201
|
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020; 178:104792. [PMID: 32272173 PMCID: PMC7194977 DOI: 10.1016/j.antiviral.2020.104792] [Citation(s) in RCA: 521] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapies against the causative agent, SARS-CoV-2, and also against other pathogenic coronaviruses (CoV) that have emerged in the past or might appear in future. Researchers are therefore focusing on steps in the CoV replication cycle that may be vulnerable to inhibition by broad-spectrum or specific antiviral agents. The conserved nature of the fusion domain and mechanism across the CoV family make it a valuable target to elucidate and develop pan-CoV therapeutics. In this article, we review the role of the CoV spike protein in mediating fusion of the viral and host cell membranes, summarizing the results of research on SARS-CoV, MERS-CoV, and recent peer-reviewed studies of SARS-CoV-2, and suggest that the fusion mechanism be investigated as a potential antiviral target. We also provide a supplemental file containing background information on the biology, epidemiology, and clinical features of all human-infecting coronaviruses, along with a phylogenetic tree of these coronaviruses.
Collapse
Affiliation(s)
- Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Miya Bidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
202
|
Jia Q, Shi S, Yuan G, Shi J, Shi S, Hu Y. Analysis of knowledge bases and research hotspots of coronavirus from the perspective of mapping knowledge domain. Medicine (Baltimore) 2020; 99:e20378. [PMID: 32481423 DOI: 10.1097/md.0000000000020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coronaviruses have drawn attention since the beginning of the 21st century. Over the past 17 years, coronaviruses have triggered several outbreaks of epidemic in people, which brought great threats to global public health security. We analyzed the publications on coronavirus with bibliometrics software and qualitatively and quantitatively evaluated the knowledge base and hot topics of coronavirus research from 2003 to 2020. METHODS We explored the publications on coronavirus in the Web of Science core collection (WOSCC) from 2003 to 2020. Bibliometric analysis, evaluating knowledge base, and research hotspots were performed based on CiteSpace V (Drexel University, Chaomei Chen). RESULTS There were a total of 8433 publications of coronavirus. The research on coronavirus boomed when a novel coronavirus triggered outbreaks in people. The leading country was the United States, and the leading institution was the University of Hong Kong. The most productive researchers were: Yuen KY, Drosten C, Baric RS. The keywords analysis showed that SARS-CoV, infection, acute respiratory syndrome, antibody, receptor, and spike protein were research hotspots. The research categories analysis showed that virology, microbiology, veterinary sciences, infectious diseases, and biochemistry and molecular biology were hot research categories. CONCLUSIONS Bibliometric analysis of the literature shows the research on coronavirus boomed when a novel coronavirus triggered outbreaks in people. With the end of the epidemic, the research tended to be cooling. Virus identification, pathogenesis, and coronavirus-mediated diseases attracted much attention. We must continue studying the viruses after an outbreak ended.
Collapse
Affiliation(s)
- Qiulei Jia
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Jingjing Shi
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Shuai Shi
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Yuanhui Hu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| |
Collapse
|
203
|
Wang X, Xia S, Wang Q, Xu W, Li W, Lu L, Jiang S. Broad-Spectrum Coronavirus Fusion Inhibitors to Combat COVID-19 and Other Emerging Coronavirus Diseases. Int J Mol Sci 2020; 21:E3843. [PMID: 32481690 PMCID: PMC7311999 DOI: 10.3390/ijms21113843] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
In the past 17 years, three novel coronaviruses have caused severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the coronavirus disease 2019 (COVID-19). As emerging infectious diseases, they were characterized by their novel pathogens and transmissibility without available clinical drugs or vaccines. This is especially true for the newly identified COVID-19 caused by SARS coronavirus 2 (SARS-CoV-2) for which, to date, no specific antiviral drugs or vaccines have been approved. Similar to SARS and MERS, the lag time in the development of therapeutics is likely to take months to years. These facts call for the development of broad-spectrum anti-coronavirus drugs targeting a conserved target site. This review will systematically describe potential broad-spectrum coronavirus fusion inhibitors, including antibodies, protease inhibitors, and peptide fusion inhibitors, along with a discussion of their advantages and disadvantages.
Collapse
Affiliation(s)
- Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission, (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China;
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.W.); (S.X.); (Q.W.); (W.X.)
- Key Laboratory of Reproduction Regulation of National Health Commission, (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China;
| |
Collapse
|
204
|
Jiang C, Yao X, Zhao Y, Wu J, Huang P, Pan C, Liu S, Pan C. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season. Microbes Infect 2020; 22:236-244. [PMID: 32405236 PMCID: PMC7217786 DOI: 10.1016/j.micinf.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to sweep the world, causing infection of millions and death of hundreds of thousands. The respiratory disease that it caused, COVID-19 (stands for coronavirus disease in 2019), has similar clinical symptoms with other two CoV diseases, severe acute respiratory syndrome and Middle East respiratory syndrome (SARS and MERS), of which causative viruses are SARS-CoV and MERS-CoV, respectively. These three CoVs resulting diseases also share many clinical symptoms with other respiratory diseases caused by influenza A viruses (IAVs). Since both CoVs and IAVs are general pathogens responsible for seasonal cold, in the next few months, during the changing of seasons, clinicians and public heath may have to distinguish COVID-19 pneumonia from other kinds of viral pneumonia. This is a discussion and comparison of the virus structures, transmission characteristics, clinical symptoms, diagnosis, pathological changes, treatment and prevention of the two kinds of viruses, CoVs and IAVs. It hopes to provide information for practitioners in the medical field during the epidemic season.
Collapse
Affiliation(s)
- Chao Jiang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China; School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Zhao
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Jianmin Wu
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Pan Huang
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China
| | - Chunhua Pan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chungen Pan
- Laboratory of Molecular Virology & Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, 511400, China.
| |
Collapse
|
205
|
Zhang N, Li C, Hu Y, Li K, Liang J, Wang L, Du L, Jiang S. Current development of COVID-19 diagnostics, vaccines and therapeutics. Microbes Infect 2020; 22:231-235. [PMID: 32387332 PMCID: PMC7200352 DOI: 10.1016/j.micinf.2020.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
A novel coronavirus, designated as SARS-CoV-2, first emerged in Wuhan City, Hubei Province, China, in late December 2019. The rapidly increasing number of cases has caused worldwide panic. In this review, we describe some currently applied diagnostic approaches, as well as therapeutics and vaccines, to prevent, treat and control further outbreaks of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yue Hu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Kangchen Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jintian Liang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agriculture University, Baoding, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
206
|
|
207
|
Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, Wu W, Huang S, Jiang L, Luo X, Deng M. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents 2020; 55:105950. [PMID: 32234465 PMCID: PMC7118423 DOI: 10.1016/j.ijantimicag.2020.105950] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
Viral respiratory diseases such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) always pose a severe threat to people. First identified in late December 2019, a novel coronavirus (2019-nCoV; SARS-CoV-2) has affected many provinces in China and multiple countries worldwide. The viral outbreak has aroused panic and a public-health emergency around the world, and the number of infections continues to rise. However, the causes and consequences of the pneumonia remain unknown. To effectively implement epidemic prevention, early identification and diagnosis are critical to disease control. Here we scrutinise a series of available studies by global scientists on the clinical manifestations, detection methods and treatment options for the disease caused by SARS-CoV-2, named coronavirus disease 2019 (COVID-19), and also propose potential strategies for preventing the infection.
Collapse
Affiliation(s)
- Shuntong Kang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenyao Peng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuhao Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Shiyao Lu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Min Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shu Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xuan Luo
- Hunan Yuanpin Cell Biotechnology Co., Ltd., Changsha, Hunan 410100, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
208
|
陈 咏, 邱 峰. [Spike protein in the detection and treatment of novel coronavirus]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:246-250. [PMID: 32329276 PMCID: PMC9927605 DOI: 10.7507/1001-5515.202002050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 02/05/2023]
Abstract
Recently a COVID-19 pneumonia pandemic caused by a novel coronavirus 2019-nCoV has broken out over the world. In order to better control the spread of the pandemic, there's an urgent need to extensively study the virus' origin and the mechanisms for its infectivity and pathogenicity. Spike protein is a special structural protein on the surface of coronavirus. It contains important information about the evolution of the virus and plays critical roles in the processes of cellular recognition and entry. In the past decades, spike protein has always been one of the most important objects in research works on coronaviruses closely related to human life. In this review we introduce these research works related to spike proteins, hoping it will provide reasonable ideas for the control of the current pandemic, as well as for the diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- 咏竹 陈
- 四川大学华西医院 期刊社(成都 610041)Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 峰 邱
- 四川大学华西医院 期刊社(成都 610041)Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
209
|
Mungroo MR, Khan NA, Siddiqui R. Novel Coronavirus: Current Understanding of Clinical Features, Diagnosis, Pathogenesis, and Treatment Options. Pathogens 2020; 9:E297. [PMID: 32316618 PMCID: PMC7238102 DOI: 10.3390/pathogens9040297] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in devastating consequences worldwide and infected more than 350,000 individuals and killed more than 16,000 people. SARS-CoV-2 is the seventh member of the coronavirus family to affect humans. Symptoms of COVID-19 include fever (88%), cough (68%), vomiting (5%) and diarrhoea (3.7%), and transmission of SARS-CoV-2 is thought to occur from human to human via respiratory secretions released by the infected individuals when coughing and sneezing. COVID-19 can be detected through computed tomography scans and confirmed through molecular diagnostics tools such as polymerase chain reaction. Currently, there are no effective treatments against SARS-CoV-2, hence antiviral drugs have been used to reduce the development of respiratory complications by reducing viral load. The purpose of this review is to provide a comprehensive update on the pathogenesis, clinical aspects, diagnosis, challenges and treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, UAE; (M.R.M.); (R.S.)
| | | |
Collapse
|
210
|
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30:343-355. [PMID: 32231345 PMCID: PMC7104723 DOI: 10.1038/s41422-020-0305-x] [Citation(s) in RCA: 945] [Impact Index Per Article: 236.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be defined. Therefore, we herein established a SARS-CoV-2 spike (S) protein-mediated cell-cell fusion assay and found that SARS-CoV-2 showed a superior plasma membrane fusion capacity compared to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in the SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with the HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted the HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. Here we generated a series of lipopeptides derived from EK1 and found that EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, and potently inhibited the replication of 5 live human coronaviruses examined, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by the currently circulating SARS-CoV-2 and other emerging SARSr-CoVs.
Collapse
Affiliation(s)
- Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200032, China
| | - Meiqin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200032, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200032, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Feifei Qi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
211
|
Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17:613-620. [PMID: 32203189 PMCID: PMC7091888 DOI: 10.1038/s41423-020-0400-4] [Citation(s) in RCA: 1112] [Impact Index Per Article: 278.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 01/17/2023] Open
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has posed a serious threat to global public health, calling for the development of safe and effective prophylactics and therapeutics against infection of its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as 2019 novel coronavirus (2019-nCoV). The CoV spike (S) protein plays the most important roles in viral attachment, fusion and entry, and serves as a target for development of antibodies, entry inhibitors and vaccines. Here, we identified the receptor-binding domain (RBD) in SARS-CoV-2 S protein and found that the RBD protein bound strongly to human and bat angiotensin-converting enzyme 2 (ACE2) receptors. SARS-CoV-2 RBD exhibited significantly higher binding affinity to ACE2 receptor than SARS-CoV RBD and could block the binding and, hence, attachment of SARS-CoV-2 RBD and SARS-CoV RBD to ACE2-expressing cells, thus inhibiting their infection to host cells. SARS-CoV RBD-specific antibodies could cross-react with SARS-CoV-2 RBD protein, and SARS-CoV RBD-induced antisera could cross-neutralize SARS-CoV-2, suggesting the potential to develop SARS-CoV RBD-based vaccines for prevention of SARS-CoV-2 and SARS-CoV infection.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lei He
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jing Pu
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Denis Voronin
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA. .,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yusen Zhou
- Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
212
|
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect 2020; 22:74-79. [PMID: 32017984 PMCID: PMC7102556 DOI: 10.1016/j.micinf.2020.01.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/03/2022]
Abstract
On 10 January 2020, a new coronavirus causing a pneumonia outbreak in Wuhan City in central China was denoted as 2019-nCoV by the World Health Organization (WHO). As of 24 January 2020, there were 887 confirmed cases of 2019-nCoV infection, including 26 deaths, reported in China and other countries. Therefore, combating this new virus and stopping the epidemic is a matter of urgency. Here, we focus on advances in research and development of fast diagnosis methods, as well as potential prophylactics and therapeutics to prevent or treat 2019-nCoV infection.
Collapse
Affiliation(s)
- Fei Yu
- The College of Life and Sciences, Hebei Agricultural University, Bao Ding, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, School of Dentistry, San Francisco, USA
| | - Chungen Pan
- Guangdong Haid Institute of Animal Husbandry & Veterinary, Haid Research Institute, Guangdong Haid Group Co., Ltd, Guangzhou, China.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
213
|
Jiang S, Shi ZL. The First Disease X is Caused by a Highly Transmissible Acute Respiratory Syndrome Coronavirus. Virol Sin 2020; 35:263-265. [PMID: 32060789 PMCID: PMC7091198 DOI: 10.1007/s12250-020-00206-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Based on the announcement of the World Health Organization (WHO) in 2018, the Wuhan pneumonia caused by an unknown etiology should be recognized as the first Disease X. Later, the pathogen was identified to be a novel coronavirus denoted 2019-nCoV, which has 79.5% and 96% whole genome sequence identify to SARS-CoV and bat SARS-related coronavirus (SARSr-CoV-RaTG13), respectively, suggesting its potential bat origin. With high human-to-human transmission rate (R0), 2019-nCoV has quickly spread in China and other countries, resulting in 34,953 confirmed cases and 725 deaths as of 8 February 2020, thus calling for urgent development of therapeutics and prophylactics. Here we suggest renaming 2019-nCoV as “transmissible acute respiratory syndrome coronavirus (TARS-CoV)” and briefly review the advancement of research and development of neutralizing antibodies and vaccines targeting the receptor-binding domain (RBD) and viral fusion inhibitors targeting the heptad repeat 1 (HR1) domain in spike protein of 2019-nCoV.
Collapse
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,New York Blood Center, The Lindsley F. Kimball Research Institute, New York, NY, 10065, USA.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
214
|
Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; 17:765-767. [PMID: 32047258 PMCID: PMC7075278 DOI: 10.1038/s41423-020-0374-2] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
|
215
|
Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect 2020; 9:275-277. [PMID: 32005086 PMCID: PMC7033706 DOI: 10.1080/22221751.2020.1723441] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
216
|
Meher G, Bhattacharjya S, Chakraborty H. Membrane Cholesterol Modulates Oligomeric Status and Peptide-Membrane Interaction of Severe Acute Respiratory Syndrome Coronavirus Fusion Peptide. J Phys Chem B 2019; 123:10654-10662. [PMID: 31743644 DOI: 10.1021/acs.jpcb.9b08455] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The N-terminal fusion peptide (residues 770-788) of an S2 glycoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV), exposed upon receptor binding, is crucial for virus entry into the host cell. The fusion peptide alters the membrane organization and dynamics of the host membrane to facilitate membrane fusion. Generally, the effect of the fusion peptide on the membrane is sensitive to the lipid composition of target membranes. In the present work, we have utilized steady-state and time-resolved fluorescence spectroscopy in tandem with circular dichroism spectroscopy to elucidate the binding, oligomeric status, and secondary structure of the fusion peptide and its impact on the depth-dependent membrane organization and dynamics. We have used depth-dependent fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and its trimethylammonium derivative (TMA-DPH), to evaluate the effect of the peptide binding along the bilayer normal. We have exploited the energy transfer efficiency of tryptophan between TMA-DPH and DPH to determine the relative location of the solitary tryptophan present in the membrane-bound fusion peptide. We have further evaluated the effect of membrane cholesterol on the binding and organization of the peptide and the impact of peptide binding on the depth-dependent physical properties of the membrane at various cholesterol concentrations. Our results clearly demonstrate that the membrane cholesterol alters the oligomeric status of the membrane-bound peptide and the effect of peptide binding on the depth-dependent membrane organization and dynamics. The role of cholesterol is important, as the eukaryotic host cells contain a good amount of cholesterol that might be important for the entry of pathogenic viruses.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry , Sambalpur University , Jyoti Vihar , Burla , Odisha 768 019 , India
| | - Surajit Bhattacharjya
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Hirak Chakraborty
- School of Chemistry , Sambalpur University , Jyoti Vihar , Burla , Odisha 768 019 , India.,Centre of Excellence in Natural Products and Therapeutics , Sambalpur University , Jyoti Vihar , Burla , Odisha 768 019 , India
| |
Collapse
|
217
|
Li G, Yang F, He X, Liu Z, Pi J, Zhu Y, Ke X, Liu S, Ou M, Guo H, Zhang Z, Zeng G, Zhang G. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes Infect 2019; 22:119-126. [PMID: 31678658 DOI: 10.1016/j.micinf.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
CD4+/CD8+ T cells play a major role in conferring immune protection against tuberculosis (TB), but it remains unknown how the immune responses of CD4+/CD8+ T cells exactly correlate with the clinical variables and disease statuses during anti-TB chemotherapy. To address this, several major immune parameters of CD4+/CD8+ T cells in peripheral blood derived from pulmonary TB patients and healthy volunteers were evaluated. We observed that active TB infection induced lower CD3+ T cell and CD4+ T cell levels but higher CD8+T cell levels, while anti-TB chemotherapy reversed these effects. Also, anti-TB treatment induced enhanced production of IL-2 and IFN-γ but reduced expression of IL-10 and IL-6. Moreover, the dynamic changes of CD3, CD4, and CD8 levels did not show a significant association with sputum smear positivity. However, the frequencies of IL-2+CD4+ or IL-10 + CD4+ T effector subpopulation or IL-1β production in peripheral blood showed significant difference between patients positive for sputum smear and patients negative for sputum smear after anti-TB treatment. These findings implicated that recovery of Th1/CD8+T cell effector levels might be critical immunological events in pulmonary TB patients after treatment and further suggested the importance of these immunological parameters as potential biomarkers for prediction of TB progress and prognosis.
Collapse
Affiliation(s)
- Guobao Li
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fang Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing He
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhi Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jiang Pi
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xue Ke
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shuyan Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Min Ou
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Huixin Guo
- National Clinical Research Center for Tuberculosis and Guangdong Center for Tuberculosis Control, Guangzhou, 510430, China
| | - Zhuoran Zhang
- Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, 92618, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guoliang Zhang
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
218
|
Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. J Virol 2019; 93:JVI.01046-19. [PMID: 31375571 PMCID: PMC6798120 DOI: 10.1128/jvi.01046-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Mouse hepatitis virus (MHV) uses its N-terminal domain (NTD) of the viral spike (S) protein to bind the host receptor mouse carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a) and mediate virus entry. Our previous crystal structure study of the MHV NTD/mCEACAM1a complex (G. Peng, D. Sun, K. R. Rajashankar, Z. Qian, et al., Proc Natl Acad Sci U S A 108:10696-10701, 2011, https://doi.org/10.1073/pnas.1104306108) reveals that there are 14 residues in the NTD interacting with the receptor. However, their contribution to receptor binding and virus entry has not been fully investigated. Here we analyzed 13 out of 14 contact residues by mutagenesis and identified I22 as being essential for receptor binding and virus entry. Unexpectedly, we found that G29 was critical for the conformational changes of the S protein triggered by either receptor binding or high pH. Replacement of G29 with A, D, F, K, M, and T, to different extents, caused spontaneous dissociation of S1 from the S protein, resulting in an enhancement of high-pH-triggered receptor-independent syncytium (RIS) formation in HEK293T cells, compared to the wild type (WT). In contrast, replacement of G29 with P, a turn-prone residue with a strict conformation, hindered virus entry and conformational changes of the S protein triggered by either receptor binding or pH 8.0, suggesting that the structural turn around G29 and its flexibility are critical. Finally, stabilization of the NTD by G29P had almost no effect on pH-independent RIS induced by the Y320A mutation in the C-terminal domain (CTD) of the S1 subunit, indicating that there might be an absence of cross talk between the NTD and CTD during conformational changes of the S protein. Our study will aid in better understanding the mechanism of how conformational changes of the S protein are triggered.IMPORTANCE Binding of the MHV S protein to the receptor mCEACAM1a triggers conformational changes of S proteins, leading to the formation of a six-helix bundle and viral and cellular membrane fusion. However, the mechanism by which the conformational change of the S protein is initiated after receptor binding has not been determined. In this study, we showed that while replacement of G29, a residue at the edge of the receptor binding interface and the center of the structural turn after the β1-sheet of the S protein, with D or T triggered spontaneous conformational changes of the S protein and pH-independent RIS, the G29P mutation significantly impeded the conformational changes of S proteins triggered by either receptor binding or pH 8.0. We reason that this structural turn might be critical for conformational changes of the S protein and that altering this structural turn could initiate conformational changes of the S protein, leading to membrane fusion.
Collapse
|
219
|
Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide. Viruses 2019; 11:v11080750. [PMID: 31416162 PMCID: PMC6722660 DOI: 10.3390/v11080750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
A metatranscriptomic study of RNA viruses in cold-blooded vertebrates identified two related viruses from frogfish (Antennarius striatus) that represent a new genus Antennavirus in the family Arenaviridae (Order: Bunyavirales). Computational analyses were used to identify features common to class I viral fusion proteins (VFPs) in antennavirus glycoproteins, including an N-terminal fusion peptide, two extended alpha-helices, an intrahelical loop, and a carboxyl terminal transmembrane domain. Like mammarenavirus and hartmanivirus glycoproteins, the antennavirus glycoproteins have an intracellular zinc-binding domain and a long virion-associated stable signal peptide (SSP). The glycoproteins of reptarenaviruses are also class I VFPs, but do not contain zinc-binding domains nor do they encode SSPs. Divergent evolution from a common progenitor potentially explains similarities of antennavirus, mammarenavirus, and hartmanivirus glycoproteins, with an ancient recombination event resulting in a divergent reptarenavirus glycoprotein.
Collapse
|
220
|
Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CTK, Wang Q, Du L, Tan W, Wilson IA, Jiang S, Yang B, Lu L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. SCIENCE ADVANCES 2019; 5:eaav4580. [PMID: 30989115 PMCID: PMC6457931 DOI: 10.1126/sciadv.aav4580] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/14/2019] [Indexed: 05/07/2023]
Abstract
Continuously emerging highly pathogenic human coronaviruses (HCoVs) remain a major threat to human health, as illustrated in past SARS-CoV and MERS-CoV outbreaks. The development of a drug with broad-spectrum HCoV inhibitory activity would address this urgent unmet medical need. Although previous studies have suggested that the HR1 of HCoV spike (S) protein is an important target site for inhibition against specific HCoVs, whether this conserved region could serve as a target for the development of broad-spectrum pan-CoV inhibitor remains controversial. Here, we found that peptide OC43-HR2P, derived from the HR2 domain of HCoV-OC43, exhibited broad fusion inhibitory activity against multiple HCoVs. EK1, the optimized form of OC43-HR2P, showed substantially improved pan-CoV fusion inhibitory activity and pharmaceutical properties. Crystal structures indicated that EK1 can form a stable six-helix bundle structure with both short α-HCoV and long β-HCoV HR1s, further supporting the role of HR1 region as a viable pan-CoV target site.
Collapse
Affiliation(s)
- Shuai Xia
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lei Yan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Anurodh Shankar Agrawal
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Wenjie Tan
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ian A. Wilson
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| |
Collapse
|
221
|
From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses 2019; 11:v11010059. [PMID: 30646565 PMCID: PMC6357155 DOI: 10.3390/v11010059] [Citation(s) in RCA: 686] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 11/30/2022] Open
Abstract
Coronaviruses (CoVs) have formerly been regarded as relatively harmless respiratory pathogens to humans. However, two outbreaks of severe respiratory tract infection, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), as a result of zoonotic CoVs crossing the species barrier, caused high pathogenicity and mortality rates in human populations. This brought CoVs global attention and highlighted the importance of controlling infectious pathogens at international borders. In this review, we focus on our current understanding of the epidemiology, pathogenesis, prevention, and treatment of SARS-CoV and MERS-CoV, as well as provides details on the pivotal structure and function of the spike proteins (S proteins) on the surface of each of these viruses. For building up more suitable animal models, we compare the current animal models recapitulating pathogenesis and summarize the potential role of host receptors contributing to diverse host affinity in various species. We outline the research still needed to fully elucidate the pathogenic mechanism of these viruses, to construct reproducible animal models, and ultimately develop countermeasures to conquer not only SARS-CoV and MERS-CoV, but also these emerging coronaviral diseases.
Collapse
|
222
|
Potent MERS-CoV Fusion Inhibitory Peptides Identified from HR2 Domain in Spike Protein of Bat Coronavirus HKU4. Viruses 2019; 11:v11010056. [PMID: 30646495 PMCID: PMC6357153 DOI: 10.3390/v11010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and caused continual outbreaks worldwide with high mortality. However, no effective anti-MERS-CoV drug is currently available. Recently, numerous evolutionary studies have suggested that MERS-CoV originated from bat coronavirus (BatCoV). We herein reported that three peptides derived from the HR2 region in spike protein of BatCoV HKU4, including HKU4-HR2P1, HKU4-HR2P2 and HKU4-HR2P3, could bind the MERS-CoV HR1-derived peptide to form a six-helix bundle (6-HB) with high stability. Moreover, these peptides, particularly HKU4-HR2P2 and HKU4-HR2P3, exhibited potent inhibitory activity against MERS-CoV S-mediated cell–cell fusion and viral infection, suggesting that these HKU4 HR2-derived peptides could be candidates for futher development as antiviral agents against MERS-CoV infection.
Collapse
|
223
|
Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 2018; 93:265-285. [PMID: 30413355 PMCID: PMC7127703 DOI: 10.1016/j.diagmicrobio.2018.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. 2220 laboratory-confirmed cases of MERS-CoV resulting in at least 790 deaths since 2012 MERS-CoV is on the WHO list of priority blueprint diseases Zoonotic and human-to-human transmission modes need further clarification. No specific therapy has yet been approved. There is a need for well-controlled clinical trials on potential direct therapies.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, and Al-Faisal University, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Samer Salih
- Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
224
|
Yan L, Meng B, Xiang J, Wilson IA, Yang B. Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:841-851. [PMID: 30198895 PMCID: PMC6130466 DOI: 10.1107/s2059798318008318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/05/2018] [Indexed: 01/12/2023]
Abstract
Human coronavirus 229E (HCoV‐229E) usually causes mild upper respiratory infections in heathy adults, but may lead to severe complications or mortality in individuals with weakened immune systems. Virus entry of HCoV‐229E is mediated by its spike (S) protein, where the S1 domain facilitates attachment to host cells and the S2 domain is involved in subsequent fusion of the virus and host membranes. During the fusion process, two heptad repeats, HR1 and HR2, in the S2 domain assemble into a six‐helix membrane‐fusion structure termed the fusion core. Here, the complete fusion‐core structure of HCoV‐229E has been determined at 1.86 Å resolution, representing the most complete post‐fusion conformation thus far among published human alphacoronavirus (α‐HCoV) fusion‐core structures. The overall structure of the HCoV‐229E fusion core is similar to those of SARS, MERS and HCoV‐NL63, but the packing of its 3HR1 core differs from those of SARS and MERS in that it contains more noncanonical `x' and `da' layers. Side‐by‐side electrostatic surface comparisons reveal that the electrostatic surface potentials are opposite in α‐HCoVs and β‐HCoVs at certain positions and that the HCoV‐229E surface also appears to be the most hydrophobic among the various HCoVs. In addition to the highly conserved hydrophobic interactions between HR1 and HR2, some polar and electrostatic interactions are also well preserved across different HCoVs. This study adds to the structural profiling of HCoVs to aid in the structure‐based design of pan‐coronavirus small molecules or peptides to inhibit viral fusion.
Collapse
Affiliation(s)
- Lei Yan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Bing Meng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Jiangchao Xiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Ian A Wilson
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| |
Collapse
|
225
|
Zhang SM, Liao Y, Neo TL, Lu Y, Liu DX, Vahlne A, Tam JP. Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein. Int J Biochem Cell Biol 2018; 101:103-112. [PMID: 29800727 PMCID: PMC7108413 DOI: 10.1016/j.biocel.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg’s 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection.
Collapse
Affiliation(s)
- Si Min Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tuan Ling Neo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yanning Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
226
|
Kandeel M, Al-Taher A, Li H, Schwingenschlogl U, Al-Nazawi M. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Comput Biol Chem 2018; 75:205-212. [PMID: 29803965 PMCID: PMC7106505 DOI: 10.1016/j.compbiolchem.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/23/2022]
Abstract
Virus-membrane fusion proteins have vital role in MERS CoV replication. Both trimers and monomers were found in both of virus and cell membranes. Changes in MERS CoV heptad repeat domains monomers and trimers were resolved by MD simulation. Monomer was unstable, having high RMSDs with major drifts above 8 Å. Trimer is more dynamically stable with very low RMSD.
Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt.
| | - Abdulla Al-Taher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
| | - Huifang Li
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Udo Schwingenschlogl
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Al-Nazawi
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
| |
Collapse
|
227
|
Wang C, Xia S, Zhang P, Zhang T, Wang W, Tian Y, Meng G, Jiang S, Liu K. Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors. J Med Chem 2018; 61:2018-2026. [PMID: 29442512 PMCID: PMC7075646 DOI: 10.1021/acs.jmedchem.7b01732] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hexameric α-helical coiled-coil formed between the C-terminal and N-terminal heptad repeat (CHR and NHR) regions of class I viral fusion proteins plays an important role in mediating the fusion of the viral and cellular membranes and provides a clear starting point for molecular mimicry that drives viral fusion inhibitor design. Unfortunately, such peptide mimicry of the short α-helical region in the CHR of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein has been thwarted by the loss of the peptide's native α-helical conformation when taken out of the parent protein structure. Here, we describe that appropriate all-hydrocarbon stapling of the short helical portion-based peptide to reinforce its bioactive secondary structure remarkably improves antiviral potency. The resultant stapled peptide P21S10 could effectively inhibit infection by MERS-CoV pseudovirus and its spike protein-mediated cell-cell fusion; additionally, P21S10 exhibits improved pharmacokinetic properties than HR2P-M2, suggesting strong potential for development as an anti-MERS-CoV therapeutic.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China
| | - Peiyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Weicong Wang
- Pharmaceutical Preparation Section, Plastic Surgery Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100144 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , New York , New York 10065 , United States
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China.,Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
228
|
Xia S, Xu W, Wang Q, Wang C, Hua C, Li W, Lu L, Jiang S. Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains. Int J Mol Sci 2018; 19:ijms19020487. [PMID: 29415501 PMCID: PMC5855709 DOI: 10.3390/ijms19020487] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Human coronavirus 229E (HCoV-229E) infection in infants, elderly people, and immunocompromised patients can cause severe disease, thus calling for the development of effective and safe therapeutics to treat it. Here we reported the design, synthesis and characterization of two peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains, 229E-HR1P and 229E-HR2P, respectively. We found that 229E-HR1P and 229E-HR2P could interact to form a stable six-helix bundle and inhibit HCoV-229E spike protein-mediated cell-cell fusion with IC50 of 5.7 and 0.3 µM, respectively. 229E-HR2P effectively inhibited pseudotyped and live HCoV-229E infection with IC50 of 0.5 and 1.7 µM, respectively. In a mouse model, 229E-HR2P administered intranasally could widely distribute in the upper and lower respiratory tracts and maintain its fusion-inhibitory activity. Therefore, 229E-HR2P is a promising candidate for further development as an antiviral agent for the treatment and prevention of HCoV-229E infection.
Collapse
Affiliation(s)
- Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
229
|
McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antiviral Res 2018; 149:118-142. [PMID: 29162476 PMCID: PMC7133686 DOI: 10.1016/j.antiviral.2017.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases held its 5th Antiviral Group (isirv-AVG) Conference in Shanghai, China, in conjunction with the Shanghai Public Health Center and Fudan University from 14-16 June 2017. The three-day programme encompassed presentations on some of the clinical features, management, immune responses and virology of respiratory infections, including influenza A(H1N1)pdm09 and A(H7N9) viruses, MERS-CoV, SARS-CoV, adenovirus Type 80, enterovirus D68, metapneumovirus and respiratory syncytial virus (RSV). Updates were presented on several therapeutics currently in clinical trials, including influenza polymerase inhibitors pimodivir/JNJ6362387, S033188, favipiravir, monoclonal antibodies MHAA45449A and VIS410, and host directed strategies for influenza including nitazoxanide, and polymerase ALS-008112 and fusion inhibitors AK0529, GS-5806 for RSV. Updates were also given on the use of the currently licensed neuraminidase inhibitors. Given the location in China, there were also presentations on the use of Traditional Chinese Medicines. Following on from the previous conference, there were ongoing discussions on appropriate endpoints for severe influenza in clinical trials from regulators and clinicians, an issue which remains unresolved. The aim of this conference summary is to provide information for not only conference participants, but a detailed referenced review of the current status of clinical trials, and pre-clinical development of therapeutics and vaccines for influenza and other respiratory diseases for a broader audience.
Collapse
Affiliation(s)
| | - Shibo Jiang
- College of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, NY, USA
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - John H Beigel
- Leidos Biomedical Research, Inc., Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, USA
| | - Nelson Lee
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
230
|
Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies. Antiviral Res 2017; 150:1-8. [PMID: 29203391 PMCID: PMC7113693 DOI: 10.1016/j.antiviral.2017.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
Heptad repeat (HR) regions are highly conserved motifs located in the glycoproteins of enveloped viruses that form a six-helix bundle structure and is important in the process of virus fusion. Peptides derived from the HR regions of some viruses have also been shown to inhibit viral entry. Porcine epidemic diarrhea virus (PEDV) was predicted to have HR regions (HR1 and HR2) in the spike glycoprotein S2 subunit. Based on this analysis, six peptides derived from HR1 and HR2 were selected, expressed in Escherichia coli, purified, and characterized. Three peptides (HR2M, HR2L and HR2P) were identified as potential competitive inhibitors in PEDV in vitro infection assays, with the HR2P peptide representing the most potent inhibitor. Further study indicated that immunization of HR2P in mice elicited antibodies capable of neutralizing PEDV infection in vitro. These results demonstrate that the HR2P peptide and anti-HR2P antibody can serve as a tool for dissecting the fusion mechanism of PEDV, guiding the search for potent inhibitors with therapeutic value against PEDV infection. Six peptides derived from heptad repeat (HR) 1 and 2 regions of PEDV S glycoprotein were expressed and characterized. Three peptides (HR2M, HR2L and HR2P) exhibited antiviral activity in vitro. Immunization of the HR2P peptide in mice elicited antibodies capable of neutralizing PEDV infection in vitro. HR2P peptide can serve as a potential antiviral drug against PEDV infection.
Collapse
|
231
|
Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses. Front Med 2017; 11:449-461. [PMID: 29170916 PMCID: PMC7089273 DOI: 10.1007/s11684-017-0589-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023]
Abstract
In recent years, unexpected outbreaks of infectious diseases caused by emerging and re-emerging viruses have become more frequent, which is possibly due to environmental changes. These outbreaks result in the loss of life and economic hardship. Vaccines and therapeutics should be developed for the prevention and treatment of infectious diseases. In this review, we summarize and discuss the latest progress in the development of small-molecule viral inhibitors against highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, Ebola virus, and Zika virus. These viruses can interfere with the specific steps of viral life cycle by blocking the binding between virus and host cells, disrupting viral endocytosis, disturbing membrane fusion, and interrupting viral RNA replication and translation, thereby demonstrating potent therapeutic effect against various emerging and re-emerging viruses. We also discuss some general strategies for developing small-molecule viral inhibitors.
Collapse
|
232
|
Sun Y, Zhang H, Shi J, Zhang Z, Gong R. Identification of a Novel Inhibitor against Middle East Respiratory Syndrome Coronavirus. Viruses 2017; 9:v9090255. [PMID: 28906430 PMCID: PMC5618021 DOI: 10.3390/v9090255] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was first isolated in 2012, and circulated worldwide with high mortality. The continual outbreaks of MERS-CoV highlight the importance of developing antiviral therapeutics. Here, we rationally designed a novel fusion inhibitor named MERS-five-helix bundle (MERS-5HB) derived from the six-helix bundle (MERS-6HB) which was formed by the process of membrane fusion. MERS-5HB consists of three copies of heptad repeat 1 (HR1) and two copies of heptad repeat 2 (HR2) while MERS-6HB includes three copies each of HR1 and HR2. As it lacks one HR2, MERS-5HB was expected to interact with viral HR2 to interrupt the fusion step. What we found was that MERS-5HB could bind to HR2P, a peptide derived from HR2, with a strong affinity value (KD) of up to 0.24 nM. Subsequent assays indicated that MERS-5HB could inhibit pseudotyped MERS-CoV entry effectively with 50% inhibitory concentration (IC50) of about 1 μM. In addition, MERS-5HB significantly inhibited spike (S) glycoprotein-mediated syncytial formation in a dose-dependent manner. Further biophysical characterization showed that MERS-5HB was a thermo-stable α-helical secondary structure. The inhibitory potency of MERS-5HB may provide an attractive basis for identification of a novel inhibitor against MERS-CoV, as a potential antiviral agent.
Collapse
Affiliation(s)
- Yaping Sun
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huaidong Zhang
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan 430071, China.
| | - Jian Shi
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan 430071, China.
| | - Zhe Zhang
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan 430071, China.
| | - Rui Gong
- Center for Emerging Infectious Diseases, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan 430071, China.
| |
Collapse
|
233
|
Rabaan AA, Alahmed SH, Bazzi AM, Alhani HM. A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective. J Med Microbiol 2017; 66:1261-1274. [PMID: 28855003 PMCID: PMC7079582 DOI: 10.1099/jmm.0.000565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There have been 2040 laboratory-confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) in 27 countries, with a mortality rate of 34.9 %. There is no specific therapy. The current therapies have mainly been adapted from severe acute respiratory syndrome (SARS-CoV) treatments, including broad-spectrum antibiotics, corticosteroids, interferons, ribavirin, lopinavir–ritonavir or mycophenolate mofetil, and have not been subject to well-organized clinical trials. The development of specific therapies and vaccines is therefore urgently required. We examine existing and potential therapies and vaccines from a molecular perspective. These include viral S protein targeting; inhibitors of host proteases, including TMPRSS2, cathepsin L and furin protease, and of viral M(pro) and the PL(pro) proteases; convalescent plasma; and vaccine candidates. The Medline database was searched using combinations and variations of terms, including ‘Middle East respiratory syndrome coronavirus’, ‘MERS-CoV’, ‘SARS’, ‘therapy’, ‘molecular’, ‘vaccine’, ‘prophylactic’, ‘S protein’, ‘DPP4’, ‘heptad repeat’, ‘protease’, ‘inhibitor’, ‘anti-viral’, ‘broad-spectrum’, ‘interferon’, ‘convalescent plasma’, ‘lopinavir ritonavir’, ‘antibodies’, ‘antiviral peptides’ and ‘live attenuated viruses’. There are many options for the development of MERS-CoV-specific therapies. Currently, MERS-CoV is not considered to have pandemic potential. However, the high mortality rate and potential for mutations that could increase transmissibility give urgency to the search for direct, effective therapies. Well-designed and controlled clinical trials are needed, both for existing therapies and for prospective direct therapies.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Shamsah H Alahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Ali M Bazzi
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Hatem M Alhani
- Maternity and Children Hospital, and Directorate of Infection Control at Eastern Province, Ministry of Health, Dammam, Saudi Arabia
| |
Collapse
|
234
|
Rabaan AA, Bazzi AM, Al-Ahmed SH, Al-Tawfiq JA. Molecular aspects of MERS-CoV. Front Med 2017; 11:365-377. [PMID: 28500431 PMCID: PMC7089120 DOI: 10.1007/s11684-017-0521-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus which can cause acute respiratory distress in humans and is associated with a relatively high mortality rate. Since it was first identified in a patient who died in a Jeddah hospital in 2012, the World Health Organization has been notified of 1735 laboratory-confirmed cases from 27 countries, including 628 deaths. Most cases have occurred in Saudi Arabia. MERS-CoVancestors may be found in OldWorld bats of the Vespertilionidae family. After a proposed bat to camel switching event, transmission of MERS-CoV to humans is likely to have been the result of multiple zoonotic transfers from dromedary camels. Human-to-human transmission appears to require close contact with infected persons, with outbreaks mainly occurring in hospital environments. Outbreaks have been associated with inadequate infection prevention and control implementation, resulting in recommendations on basic and more advanced infection prevention and control measures by the World Health Organization, and issuing of government guidelines based on these recommendations in affected countries including Saudi Arabia. Evolutionary changes in the virus, particularly in the viral spike protein which mediates virus-host cell contact may potentially increase transmission of this virus. Efforts are on-going to identify specific evidence-based therapies or vaccines. The broad-spectrum antiviral nitazoxanide has been shown to have in vitro activity against MERS-CoV. Synthetic peptides and candidate vaccines based on regions of the spike protein have shown promise in rodent and non-human primate models. GLS-5300, a prophylactic DNA-plasmid vaccine encoding S protein, is the first MERS-CoV vaccine to be tested in humans, while monoclonal antibody, m336 has given promising results in animal models and has potential for use in outbreak situations.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
| | - Ali M Bazzi
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, 32654, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.,University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
235
|
Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res 2017; 141:140-149. [PMID: 28232248 DOI: 10.1016/j.antiviral.2017.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/20/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are mosquito-borne viruses of the Flavivirus genus that cause viral encephalitis and congenital microcephaly, respectively, in humans, and thus present a risk to global public health. The envelope glycoprotein (E protein) of flaviviruses is a class II viral fusion protein that mediates host cell entry through a series of conformational changes, including association between the stem region and domain II leading to virion-target cell membrane fusion. In this study, peptides derived from the JEV E protein stem were investigated for their ability to block JEV and ZIKV infection. Peptides from stem helix 2 inhibit JEV infection with the 50% inhibitory concentration (IC50) in the nanomolar range. One of these peptides (P5) protected mice against JEV-induced lethality by decreasing viral load, while abrogating histopathological changes associated with JEV infection. We also found that P5 blocked ZIKV infection with IC50 at the micromolar level. Moreover, P5 was proved to reduce the histopathological damages in brain and testes resulting from ZIKV infection in type I and II interferon receptor-deficient (AG6) mice. These findings provide a basis for the development of peptide-based drugs against JEV and ZIKV.
Collapse
|
236
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
237
|
Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets 2016; 21:131-143. [PMID: 27936982 DOI: 10.1080/14728222.2017.1271415] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The continual Middle East respiratory syndrome (MERS) threat highlights the importance of developing effective antiviral therapeutics to prevent and treat MERS coronavirus (MERS-CoV) infection. A surface spike (S) protein guides MERS-CoV entry into host cells by binding to cellular receptor dipeptidyl peptidase-4 (DPP4), followed by fusion between virus and host cell membranes. MERS-CoV S protein represents a key target for developing therapeutics to block viral entry and inhibit membrane fusion. Areas covered: This review illustrates MERS-CoV S protein's structure and function, particularly S1 receptor-binding domain (RBD) and S2 heptad repeat 1 (HR1) as therapeutic targets, and summarizes current advancement on developing anti-MERS-CoV therapeutics, focusing on neutralizing monoclonal antibodies (mAbs) and antiviral peptides. Expert opinion: No anti-MERS-CoV therapeutic is approved for human use. Several S-targeting neutralizing mAbs and peptides have demonstrated efficacy against MERS-CoV infection, providing feasibility for development. Generally, human neutralizing mAbs targeting RBD are more potent than those targeting other regions of S protein. However, emergence of escape mutant viruses and mAb's limitations make it necessary for combining neutralizing mAbs recognizing different neutralizing epitopes and engineering them with improved efficacy and reduced cost. Optimization of the peptide sequences is expected to produce next-generation anti-MERS-CoV peptides with improved potency.
Collapse
Affiliation(s)
- Lanying Du
- a Laboratory of Viral Immunology , Lindsley F. Kimball Research Institute, New York Blood Center , New York , NY , USA
| | - Yang Yang
- b Department of Pharmacology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Yusen Zhou
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Lu Lu
- d Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology , Fudan University , Shanghai , China
| | - Fang Li
- b Department of Pharmacology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Shibo Jiang
- a Laboratory of Viral Immunology , Lindsley F. Kimball Research Institute, New York Blood Center , New York , NY , USA.,d Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology , Fudan University , Shanghai , China
| |
Collapse
|
238
|
Zhu Y, Su S, Qin L, Wang Q, Shi L, Ma Z, Tang J, Jiang S, Lu L, Ye S, Zhang R. Rational improvement of gp41-targeting HIV-1 fusion inhibitors: an innovatively designed Ile-Asp-Leu tail with alternative conformations. Sci Rep 2016; 6:31983. [PMID: 27666394 PMCID: PMC5036048 DOI: 10.1038/srep31983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses.
Collapse
Affiliation(s)
- Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Lili Qin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Lei Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenxuan Ma
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Jianchao Tang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Basic Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
239
|
Abstract
Coronavirus particles serve three fundamentally important functions in infection. The virion provides the means to deliver the viral genome across the plasma membrane of a host cell. The virion is also a means of escape for newly synthesized genomes. Lastly, the virion is a durable vessel that protects the genome on its journey between cells. This review summarizes the available X-ray crystallography, NMR, and cryoelectron microscopy structural data for coronavirus structural proteins, and looks at the role of each of the major structural proteins in virus entry and assembly. The potential wider conservation of the nucleoprotein fold identified in the Arteriviridae and Coronaviridae families and a speculative model for the evolution of corona-like virus architecture are discussed.
Collapse
Affiliation(s)
- B W Neuman
- School of Biological Sciences, University of Reading, Reading, United Kingdom; College of STEM, Texas A&M University, Texarkana, Texarkana, TX, United States.
| | - M J Buchmeier
- University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
240
|
Urbanowicz RA, Lacek K, Lahm A, Bienkowska-Szewczyk K, Ball JK, Nicosia A, Cortese R, Pessi A. Cholesterol conjugation potentiates the antiviral activity of an HIV immunoadhesin. J Pept Sci 2016; 21:743-9. [PMID: 26292842 DOI: 10.1002/psc.2802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/04/2023]
Abstract
Immunoadhesins are engineered proteins combining the constant domain (Fc) of an antibody with a ligand-binding (adhesion) domain. They have significant potential as therapeutic agents, because they maintain the favourable pharmacokinetics of antibodies with an expanded repertoire of ligand-binding domains: proteins, peptides, or small molecules. We have recently reported that the addition of a cholesterol group to two HIV antibodies can dramatically improve their antiviral potency. Cholesterol, which can be conjugated at various positions in the antibody, including the constant (Fc) domain, endows the conjugate with affinity for the membrane lipid rafts, thus increasing its concentration at the site where viral entry occurs. Here, we extend this strategy to an HIV immunoadhesin, combining a cholesterol-conjugated Fc domain with the peptide fusion inhibitor C41. The immunoadhesin C41-Fc-chol displayed high affinity for Human Embryonic Kidney (HEK) 293 cells, and when tested on a panel of HIV-1 strains, it was considerably more potent than the unconjugated C41-Fc construct. Potentiation of antiviral activity was comparable to what was previously observed for the cholesterol-conjugated HIV antibodies. Given the key role of cholesterol in lipid raft formation and viral fusion, we expect that the same strategy should be broadly applicable to enveloped viruses, for many of which it is already known the sequence of a peptide fusion inhibitor similar to C41. Moreover, the sequence of heptad repeat-derived fusion inhibitors can often be predicted from genomic information alone, opening a path to immunoadhesins against emerging viruses.
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Krzysztof Lacek
- CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,Laboratory of Virus Molecular Biology, University of Gdansk, 80-822, Gdansk, Poland
| | - Armin Lahm
- PeptiPharma, Viale Città D'Europa 679, 00144, Roma, Italy
| | | | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Alfredo Nicosia
- CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Napoli, Italy
| | | | - Antonello Pessi
- CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,PeptiPharma, Viale Città D'Europa 679, 00144, Roma, Italy.,JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|
241
|
Cheng S, Wang Y, Zhang Z, Lv X, Gao GF, Shao Y, Ma L, Li X. Enfuvirtide-PEG conjugate: A potent HIV fusion inhibitor with improved pharmacokinetic properties. Eur J Med Chem 2016; 121:232-237. [PMID: 27240277 PMCID: PMC7115413 DOI: 10.1016/j.ejmech.2016.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
Enfuvirtide (ENF) is a clinically used peptide drug for the treatment of HIV infections, but its poor pharmacokinetic profile (T1/2 = 1.5 h in rats) and low aqueous solubility make the therapy expensive and inconvenience. In this study, we present a simple and practical strategy to address these problems by conjugating ENF with polyethylene glycol (PEG). Site-specific attachment of a 2 kDa PEG at the N-terminus of ENF resulted in an ENF-PEG (EP) conjugate with high solubility (≥3 mg/mL) and long half-life in rats (T1/2 = 16.1 h). This conjugate showed similar antiviral activity to ENF against various primary HIV-1 isolates (EC50 = 6-91 nM). Mechanistic studies suggested the sources of the antiviral potency. The conjugate bound to a functional domain of the HIV gp41 protein in a helical conformation with high affinity (Kd = 307 nM), thereby inhibiting the gp41-mediated fusion of viral and host-cell membranes. As PEG conjugation has advanced many bioactive proteins and peptides into clinical applications, the EP conjugate described here represents a potential new treatment for HIV infections that may address the unmet medical needs associated with the current ENF therapy.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yan Wang
- State Key Laboratory of Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center of Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Yiming Shao
- State Key Laboratory of Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center of Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Liying Ma
- State Key Laboratory of Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center of Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China.
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China.
| |
Collapse
|
242
|
Lai W, Wang C, Yu F, Lu L, Wang Q, Jiang X, Xu X, Zhang T, Wu S, Zheng X, Zhang Z, Dong F, Jiang S, Liu K. An effective strategy for recapitulating N-terminal heptad repeat trimers in enveloped virus surface glycoproteins for therapeutic applications. Chem Sci 2016; 7:2145-2150. [PMID: 29899942 PMCID: PMC5968561 DOI: 10.1039/c5sc04046a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Sequestering peptides derived from the N-terminal heptad repeat (NHR) of class I viral fusion proteins into a non-aggregating trimeric coiled-coil conformation remains a major challenge. Here, we implemented a synthetic strategy to stabilize NHR-helical trimers, with the human immunodeficiency virus type 1 (HIV-1) gp41 fusion protein as the initial focus. A set of trimeric scaffolds was realized in a synthetic gp41 NHR-derived peptide sequence by relying on the tractability of coiled-coil structures and an additional isopeptide bridge-tethering strategy. Among them, (N36M)3 folded as a highly stable helical trimer and exhibited promising inhibitory activity against HIV-1 infection, exceptional resistance to proteolysis, and effective native ligand-binding capability. We anticipate that the trimeric coiled-coil recapitulation methodology described herein may have broader applicability to yield NHR trimers of other class I enveloped viruses and to prepare helical tertiary structure mimetics of certain natural protein-protein interactions for biomedical applications.
Collapse
Affiliation(s)
- Wenqing Lai
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
| | - Xifeng Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Xiaoyu Xu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Shengming Wu
- National Center of Biomedical Analysis , 27 Tai-Ping Road , Beijing , 100850 , China
| | - Xi Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Fangting Dong
- National Center of Biomedical Analysis , 27 Tai-Ping Road , Beijing , 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
- Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY 10065 , USA
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| |
Collapse
|
243
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
244
|
Channappanavar R, Lu L, Xia S, Du L, Meyerholz DK, Perlman S, Jiang S. Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection. J Infect Dis 2015; 212:1894-903. [PMID: 26164863 PMCID: PMC4655857 DOI: 10.1093/infdis/jiv325] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023] Open
Abstract
To gain entry into the target cell, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) uses its spike (S) protein S2 subunit to fuse with the plasma or endosomal membrane. Previous work identified a peptide derived from the heptad repeat (HR) 2 domain in S2 subunit, HR2P, which potently blocked MERS-CoV S protein-mediated membrane fusion. Here, we tested an HR2P analogue with improved pharmaceutical property, HR2P-M2, for its inhibitory activity against MERS-CoV infection in vitro and in vivo. HR2P-M2 was highly effective in inhibiting MERS-CoV S protein-mediated cell-cell fusion and infection by pseudoviruses expressing MERS-CoV S protein with or without mutation in the HR1 region. It interacted with the HR1 peptide to form stable α-helical complex and blocked six-helix bundle formation between the HR1 and HR2 domains in the viral S protein. Intranasally administered HR2P-M2 effectively protected adenovirus serotype-5-human dipeptidyl peptidase 4-transduced mice from infection by MERS-CoV strains with or without mutations in the HR1 region of S protein, with >1000-fold reduction of viral titers in lung, and the protection was enhanced by combining HR2P-M2 with interferon β. These results indicate that this combination regimen merits further development to prevent MERS in high-risk populations, including healthcare workers and patient family members, and to treat MERS-CoV-infected patients.
Collapse
Affiliation(s)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York
| | | | - Stanley Perlman
- Departments of Microbiology, University of Iowa, Iowa City
- Pediatrics, University of Iowa, Iowa City
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York
| |
Collapse
|
245
|
The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses. Sci Rep 2015; 5:14480. [PMID: 26404138 PMCID: PMC4585914 DOI: 10.1038/srep14480] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) originated in bats and spread to humans via zoonotic transmission from camels. We analyzed the evolution of the spike (S) gene in betacoronaviruses (betaCoVs) isolated from different mammals, in bat coronavirus populations, as well as in MERS-CoV strains from the current outbreak. Results indicated several positively selected sites located in the region comprising the two heptad repeats (HR1 and HR2) and their linker. Two sites (R652 and V1060) were positively selected in the betaCoVs phylogeny and correspond to mutations associated with expanded host range in other coronaviruses. During the most recent evolution of MERS-CoV, adaptive mutations in the HR1 (Q/R/H1020) arose in camels or in a previous host and spread to humans. We determined that different residues at position 1020 establish distinct inter- and intra-helical interactions and affect the stability of the six-helix bundle formed by the HRs. A similar effect on stability was observed for a nearby mutation (T1015N) that increases MERS-CoV infection efficiency in vitro. Data herein indicate that the heptad repeat region was a major target of adaptive evolution in MERS-CoV-related viruses; these results are relevant for the design of fusion inhibitor peptides with antiviral function.
Collapse
|
246
|
Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy. Sci Rep 2015; 5:13028. [PMID: 26286358 PMCID: PMC4541410 DOI: 10.1038/srep13028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognized AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.
Collapse
|
247
|
|
248
|
Lu L, Xia S, Ying T, Jiang S. Urgent development of effective therapeutic and prophylactic agents to control the emerging threat of Middle East respiratory syndrome (MERS). Emerg Microbes Infect 2015; 4:e37. [PMID: 26954884 PMCID: PMC4773045 DOI: 10.1038/emi.2015.37] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
249
|
Zhu JD, Meng W, Wang XJ, Wang HCR. Broad-spectrum antiviral agents. Front Microbiol 2015; 6:517. [PMID: 26052325 PMCID: PMC4440912 DOI: 10.3389/fmicb.2015.00517] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/09/2015] [Indexed: 12/24/2022] Open
Abstract
Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jun-Da Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hwa-Chain R Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
250
|
Dong B, Gao W, Lu H, Zhao K, Ding N, Liu W, Zhao J, Lan Y, Tang B, Jin Z, He W, Gao F. A small region of porcine hemagglutinating encephalomyelitis virus spike protein interacts with the neural cell adhesion molecule. Intervirology 2015; 58:130-7. [PMID: 25925196 PMCID: PMC7179542 DOI: 10.1159/000381060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 02/18/2015] [Indexed: 12/16/2022] Open
Abstract
Objective The spike (S) protein of porcine hemagglutinating encephalomyelitis virus (PHEV) may mediate infection by binding to a cellular neural cell adhesion molecule (NCAM). This study aimed to identify the crucial domain of the S1 subunit of the S protein that interacts with NCAM. Methods Three truncated segments (S1-291, S277-794 and S548-868) of the S gene of PHEV and the NCAM gene were cloned individually into the Escherichia coli expression vectors and yeast two-hybrid expression vectors. The interaction between S1-291, S277-794, S548-868 and NCAM were detected by a GST pull-down experiment and yeast two-hybrid assay. Results Three fusion proteins (S1-291, S277-794 and S548-868) were screened for their interactions with NCAM by protein-protein interaction assays. The results of these assays clarified that S277-794 interacted with NCAM, while S1-291 and S548-868 did not. Conclusions A small fragment (258-amino-acid fragment, residues 291-548) on the PHEV S protein was posited to be the minimum number of amino acids necessary to interact with NCAM. This fragment may be the receptor-binding domain that mediates PHEV binding to NCAM.
Collapse
Affiliation(s)
- Bo Dong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|