201
|
Ribeiro MJ, Schofield MG, Kemenes I, O'Shea M, Kemenes G, Benjamin PR. Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning. Learn Mem 2005; 12:538-45. [PMID: 16166393 PMCID: PMC1240067 DOI: 10.1101/lm.8305] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although an important role for the mitogen-activated protein kinase (MAPK) has been established for memory consolidation in a variety of learning paradigms, it is not known if this pathway is also involved in appetitive classical conditioning. We address this question by using a single-trial food-reward conditioning paradigm in the freshwater snail Lymnaea stagnalis. This learning paradigm induces protein synthesis-dependent long-term memory formation. Inhibition of MAPK phosphorylation blocked long-term memory consolidation without affecting the sensory and motor abilities of the snails. Thirty minutes after conditioning, levels of MAPK phosphorylation were increased in extracts from the buccal and cerebral ganglia. These ganglia are involved in the generation, modulation, and plasticity of the feeding behavior. We also detected an increase in levels of MAPK phosphorylation in the peripheral tissue around the mouth of the snails where chemoreceptors are located. Although an increase in MAPK phosphorylation was shown to be essential for food-reward conditioning, it was also detected in snails that were exposed to the conditioned stimulus (CS) or the unconditioned stimulus (US) alone, suggesting that phosphorylation of MAPK is necessary but not sufficient for learning to occur.
Collapse
Affiliation(s)
- Maria J Ribeiro
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | | | | | | | |
Collapse
|
202
|
Abstract
New mRNA must be transcribed in order to consolidate changes in synaptic strength. But how are events at the synapse communicated to the nucleus? Some research has shown that proteins can move from activated synapses to the nucleus. However, other work has shown that action potentials can directly inform the nucleus about cellular activation. Here we contend that action potential-induced signalling to the nucleus best meets the requirements of the consolidation of synapse-specific plasticity, which include both timing and stoichiometric constraints.
Collapse
Affiliation(s)
- J Paige Adams
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
203
|
Miller CA, Marshall JF. Molecular Substrates for Retrieval and Reconsolidation of Cocaine-Associated Contextual Memory. Neuron 2005; 47:873-84. [PMID: 16157281 DOI: 10.1016/j.neuron.2005.08.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/17/2005] [Accepted: 08/04/2005] [Indexed: 11/29/2022]
Abstract
Relapse into drug taking among addicts often depends on learned associations between drug-paired cues and the rewarding effects of these drugs, such as cocaine (COC). Memory for drug-paired cues resists extinction and contributes to the high rate of relapse; however, the molecular mechanisms underlying these associations are not understood. We show that COC-conditioned place preference (CPP) activates ERK, CREB, Elk-1, and Fos in the nucleus accumbens core (AcbC) but not shell. Intra-AcbC infusions of U0126, an inhibitor of the ERK kinase MEK, prevent both the activation of ERK, CREB, Elk-1, and Fos and retrieval of COC-CPP. When tested again 24 hr or 14 days after intra-AcbC infusions of U0126 or another MEK inhibitor, PD98059, CPP retrieval and concomitant protein activation were significantly attenuated. Together, these findings indicate the necessity of the AcbC ERK signaling pathway for drug-paired contextual cue memories and suggest that these strong memories can become susceptible to disruption by therapeutic agents.
Collapse
Affiliation(s)
- Courtney A Miller
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92627, USA
| | | |
Collapse
|
204
|
Yuan LL, Chen X, Kunjilwar K, Pfaffinger P, Johnston D. Acceleration of K+ channel inactivation by MEK inhibitor U0126. Am J Physiol Cell Physiol 2005; 290:C165-71. [PMID: 16135544 DOI: 10.1152/ajpcell.00206.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-dependent (Kv)4.2-encoded A-type K+ channels play an important role in controlling neuronal excitability and are subject to modulation by various protein kinases, including ERK. In studies of ERK modulation, the organic compound U0126 is often used to suppress the activity of MEK, which is a kinase immediately upstream from ERK. We have observed that the inactivation time constant of heterologously expressed Kv4.2 channels was accelerated by U0126 at 1-20 microM. This effect, however, was not Kv4 family specific, because U0126 also converted noninactivating K+ currents mediated by Kv1.1 subunits into transient ones. To determine whether U0126 exerted these effects through kinase inhibition, we tested U0125, a derivative of U0126 that is less potent in MEK inhibition. At the same concentrations, U0125 had effects similar to those of U0126 on channel inactivation. Finally, we expressed a mutant form of Kv4.2 in which three identified ERK phosphorylation sites (T602, T607, and S616) were replaced with alanines. The inactivation of K+ currents mediated by this mutant was still accelerated by U0126. Our data favor the conclusion that the increase in the rate of channel inactivation by U0126 is likely to be independent of protein kinase inhibition and instead represents a direct action on channel gating.
Collapse
Affiliation(s)
- Li-Lian Yuan
- Dept. of Neuroscience, Univ. of Minnesota, 6-145 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
205
|
Norum JH, Méthi T, Mattingly RR, Levy FO. Endogenous expression and protein kinase A-dependent phosphorylation of the guanine nucleotide exchange factor Ras-GRF1 in human embryonic kidney 293 cells. FEBS J 2005; 272:2304-16. [PMID: 15853814 DOI: 10.1111/j.1742-4658.2005.04658.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.
Collapse
|
206
|
Phares GA, Byrne JH. Analysis of 5-HT–Induced Short-Term Facilitation atAplysiaSensorimotor Synapse During Bursts: Increased Synaptic Gain That Does Not Require ERK Activation. J Neurophysiol 2005; 94:871-7. [PMID: 15788516 DOI: 10.1152/jn.01261.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5-HT–induced synaptic plasticity of Aplysia sensorimotor synapses has typically been probed by firing a single presynaptic spike. In this study, 5-HT–induced synaptic plasticity was probed with brief bursts of spikes (10 Hz, 1 s), which are more behaviorally relevant stimuli. Because such bursts provide a greater challenge to the release machinery than single spikes, their use may reveal additional aspects of synaptic modulation, and, in particular, the role of extracellular signal-regulated protein kinase (ERK), which has recently been implicated in several examples of short- and long-term synaptic plasticity. Excitatory postsynaptic currents (EPSCs) were characterized by their amplitudes. In addition, two kinetic measurements, time to peak and decay time constant, were determined for the initial and last EPSCs of each burst. Application of 5-HT produced a uniform increase in gain by facilitating each EPSC elicited during a burst of spikes without affecting the kinetics of the initial or last EPSC. These data suggest that short-term facilitation during a burst is mediated largely by processes such as those that affect the size of the releasable pool or rate of vesicle mobilization rather than by an increase in the duration of the presynaptic action potential. An ERK cascade inhibitor (U0126) had no effect on the 5-HT–mediated facilitation of either the initial EPSC or EPSCs elicited late in the burst.
Collapse
Affiliation(s)
- Gregg A Phares
- Department of Neurobiology and Anatomy, W.M. Keck Center for Learning and Memory, The University of Texas Medical School at Houston, 6431 Fannin St., MSB 7.046, Houston, Texas 77030, USA
| | | |
Collapse
|
207
|
Cruz CD, Avelino A, McMahon SB, Cruz F. Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur J Neurosci 2005; 21:773-81. [PMID: 15733095 DOI: 10.1111/j.1460-9568.2005.03893.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal processing of somatosensory and viscerosensory information is greatly facilitated in some persistent pain states. Growing evidence suggests that the so-called central sensitization depends in part on intracellular activation and signalling via specific MAP kinases. Here we studied the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (phosphoERK), the active form of these kinases, in spinal neurons following innocuous and noxious distension of non-inflamed and cyclophosphamide (CYP)-inflamed rat urinary bladders. Additionally, we investigated the nature of bladder primary afferents responsible for spinal ERK activation. Finally, we used a specific inhibitor of ERK phosphorylation to study the influence of these kinases on the bladder reflex activity of normal and inflamed bladders. Results indicated that, in non-inflamed rats, noxious but not innocuous bladder distension significantly increased spinal phosphoERK immunoreactivity from its normal very low level. However, in CYP-inflamed rats, innocuous and noxious bladder distension significantly increased the number of spinal neurons immunoreactive to phosphoERK. ERK activation was rapid (within minutes) and transient. Desensitization of vanilloid-sensitive afferents by intravesical resiniferatoxin, a capsaicin analogue, did not decrease phosphoERK immunoreactivity in normal or CYP-inflamed rats. ERK inhibition by intrathecal PD 98059 had no effect on bladder reflex contractions of non-inflamed bladders but significantly decreased its frequency in inflamed animals. Our results suggest that spinal ERK intervene in acute and chronic inflammatory pain perception and mediate bladder reflex overactivity accompanying chronic bladder inflammation. In addition, bladder noxious input conveyed in vanilloid-resistant primary afferents is important to spinal ERK phosphorylation in both noninflamed and CYP-inflamed animals.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine of Porto and IBMC, Alameda Hernâni Monteiro, Portugal.
| | | | | | | |
Collapse
|
208
|
Putz G, Bertolucci F, Raabe T, Zars T, Heisenberg M. The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci 2005; 24:9745-51. [PMID: 15525759 PMCID: PMC6730233 DOI: 10.1523/jneurosci.3211-04.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In an attempt to dissect classical and operant conditioning in Drosophila melanogaster, we have isolated the gene for ribosomal S6 kinase II (S6KII). This enzyme is part of a family of serine-threonine kinases that in mammals have been implicated in the MAPK (mitogen-activated protein kinase) signaling cascade controlling (among other processes) synaptic plasticity (long-term potentiation/long-term depression) and memory formation. The human homolog rsk2 has been linked to mental retardation (Coffin-Lowry syndrome). Mutant analysis in Drosophila shows that S6KII serves different functions in operant place learning and classical (pavlovian) olfactory conditioning. Whereas in the null mutant only pavlovian olfactory learning is affected, a P-element insertion mutant reducing the amount of S6KII only affects operant place learning. A mutant lacking part of the N-terminal kinase domain and performing poorly in both learning tasks is dominant in the operant paradigm and recessive in the pavlovian paradigm. The behavioral defects in the pavlovian task can be rescued by the genomic S6KII transgene. Overexpression of S6KII in wild type has a dominant-negative effect on the operant task that is rescued by the null mutant, whereas in the pavlovian task overexpression may even enhance learning performance.
Collapse
Affiliation(s)
- Gabriele Putz
- Lehrstuhl für Genetik und Neurobiologie, Biozentrum, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
209
|
Etter PD, Narayanan R, Navratilova Z, Patel C, Bohmann D, Jasper H, Ramaswami M. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons. BMC Neurosci 2005; 6:39. [PMID: 15932641 PMCID: PMC1175850 DOI: 10.1186/1471-2202-6-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 06/02/2005] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. RESULTS Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. CONCLUSION This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.
Collapse
Affiliation(s)
- Paul D Etter
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, USA
| | | | - Zaneta Navratilova
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, USA
| | - Chirag Patel
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester, Rochester, USA
| | - Heinrich Jasper
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
| | - Mani Ramaswami
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, USA
- ARL Division of Neurobiology, University of Arizona, Tucson, USA
| |
Collapse
|
210
|
Dash PK, Orsi SA, Moore AN. Sequestration of serum response factor in the hippocampus impairs long-term spatial memory. J Neurochem 2005; 93:269-78. [PMID: 15816850 DOI: 10.1111/j.1471-4159.2004.03016.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The formation of long-term memory has been shown to require protein kinase-mediated gene expression. One such kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), can lead to the phosphorylation of serum response factor (SRF) and Elk-1, enhancing the expression of target genes. However, a direct involvement of these transcription factors in memory storage has not been demonstrated. We have employed an oligonucleotide decoy technique to interrogate SRF and Elk-1. Previously, it has been shown that intra-amygdalal infusion of small double-stranded decoy oligonucleotides for nuclear factor-kappaB (NFkappaB) can impair long-term memory for fear-potentiated startle. Using this approach, we found that intra-hippocampal infusion of NFkappaB decoy oligonucleotides also impairs long-term spatial memory, consistent with a role for this factor in long-term memory storage. Decoy oligonucleotides containing the binding site for SRF, as confirmed by shift-western, did not influence memory acquisition but impaired long-term spatial memory. Analysis of search behavior during the transfer test revealed deficits consistent with a loss of precise platform location information. In contrast, oligonucleotides with a binding site for either Elk-1 or another target of ERK activity, SMAD3/SMAD4, did not interfere with memory formation or storage. These findings suggest that SRF-mediated gene expression is required for long-term spatial memory.
Collapse
Affiliation(s)
- Pramod K Dash
- The Vivian L. Smith Center for Neurologic Research, Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77225, USA.
| | | | | |
Collapse
|
211
|
Pettigrew DB, Smolen P, Baxter DA, Byrne JH. Dynamic properties of regulatory motifs associated with induction of three temporal domains of memory in aplysia. J Comput Neurosci 2005; 18:163-81. [PMID: 15714268 DOI: 10.1007/s10827-005-6557-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A model was developed to examine dynamical properties of regulatory motifs correlated with different temporal domains of memory. The model represents short-, intermediate-, and long-term phases of protein kinase A (PKA) activation, which appear related to corresponding phases of facilitation of the Aplysia sensorimotor synapse. The model also represents phosphorylation of the transcription factor CREB1 by PKA and consequent induction of the immediate-early gene Aplysia ubiquitin hydrolase (Ap-uch), which is essential for long-term synaptic facilitation (LTF). Simulations suggest mechanisms responsible for differing profiles of synaptic facilitation following massed vs. spaced exposures to 5-HT, and suggest a novel regulatory motif (gated positive feedback) is important for LTF. Simulations suggest zero-order ultrasensitivity may underlie a requirement of a threshold number of exposures to 5-HT for LTF induction. The model makes predictions for the dynamics of PKA activation and Ap-uch induction when MAP kinase is activated, or when repression of Ap-uch is relieved by inhibiting the transcription factor CREB2. This model may therefore be useful for understanding processes underlying memory formation in Aplysia and other systems.
Collapse
Affiliation(s)
- David B Pettigrew
- W.M. Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, P.O. Box 20708, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
212
|
Khabour O, Levenson J, Lyons LC, Kategaya LS, Chin J, Byrne JH, Eskin A. Coregulation of glutamate uptake and long-term sensitization in Aplysia. J Neurosci 2005; 24:8829-37. [PMID: 15470149 PMCID: PMC6729961 DOI: 10.1523/jneurosci.2167-04.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Aplysia, long-term facilitation (LTF) at sensorimotor synapses of the pleural-pedal ganglia is mediated by an increase in the release of a neurotransmitter, which appears to be glutamate. Glutamate uptake also is increased in sensory neurons 24 hr after the induction of long-term sensitization (Levenson et al., 2000b). The present study investigated whether the same signaling pathways were involved in the long-term increase in glutamate uptake as in the induction of LTF. Thus, roles for cAMP, PKA (cAMP-dependent protein kinase), MAPK (mitogen-activated protein kinase), and tyrosine kinase in the regulation of glutamate uptake were tested. We found that 5-HT increased cAMP and activated PKA in sensory neurons. Exposure of pleural-pedal ganglia to analogs of cAMP or forskolin increased glutamate uptake 24 hr after treatments. Inhibitors of PKA (KT5720), MAPK (U0126 and PD98059), and tyrosine kinase (genistein) blocked the long-term increase in glutamate uptake produced by 5-HT. In addition, bpV, a tyrosine phosphatase inhibitor, facilitated the ability of subthreshold levels of 5-HT to increase glutamate uptake. Inhibition of PKC, which is not involved in LTF, had no effect on the long-term increase in glutamate uptake produced by 5-HT. Furthermore, activation of PKC by phorbol-12,13-dibutyrate did not produce long-term changes in glutamate uptake. The results demonstrate that the same constellation of second messengers and kinases is involved in the long-term regulation of both glutamate release and glutamate uptake. These similarities in signaling pathways suggest that regulation of glutamate release and uptake during formation of long-term memory are coordinated through coregulation of these two processes.
Collapse
Affiliation(s)
- Omar Khabour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Singh RR, Song C, Yang Z, Kumar R. Nuclear localization and chromatin targets of p21-activated kinase 1. J Biol Chem 2005; 280:18130-7. [PMID: 15749698 DOI: 10.1074/jbc.m412607200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pak1 (p21-activated kinase 1), a conserved, mammalian signaling kinase, is a downstream effector of small GTPases Rac1 and Cdc42 and of growth factor signaling. Until now, a major focus of study has been on the cytosolic functions of Pak1, where it is an important modulator of cytoskeletal reorganization, consequently playing a major role in cell survival, migration, and invasion. In this report, we demonstrate the nuclear localization of Pak1 upon stimulation by epidermal growth factor. Three nuclear localization signals (NLSs) were identified in the N-terminal domain of Pak1. With mutational analysis, the importance of each NLS was elucidated. Mutation of all three NLSs eliminated the nuclear localization of Pak1. Expression of Pak1 as a fusion protein with Gal4-DNA binding domain and Gal4-luciferase activity showed that Pak1 might increase transcription. To identify the potential targets of nuclear Pak1, we used a Pak1-specific chromatin immunoprecipitation-based screening assay and identified a series of Pak1-interacting target chromatins, including phosphofructokinase-muscle isoform (PFK-M) and nuclear factor of activated T-cell (NFAT1) genes. Pak1 associated with the upstream enhancer sequence and promoter of PFK-M and was involved in the stimulation of the PFK-M expression. It also associated with a portion of the NFAT1 gene and its upstream region, leading to the repression of NFAT1 expression. These investigations provide proof-of-principle evidence that Pak1 could influence the expression of its putative chromatin targets in both a positive and a negative manner. Together, for the first time, these findings defined the NLSs of the Pak1, its association with chromatin, and the resulting modulation of transcription, thus opening new avenues to further the search for nuclear Pak1 functions and identify putative Pak1-interacting nuclear proteins.
Collapse
Affiliation(s)
- Rajesh R Singh
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
214
|
Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KPSJ, Giese KP, Rostas JAP, Bliss TVP. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci 2005; 20:3063-72. [PMID: 15579161 DOI: 10.1111/j.1460-9568.2004.03748.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major role has been postulated for a maintained increase in the autonomous activity of CaMKII in the expression of long-term potentiation (LTP). However, attempts to inhibit the expression of LTP with CaMKII inhibitors have yielded inconsistent results. Here we compare the changes in CaMKII autonomous activity and phosphorylation at Thr286 of alphaCaMKII in rat hippocampal slices using chemical or tetanic stimulation to produce either LTP or short-term potentiation (STP). Tetanus-induced LTP in area CA1 requires CaMKII activation and Thr286 phosphorylation of alphaCaMKII, but we did not observe an increase in autonomous activity. Next we induced LTP by 10 min exposure to 25 mM tetraethyl-ammonium (TEA) or 5 min exposure to 41 mM potassium (K) after pretreatment with calyculin A. Exposure to K alone produced STP. These protocols allowed us to monitor temporal changes in autonomous activity during and after exposure to the potentiating chemical stimulus. In chemically induced LTP, autonomous activity was maximally increased within 30 s whereas this increase was significantly delayed in STP. However, in both LTP and STP the two-fold increase in autonomous activity measured immediately after stimulation was short-lived, returning to baseline within 2-5 min after re-exposure to normal ACSF. In LTP, but not in STP, the phosphorylation of alphaCaMKII at Thr286 persisted for at least 60 min after stimulation. These results confirm that LTP is associated with a maintained increase in autophosphorylation at Thr286 but indicate that a persistent increase in the autonomous activity of CaMKII is not required for the expression of LTP.
Collapse
Affiliation(s)
- I Lengyel
- Department of Biochemistry, Biological Research Centre, Szeged, Hungary, H-6726
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Grinkevich LN, Lisachev PD, Gudzik KA, Grinkevich VV, Kharchenko OA. Comparative analysis of the activation of the Elk-1 transcription factor in the central nervous system of animals with different learning capacities. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2005; 397:269-71. [PMID: 15508570 DOI: 10.1023/b:dobs.0000039688.51578.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- L N Grinkevich
- Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova 6, St. Petersburg, 199034 Russia
| | | | | | | | | |
Collapse
|
216
|
Thompson KR, Otis KO, Chen DY, Zhao Y, O'Dell TJ, Martin KC. Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron 2005; 44:997-1009. [PMID: 15603742 DOI: 10.1016/j.neuron.2004.11.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 09/07/2004] [Accepted: 11/15/2004] [Indexed: 11/19/2022]
Abstract
The requirement for transcription during long-lasting plasticity indicates that signals generated at the synapse must be transported to the nucleus. We have investigated whether the classical active nuclear import pathway mediates intracellular retrograde signal transport in Aplysia sensory neurons and rodent hippocampal neurons. We found that importins localize to distal neuronal processes, including synaptic compartments, where they are well positioned to mediate synapse to nucleus signaling. In Aplysia, stimuli known to produce long-lasting but not short-lasting facilitation triggered importin nuclear translocation. In hippocampal neurons, NMDA receptor activation but not depolarization induced importin nuclear translocation. We further showed that LTP-inducing stimuli recruited active nuclear import in hippocampal slices. Together with our finding that long-term facilitation of Aplysia sensory-motor synapses required active nuclear import, our results indicate that regulation of the active nuclear import pathway plays a critical role in transporting synaptically generated signals into the nucleus during learning-related forms of plasticity.
Collapse
Affiliation(s)
- Kimberly R Thompson
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
217
|
Tong L, Balazs R, Thornton PL, Cotman CW. Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 2005; 24:6799-809. [PMID: 15282285 PMCID: PMC6729714 DOI: 10.1523/jneurosci.5463-03.2004] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The accumulation of beta-amyloid (Abeta) is one of the etiological factors in Alzheimer's disease (AD). It has been assumed that the underlying mechanism involves a critical role of Abeta-induced neurodegeneration. However, low levels of Abeta, such as will accumulate during the course of the disease, may interfere with neuronal function via mechanisms other than those involving neurodegeneration. We have been testing, therefore, the hypothesis that Abeta at levels insufficient to cause degeneration (sublethal) may interfere with critical signal transduction processes. In cultured cortical neurons Abeta at sublethal concentrations interferes with the brain-derived neurotrophic factor (BDNF)-induced activation of the Ras-mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K)/Akt pathways. The effect of sublethal Abeta(1-42) on BDNF signaling results in the suppression of the activation of critical transcription factor cAMP response element-binding protein and Elk-1 and cAMP response element-mediated and serum response element-mediated transcription. The site of interference with the Ras/ERK and PI3-K/Akt signaling is downstream of the TrkB receptor and involves docking proteins insulin receptor substrate-1 and Shc, which convey receptor activation to the downstream effectors. The functional consequences of Abeta interference with signaling are robust, causing increased vulnerability of neurons, abrogating BDNF protection against DNA damage- and trophic deprivation-induced apoptosis. These new findings suggest that Abeta engenders a dysfunctional encoding state in neurons and may initiate and/or contribute to cognitive deficit at an early stage of AD before or along with neuronal degeneration.
Collapse
Affiliation(s)
- Liqi Tong
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4540, USA.
| | | | | | | |
Collapse
|
218
|
Sung YJ, Walters ET, Ambron RT. A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 2005; 24:7583-95. [PMID: 15329406 PMCID: PMC6729646 DOI: 10.1523/jneurosci.1445-04.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The induction of a long-term hyperexcitability (LTH) in vertebrate nociceptive sensory neurons (SNs) after nerve injury is an important contributor to neuropathic pain in humans, but the signaling cascades that induce this LTH have not been identified. In particular, it is not known how injuring an axon far from the cell soma elicits changes in gene expression in the nucleus that underlie LTH. The nociceptive SNs of Aplysia (ap) develop an LTH with electrophysiological properties after axotomy similar to those of mammalian neurons and are an experimentally useful model to examine these issues. We cloned an Aplysia PKG (cGMP-dependent protein kinase; protein kinase G) that is homologous to vertebrate type-I PKGs and found that apPKG is activated at the site of injury in the axon after peripheral nerve crush. The active apPKG is subsequently retrogradely transported to the somata of the SNs, but apPKG activity does not appear in other neurons whose axons are injured. In the soma, apPKG phosphorylates apMAPK (Aplysia mitogen-activated protein kinase), resulting in its entry into the nucleus. Surprisingly, studies using recombinant proteins in vivo and in vitro indicate that apPKG directly phosphorylates the threonine moiety in the T-E-Y activation site of apMAPK when the -Y- site contains a phosphate. We used inhibitors of nitric oxide synthase, soluble guanyl cyclase, or PKG after nerve injury, and found that each prevented the appearance of the LTH. Moreover, blocking apPKG activation prevented the nuclear import of apMAPK. Consequently, the nitric oxide-PKG-MAPK pathway is a potential target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
219
|
Ghirardi M, Benfenati F, Giovedì S, Fiumara F, Milanese C, Montarolo PG. Inhibition of neurotransmitter release by a nonphysiological target requires protein synthesis and involves cAMP-dependent and mitogen-activated protein kinases. J Neurosci 2005; 24:5054-62. [PMID: 15163698 PMCID: PMC6729382 DOI: 10.1523/jneurosci.5671-03.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During the development of neuronal circuits, axonal growth cones can contact many inappropriate targets before they reach an appropriate postsynaptic partner. Although it is well known that the contact with synaptic partners upregulates the secretory machinery of the presynaptic neuron, little is known about the signaling mechanisms involved in preventing the formation of connections with inappropriate target cells. Here, we show that the contact with a nonphysiological postsynaptic target inhibits neurotransmitter release from axonal terminals of the Helix serotonergic neuron C1 by means of an active mechanism requiring ongoing protein synthesis and leading to the inhibition of cAMP-dependent protein kinase (PKA) and mitogen-activated protein kinase (MAPK)-extracellular signal-related kinase (Erk) pathways. The reversal of the inhibitory effect of the nonphysiological target by blockade of protein synthesis was prevented by cAMP-PKA or MAPK-Erk inhibitors, whereas disinhibition of neurotransmitter release promoted by cAMP-PKA activation was not affected by MAPK-Erk inhibitors. The data indicate that the inhibitory effect of the nonphysiological target on neurotransmitter release is an active process that requires protein synthesis and involves the downregulation of the MAPK-Erk and cAMP-PKA pathways, the same protein kinases that are activated after contact with a physiological target neuron. These mechanisms could play a relevant role in the prevention of synapse formation between inappropriate partners by modulating the neurotransmitter release capability of growing nerve terminals according to the nature of the targets contacted during their development.
Collapse
Affiliation(s)
- Mirella Ghirardi
- Department of Neuroscience, University of Torino, 10125 Torino, Italy.
| | | | | | | | | | | |
Collapse
|
220
|
Min VA, Condron BG. An assay of behavioral plasticity in Drosophila larvae. J Neurosci Methods 2005; 145:63-72. [PMID: 15922026 PMCID: PMC2882685 DOI: 10.1016/j.jneumeth.2004.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 10/26/2022]
Abstract
Stress, or threats to homeostasis, is a universal part of life. Organisms face changing and challenging situations everyday, and the ability to respond to such stress is essential for survival. When subjected to acute stress, the body responds molecularly and behaviorally in order to recover a steady state. We developed a simple and robust assay of behavioral plasticity for Drosophila larvae in which well-defined behavioral responses and recovery can be observed and quantified. After experiencing different control and bright light treatments, populations of photophobic fly larvae were placed a defined distance from a food source to which they crawled. Half-times (t(1/2)), or times at which half the total number of larvae reached the food, were used to compare different treatments and larval populations. Repeated control treatments with a main experimental strain gave tight, reproducible t(1/2) ranges. Control treatments with the wild type strains Oregon R and Canton S, the "rover" and "sitter" alleles of the forager locus, and eyeless mutants gave comparable results to those of the experimental strain. Exposure to bright light for a defined time period resulted in a reproducible slowing of locomotion. However, given a defined recovery period, the larvae recover full, normal locomotion. In addition, bright light treatments with Canton S gave comparable results to those of the experimental strain. Eyeless mutants, which are partially blind, do not show a response to bright light treatment. Thus, our assay measures the behavioral responses to bright light in Drosophila larvae and therefore might be useful as a general assay for studying behavioral plasticity and, potentially, adaptation to a stressful stimulus.
Collapse
Affiliation(s)
| | - Barry G. Condron
- Corresponding author. Tel.: +1 434 243 6794; fax: +1 434 243 5315. (B.G. Condron)
| |
Collapse
|
221
|
Giovannini MG, Pazzagli M, Malmberg-Aiello P, Della Corte L, Rakovska AD, Cerbai F, Casamenti F, Pepeu G. Inhibition of acetylcholine-induced activation of extracellular regulated protein kinase prevents the encoding of an inhibitory avoidance response in the rat. Neuroscience 2005; 136:15-32. [PMID: 16198498 DOI: 10.1016/j.neuroscience.2005.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 01/11/2023]
Abstract
It has been demonstrated that the forebrain cholinergic system and the extracellular regulated kinase signal transduction pathway are involved in the mechanisms of learning, encoding, and storage of information. We investigated the involvement of the cholinergic and glutamatergic systems projecting to the medial prefrontal cortex and ventral hippocampus and of the extracellular regulated kinase signal transduction pathway in the acquisition and recall of the step-down inhibitory avoidance response in the rat, a relatively simple behavioral test acquired in a one-trial session. To this aim we studied by microdialysis the release of acetylcholine and glutamate, and by immunohistochemistry the activation of extracellular regulated kinase during acquisition, encoding and recall of the behavior. Cholinergic, but not glutamatergic, neurons projecting to the medial prefrontal cortex and ventral hippocampus were activated during acquisition of the task, as shown by increase in cortical and hippocampal acetylcholine release. Released acetylcholine in turn activated extracellular regulated kinase in neurons located in the target structures, since the muscarinic receptor antagonist scopolamine blocked extracellular regulated kinase activation. Both increased acetylcholine release and extracellular regulated kinase activation were necessary for memory formation, as administration of scopolamine and of extracellular regulated kinase inhibitors was followed by blockade of extracellular regulated kinase activation and amnesia. Our data indicate that a critical function of the learning-associated increase in acetylcholine release is to promote the activation of the extracellular regulated kinase signal transduction pathway and help understanding the role of these systems in the encoding of an inhibitory avoidance memory.
Collapse
Affiliation(s)
- M G Giovannini
- Dipartimento di Farmacologia, Università di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Fukunaga S, Matsuo R, Hoshino S, Kirino Y. Novel kruppel-like factor is induced by neuronal activity and by sensory input in the central nervous system of the terrestrial slugLimax valentianus. ACTA ACUST UNITED AC 2005; 66:169-81. [PMID: 16288475 DOI: 10.1002/neu.20210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the Limax central nervous system, the procerebrum is thought to be the locus of odor information processing and odor memory retention, but little is known about the input pathway of the noxious stimuli used in this learning protocol. To gain insight into the sensory information processing of the noxious stimuli involved in memory formation, we screened genes induced by artificial neuronal activity, and identified one kruppel-like factor (KLF) family transcription factor gene (Limax KLF; limKLF), which is up-regulated 30 min after depolarization. The limKLF protein fused to GFP was localized to the nucleus in COS-7 cells. We also cloned an immediate early gene, CCAAT enhancer binding protein (C/EBP), of Limax by reverse transcription-polymerase chain reaction (RT-PCR). Both genes were up-regulated by dissection of the central nervous system (CNS) out of the slug in a protein synthesis-independent manner, and also by various noxious stimuli to the slug's body. These genes may be useful as neuronal activity markers in Limax to visualize activated sensory nervous systems.
Collapse
Affiliation(s)
- Satoshi Fukunaga
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, 7 Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
223
|
Burack WR, Shaw AS. Live Cell Imaging of ERK and MEK: simple binding equilibrium explains the regulated nucleocytoplasmic distribution of ERK. J Biol Chem 2004; 280:3832-7. [PMID: 15546878 DOI: 10.1074/jbc.m410031200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to epidermal growth factor (EGF), the mitogen-activated protein kinase ERK2 translocates into the nucleus. To probe the mechanisms regulating the subcellular localization of ERK2, we used live cell imaging to examine the interaction between MEK1 and ERK2. Fluorescence resonance energy transfer (FRET) studies show that MEK1 and ERK2 directly interact and demonstrate that this interaction in the cytoplasm is largely responsible for cytoplasmic retention of ERK2. Stimulation with EGF caused loss of FRET as ERK separated from MEK and moved into the nucleus. FRET was recovered as ERK returned to the cytosol, indicating ERK reassociation with MEK in the cytoplasm. The EGF-induced transit of ERK through the nucleus was complete within 20 min, and there was no significant movement of MEK into the nucleus. Fluorescence recovery after photobleaching experiments was used to assess the rate of movement of MEK and ERK. The steady-state rate of ERK entry into the nucleus in resting cells was energy-independent and greater than the rate of ERK entry upon EGF stimulation. This suggests that the rate constant for ERK transport across the nuclear membrane is not limiting nuclear entry. Thus, we suggest that the movement of ERK into and out of the nucleus in response to agonist occurs primarily by diffusion and is controlled by interactions with binding partners in the cytosol and nucleus. No evidence of ERK dimerization was detected by FRET methods; the kinetics for nucleocytoplasmic transport were unaffected by mutations in the ERK putative dimerization domain.
Collapse
Affiliation(s)
- W Richard Burack
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
224
|
Hu JY, Glickman L, Wu F, Schacher S. Serotonin regulates the secretion and autocrine action of a neuropeptide to activate MAPK required for long-term facilitation in Aplysia. Neuron 2004; 43:373-85. [PMID: 15294145 DOI: 10.1016/j.neuron.2004.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 11/17/2022]
Abstract
In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | |
Collapse
|
225
|
Ormond J, Hislop J, Zhao Y, Webb N, Vaillaincourt F, Dyer JR, Ferraro G, Barker P, Martin KC, Sossin WS. ApTrkl, a Trk-like Receptor, Mediates Serotonin- Dependent ERK Activation and Long-Term Facilitation in Aplysia Sensory Neurons. Neuron 2004; 44:715-28. [PMID: 15541318 DOI: 10.1016/j.neuron.2004.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 07/12/2004] [Accepted: 10/06/2004] [Indexed: 10/25/2022]
Abstract
The Trk family of receptor tyrosine kinases plays a role in synaptic plasticity and in behavioral memory in mammals. Here, we report the discovery of a Trk-like receptor, ApTrkl, in Aplysia. We show that it is expressed in the sensory neurons, the locus for synaptic facilitation, which is a cellular model for memory formation. Serotonin, the facilitatory neurotransmitter, activates ApTrkl, which, in turn, leads to activation of ERK. Finally, inhibiting the activation of ApTrkl with the Trk inhibitor K252a or using dsRNA to inhibit ApTrkl blocks the serotonin-mediated activation of ERK in the cell body, as well as the cell-wide long-term facilitation induced by 5-HT application to the cell body. Thus, transactivation of the receptor tyrosine kinase ApTrkl by serotonin is an essential step in the biochemical events leading to long-term facilitation in Aplysia.
Collapse
Affiliation(s)
- Jake Ormond
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A-2B4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Sharma SK, Carew TJ. The roles of MAPK cascades in synaptic plasticity and memory in Aplysia: facilitatory effects and inhibitory constraints. Learn Mem 2004; 11:373-8. [PMID: 15286179 DOI: 10.1101/lm.81104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synaptic plasticity is thought to contribute to memory formation. Serotonin-induced facilitation of sensory-motor (SN-MN) synapses in Aplysia is an extensively studied cellular analog of memory for sensitization. Serotonin, a modulatory neurotransmitter, is released in the CNS during sensitization training, and induces three temporally and mechanistically distinct phases of SN-MN synaptic facilitation. The role of protein kinase A and protein kinase C in SN-MN synaptic facilitation is well documented. Recently, it has become clear that mitogen-activated protein kinase (MAPK) cascades also play a critical role in SN-MN plasticity. Here, we summarize the roles of MAPK cascades in synaptic plasticity and memory for sensitization in Aplysia.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
227
|
Abstract
Recent cellular and molecular studies of both implicit and explicit memory storage suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these diverse forms of memory are encoded and stored. For both forms of memory storage, some type of synaptic growth is thought to represent the stable cellular change that maintains the long-term process. In this review, we discuss recent findings on the molecular events that underlie learning-related synaptic growth in Aplysia and discuss the possibility that an active, prion-based mechanism is important for the maintenance of the structural change and for the persistence of long-term memory.
Collapse
Affiliation(s)
- Craig H Bailey
- Center for Neurobiology and Behavior, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | |
Collapse
|
228
|
Rodrigues SM, Schafe GE, LeDoux JE. Molecular Mechanisms Underlying Emotional Learning and Memory in the Lateral Amygdala. Neuron 2004; 44:75-91. [PMID: 15450161 DOI: 10.1016/j.neuron.2004.09.014] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The lateral nucleus of the amygdala (LA) is a crucial site of neural changes that occur during fear conditioning. Pharmacological manipulations of the LA, strategically timed with respect to training and testing, have shed light on the molecular events that mediate the acquisition of fear associations and the formation and maintenance of long-term memories of those associations. Similar mechanisms have been found to underlie long-term potentiation (LTP) in LA, an artificial means of inducing synaptic plasticity and a physiological model of learning and memory. Thus, LTP-like changes in synaptic plasticity may underlie fear conditioning. Given that the neural circuit underlying fear conditioning has been implicated in emotional disorders in humans, the molecular mechanisms of fear conditioning are potential targets for psychotherapeutic drug development.
Collapse
|
229
|
Guan Z, Peng X, Fang J. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res 2004; 1018:38-47. [PMID: 15262203 DOI: 10.1016/j.brainres.2004.05.032] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Loss of sleep may result in memory impairment. However, little is known about the biochemical basis for memory deficits induced by sleep deprivation. Extracellular signal-regulated kinase (ERK) is involved in memory consolidation in different tasks. Phosphorylation of ERK is necessary for its activation and is an important step in mediating neuronal responses to synaptic activities. The aim of the present study was to determine the effects of total sleep deprivation (TSD) on memory and ERK phosphorylation in the brain. Rats were trained in Morris water maze to find a hidden platform (a spatial task) or a visible platform (a nonspatial task) after 6 h TSD or spontaneous sleep. TSD had no effect on spatial learning, but significantly impaired spatial memory tested 24 h after training. Nonspatial learning and memory were not impaired by TSD. Phospho-ERK levels in the hippocampus were significantly reduced after 6 h TSD compared to the controls and returned to the control levels after 2 h recovery sleep. Total ERK1 and ERK2 were slightly increased after 6 h TSD and returned to the control levels after 2 h recovery sleep. These alterations were not observed in the cortex after TSD. Protein phosphotase-1 and mitogen-activated protein kinase phosphatase-2, which dephosphorylates phospho-ERK, were also measured, but they were not altered by TSD. The impairments of both spatial memory and ERK phosphorylation indicate that the hippocampus is vulnerable to sleep loss. These results are consistent with the idea that decreased ERK activation in the hippocampus is involved in sleep deprivation-induced spatial memory impairment.
Collapse
Affiliation(s)
- Zhiwei Guan
- Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
230
|
Naska S, Cenni MC, Menna E, Maffei L. ERK signaling is required for eye-specific retino-geniculate segregation. Development 2004; 131:3559-70. [PMID: 15215205 DOI: 10.1242/dev.01212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian visual system, retinal ganglion cell (RGC) projections from each eye, initially intermixed within the dorsal-lateral geniculate nucleus (dLGN), become segregated during the early stages of development, occupying distinct eye-specific layers. Electrical activity has been suggested to play a role in this process; however, the cellular mechanisms underlying eye-specific segregation are not yet defined. It is known that electrical activity is among the strongest activators of the extracellular signal-regulated kinase (ERK) pathway. Moreover, the ERK pathway is involved in the plasticity of neural connections during development. We examine the role of ERK in the segregation of retinal afferents into eye-specific layers in the dLGN. The activation of this signaling cascade was selectively blocked along the retino-thalamic circuitry by specific inhibitors, and the distribution of RGC fibers in the dLGN was studied. Our results demonstrate that the blockade of ERK signaling prevents eye-specific segregation in the dLGN, providing evidence that ERK pathway is required for the proper development of retino-geniculate connections. Of particular interest is the finding that ERK mediates this process both at the retinal and geniculate level.
Collapse
Affiliation(s)
- Sibel Naska
- Scuola Normale Superiore, piazza dei Cavalieri 7, 56100 Pisa, Italy.
| | | | | | | |
Collapse
|
231
|
Abstract
This review highlights five areas of recent discovery concerning the role of extracellular-signal regulated kinases (ERKs) in the hippocampus. First, ERKs have recently been directly implicated in human learning through studies of a human mental retardation syndrome. Second, new models are being formulated for how ERKs contribute to molecular information processing in dendrites. Third, a role of ERKs in stabilizing structural changes in dendritic spines has been defined. Fourth, a crucial role for ERKs in regulating local dendritic protein synthesis is emerging. Fifth, the importance of ERK interactions with scaffolding and structural proteins at the synapse is increasingly apparent. These topics are discussed within the context of an emerging role for ERKs in a wide variety of forms of synaptic plasticity and memory formation in the behaving animal.
Collapse
Affiliation(s)
- J David Sweatt
- Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA.
| |
Collapse
|
232
|
Sung YJ, Ambron RT. Pathways that elicit long-term changes in gene expression in nociceptive neurons following nerve injury: contributions to neuropathic pain. Neurol Res 2004; 26:195-203. [PMID: 15072639 DOI: 10.1179/016164104225013761] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic neuropathic pain following nerve injury or inflammation is mediated by transcription-dependent changes in neurons that comprise the nociceptive pathway. Among these changes is often a long-term hyperexcitability (LTH) in primary nociceptors that persists long after the lesion has healed. LTH is manifest by a reduction in threshold and an increased tendency to fire action potentials. This increased excitability activates higher order neurons in the pathway, leading to the perception of pain. Efforts to ameliorate chronic pain would therefore benefit if we understood how LTH is induced, but studies toward this goal are impeded by the complexity and heterogeneity of vertebrate nervous systems. Fortunately, LTH is an evolutionarily conserved mechanism that underlies defensive behaviors across phyla, including invertebrates. Thus, the same electrophysiological changes that underlie LTH in vertebrate nociceptive neurons are seen in their counterparts in the experimentally favorable mollusk Aplysia californica. Nociceptive neurons of Aplysia are readily accessible and large enough to approach using a variety of cell and molecular approaches not possible in higher organisms. Studies of the molecular cascades activated by injury to Aplysia peripheral nerves has focused on a group of positive injury signals that are retrogradely transported from the injury site in the axon to the cell nucleus where they regulate gene transcription. One of these, protein kinase G, is activated by nitric oxide synthetase and its activation in axons is required for the induction of LTH after injury. This pathway, and the transcriptional events that it activates, are targets for therapeutic intervention for chronic pain.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
233
|
Abstract
Extracellular signal-regulated protein kinase (ERK) is a mitogen-activated protein kinase (MAPK) that mediates intracellular signal transduction in response to a variety of stimuli. ERK is involved in cell proliferation and differentiation and in neuronal plasticity, including long-term potentiation, learning, and memory. Here, we present recently accumulating data about the roles of MAPK pathways in mediating the neuronal plasticity that contributes to pain hypersensitivity. The phosphorylation of ERK in the dorsal root ganglion (DRG) and dorsal horn neurons occurs in response to noxious stimulation of the peripheral tissue or electrical stimulation to the peripheral nerve, i.e., activity-dependent activation of ERK in nociceptive neurons. In addition, the activation of ERK occurs in these nociceptive neurons after peripheral inflammation and axotomy and contributes to persistent inflammatory and neuropathic pain, via transcriptional regulation of key gene products. On the other hand, peripheral inflammation and axotomy also induces p38 MAPK activation in DRG neurons. Taken together, these findings indicate that activation of MAPK in nociceptive neurons may participate in generating pain hypersensitivity through transcription-dependent and -independent means. Thus, inhibition of MAPK signaling in the primary afferents, as well as in the spinal cord, may provide a fruitful strategy for the development of novel analgesics.
Collapse
Affiliation(s)
- Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | |
Collapse
|
234
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
235
|
Runyan JD, Moore AN, Dash PK. A role for prefrontal cortex in memory storage for trace fear conditioning. J Neurosci 2004; 24:1288-95. [PMID: 14960599 PMCID: PMC6730343 DOI: 10.1523/jneurosci.4880-03.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/06/2003] [Accepted: 12/10/2003] [Indexed: 12/22/2022] Open
Abstract
The prefrontal cortex has been shown to participate in the association of events separated by time. However, it is not known whether the prefrontal cortex stores the memory for these relationships. Trace conditioning is a form of classical conditioning in which a time gap separates the conditioned stimulus (CS) from the unconditioned stimulus (US), the association of which has been shown to depend on prefrontal activity. Here we demonstrate that inhibition of extracellular signal-regulated kinase (Erk) cascade (a biochemical pathway involved in long-term memory storage) in the rat medial prefrontal cortex did not interfere with memory encoding for trace fear conditioning but impaired memory retention. In addition, animals displayed impaired memory for the irrelevancy of the training context. Hippocampal Erk phosphorylation was found to have a later time course than prefrontal Erk phosphorylation after trace fear conditioning, indicating a direct role for the prefrontal cortex in associative memory storage for temporally separated events as well as in memory storage of relevancy.
Collapse
Affiliation(s)
- Jason D Runyan
- The Vivian L. Smith Center for Neurologic Research and the Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
236
|
MAP kinases and their roles in pancreatic β-cells. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
237
|
Sung YJ, Ambron RT. PolyADP-ribose polymerase-1 (PARP-1) and the evolution of learning and memory. Bioessays 2004; 26:1268-71. [PMID: 15551264 DOI: 10.1002/bies.20164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PARP-1 is a multifunctional enzyme that can modulate gene expression. Cohen-Armon et al.(1) found that a homologue of PARP-1 is activated in the Aplysia nervous system as the animal responds to an aversive stimulus, which leads to sensitization, and during a more complex form of learning that involves feeding behavior. Significantly, inhibiting PARP-1 activation blocked the learning. Several key pathways in Aplysia neurons are activated both during learning and after injury, suggesting that mechanisms of learning evolved from primitive responses to injury. Since PARP-1 is evolutionarily conserved as a responder to various forms of stress, the finding that PARP-1 is activated during learning supports this idea.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
238
|
Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 2003; 116:4905-14. [PMID: 14625384 DOI: 10.1242/jcs.00804] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasticity in gene expression is achieved by a complex array of molecular mechanisms by which intracellular signaling pathways directly govern transcriptional regulation. In addition to the remarkable variety of transcription factors and co-regulators, and their combinatorial interaction at specific promoter loci, the role of chromatin remodeling has been increasingly appreciated. The N-terminal tails of histones, the building blocks of nucleosomes, contain conserved residues that can be post-translationally modified by phosphorylation, acetylation, methylation and other modifications. Depending on their nature, these modifications have been linked to activation or silencing of gene expression. We wanted to investigate whether neuronal stimulation by various signaling pathways elicits chromatin modifications that would allow transcriptional activation of immediate early response genes. We have analysed the capacity of three drugs - SKF82958 (a dopaminergic receptor agonist), pilocarpine (a muscarinic acetylcholine receptor agonist) and kainic acid (a kainate glutamate receptor agonist) - to induce chromatin remodeling in hippocampal neurons. We show that all stimulations induce rapid, transient phosphorylation of histone H3 at serine 10. Importantly, the same agonists induce rapid activation of the mitogen-activated protein kinase pathway with similar kinetics to extracellular-regulated-kinase phosphorylation. In the same neurons where this dynamic signaling cascade is activated, there is induction of c-fos transcription. Histone H3 Ser10 phosphorylation is coupled to acetylation at the nearby Lys14 residue, an event that has been linked to local opening of chromatin structure. Our results underscore the importance of dynamic chromatin remodeling in the transcriptional response to various stimuli in neuronal cells.
Collapse
Affiliation(s)
- Claudia Crosio
- Department of Gene Expression, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS - INSERM - Université Louis Pasteur, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
239
|
Barbas D, DesGroseillers L, Castellucci VF, Carew TJ, Marinesco S. Multiple serotonergic mechanisms contributing to sensitization in aplysia: evidence of diverse serotonin receptor subtypes. Learn Mem 2003; 10:373-86. [PMID: 14557610 PMCID: PMC218003 DOI: 10.1101/lm.66103] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neurotransmitter serotonin (5-HT) plays an important role in memory encoding in Aplysia. Early evidence showed that during sensitization, 5-HT activates a cyclic AMP-protein kinase A (cAMP-PKA)-dependent pathway within specific sensory neurons (SNs), which increases their excitability and facilitates synaptic transmission onto their follower motor neurons (MNs). However, recent data suggest that serotonergic modulation during sensitization is more complex and diverse. The neuronal circuits mediating defensive reflexes contain a number of interneurons that respond to 5-HT in ways opposite to those of the SNs, showing a decrease in excitability and/or synaptic depression. Moreover, in addition to acting through a cAMP-PKA pathway within SNs, 5-HT is also capable of activating a variety of other protein kinases such as protein kinase C, extracellular signal-regulated kinases, and tyrosine kinases. This diversity of 5-HT responses during sensitization suggests the presence of multiple 5-HT receptor subtypes within the Aplysia central nervous system. Four 5-HT receptors have been cloned and characterized to date. Although several others probably remain to be characterized in molecular terms, especially the Gs-coupled 5-HT receptor capable of activating cAMP-PKA pathways, the multiplicity of serotonergic mechanisms recruited into action during learning in Aplysia can now be addressed from a molecular point of view.
Collapse
Affiliation(s)
- Demian Barbas
- Département de biochimie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
240
|
Lin H, Bao J, Sung YJ, Walters ET, Ambron RT, Ying JS. Rapid electrical and delayed molecular signals regulate the serum response element after nerve injury: convergence of injury and learning signals. ACTA ACUST UNITED AC 2003; 57:204-20. [PMID: 14556286 DOI: 10.1002/neu.10275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axotomy elicits changes in gene expression, but little is known about how information from the site of injury is communicated to the cell nucleus. We crushed nerves in Aplysia californica and the sciatic nerve in the mouse and found short- and long-term activation of an Elk1-SRF transcription complex that binds to the serum response element (SRE). The enhanced short-term binding appeared rapidly and was attributed to the injury-induced activation of an Elk1 kinase that phosphorylates Elk1 at ser383. This kinase is the previously described Aplysia (ap) ERK2 homologue, apMAPK. Nerve crush evoked action potentials that propagated along the axon to the cell soma. Exposing axons to medium containing high K(+), which evoked a similar burst of spikes, or bathing the ganglia in 20 microM serotonin (5HT) for 20 min, activated the apMAPK and enhanced SRE binding. Since 5HT is released in response to electrical activity, our data indicate that the short-term process is initiated by an injury-induced electrical discharge that causes the release of 5HT which activates apMAPK. 5HT is also released in response to noxious stimuli for aversive learning. Hence, apMAPK is a point of convergence for injury signals and learning signals. The delay before the onset of the long-term SRE binding was reduced when the crush was closer to the ganglion and was attributed to an Elk1 kinase that is activated by injury in the axon and retrogradely transported to the cell body. Although this Elk1 kinase phosphorylates mammalian rElk1 at ser383, it is distinct from apMAPK.
Collapse
Affiliation(s)
- Hana Lin
- Department of Anatomy and Cell Biology, 1201 Black Building, Columbia University, West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
241
|
An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci 2003. [PMID: 14561869 DOI: 10.1523/jneurosci.23-28-09409.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local protein synthesis is required for long-lasting synapse-specific plasticity in cultured Aplysia sensorimotor synapses. To identify synaptically localized mRNAs, we prepared a cDNA library from isolated sensory neurites. By sequence analysis, we estimate that the library contains 263 distinct mRNAs, with 98 of these mRNAs constituting 70% of all clones. The localized transcripts are enriched for mRNAs encoding cytoskeletal elements and components of the translational machinery. In situ hybridization confirms that the mRNAs for at least eight of these transcripts are present in distal neurites. Immunocytochemistry reveals that serotonin regulates the translation of one of the localized mRNAs, that encoding alpha1-tubulin. Our identification of mRNAs encoding cytoskeletal elements suggests that local protein synthesis is required for the growth of new synaptic connections associated with persistent synaptic strengthening. Our finding of mRNAs encoding components of the translational machinery suggests that local protein synthesis serves to increase the translational capacity of synapses.
Collapse
|
242
|
Endo S, Launey T. ERKs regulate PKC-dependent synaptic depression and declustering of glutamate receptors in cerebellar Purkinje cells. Neuropharmacology 2003; 45:863-72. [PMID: 14529724 DOI: 10.1016/s0028-3908(03)00210-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phorbol esters, such as tetradecanoylphorbol 13-acetate (TPA), have been used extensively in studies of cerebellar long-term depression (LTD), based on the hypothesis that activated protein kinase C (PKC) directly mediates alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation. Here, we show that TPA-induced depression of synaptic transmission between granule cells and Purkinje cells in culture is mediated through activation of the MEK1/2-ERK1/2 pathway. Phosphorylation of ERK1/2 induced by TPA and co-application of high potassium and glutamate was greatly attenuated by preincubating Purkinje cells with the MEK1/2 (MAPK ERK kinase 1/2) inhibitor PD98059. TPA-induced depression of synaptic transmission between granule cells and Purkinje cells was attenuated by PD98059. The MEK1/2 inhibitor also suppressed declustering of the ionotropic glutamate receptor subunit 2/3 (GluR2/3) induced by TPA and co-application of high potassium and glutamate, even though phosphorylation of Ser880 of GluR2/3 was not inhibited significantly in the presence of PD98059. These results suggest that ERK1/2 plays an essential role in TPA-induced depression via regulation of GluR2/3 declustering at the synapse.
Collapse
Affiliation(s)
- Shogo Endo
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wako 351-0198, Japan.
| | | |
Collapse
|
243
|
Ren X, Mody I. Gamma-hydroxybutyrate reduces mitogen-activated protein kinase phosphorylation via GABA B receptor activation in mouse frontal cortex and hippocampus. J Biol Chem 2003; 278:42006-11. [PMID: 12923192 DOI: 10.1074/jbc.m304238200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Hydroxybutyrate (GHB) naturally occurs in the brain, but its exogenous administration induces profound effects on the central nervous system in animals and humans. The intracellular signaling mechanisms underlying its actions remain unclear. In the present study, the effects of GHB on the activation (phosphorylation) of mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase 1 and 2 (ERK1/2), were investigated. Acute administration of GHB (500 mg/kg, intraperitoneal) induced a fast and long lasting inhibition of MAP kinase phosphorylation in both frontal cortex and hippocampus. The reduced MAP kinase phosphorylation was observed in the CA1 and CA3 areas but not in the dentate gyrus. Pretreatment with the specific gamma-aminobutyric acid, type B (GABAB), receptor antagonist CGP56999A (20 mg/kg, intraperitoneal) prevented the action of GHB, and the effect of GHB was mimicked by baclofen, a selective GABAB receptor agonist, whereas the high affinity GHB receptor antagonist NCS-382 (200 mg/kg, intraperitoneal) had no effect on GHB-inhibited MAP kinase phosphorylation. Moreover, the GHB dehydrogenase inhibitor valproate (500 mg/kg, intraperitoneal), which inhibits the conversion of GHB into GABA, failed to block the effect of GHB on MAP kinase phosphorylation. Altogether, these data suggest that GHB, administered in vivo, reduces MAP kinase phosphorylation via a direct activation of GABAB receptors by GHB. In contrast, GHB (10 mm for 15 min) was found ineffective on MAP kinase phosphorylation in brain slices, indicating important differences in the conditions required for the second messenger activating action of GHB.
Collapse
Affiliation(s)
- Xiuhai Ren
- Departments of Neurology and Physiology, The David Geffen School of Medicine, University of California at Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|
244
|
Colucci-D'Amato L, Perrone-Capano C, di Porzio U. Chronic activation of ERK and neurodegenerative diseases. Bioessays 2003; 25:1085-95. [PMID: 14579249 DOI: 10.1002/bies.10355] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular-signal regulated kinases 1/2 (ERK or ERKs) are involved in the regulation of important neuronal functions, including neuronal plasticity in normal and pathological conditions. We present findings that support the notion that the kinetics and localization of ERK are intrinsically linked, in that the duration of ERK activation dictates its subcellular compartmentalization and/or trafficking. The latter, in turn, dictates whether ERK-expressing cells would enter a program of cell death, survival or differentiation. We summarize experimental data showing that chronic activation of ERK plays a role in the mechanisms that trigger neurodegeneration. We also discuss how MKPs, members of the subclass of dual specificity phosphatases, might be the link between ERK kinetics and its subcellular localization.
Collapse
|
245
|
Abstract
Normal visual experience during postnatal development is necessary for the maturation of visual cortical circuits and acts through molecular mechanisms that are still poorly understood. Recently, it has been shown that ERK (extracellular signal-regulated kinase) 1/2, protein kinase A (PKA), and CREB (cAMP response element-binding protein) are crucial factors for experience-dependent development of the visual cortex, but very little is known about the role of visual experience in their activation. Here, we show that visual stimulation after a brief period of dark rearing caused a transient ERK activation in the visual cortex. Visually induced ERK activation occurred primarily in excitatory neurons of layers II-III and VI and was prevented by binocular lid suture. ERK phosphorylation was strongly reduced by cortical infusion with the cAMP-PKA inhibitor Rp-8-Cl-cAMPS, thus establishing a link between PKA and ERK activation. To analyze the downstream consequences of ERK and PKA signaling, we studied the action of visual stimulation on transcription of genes controlled by CREB in transgenic mice carrying the LacZ reporter gene under the control of the CRE (cAMP response element) promoter. Visual stimulation triggered a prolonged episode of CRE-mediated gene expression in the visual cortex that was suppressed by infusion with the ERK inhibitor U0126. Cortical administration of Rp-8-Cl-cAMPS attenuated the experience-dependent activation of CRE-mediated gene transcription. These results show that ERK phosphorylation in visual cortical neurons represents a molecular readout of patterned visual stimuli and that visual activation of ERK involves the cAMP-PKA system. Finally, because CRE-mediated gene expression was totally dependent on ERK activation, we suggest that PKA action on CRE-mediated gene expression is mediated by ERK.
Collapse
|
246
|
Arnette D, Gibson TB, Lawrence MC, January B, Khoo S, McGlynn K, Vanderbilt CA, Cobb MH. Regulation of ERK1 and ERK2 by glucose and peptide hormones in pancreatic beta cells. J Biol Chem 2003; 278:32517-25. [PMID: 12783880 DOI: 10.1074/jbc.m301174200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed previously that ERK1/2 were activated by glucose and amino acids in pancreatic beta cells. Here we examine and compare signaling events that are necessary for ERK1/2 activation by glucose and other stimuli in beta cells. We find that agents that interrupt Ca2+ signaling by a variety of mechanisms interfere with glucose- and glucagon-like peptide (GLP-1)-stimulated ERK1/2 activity. In particular, calmodulin antagonists, FK506, and cyclosporin, immunosuppressants that inhibit the calcium-dependent phosphatase calcineurin, suppress ERK1/2 activation by both glucose and GLP-1. Ca2+ signaling from intracellular stores is also essential for ERK1/2 activation, because thapsigargin blocks ERK1/2 activation by glucose or GLP-1. The glucose-sensitive mechanism is distinct from that used by phorbol ester or insulin to stimulate ERK1/2 but shares common features with that used by GLP-1.
Collapse
Affiliation(s)
- Don Arnette
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem 2003; 278:32969-77. [PMID: 12810726 DOI: 10.1074/jbc.m301198200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that the mitogen-activated protein kinases ERK1/2 are components of the mechanism by which glucose stimulates insulin gene expression. ERK1/2 activity is required for glucose-dependent transcription from both the full-length rat insulin I promoter and the glucose-sensitive isolated E2A3/4 promoter element in intact islets and beta cell lines. Dominant negative ERK2 and MEK inhibitors suppress glucose stimulation of the rat insulin I promoter and the E2A3/4 element. Overexpression of ERK2 is sufficient to stimulate transcription from the E2A3/4 element. The glucose-induced response is dependent upon ERK1/2 phosphorylation of a subset of transcription factors that include Beta2 (also known as NeuroD1) and PDX-1. Phosphorylation increases their functional activity and results in a cumulative transactivation of the promoter. Thus, ERK1/2 act at multiple points to transduce a glucose signal to insulin gene transcription.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Cricetinae
- Dimerization
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Genetic Vectors
- Glucose/metabolism
- Glutathione Transferase/metabolism
- Insulin/metabolism
- Islets of Langerhans/metabolism
- Male
- Mice
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Shih Khoo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
248
|
Abstract
At Aplysia sensory-to-motor neuron synapses, the inhibitory neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa) produces depression, and serotonin (5-HT) produces facilitation. Short-term depression has been found to result from the activation of a phospholipase A2. The released arachidonate is metabolized by 12-lipoxygenase to active second messengers. We find that FMRFa leads to the phosphorylation and activation of p38 mitogen-activated protein (MAP) kinase. Short-term depression and the release of arachidonate are blocked by the specific p38 kinase inhibitor SB 203580. Both the inhibitor and an affinity-purified antibody raised against recombinant Aplysia p38 kinase injected into sensory neurons prevented long-term depression, which depends on the phosphorylation of translation factors cAMP response element-binding protein 2 (CREB2) and activating transcription factor 2. Facilitation produced by 5-HT, on the other hand, inactivates p38 kinase. Chromatin immunoprecipitation assays indicate that p38 kinase activates CREB2. p38 kinase also is pivotal in the bidirectional regulation of synaptic plasticity: when the kinase is inhibited, brief treatment with 5-HT that normally produces only short-term facilitation now results in long-term facilitation. Conversely, in sensory neurons injected with the activated kinase, long-term facilitation is blocked, and brief exposure to FMRFa, which normally results in short-term depression, results in long-term depression. We conclude that p38 kinase, which itself is bidirectionally regulated by FMRFa and 5-HT, acts as a modulator of synaptic plasticity by positively regulating depression and serving as an inhibitory constraint for facilitation.
Collapse
|
249
|
Morozov A, Muzzio IA, Bourtchouladze R, Van-Strien N, Lapidus K, Yin D, Winder DG, Adams JP, Sweatt JD, Kandel ER. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 2003; 39:309-25. [PMID: 12873387 DOI: 10.1016/s0896-6273(03)00404-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Learning-induced synaptic plasticity commonly involves the interaction between cAMP and p42/44MAPK. To investigate the role of Rap1 as a potential signaling molecule coupling cAMP and p42/44MAPK, we expressed an interfering Rap1 mutant (iRap1) in the mouse forebrain. This expression selectively decreased basal phosphorylation of a membrane-associated pool of p42/44MAPK, impaired cAMP-dependent LTP in the hippocampal Schaffer collateral pathway induced by either forskolin or theta frequency stimulation, decreased complex spike firing, and reduced the p42/44MAPK-mediated phosphorylation of the A-type potassium channel Kv4.2. These changes correlated with impaired spatial memory and context discrimination. These results indicate that Rap1 couples cAMP signaling to a selective membrane-associated pool of p42/44MAPK to control excitability of pyramidal cells, the early and late phases of LTP, and the storage of spatial memory.
Collapse
Affiliation(s)
- Alexei Morozov
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
The mechanisms by which neurons regulate the number and strength of synapses during development and synaptic plasticity have not yet been defined fully. This lack of fundamental knowledge in the fields of neurodevelopment and synaptic plasticity can be attributed, in part, to compensatory mechanisms by which neurons accommodate for the loss of function in their synaptic partners. This is generally achieved either by scaling up neuronal transmitter release capabilities or by enhancing the postsynaptic responsiveness. Here, we demonstrate that regulation of synaptic strength and number between identified Lymnaea neurons visceral dorsal 4 (VD4, the presynaptic cell) and left pedal dorsal 1 (LPeD1, the postsynaptic cell) requires presynaptic activation of a cAMP-PKA-dependent signal. Experimental activation of the cAMP-PKA pathway resulted in reduced synaptic efficacy, whereas inhibition of the cAMP-PKA cascade permitted hyperinnervation and an overall enhancement of synaptic strength. Because synaptic transmission between VD4 and LPeD1 does not require a cAMP-PKA pathway, our data show that these messengers may play a novel role in regulating the synaptic efficacy during early synaptogenesis and plasticity.
Collapse
|