201
|
Döring F, Scholz H, Kühnlein RP, Karschin A, Wischmeyer E. NovelDrosophilatwo-pore domain K+channels: rescue of channel function by heteromeric assembly. Eur J Neurosci 2006; 24:2264-74. [PMID: 17074048 DOI: 10.1111/j.1460-9568.2006.05102.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ten genes with essential structural features of two-pore domain potassium channels were identified in the genome of Drosophila melanogaster. Two Drosophila two-pore domain potassium subunits displayed substantial amino acid similarity to human TWIK-related acid-sensitive K(+) (TASK) channels (38-43%), whereas all others were less than 26% similar to any human homolog. The cDNAs of Drosophila TASK (dTASK)-6 and dTASK-7 channels were isolated from adult fruit flies. In Northern blots dTASK transcripts were found predominantly in the head fraction of adult flies and whole-mount brain in situ hybridizations showed strongly overlapping expression patterns of both dTASK isoforms in the antennal lobes. When heterologously expressed in Drosophila Schneider 2 cells, dTASK-6 gave rise to rapidly activating K(+)-selective currents that steeply depended on external pH. Structural elements in the extracellular M1-P1 loop of dTASK-6 were found to be involved in proton sensation. In contrast to mammalian TASK channels, the pH sensitivity was independent of extracellular histidines adjacent to the GYG selectivity filter (His98). As revealed by mutational analysis, functional expression of dTASK-7 was prevented by two nonconserved amino acids (Ala92-Met93) in the pore domain. When these two residues were replaced by conserved Thr92-Thr93, typical K(+)-selective leak currents were generated that were insensitive to changes in external pH. Nonfunctional wildtype dTASK-7 channels appeared to form heteromeric assemblies with dTASK-6. Following cotransfection of dTASK-6 and wildtype dTASK-7 (or when engineered as concatemers), K(+) currents were observed that were smaller in amplitude, harbored slower activation kinetics and were considerably less inhibited by local anesthetics as compared with dTASK-6. Thus, pore-loop residues in dTASK-7 changed functional and pharmacological properties in heteromeric dTASK channels.
Collapse
Affiliation(s)
- Frank Döring
- Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
202
|
Zanzouri M, Lauritzen I, Lazdunski M, Patel A. The background K+ channel TASK-3 is regulated at both the transcriptional and post-transcriptional levels. Biochem Biophys Res Commun 2006; 348:1350-7. [PMID: 16925981 DOI: 10.1016/j.bbrc.2006.07.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
The K(+) channel TASK-3 is highly expressed in cerebellar granule neurons where it encodes the K(+) current IKso. Besides the role of TASK-3 in controlling cellular excitability and shaping neuronal responses, it has recently been proposed to contribute to the development and maturation of neurons in the cerebellum. K(+) dependent apoptosis and tumorigenesis have also been attributed to TASK-3 over-expression. Transcription of TASK-3 is strongly dependent on depolarization-induced Ca(2+)-entry. To understand the mechanisms involved in TASK-3 regulation, we have characterized a minimal promoter which specifically expresses in cellular backgrounds expressing endogenous TASK-3. Moreover, we have cloned and characterized the 5' and 3' untranslated regions of TASK-3. Both regions contribute to inhibit expression of a reporter gene. Given the direct consequence of membrane potential on TASK-3 expression, this is an important first step towards the understanding of the complex regulation of this gene.
Collapse
Affiliation(s)
- Marc Zanzouri
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR 6097, Université de Nice-Sophia Antipolis, 660 Route des Lucioles, Valbonne 06560, France
| | | | | | | |
Collapse
|
203
|
Poirot O, Berta T, Decosterd I, Kellenberger S. Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 2006; 576:215-34. [PMID: 16840516 PMCID: PMC1995627 DOI: 10.1113/jphysiol.2006.113035] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/11/2006] [Indexed: 12/28/2022] Open
Abstract
The H(+)-gated acid-sensing ion channels (ASICs) are expressed in dorsal root ganglion (DRG) neurones. Studies with ASIC knockout mice indicated either a pro-nociceptive or a modulatory role of ASICs in pain sensation. We have investigated in freshly isolated rat DRG neurones whether neurones with different ASIC current properties exist, which may explain distinct cellular roles, and we have investigated ASIC regulation in an experimental model of neuropathic pain. Small-diameter DRG neurones expressed three different ASIC current types which were all preferentially expressed in putative nociceptors. Type 1 currents were mediated by ASIC1a homomultimers and characterized by steep pH dependence of current activation in the pH range 6.8-6.0. Type 3 currents were activated in a similar pH range as type 1, while type 2 currents were activated at pH < 6. When activated by acidification to pH 6.8 or 6.5, the probability of inducing action potentials correlated with the ASIC current density. Nerve injury induced differential regulation of ASIC subunit expression and selective changes in ASIC function in DRG neurones, suggesting a complex reorganization of ASICs during the development of neuropathic pain. In summary, we describe a basis for distinct cellular functions of different ASIC types in small-diameter DRG neurones.
Collapse
Affiliation(s)
- Olivier Poirot
- Département de Pharmacologie et de Toxicologie, Université de Lausanne Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
204
|
Hamill OP. Twenty odd years of stretch-sensitive channels. Pflugers Arch 2006; 453:333-51. [PMID: 17021800 DOI: 10.1007/s00424-006-0131-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/27/2006] [Indexed: 01/15/2023]
Abstract
After formation of the giga-seal, the membrane patch can be stimulated by hydrostatic or osmotic pressure gradients applied across the patch. This feature led to the discovery of stretch-sensitive or mechanosensitive (MS) channels, which are now known to be ubiquitously expressed in cells representative of all the living kingdoms. In addition to mechanosensation, MS channels have been implicated in many basic cell functions, including regulation of cell volume, shape, and motility. The successful cloning, overexpression, and crystallization of bacterial MS channel proteins combined with patch clamp and modeling studies have provided atomic insight into the working of these nanomachines. In particular, studies of MS channels have revealed new understanding of how the lipid bilayer modulates membrane protein function. Three major membrane protein families, transient receptor potential, 2 pore domain K(+), and the epithelial Na(+) channels, have been shown to form MS channels in animal cells, and their polymodal activation embrace fields far beyond mechanosensitivity. The discovery of new drugs highly selective for MS channels ("mechanopharmaceutics") and the demonstration of MS channel involvement in several major human diseases ("mechanochannelopathies") provide added motivation for devising new techniques and approaches for studying MS channels.
Collapse
Affiliation(s)
- O P Hamill
- Neurosciences and Cell Biology, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
205
|
Wechselberger M, Wright CL, Bishop GA, Boulant JA. Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. Am J Physiol Regul Integr Comp Physiol 2006; 291:R518-29. [PMID: 16690776 DOI: 10.1152/ajpregu.00039.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermoregulatory responses are partially controlled by the preoptic area and anterior hypothalamus (PO/AH), which contains a mixed population of temperature-sensitive and insensitive neurons. Immunohistochemical procedures identified the extent of various ionic channels in rat PO/AH neurons. These included pacemaker current channels [i.e., hyperpolarization-activated cyclic nucleotide-gated channels (HCN)], background potassium leak channels (TASK-1 and TRAAK), and transient receptor potential channel (TRP) TRPV4. PO/AH neurons showed dense TASK-1 and HCN-2 immunoreactivity and moderate TRAAK and HCN-4 immunoreactivity. In contrast, the neuronal cell bodies did not label for TRPV4, but instead, punctate labeling was observed in traversing axons or their terminal endings. On the basis of these results and previous electrophysiological studies, Hodgkin–Huxley-like models were constructed. These models suggest that most PO/AH neurons have the same types of ionic channels, but different levels of channel expression can explain the inherent properties of the various types of temperature-sensitive and insensitive neurons.
Collapse
|
206
|
Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thümmler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 2006; 9:1134-41. [PMID: 16906152 DOI: 10.1038/nn1749] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/21/2006] [Indexed: 12/14/2022]
Abstract
Depression is a devastating illness with a lifetime prevalence of up to 20%. The neurotransmitter serotonin or 5-hydroxytryptamine (5-HT) is involved in the pathophysiology of depression and in the effects of antidepressant treatments. However, molecular alterations that underlie the pathology or treatment of depression are still poorly understood. The TREK-1 protein is a background K+ channel regulated by various neurotransmitters including 5-HT. In mice, the deletion of its gene (Kcnk2, also called TREK-1) led to animals with an increased efficacy of 5-HT neurotransmission and a resistance to depression in five different models and a substantially reduced elevation of corticosterone levels under stress. TREK-1-deficient (Kcnk2-/-) mice showed behavior similar to that of naive animals treated with classical antidepressants such as fluoxetine. Our results indicate that alterations in the functioning, regulation or both of the TREK-1 channel may alter mood, and that this particular K+ channel may be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Bryan RM, You J, Phillips SC, Andresen JJ, Lloyd EE, Rogers PA, Dryer SE, Marrelli SP. Evidence for two-pore domain potassium channels in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2006; 291:H770-80. [PMID: 16565299 DOI: 10.1152/ajpheart.01377.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the presence and function of two-pore domain K+ (K2P) channels in vascular smooth muscle cells (VSMCs). Five members of the K2P channel family are known to be directly activated by arachidonic acid (AA). The purpose of this study was to determine 1) whether AA-sensitive K2P channels are expressed in cerebral VSMCs and 2) whether AA dilates the rat middle cerebral artery (MCA) by increasing K+ currents in VSMCs via an atypical K+ channel. RT-PCR revealed message for the following AA-sensitive K2P channels in rat MCA: tandem of P domains in weak inward rectifier K+ (TWIK-2), TWIK-related K+ (TREK-1 and TREK-2), TWIK-related AA-stimulated K+ (TRAAK), and TWIK-related halothane-inhibited K+ (THIK-1) channels. However, in isolated VSMCs, only message for TWIK-2 was found. Western blotting showed that TWIK-2 is present in MCA, and immunohistochemistry further demonstrated its presence in VSMCs. AA (10–100 μM) dilated MCAs through an endothelium-independent mechanism. AA-induced dilation was not affected by inhibition of cyclooxygenase, epoxygenase, or lipoxygenase or inhibition of classical K+ channels with 10 mM TEA, 3 mM 4-aminopyridine, 10 μM glibenclamide, or 100 μM Ba2+. AA-induced dilations were blocked by 50 mM K+, indicating involvement of a K+ channel. AA (10 μM) increased whole cell K+ currents in dispersed cerebral VSMCs. AA-induced currents were not affected by inhibitors of the AA metabolic pathways or blockade of classical K+ channels. We conclude that AA dilates the rat MCA and increases K+ currents in VSMCs via an atypical K+ channel that is likely a member of the K2P channel family.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Arachidonic Acid/metabolism
- Blotting, Western
- Cerebral Arteries/drug effects
- Cerebral Arteries/metabolism
- Electrophysiology
- Immunohistochemistry
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels/metabolism
- Potassium Channels, Tandem Pore Domain/drug effects
- Potassium Channels, Tandem Pore Domain/metabolism
- Rats
- Rats, Long-Evans
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, University of Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O'Kelly I, Gerasimenko O, Fugger L, Verkhratsky A. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 2006; 50:711-22. [PMID: 16731510 DOI: 10.1016/j.neuron.2006.04.032] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/09/2006] [Accepted: 04/28/2006] [Indexed: 11/27/2022]
Abstract
Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself. These results reveal an unexpected energy-sensing pathway in neurons that regulate states of consciousness and energy balance.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Azzalin A, Ferrara V, Arias A, Cerri S, Avella D, Pisu MB, Nano R, Bernocchi G, Ferretti L, Comincini S. Interaction between the cellular prion (PrPC) and the 2P domain K+ channel TREK-1 protein. Biochem Biophys Res Commun 2006; 346:108-15. [PMID: 16750514 DOI: 10.1016/j.bbrc.2006.05.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/13/2006] [Indexed: 10/24/2022]
Abstract
The cellular prion protein (PrP(C)) is a highly conserved protein throughout the evolution of mammals and therefore is thought to play important cellular functions. Despite decades of intensive researches, the physiological function of PrP(C) remains enigmatic. Differently, in particular pathological contexts, generally referred as transmissible spongiform encephalopathies, a conformational isoform of PrP(C), i.e., PrP(Sc), is considered the causative agent of these diseases. In this study, we investigated putative PrP(C) cellular functions through the identification of PrP(C) protein interactants. Using a bacterial two-hybrid approach, we identified a novel interaction between PrP(C) and a two-pore potassium channel protein, TREK-1. This interaction was further verified in transfected eukaryotic cells using co-immunoprecipitation and confocal microscopic analysis of the fluorescent transfected proteins. Importantly, in the cerebellar cortex, the endogenous PrP(C) and TREK-1 proteins exhibited co-localization signals in correspondence of the Purkinje cells. Furthermore, a deletion mapping study defined the carboxyl-terminal regions of the two proteins as the possible determinants of the PrP(C)-TREK-1 interaction. Our results indicated a novel PrP(C) interacting protein and suggested that this complex might be relevant in modulating a variety of electrophysiological-dependent cellular responses.
Collapse
Affiliation(s)
- Alberto Azzalin
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Sceniak MP, Maciver MB. Cellular Actions of Urethane on Rat Visual Cortical Neurons In Vitro. J Neurophysiol 2006; 95:3865-74. [PMID: 16510775 DOI: 10.1152/jn.01196.2005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urethane is widely used in neurophysiological experiments to anesthetize animals, yet little is known about its actions at the cellular and synaptic levels. This limits our ability to model systems-level cortical function using results from urethane-anesthetized preparations. The present study found that action potential discharge of cortical neurons in vitro, in response to depolarizing current, was strongly depressed by urethane and this was accompanied by a significant decrease in membrane resistance. Voltage-clamp experiments suggest that the mechanism of this depression involves selective activation of a Ba2+-sensitive K+ leak conductance. Urethane did not alter excitatory glutamate-mediated or inhibitory (GABAA- or GABAB-mediated) synaptic transmission. Neither the amplitude nor decay time constant of GABAA- or GABAB-mediated monosynaptic inhibitory postsynaptic currents (IPSCs) were altered by urethane, nor was the frequency of spontaneous IPSCs. These results are consistent with observations seen in vivo during urethane anesthesia where urethane produced minimal disruption of signal transmission in the neocortex.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Anesthesia, Stanford University School of Medicine, Room S288, Stanford, California 94305-5117, USA.
| | | |
Collapse
|
211
|
Rau KK, Cooper BY, Johnson RD. Expression of TWIK-related acid sensitive K+ channels in capsaicin sensitive and insensitive cells of rat dorsal root ganglia. Neuroscience 2006; 141:955-963. [PMID: 16725275 DOI: 10.1016/j.neuroscience.2006.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 04/06/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Previous reports have demonstrated that small- to medium-diameter dorsal root ganglia (DRG) cells in rats can be subgrouped into individual cell types by patterns of voltage-activated currents. These cell types have consistent responses to algesic compounds and maintain characteristic histochemical phenotypes. Using immunocytochemical methods, we have now examined expression of TWIK (tandem of P domains in a weak inwardly rectifying K+ channel)-related acid sensitive K+ (TASK) channels, TASK-1, TASK-2 and TASK-3, in nine electrophysiologically identified small- to medium-diameter DRG cell types. The immunoreactivity in DRG cells was diverse, with all nine cell types expressing one to all three TASK channels. Some cells expressed TASK-1 (types 1, 4, 6 and 9), some TASK-2 (types 2, 4, 5, 6, 7 and 9), and some TASK-3 (types 1, 2, 3, 4, 5, 6 and 8). The co-expression of TASK-1 and TASK-3 in cell types 1, 4 and 6 suggests that these sensory afferents might contain functional heterodimeric channels. In peripheral sensory afferents, TASK channels have been implicated in the pain sensory transduction pathway, and can be modulated by anesthetics and neuroprotective agents. This study seeks to identify TASK channel populations in electrophysiologically characterized populations of putative nociceptive afferents.
Collapse
Affiliation(s)
- K K Rau
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Box 100244, JHMHC, Gainesville, FL 32610, USA.
| | - B Y Cooper
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Neuroscience, University of Florida College of Dentistry and McKnight Brain Institute, Box 100416, JHMHC, Gainesville, FL 32610, USA
| | - R D Johnson
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Box 100144, JHMHC, Gainesville, FL 32610, USA
| |
Collapse
|
212
|
Kang D, Han J, Kim D. Mechanism of inhibition of TREK-2 (K2P10.1) by the Gq-coupled M3 muscarinic receptor. Am J Physiol Cell Physiol 2006; 291:C649-56. [PMID: 16672694 DOI: 10.1152/ajpcell.00047.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TREK-2 is a member of the two-pore domain K(+) channel family and provides part of the background K(+) current in many types of cells. Neurotransmitters that act on receptors coupled to G(q) strongly inhibit TREK-2 and thus enhance cell excitability. The molecular basis for the inhibition of TREK-2 was studied. In COS-7 cells expressing TREK-2 and M(3) receptor, acetylcholine (ACh) applied to the bath solution strongly inhibited the whole cell current, and this was markedly reduced in the presence of U-73122, an inhibitor of PLC. The inhibition was also observed in cell-attached patches when ACh was applied to the bath solution. In inside-out patches, direct application of guanosine 5'-O-(3-thiotriphosphate) (10 microM), Ca(2+) (5 microM), or diacylglycerol (DAG; 10 microM) produced no inhibition of TREK-2 in >75% of patches tested. Phosphatidic acid, a product of DAG kinase, had no effect on TREK-2. Pretreatment of cells with 20 microM wortmannin, an inhibitor of phosphatidylinositol kinases, did not affect the inhibition or the recovery from inhibition of TREK-2, suggesting that phosphatidylinositol 4,5-bisphosphate depletion did not mediate the inhibition. Pretreatment of cells with a protein kinase C inhibitor (bisindolylmaleimide, 10 microM) markedly inhibited ACh-induced inhibition of TREK-2. Mutation of two putative PKC sites (S326A, S359C) abolished inhibition by ACh. Mutation of these amino acids to aspartate to mimic the phosphorylated state resulted in diminished TREK-2 current and no inhibition by ACh. These results suggest that the agonist-induced inhibition of TREK-2 via M(3) receptor occurs primarily via PKC-mediated phosphorylation.
Collapse
Affiliation(s)
- Dawon Kang
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
213
|
Cohen A, Zilberberg N. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements. J Neurosci Methods 2006; 153:62-70. [PMID: 16293314 DOI: 10.1016/j.jneumeth.2005.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Revised: 10/07/2005] [Accepted: 10/09/2005] [Indexed: 01/07/2023]
Abstract
The biophysical and pharmacological properties of ion channels and transporters are often studied in exogenous expression systems using either the two-electrode voltage clamp (TEVC) in Xenopus oocytes or the patch clamp techniques. Cells machinery is trusted to produce active proteins that are correctly phosphorylated and glycosylated. However, native physiological cellular processes that might be altered during the course of the experiment are often ignored. Here, we detected and quantified the effects of various electrophysiological recording conditions on the phosphorylation levels of Xenopus oocytes proteins, including membrane proteins, as phosphorylation/dephosphorylation events modulate ion channels gating and cell surface expression. Two strategies were chosen to determine relative protein phosphorylation levels: a direct detection with a phospho-Ser/Thr PKA substrate antibody, and a functional method employing two different leak potassium channels as indicators, chosen based on their opposite responses to protein kinase phosphorylation. We report that holding potential, and bath solution properties such as pH, osmolarity, temperature and ion composition, dramatically affect protein phosphorylation levels in Xenopus oocytes. Our results might explain some of the fluctuations in the biophysical properties of expressed channels, often observed during electrophysiological measurements. Minimizing possible misinterpretations could be achieved using either mutated, kinase insensitive, channels or kinases/phosphatases modulators.
Collapse
Affiliation(s)
- Asi Cohen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
214
|
Bieger D, Parai K, Ford CA, Tabrizchi R. beta-adrenoceptor mediated responses in rat pulmonary artery: putative role of TASK-1 related K channels. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:186-96. [PMID: 16736155 DOI: 10.1007/s00210-006-0060-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 03/06/2006] [Indexed: 11/29/2022]
Abstract
The effect of isoprenaline on tone, cyclic adenosine 3':5' monophosphate (cAMP), and smooth muscle membrane potential (E ( m )) were assessed in rat isolated pulmonary arteries. N(omega)-nitro-L-arginine methyl ester (10.0 microM) or removal of endothelium partially inhibited relaxant responses to isoprenaline, but glibenclamide (10.0 microM) and indomethacin (10.0 microM) did not. While Rp-8-Br-cAMP (30.0 microM), tetraethylammonium (0.3 & 1.0 mM), 4-aminopyridine (100 microM), anandamide (10.0 microM), charybdotoxin (0.1 microM), ouabain (100 microM), and barium chloride (100 microM), incompletely blocked relaxation to isoprenaline, cyclopiazonic acid (1.0 microM), apamin (3.0 microM) and zinc acetate (300 microM) were without effect. Increasing extracellular K(+) ([K(+)](e)) inhibited relaxant responses to isoprenaline, completely abolishing the response at 30 mM [K+](e). Vasorelaxant effects of isoprenaline were significantly attenuated in buffer pH 6.4, and concomitant presence of Rp-8-Br-cAMP (30.0 microM) in pH 6.4 produced significant additive inhibition when compared to pH 6.4 without Rp-8-Br-cAMP. Isoprenaline increased cAMP turnover (1.55+/-0.24 fold; mean +/- SEM), which was inhibited by propranolol (1.0 microM). Resting E ( m ) of smooth muscle cells was -63.0+/-0.50 mV, and isoprenaline (1.0 microM) produced hyperpolarisation (-73.3+/-0.80 mV). While glibenclamide failed to affect isoprenaline-induced hyperpolarisation, ICI 118,551 (1.0 microM), anandamide or buffer pH 6.4 prevented it, and barium chloride and oubain combined caused partial inhibition. Isoprenaline-mediated relaxation seems to arise from several processes, including the generation of nitric oxide, the cAMP-cascade and, more importantly, a hyperpolarisation that is not due to activation of ATP-sensitive K channels but possibly of two-pore domain K channels of the TASK family.
Collapse
Affiliation(s)
- Detlef Bieger
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | |
Collapse
|
215
|
Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F. Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci U S A 2006; 103:6859-64. [PMID: 16636285 PMCID: PMC1458984 DOI: 10.1073/pnas.0600463103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The neuronal mechano-gated K2P channels TREK-1 and TRAAK show pronounced desensitization within 100 ms of membrane stretch. Desensitization persists in the presence of cytoskeleton disrupting agents, upon patch excision, and when channels are expressed in membrane blebs. Mechanosensitive currents evoked with a variety of complex stimulus protocols were globally fit to a four-state cyclic kinetic model in detailed balance, without the need to introduce adaptation of the stimulus. However, we show that patch stress can be a complex function of time and stimulation history. The kinetic model couples desensitization to activation, so that gentle conditioning stimuli do not cause desensitization. Prestressing the channels with pressure, amphipaths, intracellular acidosis, or the E306A mutation reduces the peak-to-steady-state ratio by changing the preexponential terms of the rate constants, increasing the steady-state current amplitude. The mechanical responsivity can be accounted for by a change of in-plane area of approximately 2 nm2 between the closed and open conformations. Desensitization and its regulation by chemical messengers is predicted to condition the physiological role of K2P channels.
Collapse
Affiliation(s)
- Eric Honoré
- *Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097, Centre National de la Recherche Scientifique, 660 Route des Lucioles, 06560 Valbonne, France; and
- To whom correspondence may be addressed. E-mail:
or
| | - Amanda Jane Patel
- *Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097, Centre National de la Recherche Scientifique, 660 Route des Lucioles, 06560 Valbonne, France; and
| | - Jean Chemin
- L’Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Thomas Suchyna
- Single Molecule Biophysics, 301 Cary Hall, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Frederick Sachs
- Single Molecule Biophysics, 301 Cary Hall, University at Buffalo, State University of New York, Buffalo, NY 14214
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
216
|
Kawai A, Onimaru H, Homma I. Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro. J Physiol 2006; 572:525-37. [PMID: 16469786 PMCID: PMC1779682 DOI: 10.1113/jphysiol.2005.102533] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/27/2005] [Accepted: 02/06/2006] [Indexed: 01/14/2023] Open
Abstract
We investigated mechanisms of CO(2)/H(+) chemoreception in the respiratory centre of the medulla by measuring membrane potentials of pre-inspiratory neurons, which are putative respiratory rhythm generators, in the brainstem-spinal cord preparation of the neonatal rat. Neuronal response was tested by changing superfusate CO(2) concentration from 2% to 8% at constant HCO(3)(-) concentration (26 mm) or by changing pH from 7.8 to 7.2 by reducing HCO(3)(-) concentration at constant CO(2) (5%). Both respiratory and metabolic acidosis lead to depolarization of neurons with increased excitatory synaptic input and increased burst rate. Respiratory acidosis potentiated the amplitude of the neuronal drive potential. In the presence of tetrodotoxin (TTX), membrane depolarization persisted during respiratory and metabolic acidosis. However, the depolarization was smaller than that before application of TTX, which suggests that some neurons are intrinsically, and others synaptically, chemosensitive to CO(2)/H(+). Application of Ba(2+) blocked membrane depolarization by respiratory acidosis, whereas significant depolarization in response to metabolic acidosis still remained after application of Cd(2+) and Ba(2+). We concluded that the intrinsic responses to CO(2)/H(+)changes were mediated by potassium channels during respiratory acidosis, and that some other mechanisms operate during metabolic acidosis. In low-Ca(2+), high-Mg(2+) solution, an increased CO(2) concentration induced a membrane depolarization with a simultaneous increase of the burst rate. Pre-inspiratory neurons could adapt their baseline membrane potential to external CO(2)/H(+) changes by integration of these mechanisms to modulate their burst rates. Thus, pre-inspiratory neurons might play an important role in modulation of respiratory rhythm by central chemoreception in the brainstem-spinal cord preparation.
Collapse
Affiliation(s)
- Akira Kawai
- Department of Physiology, Showa University, School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
217
|
Barsanti C, Pellegrini M, Ricci D, Pellegrino M. Effects of intracellular pH and Ca2+ on the activity of stretch-sensitive cation channels in leech neurons. Pflugers Arch 2006; 452:435-43. [PMID: 16642365 DOI: 10.1007/s00424-006-0056-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 02/11/2006] [Indexed: 10/24/2022]
Abstract
The effects of intracellular pH and calcium on the activity of the leech mechanosensitive cation channels have been studied. These channels exhibited two activity modes denoted as spike-like (SL) and multiconductance (MC). In the absence of mechanical stimulation, acidification of the intracellular side of membrane patches from 7.2 to 6.2 reversibly increased the mean channel open time as well as the opening frequency in the SL mode. Channels in MC mode were activated by a pH(i) reduction from 7.2 to 6.2, but were inhibited at pH(i) 5.5. Unlike MC mode, SL mode was strongly activated by intracellular Ca(2+). Fura-2 imaging experiments showed that intracellular calcium was induced to increase by hypotonic cell swelling. The major component of this response did not require extracellular calcium. A component of the swelling-induced calcium response was sensitive to blockers of stretch-sensitive cation channels. The results indicate that the two activity modes of mechanosensitive channels of leech neurons respond differently to changes of intracellular pH and calcium. The sensitivity of the channel to micromolar concentrations of internal free calcium, along with its permeability to this ion, is consistent with a role in the amplification of mechanically induced Ca(2+) signals in leech neurons.
Collapse
Affiliation(s)
- C Barsanti
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Via S. Zeno 31, 56127, Pisa, Italy
| | | | | | | |
Collapse
|
218
|
Oike H, Matsumoto I, Abe K. Group IIA phospholipase A(2) is coexpressed with SNAP-25 in mature taste receptor cells of rat circumvallate papillae. J Comp Neurol 2006; 494:876-86. [PMID: 16385482 DOI: 10.1002/cne.20848] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The taste buds are composed of heterogeneous cell populations with diverse properties and at different stages of maturity. It is important to define the relationships between cell properties and cell maturity to understand the molecular events involved in intracellular taste signaling. In the present study, in situ hybridization analysis indicated that group IIA phospholipase A(2) (PLA(2)-IIA) is expressed in a subset of taste bud cells. Immunohistochemical studies showed that PLA(2)-IIA was expressed in a subset of cells expressing phospholipase Cbeta2, a molecule essential for taste signaling in taste receptor cells, and also that some PLA(2)-IIA-positive cells expressed gustducin (Ggust), a bitter-taste-signaling molecule. Although PLA(2)-IIA and Ggust were expressed at similar frequencies in taste buds, bromodeoxyuridine (BrdU) chase experiments indicated that the expression of Ggust began 2 days after BrdU injection, whereas the expression of PLA(2)-IIA commenced after 4 days. In addition, PLA(2)-IIA was coexpressed with SNAP-25, a synaptosomal-associated protein. These results indicated that PLA(2)-IIA is expressed in mature taste receptor cells that possess exocytotic machinery.
Collapse
Affiliation(s)
- Hideaki Oike
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
219
|
Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG. Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 2006; 25:11455-67. [PMID: 16339039 PMCID: PMC6725905 DOI: 10.1523/jneurosci.3153-05.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-pore domain potassium (K2P) channel expression is believed to underlie the developmental emergence of a potassium leak conductance [IK(SO)] in cerebellar granule neurons (CGNs), suggesting that K2P function is an important determinant of the input conductance and resting membrane potential. To investigate the role that different K2P channels may play in the regulation of CGN excitability, we generated a mouse lacking TASK-1, a K2P channel known to have high expression levels in CGNs. In situ hybridization and real-time PCR studies in wild-type and TASK-1 knock-outs (KOs) demonstrated that the expression of other K2P channels was unaltered in CGNs. TASK-1 knock-out mice were healthy and bred normally but exhibited compromised motor performance consistent with altered cerebellar function. Whole-cell recordings from adult cerebellar slice preparations revealed that the resting excitability of mature CGNs was no different in TASK-1 KO and littermate controls. However, the modulation of IK(SO) by extracellular Zn2+, ruthenium red, and H+ was altered. The IK(SO) recorded from TASK-1 knock-out CGNs was no longer sensitive to alkalization and was blocked by Zn2+ and ruthenium red. These results suggest that a TASK-1-containing channel population has been replaced by a homodimeric TASK-3 population in the TASK-1 knock-out. These data directly demonstrate that TASK-1 channels contribute to the properties of IK(SO) in adult CGNs. However, TASK channel subunit composition does not alter the resting excitability of CGNs but does influence sensitivity to endogenous modulators such as Zn2+ and H+.
Collapse
Affiliation(s)
- M Isabel Aller
- Department of Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Potassium. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
221
|
Presumed mechanisms of a long-term increase in the intrinsic excitability of cerebellar granule cells: A model study. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
222
|
Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T. The Contribution of TWIK-Related Acid-Sensitive K+-Containing Channels to the Function of Dorsal Lateral Geniculate Thalamocortical Relay Neurons. Mol Pharmacol 2006; 69:1468-76. [PMID: 16424077 DOI: 10.1124/mol.105.020594] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genetic knockout was used to determine the specific contribution of TWIK-related acid-sensitive K+ (TASK)-1 channels to the function of dorsal lateral geniculate nucleus (DLG) thalamocortical relay (TC) neurons. Disruption of TASK-1 function produced an approximately 19% decrease in amplitude of the standing outward current (ISO) and a 3 +/- 1-mV depolarizing shift in resting membrane potential (Vrest) of DLG neurons. We estimated that current through TASK-1 homodimers or TASK-1/TASK-3 heterodimers contribute(s) approximately one third of the current sensitive to TASK channel modulators in DLG TC neurons. The effects of the TASK channel blocker bupivacaine (20 microM), of muscarine (50 microM), and of H+ on ISO were reduced to approximately 60%, 59%, and shifted to more acidic pH values, respectively. The blocking effect of anandamide on ISO [30 microM; 23 +/- 3% current decrease in wild type (WT)] was absent in TASK-1 knockout (TASK-1-/-) mice (9 +/- 6% current increase). Comparable results were obtained with the more stable anand-amide derivative methanandamide (20 microM; 20 +/- 2% decrease in WT; 4 +/- 6% increase in TASK-1-/-). Current-clamp recordings revealed a muscarine-induced shift in TC neuron activity from burst to tonic firing in both mouse genotypes. Electrocorticograms and sleep/wake times were unchanged in TASK-1-/- mice. In conclusion, our findings demonstrate a significant contribution of TASK-1 channels to ISO in DLG TC neurons, although the genetic knockout of TASK-1 did not produce severe deficits in the thalamocortical system.
Collapse
Affiliation(s)
- Sven G Meuth
- Institut für Experimentelle Epilepsieforschung, Westfälische Wilhelms-Universität Münster, Hüfferstr. 68, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Heurteaux C, Laigle C, Blondeau N, Jarretou G, Lazdunski M. Alpha-Linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 2006; 137:241-51. [PMID: 16289892 DOI: 10.1016/j.neuroscience.2005.08.083] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/22/2005] [Accepted: 08/31/2005] [Indexed: 11/29/2022]
Abstract
We investigated here the effects of alpha-linolenic acid and riluzole, both activators of the 2P-domain K+ channel family TREK/TRAAK, in a model of focal ischemia clinically relevant to stroke, not only assessing neuronal protection, but also long term survival. Moreover, all the drug treatments were initiated post-ischemia. Mice were subjected to transient middle cerebral artery occlusion (1 h) and reperfusion according to the intraluminal filament model. Drugs were injected into the jugular vein according to three protocols: (i) a single dose of 4 mg/kg riluzole or 500 nmol/kg alpha-linolenic acid at different reperfusion time; (ii) a three-day therapy (a single dose of 2 mg/kg riluzole and 250 nmol/kg alpha-linolenic acid given 1-2, 48 and 72 h after reperfusion); (iii) a three-week therapy (a single dose of 2 mg/kg riluzole and 250 nmol/kg alpha-linolenic acid given once a week during three weeks after reperfusion. A combined treatment with 2mg/kg riluzole+250 nmol/kg alpha-linolenic acid injected 2 h after reperfusion was also tested. A single dose of riluzole (4 mg/kg) or alpha-linolenic acid (500 nmol/kg) injected up to 3 h after reperfusion reduced drastically the stroke volume by 75% and 86%, respectively. Neurological deficits 24 h after ischemia were significantly improved by alpha-linolenic acid500 or riluzole4 with a neurological score of 1.8 as compared with 2.5 observed in vehicle-treated mice. Alpha-linolenic acid- and riluzole treatment were associated with a reduction in cytopathological features of cell injury, including DNA fragmentation and Bax expression in the cortex and the caudate putamen. With regard to the survival rate at 30 days, the best protections were obtained with the alpha-linolenic acid-injection in the three-week therapy as well as with a single dose of the combined treatment (2 mg/kg riluzole+250 nmol/kg alpha-linolenic acid). Palmitic acid, a saturated fatty acid that does not activate the 2P-domain K-channel TREK/TRAAK family, did not provide any neuroprotection. Taken together, these data suggest that the TREK/TRAAK K-channel family may be a promising target for neuroprotection, and that riluzole and alpha-linolenic acid could be of therapeutic value against focal ischemia/reperfusion injury to the brain.
Collapse
Affiliation(s)
- C Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 6097, CNRS Université de Nice Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France.
| | | | | | | | | |
Collapse
|
224
|
Davis KA, Cowley EA. Two-pore-domain potassium channels support anion secretion from human airway Calu-3 epithelial cells. Pflugers Arch 2005; 451:631-41. [PMID: 16311719 DOI: 10.1007/s00424-005-1505-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
Potassium channels are required for the absorption and secretion of fluids and electrolytes in epithelia. Calu-3 cells possess a secretory phenotype, and are a model human airway submucosal gland serous cell. Short-circuit current (I(sc)) recordings from Calu-3 cells indicated that basal anion secretion was reduced by apical application of the K+ channel inhibitors bupivicaine, lidocaine, clofilium, and quinidine. Application of riluzole resulted in a large increase in I(sc), inhibited by apical application of either bupivicane or the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel blocker DPC. These results suggested that one or more members of the two-pore-domain K+ (K(2P)) channel family could influence anion secretion. Using RT-PCR, we found that Calu-3 cells express mRNA transcripts for TASK-2 (KCNK5), TWIK-1 (KCNK1), TWIK-2 (KCNK6) and TREK-1 (KCNK2). TASK-2, TWIK-2 and TREK-1 protein were detected by Western blotting, while immunolocalization of polarized cells confirmed protein expression of TREK-1 and TWIK-2 at the plasma cell membrane. TASK-2 protein staining was localized to intracellular vesicles, located beneath the apical membrane. While the pro-secretory role of basolateral K+ channels is well established, we suggest that apically located K2P channels, not previously described in airway epithelial cells, also play an important role in controlling the rate of transepithelial anion secretion.
Collapse
Affiliation(s)
- Kellie A Davis
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, B3H 4H7, Canada
| | | |
Collapse
|
225
|
Taverna S, Tkatch T, Metz AE, Martina M. Differential expression of TASK channels between horizontal interneurons and pyramidal cells of rat hippocampus. J Neurosci 2005; 25:9162-70. [PMID: 16207875 PMCID: PMC6725761 DOI: 10.1523/jneurosci.2454-05.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among the electrophysiological properties differentiating stratum oriens horizontal interneurons from pyramidal neurons of the CA1 hippocampal subfield are the more depolarized resting potential and the higher input resistance; additionally, these interneurons are also less sensitive to ischemic damage than pyramidal cells. A differential expression of pH-sensitive leakage potassium channels (TASK) could contribute to all of these differences. To test this hypothesis, we studied the expression and properties of TASK channels in the two cell types. Electrophysiological recordings from acute slices showed that barium- and bupivacaine-sensitive TASK currents were detectable in pyramidal cells but not in interneurons and that extracellular acidification caused a much stronger depolarization in pyramidal cells than in interneurons. This pyramidal cell depolarization was paralleled by an increase of the input resistance, suggesting the blockade of a background conductance. Single-cell reverse transcription-PCR experiments showed that the expression profile of TASK channels differ between the two cell types and suggested that these channels mediate an important share of the leakage current of pyramidal cells. We suggest that the different expression of TASK channels in these cell types contribute to their electrophysiological differences and may result in cell-specific sensitivity to extracellular acidification in conditions such as epilepsy and ischemia.
Collapse
Affiliation(s)
- Stefano Taverna
- Department of Physiology, Feinberg School of Medicine, Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
226
|
Lauritzen I, Chemin J, Honoré E, Jodar M, Guy N, Lazdunski M, Jane Patel A. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 2005; 6:642-8. [PMID: 15976821 PMCID: PMC1369110 DOI: 10.1038/sj.embor.7400449] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/28/2005] [Accepted: 05/05/2005] [Indexed: 12/12/2022] Open
Abstract
TREK-1 (KCNK2) is a K(2P) channel that is highly expressed in fetal neurons. This K(+) channel is opened by a variety of stimuli, including membrane stretch and cellular lipids. Here, we show that the expression of TREK-1 markedly alters the cytoskeletal network and induces the formation of actin- and ezrin-rich membrane protrusions. The genetic inactivation of TREK-1 significantly alters the growth cone morphology of cultured embryonic striatal neurons. Cytoskeleton remodelling is crucially dependent on the protein kinase A phosphorylation site S333 and the interactive proton sensor E306, but is independent of channel permeation. Conversely, the actin cytoskeleton tonically represses TREK-1 mechano-sensitivity. Thus, the dialogue between TREK-1 and the actin cytoskeleton might influence both synaptogenesis and neuronal electrogenesis.
Collapse
Affiliation(s)
- Inger Lauritzen
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
| | - Jean Chemin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
| | - Eric Honoré
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
| | - Martine Jodar
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
| | - Nicolas Guy
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
| | - Amanda Jane Patel
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice-Sophia Antipolis, Institut Paul Hamel, 660 Route des Lucioles, 06560 Valbonne, France
- Tel: +33 4 93 95 7730; Fax: +33 4 93 95 7704; E-mail:
| |
Collapse
|
227
|
Sanders KM, Koh SD. Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 2005; 570:37-43. [PMID: 16239268 PMCID: PMC1464292 DOI: 10.1113/jphysiol.2005.098897] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscles are influenced by many levels of regulation, including those provided by enteric motor neurones, hormones and paracrine substances. The integrated contractile responses to these regulatory mechanisms depend heavily on the state of excitability of smooth muscle cells. Resting ionic conductances and myogenic responses to agonists and physical parameters, such as stretch, are important in establishing basal excitability. This review discusses the role of 2-pore-domain K+ channels in contributing to background conductances and in mediating responses of GI muscles to enteric inhibitory nerve stimulation and stretch. Murine GI muscles express TREK-1 channels and display a stretch-dependent K+ (SDK) conductance that is also activated by nitric oxide via a cGMP-dependent mechanism. Cloning and expression of mTREK-1 produced an SDK conductance that was activated by cGMP-dependent phosphorylation at serine-351. GI muscle cells also express TASK-1 and TASK-2 channels that are inhibited by lidocaine and external acidification. These conductances appear to provide significant background K+ permeability that contributes to the negative resting potentials of GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
228
|
Holter J, Carter D, Leresche N, Crunelli V, Vincent P. A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci 2005; 25:37-51. [PMID: 15781965 DOI: 10.1385/jmn:25:1:037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 04/24/2004] [Indexed: 12/28/2022]
Abstract
Childhood absence epilepsy is an idiopathic, generalized, nonconvulsive epilepsy with a multifactorial genetic etiology. The KCNK9 gene coding for the TASK3 (Twik-like acid-sensitive K</U)+) channel is present on chromosome 8 at position 8q24, a locus that has shown positive linkage to the human absence epilepsy phenotype. Sequencing of the KCNK9 gene in the genetic absence epilepsy rats from Strasbourg (GAERS), a well established genetic model of this disease, reveals an additional alanine residue in a polyalanine tract within the C-terminal intracellular domain. This additional alanine is absent in the inbred nonepileptic control (NEC) strain, Wistar, and Wistar albino Glaxo strain bred in Rijswijk, another inbred rat model of absence epilepsy. Expression of the mutant channel in CHO cells produces a K+ current that is blocked by acidic pH and millimolar concentrations of barium or ruthenium red and is not different from the wild-type channel. In brain slices, thalamic neurons display a prominent pH-sensitive tonic K+ current, but no difference was observed between GAERS and NEC or Wistar rats. Ruthenium red had no effect in cortical, reticular thalamic, or sensory thalamic neurons in either GAERS or NEC, indicating that the TASK3 homodimer is not present in these structures. Twik-like acid-sensitive K+(TASK3) channels, therefore, are probably associated with TASK1 to form ruthenium red-insensitive heterodimers in these neurons. Finally, no difference was found between GAERS and NEC rats in the modulation of the leak K+ current following activation of muscarinic receptors. These studies describe the first mutation found in a genetic model of absence epilepsy. Although our experiments showed no difference in the leak K+ current between GAERS and NEC rats, further work is needed to ascertain whether this mutation contributes to the generation of absence seizures, possibly by mechanisms related to the expansion of the polyalanine run.
Collapse
Affiliation(s)
- Jethro Holter
- School of Bioscience, Cardiff University, Cardiff, CF10 3US, UK
| | | | | | | | | |
Collapse
|
229
|
Bai X, Bugg GJ, Greenwood SL, Glazier JD, Sibley CP, Baker PN, Taggart MJ, Fyfe GK. Expression of TASK and TREK, two-pore domain K+ channels, in human myometrium. Reproduction 2005; 129:525-30. [PMID: 15798028 DOI: 10.1530/rep.1.00442] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two-pore domain K+ channels are an emerging family of K+ channels that may contribute to setting membrane potential in both electrically excitable and non-excitable cells and, as such, influence cellular function. The human uteroplacental unit contains both excitable (e.g. myometrial) and non-excitable cells, whose function depends upon the activity of K+ channels. We have therefore investigated the expression of two members of this family, TWIK (two-pore domain weak inward rectifying K+ channel)-related acid-sensitive K+ channel (TASK) and TWIK-related K+ channel (TREK) in human myometrium. Using RT-PCR the mRNA expression of TASK and TREK isoforms was examined in myometrial tissue from pregnant women. mRNAs encoding TASK1, 4 and 5 and TREK1 were detected whereas weak or no signals were observed for TASK2, TASK3 and TREK2. Western blotting for TASK1 gave two bands of approximately 44 and 65 kDa, whereas TREK1 gave bands of approximately 59 and 90 kDa in myometrium from pregnant women. TASK1 and TREK1 immunofluorescence was prominent in intracellular and plasmalemmal locations within myometrial cells. Therefore, we conclude that the human myometrium is a site of expression for the two-pore domain K+ channel proteins TASK1 and TREK1.
Collapse
Affiliation(s)
- Xilian Bai
- Maternal and Fetal Health Research Centre, St Mary's Hospital, University of Manchester, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Takahira M, Sakurai M, Sakurada N, Sugiyama K. Fenamates and diltiazem modulate lipid-sensitive mechano-gated 2P domain K+ channels. Pflugers Arch 2005; 451:474-8. [PMID: 16075240 DOI: 10.1007/s00424-005-1492-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 11/28/2022]
Abstract
A swelling-activated, background K(+) current in the corneal epithelium is characteristically activated by fenamates and inhibited by diltiazem. Fatty acids also stimulate this current, indicating that its origin is a lipid-sensitive mechano-gated 2P domain K(+) channel. In the present study, modulation of TREK-1, TREK-2, and TRAAK channels by fenamates and diltiazem was examined. TREK-1, TREK-2, and TRAAK currents transiently expressed in COS-7 cells were recorded by the perforated-patch configuration. As previously reported, arachidonic acid (20 microM) stimulated all of these channels, and a volatile anesthetic, halothane (1 mM) augmented TREK-1 and TREK-2 but not TRAAK. Flufenamic acid (FA, 100 microM), niflumic acid (NA, 100 microM), and mefenamic acid (MA, 100 microM) markedly stimulated TREK-1, TREK-2, and TRAAK. The potency sequence for the activation of TREK-1 and TREK-2 was FA > NA = MA, and the potency sequence for the activation of TRAAK was FA = NA > MA. Diltiazem (1 mM) inhibited TREK-1 and TREK-2, but not TRAAK. In conclusion, fenamates are openers of the lipid-sensitive mechano-gated 2P domain K(+) channels, and diltiazem may be a specific blocker for TREK. These novel findings could help to further understand channel functions of the mechano-gated 2P domain K(+) channels.
Collapse
Affiliation(s)
- Masayuki Takahira
- Department of Visual Neuroscience and Ophthalmology, Kanazawa University, Takara-Machi 13-1, Kanazawa 920-8640, Japan.
| | | | | | | |
Collapse
|
231
|
Kaczmarek LK, Bhattacharjee A, Desai R, Gan L, Song P, von Hehn CAA, Whim MD, Yang B. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hear Res 2005; 206:133-45. [PMID: 16081004 DOI: 10.1016/j.heares.2004.11.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 11/16/2004] [Indexed: 11/23/2022]
Abstract
The firing patterns of neurons in central auditory pathways encode specific features of sound stimuli, such as frequency, intensity and localization in space. The generation of the appropriate pattern depends, to a major extent, on the properties of the voltage-dependent potassium channels in these neurons. The mammalian auditory pathways that compute the direction of a sound source are located in the brainstem and include the connection from bushy cells in the anteroventral cochlear nucleus (AVCN) to the principal neurons of the medial nucleus of the trapezoid body (MNTB). To preserve the fidelity of timing of action potentials that is required for sound localization, these neurons express several types of potassium channels, including the Kv3 and Kv1 families of voltage-dependent channels and the Slick and Slack sodium-dependent channels. These channels determine the pattern of action potentials and the amount of neurotransmitter released during repeated stimulation. The amplitude of currents carried by one of these channels, the Kv3.1b channel, is regulated in the short term by protein phosphorylation, and in the long term, by changes in gene expression, such that the intrinsic excitability of the neurons is constantly being regulated by the ambient auditory environment.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Hopwood SE, Trapp S. TASK-like K+ channels mediate effects of 5-HT and extracellular pH in rat dorsal vagal neurones in vitro. J Physiol 2005; 568:145-54. [PMID: 16020457 PMCID: PMC1474773 DOI: 10.1113/jphysiol.2005.093070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dorsal vagal neurones (DVN) receive serotonergic projections from the medullary raphé nuclei, suggesting that 5-HT modulates vagal activity. A previous study has shown that 5-HT excites DVN in part by inhibition of a K+ current via postsynaptic 5-HT2A receptors. As mRNA for the two-pore-domain K+ channels TASK-1 (KCNK3) and TASK-3 (KCNK9) has been found in DVN, we investigated the possibility that 5-HT exerts its effects via inhibition of these K+ channels using whole-cell patch-clamp techniques. In current clamp, 5-HT (20 microM) elicited a depolarization by 5.1+/-1.5 mV and an increase in firing rate. In voltage clamp, 5-HT reduced the standing outward current (ISO) at -20 mV by 106+/-17 pA, inhibiting a conductance (reversal, -95+/-4 mV) which displayed Goldman-Hodgkin-Katz outward rectification, supportive of a TASK-like K+ current. Since TASK channels are modulated by extracellular pH (pHo), we next investigated the pH sensitivity of ISO in Hepes-buffered ACSF. At pHo 7.3, DVN exhibited an ISO of 147+/-15 pA at -20 mV. Acidification to pHo 6.3 reduced ISO to 85+/-13 pA, whereas raising pHo to 8.5 increased ISO to 216+/-26 pA. At pHo 7.3, ISO was inhibited by BaCl2 (IC50 465 microM), but unaffected by ZnCl2 (100 microM). 5-HT (10 microM) reduced ISO by 114+/-17 pA at pHo 7.3, but at pHo 6.3 the 5-HT-induced inhibition of ISO was significantly smaller. The present data suggest that the excitatory effects of 5-HT on DVN are mediated in part by inhibition of a TASK-like, pH-sensitive K+ conductance. The pharmacological profile of this conductance excludes TASK-3 homomers, but rather implicates TASK-1-containing channels.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Barium Compounds/pharmacology
- Chlorides/pharmacology
- Dose-Response Relationship, Drug
- Hydrogen-Ion Concentration
- In Vitro Techniques
- Nerve Tissue Proteins
- Neurons/drug effects
- Neurons/physiology
- Potassium/metabolism
- Potassium Channels, Inwardly Rectifying/drug effects
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Tandem Pore Domain/antagonists & inhibitors
- Potassium Channels, Tandem Pore Domain/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/physiology
- Serotonin/pharmacology
- Time Factors
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Sarah E Hopwood
- Department of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Oncology, Reproductive Biology, Blackett Laboratory, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
233
|
Murbartián J, Lei Q, Sando JJ, Bayliss DA. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J Biol Chem 2005; 280:30175-84. [PMID: 16006563 DOI: 10.1074/jbc.m503862200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background potassium channels determine membrane potential and input resistance and serve as prominent effectors for modulatory regulation of cellular excitability. TREK-1 is a two-pore domain background K+ channel (KCNK2, K2P2.1) that is sensitive to a variety of physicochemical and humoral factors. In this work, we used a recombinant expression system to show that activation of G alpha(q)-coupled receptors leads to inhibition of TREK-1 channels via protein kinase C (PKC), and we identified a critical phosphorylation site in a key regulatory domain that mediates inhibition of the channel. In HEK 293 cells co-expressing TREK-1 and either the thyrotropin-releasing hormone receptor (TRHR1) or the Orexin receptor (Orx1R), agonist stimulation induced robust channel inhibition that was suppressed by a bisindolylmaleimide PKC inhibitor but not by a protein kinase A blocker ((R(p))-cAMP-S). Channel inhibition by agonists or by direct activators of PKC (phorbol dibutyrate) and PKA (forskolin) was disrupted not only by alanine or aspartate mutations at an identified PKA site (Ser-333) in the C terminus, but also at a more proximal regulatory site in the cytoplasmic C terminus (Ser-300); S333A and S300A mutations enhanced basal TREK-1 current, whereas S333D and S300D substitutions mimicked phosphorylation and strongly diminished currents. When studied in combination, TREK-1 current density was enhanced in S300A/S333D but reduced in S300D/S333A mutant channels. Channel mutants were expressed and appropriately targeted to cell membranes. Together, these data support a sequential phosphorylation model in which receptor-induced kinase activation drives modification at Ser-333 that enables subsequent phosphorylation at Ser-300 to inhibit TREK-1 channel activity.
Collapse
MESH Headings
- Alanine/chemistry
- Animals
- Aspartic Acid/chemistry
- Binding Sites
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- Colforsin/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Humans
- Indoles/pharmacology
- Maleimides/pharmacology
- Mice
- Models, Biological
- Mutagenesis, Site-Directed
- Mutation
- Orexin Receptors
- Phorbol 12,13-Dibutyrate/pharmacology
- Phosphorylation
- Potassium/chemistry
- Potassium Channels/chemistry
- Potassium Channels, Tandem Pore Domain/chemistry
- Potassium Channels, Tandem Pore Domain/metabolism
- Protein Binding
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide/chemistry
- Receptors, Thyrotropin-Releasing Hormone/chemistry
- Recombinant Proteins/chemistry
- Serine/chemistry
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Janet Murbartián
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
234
|
Enyeart JJ, Danthi SJ, Liu H, Enyeart JA. Angiotensin II inhibits bTREK-1 K+ channels in adrenocortical cells by separate Ca2+- and ATP hydrolysis-dependent mechanisms. J Biol Chem 2005; 280:30814-28. [PMID: 15994319 DOI: 10.1074/jbc.m504283200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bovine adrenocortical cells express bTREK-1 K+ channels that set the resting membrane potential (V(m)) and couple angiotensin II (AngII) and adrenocorticotropic hormone (ACTH) receptors to membrane depolarization and corticosteroid secretion. In this study, it was discovered that AngII inhibits bTREK-1 by separate Ca2+- and ATP hydrolysis-dependent signaling pathways. When whole cell patch clamp recordings were made with pipette solutions that support activation of both Ca2+- and ATP-dependent pathways, AngII was significantly more potent and effective at inhibiting bTREK-1 and depolarizing adrenal zona fasciculata cells, than when either pathway is activated separately. External ATP also inhibited bTREK-1 through these two pathways, but ACTH displayed no Ca2+-dependent inhibition. AngII-mediated inhibition of bTREK-1 through the novel Ca2+-dependent pathway was blocked by the AT1 receptor antagonist losartan, or by including guanosine-5'-O-(2-thiodiphosphate) in the pipette solution. The Ca2+-dependent inhibition of bTREK-1 by AngII was blunted in the absence of external Ca2+ or by including the phospholipase C antagonist U73122, the inositol 1,4,5-trisphosphate receptor antagonist 2-amino-ethoxydiphenyl borate, or a calmodulin inhibitory peptide in the pipette solution. The activity of unitary bTREK-1 channels in inside-out patches from adrenal zona fasciculata cells was inhibited by application of Ca2+ (5 or 10 microM) to the cytoplasmic membrane surface. The Ca2+ ionophore ionomycin also inhibited bTREK-1 currents through channels expressed in CHO-K1 cells. These results demonstrate that AngII and selected paracrine factors that act through phospholipase C inhibit bTREK-1 in adrenocortical cells through simultaneous activation of separate Ca2+- and ATP hydrolysis-dependent signaling pathways, providing for efficient membrane depolarization. The novel Ca2+-dependent pathway is distinctive in its lack of ATP dependence, and is clearly different from the calmodulin kinase-dependent mechanism by which AngII modulates T-type Ca2+ channels in these cells.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210-1239, USA.
| | | | | | | |
Collapse
|
235
|
Compounds acting on ion channels. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
236
|
|
237
|
Decressac S, Franco M, Bendahhou S, Warth R, Knauer S, Barhanin J, Lazdunski M, Lesage F. ARF6-dependent interaction of the TWIK1 K+ channel with EFA6, a GDP/GTP exchange factor for ARF6. EMBO Rep 2005; 5:1171-5. [PMID: 15540117 PMCID: PMC1299187 DOI: 10.1038/sj.embor.7400292] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/17/2004] [Accepted: 10/13/2004] [Indexed: 11/09/2022] Open
Abstract
TWIK1 belongs to a family of K(+) channels involved in neuronal excitability and cell volume regulation. Its tissue distribution suggests a role in epithelial potassium transport. Here we show that TWIK1 is expressed in a subapical compartment in renal proximal tubules and in polarized MDCK cells. In nonpolarized cells, this compartment corresponds to pericentriolar recycling endosomes. We identified EFA6, an exchange factor for the small G protein ADP-ribosylation factor 6 (ARF6), as a protein binding to TWIK1. EFA6 interacts with TWIK1 only when it is bound to ARF6. Because ARF6 modulates endocytosis at the apical surface of epithelial cells, the ARF6/EFA6/TWIK1 association is probably important for channel internalization and recycling.
Collapse
Affiliation(s)
- Sonia Decressac
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Michel Franco
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Said Bendahhou
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Richard Warth
- Institute of Physiology, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sebastian Knauer
- Institute of Physiology, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jacques Barhanin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
- Tel: +33 4 93 95 77 01; Fax: 33 4 93 95 77 04; E-mail:
| | - Florian Lesage
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
- Service de Neurologie, Hôpital Pasteur, Centre Hospitalo-Universitaire de Nice, 30, avenue de la voie romaine, BP 69, 06002 Nice cedex 01, France
| |
Collapse
|
238
|
Li ZB, Zhang HX, Li LL, Wang XL. Enhanced expressions of arachidonic acid-sensitive tandem-pore domain potassium channels in rat experimental acute cerebral ischemia. Biochem Biophys Res Commun 2005; 327:1163-9. [PMID: 15652517 DOI: 10.1016/j.bbrc.2004.12.124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Indexed: 11/29/2022]
Abstract
To further explore the pathophysiological significance of arachidonic acid-sensitive potassium channels, RT-PCR and Western blot analysis were used to investigate the expression changes of TREK channels in cortex and hippocampus in rat experimental acute cerebral ischemia in this study. Results showed that TREK-1 and TRAAK mRNA in cortex, TREK-1 and TREK-2 mRNA in hippocampus showed significant increases 2 h after middle cerebral artery occlusion (MCAO). While the mRNA expression levels of the all three channel subtypes increased significantly 24 h after MCAO in cortex and hippocampus. At the same time, the protein expressions of all the three channel proteins showed significant increase 24 h after MCAO in cortex and hippocampus, but only TREK-1 showed increased expression 2 h after MCAO in cortex and hippocampus. Immunohistochemical experiments verified that all the three channel proteins had higher expression levels in cortical and hippocampal neurons 24 h after MCAO. These results suggested a strong correlation between TREK channels and acute cerebral ischemia. TREK channels might provide a neuroprotective mechanism in the pathological process.
Collapse
Affiliation(s)
- Zheng-Bin Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | |
Collapse
|
239
|
Wong SE, Bernacki K, Jacobson M. Competition between Intramolecular Hydrogen Bonds and Solvation in Phosphorylated Peptides: Simulations with Explicit and Implicit Solvent. J Phys Chem B 2005; 109:5249-58. [PMID: 16863191 DOI: 10.1021/jp046333q] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The atomic-level mechanisms of protein regulation by post-translational phosphorylation remain poorly understood, except in a few well-studied systems. Molecular mechanics simulations can in principle be used to help understand and predict the effects of protein phosphorylation, but the accuracy of the results will of course depend on the quality of the force field parameters for the phosphorylated residues as well as the quality of the solvent model. The phosphorylated residues typically carry a -2 charge at physiological pH; however, the effects of phosphorylation can sometimes be mimicked by substituting Asp or Glu for the phosphorylated residue. Here we examine the suitability of explicit and implicit solvent models for simulating phospho-serine in both the -1 and -2 charge states. Specifically, we simulate a capped phosphorylated peptide, Ace-Gly-Ser-pSer-Ser-Nme, and compare the results to each other and to experimental observables from an NMR experiment. The first major conclusion is that explicit water models (TIP3P, TIP4P and SPC/E) and a Generalized Born implicit solvent model provide reasonable agreement with the experimental observables, given appropriate partial charges for the phosphate group. The Generalized Born results, however, show greater hydrogen bonding propensity than the explicit solvent results. Distance dependent dielectric treatments perform poorly. The second major conclusion is that many ensemble-averaged properties obtained for the phosphopeptide in the -1 and -2 charge states are strikingly similar; the -1 species has a slightly higher propensity to form internal hydrogen bonds. All of the results can be rationalized by quantifying the strength of the P-O/H-N hydrogen bond, which depends on a sensitive balance between strongly favorable charge/dipole and dipole/dipole interactions and strongly unfavorable desolvation.
Collapse
Affiliation(s)
- Sergio E Wong
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California 94134, USA
| | | | | |
Collapse
|
240
|
Larkman PM, Perkins EM. A TASK-like pH- and amine-sensitive ‘leak’ K+ conductance regulates neonatal rat facial motoneuron excitability in vitro. Eur J Neurosci 2005; 21:679-91. [PMID: 15733086 DOI: 10.1111/j.1460-9568.2005.03898.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A 'leak' potassium (K+) conductance (gK(Leak)) modulated by amine neurotransmitters is a major determinant of neonatal rat facial motoneuron excitability. Although the molecular identity of gK(Leak) is unknown, TASK-1 and TASK-3 channel mRNA is found in facial motoneurons. External pH, across the physiological range (pH 6-8), and noradrenaline (NA) modulated a conductance that displayed a relatively linear current/voltage relationship and reversed at the K+ equilibrium potential, consistent with inhibition of gK(Leak). The pH-sensitive current (I(pH)), was maximal around pH 8, fully inhibited near pH 6 and was described by a modified Hill equation with a pK of 7.1. The NA-induced current (I(NA)) was occluded at pH 6 and enhanced at pH 7.7. The TASK-1 selective inhibitor anandamide (10 microM), its stable analogue methanandamide (10 microM), the TASK-3 selective inhibitor ruthenium red (10 microM) and Zn2+ (100-300 microM) all failed to alter facial motoneuron membrane current or block I(NA) or I(pH). Isoflurane, a volatile anaesthetic that enhances heteromeric TASK-1/TASK-3 currents, increased gK(Leak). Ba2+, Cs+ and Rb+ blocked I(NA) and I(pH) voltage-dependently with maximal block at hyperpolarized potentials. 4-Aminopyridine (4-AP, 4 mM) voltage-independently blocked I(NA) and I(pH). In summary, gK(Leak) displays some of the properties of a TASK-like conductance. The linearity of gK(Leak) and an independence of activation on external [K+] suggests against pH-sensitive inwardly rectifying K+ channels. Our results argue against principal contributions to gK(Leak) by homomeric TASK-1 or TASK-3 channels, while the potentiation by isoflurane supports a predominant role for heterodimeric TASK-1/TASK-3 channels.
Collapse
Affiliation(s)
- Philip M Larkman
- Division of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.
| | | |
Collapse
|
241
|
Berg AP, Talley EM, Manger JP, Bayliss DA. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 2005; 24:6693-702. [PMID: 15282272 PMCID: PMC6729708 DOI: 10.1523/jneurosci.1408-04.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background potassium currents carried by the KCNK family of two-pore-domain K+ channels are important determinants of resting membrane potential and cellular excitability. TWIK-related acid-sensitive K+ 1 (TASK-1, KCNK3) and TASK-3 (KCNK9) are pH-sensitive subunits of the KCNK family that are closely related and coexpressed in many brain regions. There is accumulating evidence that these two subunits can form heterodimeric channels, but this evidence remains controversial. In addition, a substantial contribution of heterodimeric TASK channels to native currents has not been unequivocally established. In a heterologous expression system, we verified formation of heterodimeric TASK channels and characterized their properties; TASK-1 and TASK-3 were coimmunoprecipitated from membranes of mammalian cells transfected with the channel subunits, and a dominant negative TASK-1(Y191F) construct strongly diminished TASK-3 currents. Tandem-linked heterodimeric TASK channel constructs displayed a pH sensitivity (pK approximately 7.3) in the physiological range closer to that of TASK-1 (pK approximately 7.5) than TASK-3 (pK approximately 6.8). On the other hand, heteromeric TASK channels were like TASK-3 insofar as they were activated by high concentrations of isoflurane (0.8 mm), whereas TASK-1 channels were inhibited. The pH and isoflurane sensitivities of native TASK-like currents in hypoglossal motoneurons, which strongly express TASK-1 and TASK-3 mRNA, were best represented by TASK heterodimeric channels. Moreover, after blocking homomeric TASK-3 channels with ruthenium red, we found a major component of motoneuronal isoflurane-sensitive TASK-like current that could be attributed to heteromeric TASK channels. Together, these data indicate that TASK-1 and TASK-3 subunits coassociate in functional channels, and heteromeric TASK channels provide a substantial component of background K(+) current in motoneurons with distinct modulatory properties.
Collapse
Affiliation(s)
- Allison P Berg
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
242
|
Danthi SJ, Enyeart JA, Enyeart JJ. Modulation of native T-type calcium channels by ω-3 fatty acids. Biochem Biophys Res Commun 2005; 327:485-93. [PMID: 15629140 DOI: 10.1016/j.bbrc.2004.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Indexed: 11/18/2022]
Abstract
Low voltage-activated, rapidly inactivating T-type Ca(2+) channels are found in a variety of cells where they regulate electrical activity and Ca(2+) entry. In whole-cell patch clamp recordings from bovine adrenal zona fasciculata cells, cis-polyunsaturated omega-3 fatty acids including docosahexaenoic acid (DHA), eicosapentaenoic acid, and alpha-linolenic acid inhibited T-type Ca(2+) current (I(T-Ca)) with IC(50)s of 2.4, 6.1, and 14.4microM, respectively. Inhibition of I(T-Ca) by DHA was partially use-dependent. In the absence of stimulation, DHA (5microM) inhibited I(T-Ca) by 59.7+/-8.1% (n=5). When voltage steps to -10mV were applied at 12s intervals, block increased to 80.5+/-7.2%. Inhibition of I(T-Ca) by DHA was accompanied by a shift of -11.7mV in the voltage dependence of steady-state inactivation, and a smaller -3.3mV shift in the voltage dependence of activation. omega-3 fatty acids also selectively altered the gating kinetics of T-type Ca(2+) channels. DHA accelerated T channel recovery from inactivation by approximately 3-fold, but did not affect the kinetics of T channel activation or deactivation. Arachidonic acid, an omega-6 polyunsaturated fatty acid, also inhibited T-type Ca(2+) current at micromolar concentrations, while the trans polyunsaturated fatty acid linolelaidic acid was ineffective. These results identify cis polyunsaturated fatty acids as relatively potent, new T-type Ca(2+) channel antagonists. omega-3 fatty acids are essential dietary components that have been shown to possess remarkable neuroprotective and cardioprotective properties that are likely mediated through suppression of electrical activity and associated Ca(2+) entry. Inhibition of T-type Ca(2+) channels in neurons and cardiac myocytes could contribute significantly to their protective actions.
Collapse
Affiliation(s)
- Sanjay J Danthi
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, OH 43210-1239, USA
| | | | | |
Collapse
|
243
|
Chemin J, Patel A, Duprat F, Zanzouri M, Lazdunski M, Honoré E. Lysophosphatidic Acid-operated K+ Channels. J Biol Chem 2005; 280:4415-21. [PMID: 15572365 DOI: 10.1074/jbc.m408246200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant cellular lipid with a myriad of biological effects. It plays an important role in both inter- and intracellular signaling. Activation of the LPA1-3 G-protein-coupled receptors explains many of the extracellular effects of LPA, including cell growth, differentiation, survival, and motility. However, LPA also acts intracellularly, activating the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma that regulates gene transcription. This study shows that the novel subfamily of mechano-gated K2P channels comprising TREK-1, TREK-2, and TRAAK is strongly activated by intracellular LPA. The LPA-activated 2P domain K+ channels are intracellular ligand-gated K+ channels such as the Ca2+- or the ATP-sensitive K+ channels. LPA reversibly converts these mechano-gated, pH- and voltage-sensitive channels into leak conductances. Gating conversion of the 2P domain K+ channels by intracellular LPA represents a novel form of ion channel regulation. Thus, the TREK and TRAAK channels should be included in the LPA-associated physiological and disease states.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, Institut Paul Hamel, 660 route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
TREK-1, TREK-2 and TRAAK are members of the two-pore domain K+ (K2P) channel family and are activated by membrane stretch and free fatty acids. TREK-1 has been shown to be sensitive to temperature in expression systems. We studied the temperature-sensitivity of TREK-2 and TRAAK in COS-7 cells and in neuronal cells. In transfected COS-7 cells, TREK-2 and TRAAK whole-cell currents increased approximately 20-fold as the bath temperature was raised from 24 degrees C to 42 degrees C. Similarly, in cell-attached patches of COS-7 cells, channel activity was very low, but increased progressively as the bath temperature was raised from 24 degrees C to 42 degrees C. The thresholds for activation of TREK-2 and TRAAK were approximately 25 degrees C and approximately 31 degrees C, respectively. Other K2P channels such as TASK-3 and TRESK-2 were not significantly affected by an increase in temperature from 24 degrees C to 37 degrees C. When the C-terminus of TREK-2 was replaced with that of TASK-3, its sensitivity to free fatty acids and protons was abolished, but the mutant could still be activated by heat. At 37 degrees C, TREK-1, TREK-2 and TRAAK were sensitive to arachidonic acid, pH and membrane stretch in both cell-attached and inside-out patches. In cerebellar granule and dorsal root ganglion neurones, TREK-1, TREK-2 and TRAAK were generally inactive in the cell-attached state at 24 degrees C, but became very active at 37 degrees C. In cell-attached patches of ventricular myocytes, TREK-1 was also normally closed at 24 degrees C, but was active at 37 degrees C. These results show that TREK-2 and TRAAK are also temperature-sensitive channels, are active at physiological body temperature, and therefore would contribute to the background K+ conductance and regulate cell excitability in response to various physical and chemical stimuli.
Collapse
Affiliation(s)
- Dawon Kang
- Department of Physiology, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | |
Collapse
|
245
|
Lopes CMB, Rohács T, Czirják G, Balla T, Enyedi P, Logothetis DE. PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 2005; 564:117-29. [PMID: 15677683 PMCID: PMC1456043 DOI: 10.1113/jphysiol.2004.081935] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two-pore (2-P) domain potassium channels are implicated in the control of the resting membrane potential, hormonal secretion, and the amplitude, frequency and duration of the action potential. These channels are strongly regulated by hormones and neurotransmitters. Little is known, however, about the mechanism underlying their regulation. Here we show that phosphatidylinositol 4,5-bisphosphate (PIP2) gating underlies several aspects of 2-P channel regulation. Our results demonstrate that all four 2-P channels tested, TASK1, TASK3, TREK1 and TRAAK are activated by PIP2. We show that mechanical stimulation may promote PIP2 activation of TRAAK channels. For TREK1, TASK1 and TASK3 channels, PIP2 hydrolysis underlies inhibition by several agonists. The kinetics of inhibition by the PIP2 scavenger polylysine, and the inhibition by the phosphatidylinositol 4-kinase inhibitor wortmannin correlated with the level of agonist-induced inhibition. This finding suggests that the strength of channel PIP2 interactions determines the extent of PLC-induced inhibition. Finally, we show that PIP2 hydrolysis modulates voltage dependence of TREK1 channels and the unrelated voltage-dependent KCNQ1 channels. Our results suggest that PIP2 is a common gating molecule for K+ channel families despite their distinct structures and physiological properties.
Collapse
Affiliation(s)
- Coeli M B Lopes
- Department of Physiology and Biophysics, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - Tibor Rohács
- Department of Physiology and Biophysics, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - Gábor Czirják
- Department of Physiology, Semmelweis UniversityBudapest, H-1444, Hungary
| | - Tamás Balla
- Endocrinology and Reproduction Research BranchNICHD, NIH, Bethesda, MD 20892, USA
| | - Péter Enyedi
- Department of Physiology, Semmelweis UniversityBudapest, H-1444, Hungary
- Endocrinology and Reproduction Research BranchNICHD, NIH, Bethesda, MD 20892, USA
- P. Enyedi: Department of Physiology, Semmelweis University, Budapest, Hungary, H-1444.
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Mount Sinai School of MedicineNew York, NY 10029, USA
- Corresponding authors D. E. Logothetis: Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
246
|
Hughes S, Magnay J, Foreman M, Publicover SJ, Dobson JP, El Haj AJ. Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts. J Cell Physiol 2005; 206:738-48. [PMID: 16250016 DOI: 10.1002/jcp.20536] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TREK-1 is a mechanosensitive member of the two-pore domain potassium channel family (2PK+) that is also sensitive to lipids, free fatty acids (including arachidonic acid), temperature, intracellular pH, and a range of clinically relevant compounds including volatile anaesthetics. TREK-1 is known to be expressed at high levels in excitable tissues, such as the nervous system, the heart and smooth muscle, where it is believed to play a prominent role in controlling resting cell membrane potential and electrical excitability. In this report, we use RT-PCR, Western blotting and immunohistochemistry to confirm that human derived osteoblasts and MG63 cells express TREK-1 mRNA and protein. In addition, we show gene expression of TREK2c and TRAAK channels. Furthermore, whole cell patch clamp electrophysiology demonstrates that these cells express a spontaneously active, outwardly rectifying potassium "background leak" current that shares many similarities to TREK-1. The outward current is largely insensitive to TEA and Ba2+, and is sensitive to application of lysophosphatidylcholine (LPC). In addition, blocking TREK-1 channel activity is shown to upregulate bone cell proliferation. It is concluded that human osteoblasts functionally express TREK-1 and that these channels contribute, at least in part, to the resting membrane potential of human osteoblast cells. We hypothesise a possible role for TREK-1 in mechanotransduction, leading to bone remodelling.
Collapse
Affiliation(s)
- Steven Hughes
- Institute of Science and Technology in Medicine, Keele University Medical School, Hartshill Campus, Thornburrow Drive, Hartshill, Stoke-on-Trent, United Kingdom
| | | | | | | | | | | |
Collapse
|
247
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
248
|
Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287:C1493-526. [PMID: 15525685 DOI: 10.1152/ajpcell.00282.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
249
|
Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honoré E. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 2004; 24:44-53. [PMID: 15577940 PMCID: PMC544907 DOI: 10.1038/sj.emboj.7600494] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 11/04/2004] [Indexed: 02/06/2023] Open
Abstract
TREK-1 (KCNK2 or K(2P)2.1) is a mechanosensitive K(2P) channel that is opened by membrane stretch as well as cell swelling. Here, we demonstrate that membrane phospholipids, including PIP(2), control channel gating and transform TREK-1 into a leak K(+) conductance. A carboxy-terminal positively charged cluster is the phospholipid-sensing domain that interacts with the plasma membrane. This region also encompasses the proton sensor E306 that is required for activation of TREK-1 by cytosolic acidosis. Protonation of E306 drastically tightens channel-phospholipid interaction and leads to TREK-1 opening at atmospheric pressure. The TREK-1-phospholipid interaction is critical for channel mechano-, pH(i)- and voltage-dependent gating.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Pharmacologie, Moléculaire et Cellulaire, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
| | - Amanda Jane Patel
- Institut de Pharmacologie, Moléculaire et Cellulaire, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
| | - Fabrice Duprat
- Institut de Pharmacologie, Moléculaire et Cellulaire, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
| | - Inger Lauritzen
- Institut de Pharmacologie, Moléculaire et Cellulaire, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
| | - Michel Lazdunski
- Institut de Pharmacologie, Moléculaire et Cellulaire, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
| | - Eric Honoré
- Institut de Pharmacologie, Moléculaire et Cellulaire, Institut Paul Hamel, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie, Moléculaire et Cellulaire, CNRS-UMR 6097, Institut Paul Hamel, 660, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France. Tel.: +33 493 957702/03; Fax: +33 493 957704; E-mail:
| |
Collapse
|
250
|
Enyeart JA, Danthi SJ, Enyeart JJ. TREK-1 K+ channels couple angiotensin II receptors to membrane depolarization and aldosterone secretion in bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 2004; 287:E1154-65. [PMID: 15315905 DOI: 10.1152/ajpendo.00223.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine adrenal glomerulosa (AZG) cells were shown to express bTREK-1 background K(+) channels that set the resting membrane potential and couple angiotensin II (ANG II) receptor activation to membrane depolarization and aldosterone secretion. Northern blot and in situ hybridization studies demonstrated that bTREK-1 mRNA is uniformly distributed in the bovine adrenal cortex, including zona fasciculata and zona glomerulosa, but is absent from the medulla. TASK-3 mRNA, which codes for the predominant background K(+) channel in rat AZG cells, is undetectable in the bovine adrenal cortex. In whole cell voltage clamp recordings, bovine AZG cells express a rapidly inactivating voltage-gated K(+) current and a noninactivating background K(+) current with properties that collectively identify it as bTREK-1. The outwardly rectifying K(+) current was activated by intracellular acidification, ATP, and superfusion of bTREK-1 openers, including arachidonic acid (AA) and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC). Bovine chromaffin cells did not express this current. In voltage and current clamp recordings, ANG II (10 nM) selectively inhibited the noninactivating K(+) current by 82.1 +/- 6.1% and depolarized AZG cells by 31.6 +/- 2.3 mV. CDC and AA overwhelmed ANG II-mediated inhibition of bTREK-1 and restored the resting membrane potential to its control value even in the continued presence of ANG II. Vasopressin (50 nM), which also physiologically stimulates aldosterone secretion, inhibited the background K(+) current by 73.8 +/- 9.4%. In contrast to its potent inhibition of bTREK-1, ANG II failed to alter the T-type Ca(2+) current measured over a wide range of test potentials by using pipette solutions of identical nucleotide and Ca(2+)-buffering compositions. ANG II also failed to alter the voltage dependence of T channel activation under these same conditions. Overall, these results identify bTREK-1 K(+) channels as a pivotal control point where ANG II receptor activation is transduced to depolarization-dependent Ca(2+) entry and aldosterone secretion.
Collapse
Affiliation(s)
- Judith A Enyeart
- Dept. of Neuroscience, College of Medicine and Public Health, The Ohio State University, 5196 Graves Hall, 333 W.10th Ave, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|