [PMID: 28673044 DOI: 10.1093/abbs/gmx065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase β (IKKβ) is a subunit of the IKK complex. It can activate the NF-κB pathway through phosphorylating IκB in response to a wide range of stimuli. In the present study, an IKKβ gene from grass carp (Ctenopharyngodon idella; KT282114) was cloned and identified by homologous cloning and rapid-amplification of cDNA ends (RACE) technique. The complete CiIKKβ cDNA is 3428 bp in length, with the longest open reading frame (ORF) of 2337 bp encoding a polypeptide of 778 amino acids. The deduced amino acid sequence of CiIKKβ has similar domain distribution to those of mammalian. For example, CiIKKβ consists of a serine/threonine kinase domain at the N-terminal, a basic region leucin zipper (BRLZ) domain in the middle, a homeobox associated leucin zipper (HALZ) domain and an IKKβ NEMO (NF-κB essential modulator) binding domain at the C-terminal. Phylogenetic tree analysis also showed that CiIKKβ is highly homologous to zebrafish IKKβ (DrIKKβ) and clearly distinct from the mammalian and amphibian counterparts. The expression of CiIKKβ was ubiquitously found in the liver, intestine, kidney, gill, spleen, heart, and brain tissues of grass carp and significantly up-regulated in CIK cells under the stimulation with Poly I:C and UV-inactivated grass carp hemorrhagic virus. To investigate the activation mechanism of NF-κB pathway in fish and the role of CiIKKβ in the pathway, we explored the protein interactions of protein kinase R (PKR) with IKKβ and IKKβ with IκBα by co-immunoprecipitation and GST-pull down assays. The interaction between each pair was confirmed. The results suggest that CiIKKβ may be a primary member in the activation of NF-κB pathway in fish.
Collapse
Affiliation(s)
- Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Qun Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yousheng Hu
- Medical College, Jinggangshan University, Ji'an 343009, China
| | - Qunhao Hou
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Youlin Zhu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| |
Collapse
|
205
|
Molecular signaling cascades involved in nonmelanoma skin carcinogenesis. Biochem J 2017; 473:2973-94. [PMID: 27679857 DOI: 10.1042/bcj20160471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the incidence continues to rise, in part due to increasing numbers in high-risk groups such as organ transplant recipients and those taking photosensitizing medications. The most significant risk factor for NMSC is ultraviolet radiation (UVR) from sunlight, specifically UVB, which is the leading cause of DNA damage, photoaging, and malignant transformation in the skin. Activation of apoptosis following UVR exposure allows the elimination of irreversibly damaged cells that may harbor oncogenic mutations. However, UVR also activates signaling cascades that promote the survival of these potentially cancerous cells, resulting in tumor initiation. Thus, the UVR-induced stress response in the skin is multifaceted and requires coordinated activation of numerous pathways controlling DNA damage repair, inflammation, and kinase-mediated signal transduction that lead to either cell survival or cell death. This review focuses on the central signaling mechanisms that respond to UVR and the subsequent cellular changes. Given the prevalence of NMSC and the resulting health care burden, many of these pathways provide promising targets for continued study aimed at both chemoprevention and chemotherapy.
Collapse
|
206
|
Jo J, Im SH, Babcock DT, Iyer SC, Gunawan F, Cox DN, Galko MJ. Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization. Cell Death Dis 2017; 8:e2786. [PMID: 28492538 PMCID: PMC5520682 DOI: 10.1038/cddis.2016.474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Babcock
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srividya C Iyer
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Felona Gunawan
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
207
|
Kim EK, Choi EJ. SMN1 functions as a novel inhibitor for TRAF6-mediated NF-κB signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:760-770. [DOI: 10.1016/j.bbamcr.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/30/2022]
|
208
|
Fowler KA, Jania CM, Tilley SL, Panoskaltsis-Mortari A, Baldwin AS, Serody JS, Coghill JM. Targeting the Canonical Nuclear Factor-κB Pathway with a High-Potency IKK2 Inhibitor Improves Outcomes in a Mouse Model of Idiopathic Pneumonia Syndrome. Biol Blood Marrow Transplant 2017; 23:569-580. [PMID: 28161607 DOI: 10.1016/j.bbmt.2017.01.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Idiopathic pneumonia syndrome (IPS) is a noninfectious inflammatory disorder of the lungs that occurs most often after fully myeloablative allogeneic hematopoietic stem cell transplantation (HSCT). IPS can be severe and is associated with high 1-year mortality rates despite existing therapies. The canonical nuclear factor-(NF) κB signaling pathway has previously been linked to several inflammatory disorders of the lung, including asthma and lung allograft rejection. It has never been specifically targeted as a novel IPS treatment approach, however. Here, we report that the IκB kinase 2 (IKK2) antagonist BAY 65-5811 or "compound A," a highly potent and specific inhibitor of the NF-κB pathway, was able to improve median survival times and recipient oxygenation in a well-described mouse model of IPS. Compound A impaired the production of the proinflammatory chemokines CCL2 and CCL5 within the host lung after transplantation. This resulted in significantly lower numbers of donor lung infiltrating CD4+ and CD8+ T cells and reduced pulmonary inflammatory cytokine production after allograft. Compound A's beneficial effects appeared to be specific for limiting pulmonary injury, as the drug was unable to improve outcomes in a B6 into B6D2 haplotype-matched murine HSCT model in which recipient mice succumb to lethal acute graft-versus-host disease of the gastrointestinal tract. Collectively, our data suggest that the targeting of the canonical NF-κB pathway with a small molecule IKK2 antagonist may represent an effective and novel therapy for the specific management of acute lung injury that can occur after allogeneic HSCT.
Collapse
Affiliation(s)
- Kenneth A Fowler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Corey M Jania
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James M Coghill
- Lineberger Comprehensive Cancer Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
209
|
Roxatidine attenuates mast cell-mediated allergic inflammation via inhibition of NF-κB and p38 MAPK activation. Sci Rep 2017; 7:41721. [PMID: 28139747 PMCID: PMC5282503 DOI: 10.1038/srep41721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/29/2016] [Indexed: 02/02/2023] Open
Abstract
Roxatidine is an active metabolite of roxatidine acetate hydrochloride which is a histamine H2-receptor antagonist that is used to treat gastric and duodenal ulcers. In this study, we investigated the anti-allergic inflammatory effects and the underlying molecular mechanism of roxatidine in phorbol 12-myristate 13-acetate and calcium ionophore (PMACI)-stimulated human mast cells-1 (HMC-1), compound 48/80-induced anaphylactic animal model and chemical allergen-induced contact hypersensitivity (CHS) models. Roxatidine suppressed the mRNA and protein expression of inflammatory cytokines such as TNF-α, IL-6, and IL-1β in PMACI-stimulated HMC-1 and compound 48/80-induced anaphylactic mice. In addition, roxatidine attenuated PMACI-induced nuclear translocation of NF-κB and the phosphorylation of MKK3/6 and MK2, which are both involved in the p38 MAPK pathway. Furthermore, we observed that roxatidine suppressed the activation of caspase-1, an IL-1β converting enzyme, in PMACI-stimulated HMC-1 and compound 48/80-induced anaphylactic mice. In CHS model, roxatidine significantly reduced ear swelling, increased number of mast cells, production levels of cytokines and migration of dendritic cells. Our findings provide evidence that the anti-allergic inflammatory properties of roxatidine are mediated by the inhibition of NF-κB and caspase-1 activation, p38 MAPK pathway and mast cell-derived cytokine production. Taken together, the in vitro and in vivo anti-allergic inflammatory effects suggest a possible therapeutic application of roxatidine in allergic inflammatory diseases.
Collapse
|
210
|
Dehydroandrographolide inhibits oral cancer cell migration and invasion through NF-κB-, AP-1-, and SP-1-modulated matrix metalloproteinase-2 inhibition. Biochem Pharmacol 2017; 130:10-20. [PMID: 28131848 DOI: 10.1016/j.bcp.2017.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Oral cancer is a type of head and neck cancer that is characterized by cancerous tissue growth in the oral cavity. Andrographolide and dehydroandrographolide (DA) are the two principal components of Andrographis paniculata (Burm.f.) Nees and are the main contributors to its therapeutic properties. However, the pharmacological activities of DA remain unclear. EXPERIMENTAL APPROACH In this study, we used wound closure assay and Boyden chamber assay to determine the effects of DA on oral cancer cell migration and invasion. KEY RESULTS DA treatment significantly inhibited the migration and invasion abilities of SCC9 cells in vitro. Gelatin zymography and Western blotting results revealed that DA inhibited MMP-2 activity and reduced its protein levels. DA inhibited the phosphorylation of ERK1/2, p38, and JNK 1/2 in SCC9 cells. According to the mRNA levels detected using real-time PCR, DA inhibited MMP-2 expression in SCC9 cells. This inhibitory effect was associated with the upregulation of the TIMP-2 and downregulation of NF-κB, AP-1, and SP-1 expression. In addition, DA suppressed carcinoma-associated epithelial-mesenchymal transition in SCC9 cells. Finally, DA administration effectively suppressed MMP-2 expression and tumor metastases in the oral carcinoma xenograft mouse model in vivo. CONCLUSIONS & IMPLICATIONS DA inhibits the invasion of human oral cancer cells and is a potential chemopreventive agent against oral cancer metastasis.
Collapse
|
211
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
212
|
Xu X, Huang D, Liu W, Sheng Z, Liang K, Li D, Zhao D, Ma Y, Zhang K, Hayat T, Alharbi NS, Li W. Evaluation of the anti-inflammatory properties of telmesteine on inflammation-associated skin diseases. RSC Adv 2017. [DOI: 10.1039/c7ra01111c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Telmesteine, a useful agent for respiratory tract disorders, has been reported to be a critical active ingredient in topical compositions for dermatitis.
Collapse
|
213
|
Zhu JH, Zhang X, McClung JP, Lei XG. Impact of Cu, Zn-Superoxide Dismutase and Se-Dependent Glutathione Peroxidase-1 Knockouts on Acetaminophen-Induced Cell Death and Related Signaling in Murine Liver. Exp Biol Med (Maywood) 2016; 231:1726-32. [PMID: 17138759 DOI: 10.1177/153537020623101109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is increasing evidence showing dual functions of antioxidant enzymes in coping with reactive oxygen species (ROS) versus reactive nitrogen species (RNS). The objective of this study was to compare the impacts of knockout of Cu, Zn-superoxide dismutase (SOD1) and Se-dependent glutathione peroxidase-1 (GPX1) on cell death and related signaling mediated by acetaminophen (APAP), a RNS inducer in liver. Two groups of young adult knockout mice (SOD1−-/– and GPX1−-/–), along with their wild types (WT), were killed 5 hrs after an ip injection of saline or APAP (300 mg/kg body wt). While the WT mice showed more hepatic necrosis and DNA breakage than the GPX1−-/– mice, the SOD1−-/– mice had essentially no positive response compared with their saline-injected controls. The APAP treatment activated liver c-jun N-terminal kinase (JNK) in the WT and GPX1−-/– mice, but not in the SOD1−-/– mice. The APAP-induced changes in other cell death-related signal proteins such as p21, caspase-3, and poly(ADP-ribose) polymerase (PARP) also were obviated in the SOD1−-/– mice. In conclusion, knockout of GPX1 did not potentiate APAP-induced cell death and related signaling, whereas the SOD1 null blocked APAP-induced hepatic JNK phosphorylation and cell death.
Collapse
Affiliation(s)
- Jian-Hong Zhu
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
214
|
Bruno PA, Morriss-Andrews A, Henderson AR, Brooks CL, Mapp AK. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling. Angew Chem Int Ed Engl 2016; 55:14997-15001. [PMID: 27791341 PMCID: PMC5587901 DOI: 10.1002/anie.201607990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 11/06/2022]
Abstract
Aberrant canonical NF-κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many non-canonical NF-κB functions. Here we show that a selective peptide-based inhibitor of canonical NF-κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a non-labile bond, shows an about 10-fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NF-κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many protein-protein interactions mediated by such structures.
Collapse
Affiliation(s)
- Paul A Bruno
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | | | - Andrew R Henderson
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | | | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, USA
- Life Sciences Institute, Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
215
|
Zhao J, Zeng Y, Xu S, Chen J, Shen G, Yu C, Knipe D, Yuan W, Peng J, Xu W, Zhang C, Xia Z, Feng P. A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Cell Host Microbe 2016; 20:770-784. [PMID: 27866900 DOI: 10.1016/j.chom.2016.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/08/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
RIG-I detects double-stranded RNA (dsRNA) to trigger antiviral cytokine production. Protein deamidation is emerging as a post-translational modification that chiefly regulates protein function. We report here that UL37 of herpes simplex virus 1 (HSV-1) is a protein deamidase that targets RIG-I to block RNA-induced activation. Mass spectrometry analysis identified two asparagine residues in the helicase 2i domain of RIG-I that were deamidated upon UL37 expression or HSV-1 infection. Deamidation rendered RIG-I unable to sense viral dsRNA, thus blocking its ability to trigger antiviral immune responses and restrict viral replication. Purified full-length UL37 and its carboxyl-terminal fragment were sufficient to deamidate RIG-I in vitro. Uncoupling RIG-I deamidation from HSV-1 infection, by engineering deamidation-resistant RIG-I or introducing deamidase-deficient UL37 into the HSV-1 genome, restored RIG-I activation and antiviral immune signaling. Our work identifies a viral deamidase and extends the paradigm of deamidation-mediated suppression of innate immunity by microbial pathogens.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Yi Zeng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Simin Xu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Jie Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA; Division of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guobo Shen
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Caiqun Yu
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, LJS 369, 840 Downey Way, Los Angeles, CA 90089, USA
| | - David Knipe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA
| | - Jian Peng
- Division of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, LJS 369, 840 Downey Way, Los Angeles, CA 90089, USA
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
216
|
Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016; 21:molecules21111490. [PMID: 27834881 PMCID: PMC6272831 DOI: 10.3390/molecules21111490] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.
Collapse
|
217
|
Funakoshi-Tago M, Ohsawa K, Ishikawa T, Nakamura F, Ueda F, Narukawa Y, Kiuchi F, Tamura H, Tago K, Kasahara T. Inhibitory effects of flavonoids extracted from Nepalese propolis on the LPS signaling pathway. Int Immunopharmacol 2016; 40:550-560. [DOI: 10.1016/j.intimp.2016.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/27/2023]
|
218
|
Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2, apoptosis, MLCK, NF-κB and TOR signaling in grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 58:177-192. [PMID: 27640333 DOI: 10.1016/j.fsi.2016.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
This study explored the effects of vitamin C on the physical barriers and immune barriers, and relative mRNA levels of signaling molecules in the gill of grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) (1) increased reactive oxygen species, malondialdehyde and protein carbonyl (PC) contents (P < 0.05), decreased the copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and mRNA levels (P < 0.05), and glutathione and vitamin C contents (P < 0.05), down-regulated NF-E2-related factor 2 mRNA level (P < 0.05), and up-regulated Kelch-like ECH-associating protein (Keap) 1a (rather than Keap1b) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency induced oxidative injury in fish gill; (2) up-regulated caspase-3, -7, -8, -9, Fas ligand, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1 mRNA levels (P < 0.05), and down-regulated inhibitor of apoptosis protein and B-cell lymphoma-2 (rather than myeloid cell leukemia-1) mRNA level (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated cell apoptosis in fish gill; (3) up-regulated pore-forming TJs Claudin-12, 15a, -15b, and related signaling molecules myosin light chain kinase, p38 mitogen-activated protein kinase (rather than c-Jun N-terminal kinases) mRNA levels (P < 0.05), and down-regulated barrier-forming TJs Occludin, zonula occludens (ZO) 1, ZO-2, Claudin-c, -3c, -7a, -7b mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency disrupted tight junctional complexes in fish gill; (4) decreased lysozyme and acid phosphatase (ACP) activities, and complement 3 (C3), C4 and IgM contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, Hepcidin, β-defensin mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency decrease fish gill immune function; (5) down-regulated the mRNA levels of anti-inflammatory cytokines-related factors interleukin 10 (IL-10), IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBa and eIF4E-binding protein 1 (4E-BP1) (rather than 4E-BP2) (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35, IL-12 P40, nuclear factor κB (NF-κB) p65 (rather than NF-κB p52), IκB kinases (IKK) (only IKKα and IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the gill of grass carp under infection of F. columnare, suggesting that vitamin C deficiency aggravated fish gill inflammation. In conclusion, vitamin C deficiency disrupted physical barriers and immune barriers, and regulated relative mRNA levels of signaling molecules in fish gill. The vitamin C requirement for against gill rot morbidity of grass carp (264-1031 g) was estimated to be 156.0 mg/kg diet. In addition, based on the gill biochemical indices (antioxidant indices MDA, PC and vitamin C contents, and immune indices LA and ACP activity) the vitamin C requirements for grass carp (264-1031 g) were estimated to be 116.8, 156.6, 110.8, 57.8 and 134.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hui-Jun Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
219
|
Ma X, Liu X, Zhou D, Bai Y, Gao B, Zhang Z, Qin Z. The NF-κB pathway participates in the response to sulfide stress in Urechis unicinctus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:229-238. [PMID: 27633672 DOI: 10.1016/j.fsi.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 05/26/2023]
Abstract
The NF-κB pathway is known to be involved in regulating apoptosis, inflammation and immunity in organisms. In this study, we first identified full-length cDNA sequences of two key molecules in the NF-κB pathway, namely, NEMO and p65, and characterized their responses in the hindgut of Urechis unicinctus (Echiura, Urechidae) exposed to sulfide. The full-length of cDNA was 2491 bp for U. unicinctus NEMO (UuNEMO) and 1971 bp for U. unicinctus p65 (Uup65), and both polyclonal antibodies were prepared using UuNEMO or Uup65 expressed prokaryotically with the sequence of their whole open reading frame. Immunoprecipitation and Western blotting showed that the NF-κB pathway was activated in U. unicinctus exposed to sulfide, in which the content of UuNEMO ubiquitination and nuclear Uup65 increased significantly (p < 0.05) in hindgut tissue of U. unicinctus exposed to sulfide. Furthermore, the mRNA level of UuBcl-xL, a downstream anti-apoptosis gene of the NF-κB pathway, increased significantly (p < 0.05) from 48 h to 72 h and the mRNA level of UuBax, a Bcl-xL antagonist gene, decreased significantly (p < 0.05) at 48 h in the hindgut of U. unicinctus exposed to 50 μM sulfide. During the 150 μM sulfide exposure, the level of UuBcl-xL showed no obvious change, whereas the UuBax mRNA level increased significantly (p < 0.05) at 72 h post-exposure to 150 μM sulfide. We suggested that the activated NF-κB pathway up-regulates UuBcl-xL expression, and evokes an anti-apoptotic response to resist sulfide damage at 50 μM in U. unicinctus. Meanwhile, a Bax-mediated pro-apoptotic response occurs when U. unicinctus is exposed to 150 μM sulfide.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
220
|
Bruno PA, Morriss-Andrews A, Henderson AR, Brooks CL, Mapp AK. A Synthetic Loop Replacement Peptide That Blocks Canonical NF-κB Signaling. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paul A. Bruno
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| | | | - Andrew R. Henderson
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| | | | - Anna K. Mapp
- Department of Chemistry; University of Michigan; Ann Arbor USA
- Life Sciences Institute; Program in Chemical Biology; University of Michigan; Ann Arbor USA
| |
Collapse
|
221
|
Ding S, Mooney N, Li B, Kelly MR, Feng N, Loktev AV, Sen A, Patton JT, Jackson PK, Greenberg HB. Comparative Proteomics Reveals Strain-Specific β-TrCP Degradation via Rotavirus NSP1 Hijacking a Host Cullin-3-Rbx1 Complex. PLoS Pathog 2016; 12:e1005929. [PMID: 27706223 PMCID: PMC5051689 DOI: 10.1371/journal.ppat.1005929] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/10/2016] [Indexed: 11/18/2022] Open
Abstract
Rotaviruses (RVs) are the leading cause of severe gastroenteritis in young children, accounting for half a million deaths annually worldwide. RV encodes non-structural protein 1 (NSP1), a well-characterized interferon (IFN) antagonist, which facilitates virus replication by mediating the degradation of host antiviral factors including IRF3 and β-TrCP. Here, we utilized six human and animal RV NSP1s as baits and performed tandem-affinity purification coupled with high-resolution mass spectrometry to comprehensively characterize NSP1-host protein interaction network. Multiple Cullin-RING ubiquitin ligase (CRL) complexes were identified. Importantly, inhibition of cullin-3 (Cul3) or RING-box protein 1 (Rbx1), by siRNA silencing or chemical perturbation, significantly impairs strain-specific NSP1-mediated β-TrCP degradation. Mechanistically, we demonstrate that NSP1 localizes to the Golgi with the host Cul3-Rbx1 CRL complex, which targets β-TrCP and NSP1 for co-destruction at the proteasome. Our study uncovers a novel mechanism that RV employs to promote β-TrCP turnover and provides molecular insights into virus-mediated innate immunity inhibition.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Nancie Mooney
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bin Li
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Marcus R. Kelly
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ningguo Feng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Alexander V. Loktev
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Adrish Sen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John T. Patton
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Peter K. Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Harry B. Greenberg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
222
|
A bis-malonic acid fullerene derivative significantly suppressed IL-33-induced IL-6 expression by inhibiting NF-κB activation. Int Immunopharmacol 2016; 40:254-264. [PMID: 27632703 DOI: 10.1016/j.intimp.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023]
Abstract
IL-33 functions as a ligand for ST2L, which is mainly expressed in immune cells, including mast cells. IL-33 is a potent inducer of pro-inflammatory cytokines, such as IL-6, and has been implicated in the pathogenesis of allergic inflammatory diseases. Therefore, IL-33 has recently been attracting attention as a new target for the treatment of inflammatory diseases. In the present study, we demonstrated that a water-soluble bis-malonic acid fullerene derivative (C60-dicyclopropane-1,1,1',1'-tetracarboxylic acid) markedly diminished the IL-33-induced expression of IL-6 in bone marrow-derived mast cells (BMMC). The bis-malonic acid fullerene derivative suppressed the canonical signaling steps required for NF-κB activation such as the degradation of IκBα and nuclear translocation of NF-κB by directly inhibiting the IL-33-induced IKK activation. Although p38 and JNK also contributed to IL-33-induced expression of IL-6, the bis-malonic acid fullerene derivative did not affect their activation. Furthermore, the bis-malonic acid fullerene derivative had no effect on the NF-κB activation pathway induced by TNFα and IL-1. These results suggest that the bis-malonic fullerene derivative has potential as a specific drug for the treatment of IL-33-induced inflammatory diseases by specifically inhibiting the NF-κB activation pathway.
Collapse
|
223
|
Townsend JR, Stout JR, Jajtner AR, Church DD, Beyer KS, Oliveira LP, La Monica MB, Riffe JJ, Muddle TWD, Baker KM, Fukuda DH, Roberts MD, Hoffman JR. Resistance exercise increases intramuscular NF-κb signaling in untrained males. Eur J Appl Physiol 2016; 116:2103-2111. [PMID: 27582262 DOI: 10.1007/s00421-016-3463-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The NF-κB signaling pathway regulates multiple cellular processes following exercise stress. This study aims to examine the effects of an acute lower-body resistance exercise protocol and subsequent recovery on intramuscular NF-κB signaling. METHODS Twenty-eight untrained males were assigned to either a control (CON; n = 11) or exercise group (EX; n = 17) and completed a lower-body resistance exercise protocol consisting of the back squat, leg press, and leg extension exercises. Skeletal muscle microbiopsies were obtained from the vastus lateralis pre-exercise (PRE), 1-hour (1H), 5-hours (5H), and 48-hours (48H) post-resistance exercise. Multiplex signaling assay kits (EMD Millipore, Billerica, MA, USA) were used to quantify the total protein (TNFR1, c-Myc) or phosphorylation status of proteins belonging to the NF-κB signaling pathway (IKKa/b, IkBα, NF-κB) using multiplex protein assay. Repeated measures ANOVA analysis was used to determine the effects of the exercise bout on intramuscular signaling at each time point. Additionally, change scores were analyzed by magnitude based inferences to determine a mechanistic interpretation. RESULTS Repeated measures ANOVA indicated a trend for a two-way interaction between the EX and CON Group (p = 0.064) for c-Myc post resistance exercise. Magnitude based inference analysis suggest a "Very Likely" increase in total c-Myc from PRE-5H and a "Likely" increase in IkBα phosphorylation from PRE-5H post-resistance exercise. CONCLUSION Results indicated that c-Myc transcription factor is elevated following acute intense resistance exercise in untrained males. Future studies should examine the role that post-resistance exercise NF-κβ signaling plays in c-Myc induction, ribosome biogenesis and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, 37215, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA.
| | - Adam R Jajtner
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - David D Church
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Kyle S Beyer
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Leonardo P Oliveira
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Michael B La Monica
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Joshua J Riffe
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Tyler W D Muddle
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Kayla M Baker
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - David H Fukuda
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
224
|
Yang G, Xiong G, Cao Z, Zheng S, You L, Zhang T, Zhao Y. miR-497 expression, function and clinical application in cancer. Oncotarget 2016; 7:55900-55911. [PMID: 27344185 PMCID: PMC5342460 DOI: 10.18632/oncotarget.10152] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression by binding to the 3' untranslated region (3'-UTR) of their target mRNAs. Recent studies show that miR-497 plays an important role in various cancers. Here, we summarize the existing studies of miR-497 as following: (1) miR-497 expression in cancer; (2) regulation mechanisms of miR-497 expression; (3) function of miR-497 in cancer; (4) direct targets of miR-497; (5) Clinical applications of miR-497. Recent analyses verify that miR-497 mainly suppresses tumors; however, it also acts as an oncogene in several cancers. Increasing evidence indicates that miR-497 can serve as a diagnostic and prognostic biomarker and is a promising therapeutic target for future clinical applications.
Collapse
Affiliation(s)
- Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangbing Xiong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
225
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
226
|
Wang L, Zhu S, Xu G, Feng J, Han T, Zhao F, She YL, Liu S, Ye L, Zhu Y. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection. J Biol Chem 2016; 291:16863-76. [PMID: 27307042 DOI: 10.1074/jbc.m115.693101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2',5'-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity.
Collapse
Affiliation(s)
- Li Wang
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shengli Zhu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Gang Xu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jian Feng
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tao Han
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fanpeng Zhao
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying-Long She
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shi Liu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Linbai Ye
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Zhu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
227
|
Pierce EN, Piyankarage SC, Dunlap T, Litosh V, Siklos MI, Wang YT, Thatcher GRJ. Prodrugs Bioactivated to Quinones Target NF-κB and Multiple Protein Networks: Identification of the Quinonome. Chem Res Toxicol 2016; 29:1151-9. [PMID: 27258437 DOI: 10.1021/acs.chemrestox.6b00115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrophilic reactive intermediates resulting from drug metabolism have been associated with toxicity and off-target effects and in some drug discovery programs trigger NO-GO decisions. Many botanicals and dietary supplements are replete with such reactive electrophiles, notably Michael acceptors, which have been demonstrated to elicit chemopreventive mechanisms; and Michael acceptors are gaining regulatory approval as contemporary cancer therapeutics. Identifying protein targets of these electrophiles is central to understanding potential therapeutic benefit and toxicity risk. NO-donating NSAID prodrugs (NO-NSAIDs) have been the focus of extensive clinical and preclinical studies in inflammation and cancer chemoprevention and therapy: a subset exemplified by pNO-ASA, induces chemopreventive mechanisms following bioactivation to an electrophilic quinone methide (QM) Michael acceptor. Having previously shown that these NO-independent, QM-donors activated Nrf2 via covalent modification of Keap-1, we demonstrate that components of canonical NF-κB signaling are also targets, leading to the inhibition of NF-κB signaling. Combining bio-orthogonal probes of QM-donor ASA prodrugs with mass spectrometric proteomics and pathway analysis, we proceeded to characterize the quinonome: the protein cellular targets of QM-modification by pNO-ASA and its ASA pro-drug congeners. Further comparison was made using a biorthogonal probe of the "bare-bones", Michael acceptor, and clinical anti-inflammatory agent, dimethyl fumarate, which we have shown to inhibit NF-κB signaling. Identified quinonome pathways include post-translational protein folding, cell-death regulation, protein transport, and glycolysis; and identified proteins included multiple heat shock elements, the latter functionally confirmed by demonstrating activation of heat shock response.
Collapse
Affiliation(s)
- Emily N Pierce
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Sujeewa C Piyankarage
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Vladislav Litosh
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Marton I Siklos
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Yue-Ting Wang
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
228
|
Wang P, Qiao Q, Li J, Wang W, Yao LP, Fu YJ. Inhibitory effects of geraniin on LPS-induced inflammation via regulating NF-κB and Nrf2 pathways in RAW 264.7 cells. Chem Biol Interact 2016; 253:134-42. [DOI: 10.1016/j.cbi.2016.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/25/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
|
229
|
Oh S, Oh HW, Lee HR, Yoon SY, Oh SR, Ko YE, Yoo N, Jeong J, Kim JW. Ingenane-type diterpene compounds from Euphorbia kansui modulate IFN-γ production through NF-κB activation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2635-2640. [PMID: 26282882 DOI: 10.1002/jsfa.7380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Euphorbia kansui, a traditional medical herb, has been shown to have anti-tumour and anti-viral activities. Previously, we have reported that E. kansui increases interferon-gamma (IFN-γ) production in natural killer (NK) cells. However, it is not clear how E. kansui regulates IFN-γ secretion by NK cells. RESULTS In this study, E. kansui was separated into six individual compounds from the same chloroform fraction so that the activity of each compound could be compared. E. kansui compounds induced IFN-γ secretion through the phosphorylation of protein kinase D and IκB kinase pathways. Furthermore, E. kansui compounds activated the translocation of p65, a sub-unit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), to the nucleus and induced NF-κB at the transcriptional level. CONCLUSION These findings suggest that E. kansui enhances IFN-γ secretion through the NF-κB pathway in NK cells. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sehyun Oh
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyun Woo Oh
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ha-Reum Lee
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sun Young Yoon
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon, 305-732, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Researach Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Young-Eun Ko
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Nina Yoo
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 305-806, Republic of Korea
| | - Jinseon Jeong
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 305-806, Republic of Korea
| | - Jae Wha Kim
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
230
|
Xu HJ, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary vitamin C deficiency depresses the growth, head kidney and spleen immunity and structural integrity by regulating NF-κB, TOR, Nrf2, apoptosis and MLCK signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 52:111-138. [PMID: 26944716 DOI: 10.1016/j.fsi.2016.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary vitamin C on the growth, and head kidney, spleen and skin immunity, structural integrity and related signaling molecules mRNA expression levels of young grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.37 ± 0.66 g) were fed six diets with graded levels of vitamin C (2.9, 44.2, 89.1, 133.8, 179.4 and 224.5 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila and the survival rate recorded for 14 days. The results indicated that compared with optimal vitamin C supplementation, vitamin C deficiency (2.9 mg/kg diet) decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 and complement 4 (C4) contents (P < 0.05), down-regulated the mRNA levels of antimicrobial peptides [liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin] and anti-inflammatory cytokines-related factors, interleukin (IL) 4/13A, IL-4/13B (only in head kidney), IL-10, IL-11, transforming growth factor (TGF) β1, TGF-β2, inhibitor of κBα and eIF4E-binding protein 1 (P < 0.05), and up-regulated pro-inflammatory cytokines-related factors, tumor necrosis factor α, interferon γ2, IL-1β, IL-6, IL-8, IL-12 P35 (only in spleen), IL-12 P40, IL-15, IL-17D, nuclear factor κB p65, IκB kinases (IKKα, IKKβ, IKKγ), target of rapamycin and ribosomal protein S6 kinase 1 mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen immunity and cause inflammation. Meanwhile, compared with optimal vitamin C supplementation, vitamin C deficiency decreased the activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase (P < 0.05), and down-regulated zonula occludens (ZO) 1, ZO-2, Claudin-b, -c, -3c, -7a, -7b, B-cell lymphoma-2, inhibitor of apoptosis protein, NF-E2-related factor 2 mRNA levels (P < 0.05), increased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl contents (P < 0.05), and up-regulated Claudin-12, 15a, -15b, Fas ligand, mitogen-activated protein kinase kinase 6, p38 mitogen-activated protein kinase, B-cell lymphoma protein 2 associated X protein, apoptotic protease activating factor-1, caspase-3, -7, -8, -9, Kelch-like ECH-associating protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the head kidney and spleen under injection fish of A. hydrophila, suggesting that vitamin C deficiency could decrease fish head kidney and spleen structural integrity through depression of antioxidative ability, induction of apoptosis and disruption of tight junctional complexes. In addition, except the activities of ACP and MnSOD, and mRNA expression levels of TGF-β1, Occludin and MnSOD, the effect of vitamin C on fish head kidney, spleen and skin immunity and structural integrity other indicators model are similar under infection of A. hydrophila. Finally, the vitamin C requirement for the growth performance (PWG) of young grass carp was estimated to be 92.8 mg/kg diet. Meanwhile, the vitamin C requirement for against skin lesion morbidity of young grass carp was estimated to be 122.9 mg/kg diet. In addition, based on the biochemical indices [immune indices (LA activity in the head kidney and C4 content in the spleen) and antioxidant indices (MDA content in the head kidney and ROS content in the spleen)] the vitamin C requirements for young grass carp were estimated to be 131.2, 137.5, 135.8 and 129.8 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Hui-Jun Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
231
|
NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 2016; 35:5350-5361. [PMID: 27041570 PMCID: PMC5050052 DOI: 10.1038/onc.2016.75] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) and the long non-coding RNA (lncRNA) HOTAIR (HOX transcript antisense RNA) play diverse functional roles in cancer. In this study, we show that upregulation of HOTAIR induced platinum resistance in ovarian cancer, and increased HOTAIR levels were observed in recurrent platinum-resistant ovarian tumors vs. primary ovarian tumors. To investigate the role of HOTAIR during DNA damage induced by platinum, we monitored double-strand breaks and show that HOTAIR expression results in sustained activation of DNA damage response after platinum treatment. We demonstrate that ectopic expression of HOTAIR induces NF-κB activation during DNA damage response and MMP-9 and IL-6 expression, both key NF-κB target genes. We show that HOTAIR regulates activation of NF-κB by decreasing Iκ-Bα (NF-κB inhibitor) and establish that by inducing prolonged NF-κB activation and expression of NF-κB target genes during DNA damage, HOTAIR plays a critical role in cellular senescence and platinum sensitivity. Our findings suggest that a NF-κB-HOTAIR axis drives a positive-feedback loop cascade during DNA damage response and contributes to cellular senescence and chemotherapy resistance in ovarian and other cancers.
Collapse
|
232
|
Papp T, Polyak A, Papp K, Meszar Z, Zakany R, Meszar-Katona E, Tünde PT, Ham CH, Felszeghy S. Modification of tooth development by heat shock protein 60. Int J Oral Sci 2016; 8:24-31. [PMID: 27025262 PMCID: PMC4822183 DOI: 10.1038/ijos.2015.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes.
Collapse
Affiliation(s)
- Tamas Papp
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Angela Polyak
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Papp
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Meszar
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Meszar-Katona
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Palne Terdik Tünde
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Chang Hwa Ham
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Scoliosis Research Institute, Korea University Guro Hospital, Seoul, Korea
| | - Szabolcs Felszeghy
- Department of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
233
|
Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep 2016; 13:3715-23. [PMID: 27035868 PMCID: PMC4838136 DOI: 10.3892/mmr.2016.5005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
During development of disease, complex intracellular signaling pathways regulate an intricate series of events, including resistance to external toxins, the secretion of cytokines and the production of pathological phenomena. Adenosine 3′,5′-cyclic monophosphate (cAMP) is a nucleotide that acts as a key second messenger in numerous signal transduction pathways. cAMP regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression. This review aimed to provide an understanding of the effects of the cAMP signaling pathway and the associated factors on disease occurrence and development by examining the information from a new perspective. These novel insights aimed to promote the development of novel therapeutic approaches and aid in the development of new drugs.
Collapse
Affiliation(s)
- Kuo Yan
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Li-Na Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yuan-Lu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yi Zhang
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xin Zhou
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
234
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
235
|
The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm 2016; 2016:4028353. [PMID: 27041824 PMCID: PMC4793140 DOI: 10.1155/2016/4028353] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.
Collapse
|
236
|
Maldonado MD, García-Moreno H, González-Yanes C, Calvo JR. Possible Involvement of the Inhibition of NF-κB Factor in Anti-Inflammatory Actions That Melatonin Exerts on Mast Cells. J Cell Biochem 2016; 117:1926-33. [PMID: 26756719 DOI: 10.1002/jcb.25491] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
Melatonin is a molecule endogenously produced in a wide variety of immune cells, including mast cells (RBL-2H3). It exhibits immunomodulatory, anti-inflammatory and anti-apoptotic properties. The physiologic mechanisms underlying these activities of melatonin have not been clarified in mast cells. This work is designed to determine the anti-inflammatory effect and mechanism of action of melatonin on activated mast cells. RBL-2H3 were pre-treated with exogenous melatonin (MELx) at physiological (100nM) and pharmacological (1 mM) doses for 30 min, washed and activated with PMACI (phorbol 12-myristate 13-acetate plus calcium ionophore A23187) for 2 h and 12 h. The data shows that pre-treatment of MELx in stimulated mast cells, significantly reduced the levels of endogenous melatonin production (MELn), TNF-α and IL-6. These effects are directly related with the MELx concentration used. MELx also inhibited IKK/NF-κB signal transduction pathway in stimulated mast cells. These results indicate a molecular basis for the ability of melatonin to prevent inflammation and for the treatment of allergic inflammatory diseases through the down-regulation of mast cell activation. J. Cell. Biochem. 117: 1926-1933, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M D Maldonado
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Spain
| | - H García-Moreno
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Spain
| | - C González-Yanes
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Spain
| | - J R Calvo
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Spain
| |
Collapse
|
237
|
Liu L, Zhang LI, Lin YE, Bian Y, Gao X, Qu BO, Li Q. 14-3-3γ regulates cell viability and milk fat synthesis in lipopolysaccharide-induced dairy cow mammary epithelial cells. Exp Ther Med 2016; 11:1279-1287. [PMID: 27073437 PMCID: PMC4812431 DOI: 10.3892/etm.2016.3029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/22/2015] [Indexed: 12/27/2022] Open
Abstract
Our previous study demonstrated that 14-3-3γ overexpression was able to inhibit the production of lipopolysaccharide (LPS)-induced cytokines in dairy cow mammary epithelial cells (DCMECs) by inhibiting the activation of nuclear factor-κB (NF-κB) signaling pathways. However, the association between 14-3-3γ overexpression and milk fat synthesis in LPS-induced DCMECs remains unclear. Therefore, the present study investigated the effect of 14-3-3γ on cell viability and milk fat synthesis in LPS-induced DCMECs. The results of the MTT assay and lactate dehydrogenase activity assay demonstrated that 14-3-3γ overexpression was able to attenuate LPS-induced cytotoxicity in DCMECs, and increase the viability of the cells. In addition, the results of reverse transcription-quantitative polymerase chain reaction suggested that mRNA expression levels of genes associated with milk fat synthesis, including sterol regulatory element binding protein (SREBP1), peroxisome proliferator-activated receptor-γ (PPARG), cluster of differentiation 36, acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and fatty acid binding protein-3, were significantly upregulated in cells overexpressing the 14-3-3γ protein. In addition, as compared with the LPS-treated group, the activities of FAS and ACC were significantly increased. Furthermore, western blotting demonstrated that 14-3-3γ overexpression enhanced the protein expression levels of phosphorylated SREBP1 and PPARG. These results suggested that high levels of 14-3-3γ protein were able to attenuate LPS-induced cell damage and promote milk fat synthesis in LPS-induced DCMECs by increasing the cell viability and upregulating the expression levels of transcription factors associated with milk fat synthesis.
Collapse
Affiliation(s)
- Lixin Liu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China; College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - L I Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Y E Lin
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yanjie Bian
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - B O Qu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
238
|
De Falco F, Di Giovanni C, Cerchia C, De Stefano D, Capuozzo A, Irace C, Iuvone T, Santamaria R, Carnuccio R, Lavecchia A. Novel non-peptide small molecules preventing IKKβ/NEMO association inhibit NF-κB activation in LPS-stimulated J774 macrophages. Biochem Pharmacol 2016; 104:83-94. [PMID: 26776306 DOI: 10.1016/j.bcp.2016.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 01/29/2023]
Abstract
Nuclear Factor-κB (NF-κB) is a transcription factor regulating several genes involved in important physiological and pathological processes. NF-κB has been found constitutively activated in many inflammatory/immune diseases. In addition, a positive correlation between persistent activation of NF-κB and tumor promotion has been demonstrated. Since the IKK (IκB kinase) activation is an indispensable component of all pro-inflammatory signaling pathways leading to NF-κB activation, considerable efforts have been done in order to develop novel anti-inflammatory therapeutics targeting IKK. Association of the IKK complex relies on critical interactions between the C-terminus NBD (NEMO binding domain) of the catalytic subunits IKKα and IKKβ, and the regulatory subunit NEMO (NF-κB Essential Modulator). Thus, this IKK/NEMO interacting region provides an attractive target to prevent the IKK complex formation and NF-κB activation. In this regard, we have identified non-peptide small molecule disruptors of IKKβ/NEMO complex through a structure-based virtual screening (SBVS) of the NCI chemical library. Phenothiazine 22 and its close analogues (22.2, 22.4 and 22.10) were able to reduce nitrite production and iNOS mRNA expression in J774 murine macrophages stimulated with LPS for 24h. These effects were associated with a reduced NF-κB/DNA binding activity as well as a decreased expression of phosphorylated IKKβ, IκBα and NF-κB/p65 in these cells. These observations suggest that compound 22 and its three structural analogues by inhibiting IKKβ/NEMO association mediate the blockage of NF-κB signaling pathway and may prove effective in treatment of diseases in which the IKK/NF-κB pathway is dysregulated.
Collapse
Affiliation(s)
- Francesca De Falco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Di Giovanni
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Daniela De Stefano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonella Capuozzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Rosa Carnuccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
239
|
Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci 2015; 8:77. [PMID: 26733801 PMCID: PMC4683208 DOI: 10.3389/fnmol.2015.00077] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
The NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) transcription factor family is a pleiotropic regulator of many cellular signaling pathways, providing a mechanism for the cells in response to a wide variety of stimuli linking to inflammation. The stimulated cells will be regulated by not only the canonical but also non-canonical NF-κB pathways. To initiate both of these pathways, IκB-degradation triggers NF-κB release and the nuclear translocated-heterodimer (or homodimer) can associate with the κB sites of promoter to regulate the gene transcriptions. NF-κB ubiquitously expresses in neurons and the constitutive NF-κB activation is associated with processing of neuronal information. NF-κB can regulate the transcription of genes such as chemokines, cytokines, proinflammatory enzymes, adhesion molecules, proinflammatory transcription factors, and other factors to modulate the neuronal survival. In neuronal insult, NF-κB constitutively active in neuron cell bodies can protect neurons against different injuries and regulate the neuronal inflammatory reactions. Besides neurons, NF-κB transcription factors are abundant in glial cells and cerebral blood vessels and the diverse functions of NF-κB also regulate the inflammatory reaction around the neuronal environment. NF-κB transcription factors are abundant in the brain and exhibit diverse functions. Several central nerve system (CNS) diseases are linked to NF-κB activated by inflammatory mediators. The RelA and c-Rel expression produce opposite effects on neuronal survival. Importantly, c-Rel expression in CNS plays a critical role in anti-apoptosis and reduces the age-related behaviors. Moreover, the different subunits of NF-κB dimer formation can modulate the neuroninflammation, neuronal protection, or neurotoxicity. The diverse functions of NF-κB depend on the subunits of the NF-κB dimer-formation which enable us to develop a therapeutic approach to neuroinflammation based on a new concept of inflammation as a strategic tool in neuronal cells. However, the detail role of NF-κB in neuroinflammation, remains to be clarified. In the present article, we provide an updated review of the current state of our knowledge about relationship between NF-κB and neuroinflammation.
Collapse
Affiliation(s)
- Ruey-Horng Shih
- Institute of Neuroscience, National Chengchi University Taipei, Taiwan
| | - Chen-Yu Wang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| |
Collapse
|
240
|
Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood 2015; 127:1336-45. [PMID: 26679863 DOI: 10.1182/blood-2015-05-646117] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/02/2015] [Indexed: 12/30/2022] Open
Abstract
L5, the most electronegative and atherogenic subfraction of low-density lipoprotein (LDL), induces platelet activation. We hypothesized that plasma L5 levels are increased in acute ischemic stroke patients and examined whether lectin-like oxidized LDL receptor-1 (LOX-1), the receptor for L5 on endothelial cells and platelets, plays a critical role in stroke. Because amyloid β (Aβ) stimulates platelet aggregation, we studied whether L5 and Aβ function synergistically to induce prothrombotic pathways leading to stroke. Levels of plasma L5, serum Aβ, and platelet LOX-1 expression were significantly higher in acute ischemic stroke patients than in controls without metabolic syndrome (P < .01). In mice subjected to focal cerebral ischemia, L5 treatment resulted in larger infarction volumes than did phosphate-buffered saline treatment. Deficiency or neutralizing of LOX-1 reduced infarct volume up to threefold after focal cerebral ischemia in mice, illustrating the importance of LOX-1 in stroke injury. In human platelets, L5 but not L1 (the least electronegative LDL subfraction) induced Aβ release via IκB kinase 2 (IKK2). Furthermore, L5+Aβ synergistically induced glycoprotein IIb/IIIa receptor activation; phosphorylation of IKK2, IκBα, p65, and c-Jun N-terminal kinase 1; and platelet aggregation. These effects were blocked by inhibiting IKK2, LOX-1, or nuclear factor-κB (NF-κB). Injecting L5+Aβ shortened tail-bleeding time by 50% (n = 12; P < .05 vs L1-injected mice), which was prevented by the IKK2 inhibitor. Our findings suggest that, through LOX-1, atherogenic L5 potentiates Aβ-mediated platelet activation, platelet aggregation, and hemostasis via IKK2/NF-κB signaling. L5 elevation may be a risk factor for cerebral atherothrombosis, and downregulating LOX-1 and inhibiting IKK2 may be novel antithrombotic strategies.
Collapse
|
241
|
Zhao J, He S, Minassian A, Li J, Feng P. Recent advances on viral manipulation of NF-κB signaling pathway. Curr Opin Virol 2015; 15:103-11. [PMID: 26385424 PMCID: PMC4688235 DOI: 10.1016/j.coviro.2015.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/09/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022]
Abstract
NF-κB transcription factors regulate the expression of hundreds of genes primarily involved in immune responses. Signaling events leading to NF-κB activation constitute a major antiviral immune pathway. To replicate and persist within their hosts, viruses have evolved diverse strategies to evade and exploit cellular NF-κB immune signaling cascades for their benefit. We summarize recent studies concerning viral manipulation of the NF-κB signaling pathway downstream of pattern recognition receptors. Signal transduction mediated by pattern recognition receptors is a research frontier for both infectious disease and innate immunology.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Shanping He
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Arlet Minassian
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Junhua Li
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States.
| |
Collapse
|
242
|
Kim MS, Ahn EK, Hong SS, Oh JS. 2,8-Decadiene-1,10-Diol Inhibits Lipopolysaccharide-Induced Inflammatory Responses Through Inactivation of Mitogen-Activated Protein Kinase and Nuclear Factor-κB Signaling Pathway. Inflammation 2015; 39:583-91. [DOI: 10.1007/s10753-015-0283-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
243
|
Qu Y, Zhou M, Peng L, Li J, Yan J, Yang P, Feng H. Molecular cloning and characterization of IKKε gene from black carp Mylopharyngodon piceus. FISH & SHELLFISH IMMUNOLOGY 2015; 47:122-129. [PMID: 26332502 DOI: 10.1016/j.fsi.2015.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
IKKε is an IκB kinase functioning in NF-κB signal pathway in the innate immune system of higher vertebrates. To exploit the function of IKKε of black carp (bcIKKε) in its antiviral innate immunity, the IKKε gene has been cloned from the RNA isolated from the spleen of black carp. The full-length cDNA of bcIKKε is 2537 bp, which encodes the peptide of 723 amino acids. bcIKKε contains a S-Tkc domain, a PKc domain and a UBL-TBK1-like domain and bcIKKε shares the highest amino acid sequence similarity with that of grass carp. bcIKKε was constitutively transcribed in the selected tissues of black carp including gill, kidney, heart, intestine, liver, muscle, skin and spleen; and the mRNA level of bcIKKε in these tissues varied right after SVCV or GCRV infection. bcIKKε had been well expressed in HEK293T cells and western blot assay determined that this fish kinase was around 80 KDa. The immunofluorescence assay of both NH3T3 cells and EPC cells demonstrated that bcIKKε was located in the cytosolic part of the cell. Report assay result showed that overexpression of bcIKKε in EPC cells activated the expression of both zebrafish IFN and EPC IFN. All our data suggest that bcIKKε is a novel fish kinase functioning in the innate antiviral immune response of black carp.
Collapse
Affiliation(s)
- Yixiao Qu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Man Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Linzhi Peng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Peilin Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
244
|
Li J, Zhou M, Peng L, Sun W, Yang P, Yan J, Feng H. Identification and characterization of IKKε gene from grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2015; 47:255-263. [PMID: 26370541 DOI: 10.1016/j.fsi.2015.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
IKKε is an IKK-related kinase implicated in antiviral immune response in higher vertebrates. To elucidate the function of IKKε in teleost fish, grass carp IKKε (gcIKKε) has been cloned and characterized in this paper. The full-length cDNA of gcIKKε is composed of 2529 nucleotides and encodes a polypeptide of 723 amino acids. The mRNA transcription of gcIKKε was constitutively detected in all the selected tissues and the gcIKKε mRNA level increased at 36 h after GCRV infection. Western blot data of both HEK293T cells and EPC cells demonstrated that gcIKKε was around 80 KDa; and immunofluorescence staining data of both NIH3T3 cells and EPC cells determined gcIKKε was a cytosolic protein. The mRNA level of gcIKKε in CIK cells was increased more than 150 times right after poly(I:C) treatment and PMA treatment triggered gcIKKε mRNA transcription in CIK cells more than 100 times. Over-expression of gcIKKε in EPC cells activated the promoter activity of both zebrafish IFN and fathead minnow IFN. gcIKKε mRNA transcription level in CIK cells was increased from 48 h post GCRV infection with different MOIs. All the data support the idea that gcIKKε is a novel teleost IκB kinase recruited in the IFN-mediated antiviral immunity of grass carp.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Man Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Lingzhi Peng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wenzheng Sun
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Peilin Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jun Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
245
|
Paradoxical role of PKA inhibitor on amyloidβ-induced memory deficit. Physiol Behav 2015; 149:76-85. [DOI: 10.1016/j.physbeh.2015.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/11/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
|
246
|
Kong S, Dong H, Song J, Thiruppathi M, Prabhakar BS, Qiu Q, Lin Z, Chini E, Zhang B, Fang D. Deleted in Breast Cancer 1 Suppresses B Cell Activation through RelB and Is Regulated by IKKα Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3685-93. [PMID: 26378077 DOI: 10.4049/jimmunol.1500713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023]
Abstract
Alternative NF-κB signaling is crucial for B cell activation and Ig production, and it is mainly regulated by the inhibitor of κ B kinase (IKK) regulatory complex. Dysregulation of alternative NF-κB signaling in B cells could therefore lead to hyperactive B cells and Ig overproduction. In our previous, study we found that deleted in breast cancer 1 (DBC1) is a suppressor of the alternative NF-κB pathway to attenuate B cell activation. In this study, we report that loss of DBC1 results in spontaneous overproduction of Ig in mice after 10 mo of age. Using a double mutant genetic model, we confirm that DBC1 suppresses B cell activation through RelB inhibition. At the molecular level, we show that DBC1 interacts with alternative NF-κB members RelB and p52 through its leucine zipper domain. In addition, phosphorylation of DBC1 at its C terminus by IKKα facilitates its interaction with RelB and IKKα, indicating that DBC1-mediated suppression of alternative NF-κB is regulated by IKKα. Our results define the molecular mechanism of DBC1 inhibition of alternative NF-κB activation in suppressing B cell activation.
Collapse
Affiliation(s)
- Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Muthusamy Thiruppathi
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Eduardo Chini
- Laboratory of Signal Transduction, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611;
| |
Collapse
|
247
|
Ma X, Dang C, Kang H, Dai Z, Lin S, Guan H, Liu X, Wang X, Hui W. Saikosaponin-D reduces cisplatin-induced nephrotoxicity by repressing ROS-mediated activation of MAPK and NF-κB signalling pathways. Int Immunopharmacol 2015; 28:399-408. [DOI: 10.1016/j.intimp.2015.06.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022]
|
248
|
Nakao K, Kishi H, Imai F, Suwa H, Hirakawa T, Minegishi T. TNF-α Suppressed FSH-Induced LH Receptor Expression Through Transcriptional Regulation in Rat Granulosa Cells. Endocrinology 2015; 156:3192-202. [PMID: 26125466 DOI: 10.1210/en.2015-1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several inflammatory cytokines regulate ovarian function. TNF-α is produced in granulosa cells under physiological conditions and has a reciprocal action on follicle development. In contrast, in pelvic inflammatory diseases, TNF-α is excessively produced in the pelvic cavity and has an adverse effect on reproductive functions. The objective of this study was to elucidate the mechanism of action of TNF-α on the expression of LH receptor (LHR) in immature rat granulosa cells. TNF-α suppressed FSH-induced LHR mRNA and protein expression and was not associated with cAMP accumulation. By using a luciferase assay, the construct containing base pairs -1389 to -1 of the rat Lhcgr promoter revealed that TNF-α decreased FSH-induced promoter activity. In response to TNF-α, nuclear factor (NF)-κB p65 was translocated to the nucleus, and the suppressive effect of TNF-α on LHR mRNA expression was abrogated by an NF-κB inhibitor. In a chromatin immunoprecipitation assay, TNF-α induced the association of NF-κB p65 with the rat Lhcgr transcriptional promoter region. NF-κB p65 and histone deacetylase (HDAC) interact to mediate expression of several genes at a transcriptional level. HDAC activity is thought to induce tight connections within local chromatin structures and repress gene transcription. Furthermore, the TNF-α-induced suppression of LHR mRNA expression was blocked by an HDAC inhibitor. Taken together, these results suggest that the interaction of NF-κB p65 with HDAC in the promoter region of rat Lhcgr might be responsible for TNF-α action on the regulation of LHR.
Collapse
Affiliation(s)
- Kohshiro Nakao
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Fumiharu Imai
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroto Suwa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Hirakawa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Minegishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
249
|
Guedes IA, Freitas RHCN, Cordeiro NM, Nascimento TSD, Valerio TS, Fernandes PD, Dardenne LE, Fraga CAM. LASSBio-1829 Hydrochloride: Development of a New Orally ActiveN-Acylhydrazone IKK2 Inhibitor with Anti-inflammatory Properties. ChemMedChem 2015; 11:234-44. [DOI: 10.1002/cmdc.201500266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Isabella A. Guedes
- Laboratório Nacional de Computação Científica (LNCC/MCTI); Petrópolis RJ Brazil
| | - Rosana H. C. N. Freitas
- Laboratório de Avaliação e Substâncias Bioativas (LASSBio); Instituto de Ciências Biomédicas (ICB); Universidade Federal do Rio de Janeiro (UFRJ); 21941-902 Rio de Janeiro RJ Brazil
| | - Natália M. Cordeiro
- Laboratório de Farmacologia da Dor e da Inflamação; ICB; UFRJ; Rio de Janeiro RJ Brazil
| | | | - Tayna S. Valerio
- Laboratório de Farmacologia da Dor e da Inflamação; ICB; UFRJ; Rio de Janeiro RJ Brazil
| | - Patrícia D. Fernandes
- Laboratório de Farmacologia da Dor e da Inflamação; ICB; UFRJ; Rio de Janeiro RJ Brazil
| | - Laurent E. Dardenne
- Laboratório Nacional de Computação Científica (LNCC/MCTI); Petrópolis RJ Brazil
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Substâncias Bioativas (LASSBio); Instituto de Ciências Biomédicas (ICB); Universidade Federal do Rio de Janeiro (UFRJ); 21941-902 Rio de Janeiro RJ Brazil
| |
Collapse
|
250
|
Chen L, Feng L, Jiang WD, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Dietary riboflavin deficiency decreases immunity and antioxidant capacity, and changes tight junction proteins and related signaling molecules mRNA expression in the gills of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 45:307-320. [PMID: 25882633 DOI: 10.1016/j.fsi.2015.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the effects of dietary riboflavin on the growth, gill immunity, tight junction proteins, antioxidant system and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme and acid phosphatase activities, and complement component 3 content in the gills of fish (P < 0.05). Moreover, riboflavin deficiency caused oxidative damage, which might be partly due to decrease copper, zinc superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione content in the gills of fish (P < 0.05). Furthermore, the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and Hepcidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1), tight junction proteins (Occludin, zonula occludens 1, Claudin-c and Claudin-3), signaling molecules (inhibitor of κBα, target of rapamycin and NF-E2-related factor 2) and antioxidant enzymes (copper, zinc superoxide dismutase and glutathione reductase) were significantly decreased (P < 0.05) in the gills of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ, Kelch-like-ECH-associated protein 1b and myosin light chain kinase) and tight junction protein Claudin-12 were significantly increased (P < 0.05) in the gills of fish fed riboflavin-deficient diet. In addition, this study indicated for the first time that young fish fed a riboflavin-deficient diet exhibited anorexia and poor growth. In conclusion, riboflavin deficiency decreased growth and gill immunity, impaired gill antioxidant system, as well as regulated mRNA expression of gill tight junction proteins and related signaling molecules of fish. Based on percent weight gain, gill lysozyme activity and reduced glutathione content, the dietary riboflavin requirements for young grass carp (275-722 g) were estimated to be 5.85, 7.39 and 6.34 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Liang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|