201
|
Abstract
Adenoviruses have transitioned from tools for gene replacement therapy to bona fide vaccine delivery vehicles. They are attractive vaccine vectors as they induce both innate and adaptive immune responses in mammalian hosts. Currently, adenovirus vectors are being tested as subunit vaccine systems for numerous infectious agents ranging from malaria to HIV-1. Additionally, they are being explored as vaccines against a multitude of tumor-associated antigens. In this review we describe the molecular biology of adenoviruses as well as ways the adenovirus vectors can be manipulated to enhance their efficacy as vaccine carriers. We describe methods of evaluating immune responses to transgene products expressed by adenoviral vectors and discuss data on adenoviral vaccines to a selected number of pathogens. Last, we comment on the limitations of using human adenoviral vectors and provide alternatives to circumvent these problems. This field is growing at an exciting and rapid pace, thus we have limited our scope to the use of adenoviral vectors as vaccines against viral pathogens.
Collapse
Affiliation(s)
| | - Hildegund C.J. Ertl
- To whom correspondence and reprint requests should be addressed. Fax: +1 (215) 898 3953
| |
Collapse
|
202
|
Latham KA, Whittington KB, Zhou R, Qian Z, Rosloniec EF. Ex Vivo Characterization of the Autoimmune T Cell Response in the HLA-DR1 Mouse Model of Collagen-Induced Arthritis Reveals Long-Term Activation of Type II Collagen-Specific Cells and Their Presence in Arthritic Joints. THE JOURNAL OF IMMUNOLOGY 2005; 174:3978-85. [PMID: 15778354 DOI: 10.4049/jimmunol.174.7.3978] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the pathogenesis of collagen-induced arthritis (CIA), a model of rheumatoid arthritis, is mediated by both collagen-specific CD4(+) T cells and Ab specific for type II collagen (CII), the role of CII-specific T cells in the pathogenesis of CIA remains unclear. Using tetrameric HLA-DR1 with a covalently bound immunodominant CII peptide, CII(259-273), we studied the development of the CII-specific T cell response in the periphery and arthritic joints of DR1 transgenic mice. Although the maximum number of DR1-CII-tetramer(+) cells was detected in draining lymph nodes 10 days postimmunization, these T cells accounted for only 1% or less of the CD4(+) population. After day 10, their numbers gradually decreased, but were still detectable on day 130. Examination of TCR expression and changes in CD62L, CD44(high), and CD69 expression by these T cells indicated that they expressed a limited TCR-BV repertoire and had clearly undergone activation. RT-PCR analysis of cytokine expression by the tetramer(+) T cells compared with tetramer(-) cells indicated the tetramer(+) cells expressed high levels of Th1 and proinflammatory cytokines, including IL-2, IFN-gamma, IL-6, TNF-alpha, and especially IL-17. Additionally, analysis of the synovium from arthritic paws indicated that the same CD4(+)/BV8(+)/BV14(+)/tetramer(+) T cells were present in the arthritic joints. These data demonstrate that although only small numbers of CII-specific T cells are generated during the development of CIA, these cells express very high levels of cytokine mRNA and appear to preferentially migrate to the arthritic joint, indicating a potential direct role of CII-specific T cells in the pathogenesis of CIA.
Collapse
Affiliation(s)
- Kary A Latham
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
203
|
Song G, Yang Y, Liu JH, Casasnovas JM, Shimaoka M, Springer TA, Wang JH. An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alphaLbeta2. Proc Natl Acad Sci U S A 2005; 102:3366-71. [PMID: 15728350 PMCID: PMC552929 DOI: 10.1073/pnas.0500200102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the Ig superfamily (IgSF), intercellular adhesion molecules (ICAMs) form a subfamily that binds the leukocyte integrin alphaLbeta2. We report a 1.65-A-resolution crystal structure of the ICAM-3 N-terminal domain (D1) in complex with the inserted domain, the ligand-binding domain of alphaLbeta2. This high-resolution structure and comparisons among ICAM subfamily members establish that the binding of ICAM-3 D1 onto the inserted domain represents a common docking mode for ICAM subfamily members. The markedly different off-rates of ICAM-1, -2, and -3 appear to be determined by the hydrophobicity of residues that surround a metal coordination bond in the alphaLbeta2-binding interfaces. Variation in composition of glycans on the periphery of the interfaces influences on-rate.
Collapse
Affiliation(s)
- Gang Song
- CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Kerry SE, Maile R, Collins EJ, Frelinger JA. Memory CD8 T cells require CD8 coreceptor engagement for calcium mobilization and proliferation, but not cytokine production. Immunology 2005; 114:44-52. [PMID: 15606794 PMCID: PMC1782059 DOI: 10.1111/j.1365-2567.2004.02070.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Memory T-cell responses are faster and more robust than those of their naive counterparts. The mechanisms by which memory T cells respond better to subsequent antigenic exposure remain unresolved. A portion of the more rapid response is undoubtedly the result of the increased frequency of antigen-specific cells. In addition, there are also differences in the cells themselves with respect to their requirements for costimulation and the apparent avidity of the T cells. We used major histocompatibility complex (MHC) class I tetramers to stimulate T cells to focus on the interaction of T-cell receptor (TCR)/MHC and CD8 in the absence of other molecules that are present on cell surfaces and so contribute to the activation of T cells by undefined mechanisms. Mutated MHC class I tetramers that are unable to engage CD8 were used to investigate the role of CD8 engagement in memory cell activation. Either wild-type tetramers or tetramers carrying the mutation were used to stimulate both memory and naive TCR transgenic T cells in vitro. Surprisingly, like naive cells, memory CD8(+) T cells required CD8 engagement for calcium mobilization and optimum proliferation. In contrast, the requirements for cytokine production differed. Unlike naive cells, memory cells were able to produce cytokine in the absence of CD8 engagement. This suggests both a CD8-dependent pathway for early events and a CD8-independent pathway for cytokine production in memory cells.
Collapse
Affiliation(s)
- Samantha E Kerry
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | |
Collapse
|
205
|
Bonehill A, Heirman C, Thielemans K. Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy. J Gene Med 2005; 7:686-95. [PMID: 15693037 DOI: 10.1002/jgm.713] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recently, it has become more and more obvious that not only CD8+ cytotoxic T lymphocytes, but also CD4+ T helper cells are required for the induction of an optimal, long-lasting anti-tumor immune response. CD4+ T helper cells, and in particular IFN-gamma-secreting type 1 T helper cells, have been shown to fulfill a critical function in the mounting of a cancer-specific response. Consequently, targeting antigens into MHC class II molecules would greatly enhance the efficacy of an anti-cancer vaccine. The dissection of the MHC class II presentation pathway has paved the way for rational approaches to achieve this goal: novel systems have been developed to genetically manipulate the MHC class II presentation pathway. First, different genetic approaches have been used for the delivery of known epitopes into the MHC class II processing pathway or directly onto the peptide-binding groove of the MHC molecules. Second, several strategies exist for the targeting of whole tumor antigens, containing both MHC class I and class II restricted epitopes, to the MHC class II processing pathway. We review these data and describe how this knowledge is currently applied in vaccine development.
Collapse
Affiliation(s)
- Aude Bonehill
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | | | | |
Collapse
|
206
|
Nolte-'t Hoen ENM, Amoroso MG, Veenstra J, Grosfeld-Stulemeyer MC, van Eden W, Broeren CPM, Wauben MHM. Effector and regulatory T?cells derived from the same T?cell clone differ in MHC class II-peptide multimer binding. Eur J Immunol 2004; 34:3359-69. [PMID: 15549773 DOI: 10.1002/eji.200425563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
MHC class II-peptide multimers are a valuable tool for antigen-specific detection of CD4(+) T cells. However, it has been proposed that T cells in a hypo-responsive state can have diminished binding of such multimers. In the present study, we investigated this phenomenon at the clonal level. We found that anergic CD4(+) T cells had a reduced capacity to bind MHC class II-peptide multimers compared to their non-anergic counterparts. Increasing the incubation temperature, time, or MHC-peptide valency could not equalize multimer binding by anergic and non-anergic T cells. Neither anergic T cells nor non-anergic T cells internalized the MHC class II-peptide dimers efficiently, and in both cases the dimers bound to the plasma membrane at locations containing a low amount of raft-associated lipids. Disruption of lipid rafts, however, led to decreased dimer binding by non-anergic T cells and to a lesser extent by anergic T cells. Finally, we show that the depth of the anergic state of the T cell, which determines its ability to regulate other T cell responses, correlates with the reduced dimer binding. We here demonstrate for the first time differential MHC class II-peptide multimer binding by regulatory (anergic) and effector T cells with identical TCR.
Collapse
Affiliation(s)
- Esther N M Nolte-'t Hoen
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
207
|
Ueno T, Tomiyama H, Fujiwara M, Oka S, Takiguchi M. Functionally impaired HIV-specific CD8 T cells show high affinity TCR-ligand interactions. THE JOURNAL OF IMMUNOLOGY 2004; 173:5451-7. [PMID: 15494492 DOI: 10.4049/jimmunol.173.9.5451] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We eventually isolated two different clonotypic CD8 T cell subsets recognizing an HIV Pol-derived epitope peptide (IPLTEEAEL) in association with HLA-B35 from a chronic HIV-infected patient. By kinetic analysis experiments, the subsets showed a >3-fold difference in half-lives for the HLA tetramer in complex with the Pol peptide. In functional assays in vitro and ex vivo, both subsets showed substantial functional avidity toward peptide-loaded cells. However, the high affinity subset did not show cytolytic activity, cytokine production, or proliferation activity toward HIV-infected cells, whereas the moderate affinity one showed potent activities. Furthermore, using ectopic expression of each of the TCR genes into primary human CD8 T cells, the CD8 T cells transduced with the high affinity TCR showed greater binding activity toward the tetramer and impaired cytotoxic activity toward HIV-infected cells, corroborating the results obtained with parental CD8 T cells. Taken together, these data indicate that impaired responsiveness of T cells toward HIV-infected cells can occur at the level of TCR-ligand interactions, providing us further insight into the immune evasion mechanisms by HIV.
Collapse
MESH Headings
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Clone Cells
- Coculture Techniques
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, pol/biosynthesis
- Gene Products, pol/immunology
- Gene Products, pol/metabolism
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- HIV/immunology
- Humans
- Kinetics
- Ligands
- Lymphocyte Activation/genetics
- Molecular Sequence Data
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Transduction, Genetic
Collapse
Affiliation(s)
- Takamasa Ueno
- Division of Viral Immunology, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
208
|
Mohindru M, Kang B, Kim BS. Functional maturation of proteolipid protein(139-151)-specific Th1 cells in the central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 2004; 155:127-35. [PMID: 15342203 DOI: 10.1016/j.jneuroim.2004.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely adopted animal model system for studying human multiple sclerosis that affects the central nervous system (CNS). To understand the underlying pathogenic mechanisms of the autoimmune T cell response, localization, enumeration and characterization of autoreactive T cells are essential. We assessed encephalitogenic proteolipid protein epitope (PLP(139-151))-specific T cells in the periphery and CNS of SJL/J mice using MHC class II I-As multimers during both pre-clinical and clinical phases of PLP-induced EAE in conjunction with T cell function. Our results strongly suggest that PLP(139-151)-specific CD4+ T cells first expand primarily in the CNS-draining cervical lymph nodes and then migrate to the CNS. In the CNS, these PLP-specific CD4+ T cells accumulate, become activated and differentiate into effector cells that produce IFN-gamma in response to the self-peptide.
Collapse
Affiliation(s)
- Mani Mohindru
- Department of Microbiology-Immunology and Institute for Neuroscience, Northwestern University Feinberg Medical School, 303 East Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
209
|
Santori FR, Holmberg K, Ostrov D, Gascoigne NRJ, Vukmanović S. Distinct footprints of TCR engagement with highly homologous ligands. THE JOURNAL OF IMMUNOLOGY 2004; 172:7466-75. [PMID: 15187125 DOI: 10.4049/jimmunol.172.12.7466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell receptor engagement promotes proliferation, differentiation, survival, or death of T lymphocytes. The affinity/avidity of the TCR ligand and the maturational stage of the T cell are thought to be principal determinants of the outcome of TCR engagement. We demonstrate in this study that the same mouse TCR preferentially uses distinct residues of homologous peptides presented by the MHC molecules to promote specific cellular responses. The preference for distinct TCR contacts depends on neither the affinity/avidity of TCR engagement (except in the most extreme ranges), nor the maturity of engaged T cells. Thus, different portions of the TCR ligand appear capable of biasing T cells toward specific biological responses. These findings explain differences in functional versatility of TCR ligands, as well as anomalies in the relationship between affinity/avidity of the TCR for the peptide/MHC and cellular responses of T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Epitope Mapping
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/physiology
- Ligands
- Mice
- Mice, Transgenic
- Models, Molecular
- Peptides/chemical synthesis
- Peptides/immunology
- Protein Binding
- Protein Footprinting
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Structure-Activity Relationship
- T-Lymphocyte Subsets
Collapse
Affiliation(s)
- Fabio R Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and New York University Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
210
|
Maus MV, Kovacs B, Kwok WW, Nepom GT, Schlienger K, Riley JL, Allman D, Finkel TH, June CH. Extensive replicative capacity of human central memory T cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:6675-83. [PMID: 15153483 DOI: 10.4049/jimmunol.172.11.6675] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.
Collapse
Affiliation(s)
- Marcela V Maus
- Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center,University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Yang J, Jaramillo A, Shi R, Kwok WW, Mohanakumar T. In vivo biotinylation of the major histocompatibility complex (MHC) class II/peptide complex by coexpression of BirA enzyme for the generation of MHC class II/tetramers. Hum Immunol 2004; 65:692-9. [PMID: 15301857 DOI: 10.1016/j.humimm.2004.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Success in generation of major histocompatibility complex (MHC) tetramer relies on application of a key technique, biotinylation of MHC molecule specifically on a single lysine residue using the BirA enzyme. However, in vitro biotinylation of MHC-BSP (BirA enzyme substrate peptide) fusion protein using BirA enzyme is laborious and is prone to losses of target proteins to unacceptable levels. To circumvent this problem, an in vivo biotinylation strategy was developed where the BirA enzyme was coexpressed with target protein, HLA-DR2BSP/MBP, in an insect cell expression system. Bacterial BirA enzyme expressed in Drosophila melanogaster 2 (D. Mel-2) cell lines was biologically functional and was able to biotinylate secretary target protein (on specific lysine residue present on the BSP tag). Biotinylation efficiency was maximized by providing exogenous d-biotin in the culture medium and optimization of the expression vector ratios for cotransfection. By limiting dilution cloning, a clone was identified where the expressed DR2BSP/MBP protein was completely biotinylated. DR2BSP/MBP protein expressed and purified from such a clone was ready to be tetramerized with streptavidin to be used for staining antigen-specific T cells.
Collapse
Affiliation(s)
- Junbao Yang
- Department of Surgery, Washington University School of Medicine, MO 63110-1093, USA
| | | | | | | | | |
Collapse
|
212
|
Snyder CM, Aviszus K, Heiser RA, Tonkin DR, Guth AM, Wysocki LJ. Activation and tolerance in CD4(+) T cells reactive to an immunoglobulin variable region. ACTA ACUST UNITED AC 2004; 200:1-11. [PMID: 15226360 PMCID: PMC2213315 DOI: 10.1084/jem.20031234] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antibody diversity creates an immunoregulatory challenge for T cells that must cooperate with B cells, yet discriminate between self and nonself. To examine the consequences of T cell reactions to the B cell receptor (BCR), we generated a transgenic (Tg) line of mice expressing a T cell receptor (TCR) specific for a κ variable region peptide in monoclonal antibody (mAb) 36-71. The κ epitope was originally generated by a pair of somatic mutations that arose naturally during an immune response. By crossing this TCR Tg mouse with mice expressing the κ chain of mAb 36-71, we found that κ-specific T cells were centrally deleted in thymi of progeny that inherited the κTg. Maternally derived κTg antibody also induced central deletion. In marked contrast, adoptive transfer of TCR Tg T cells into κTg recipients resulted in T and B cell activation, lymphadenopathy, splenomegaly, and the production of IgG antichromatin antibodies by day 14. In most recipients, autoantibody levels increased with time, Tg T cells persisted for months, and a state of lupus nephritis developed. Despite this, Tg T cells appeared to be tolerant as assessed by severely diminished proliferative responses to the Vκ peptide. These results reveal the importance of attaining central and peripheral T cell tolerance to BCR V regions. They suggest that nondeletional forms of T tolerance in BCR-reactive T cells may be insufficient to preclude helper activity for chromatin-reactive B cells.
Collapse
Affiliation(s)
- Christopher M Snyder
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado School of Medicine, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
213
|
Bischof F, Hofmann M, Schumacher TNM, Vyth-Dreese FA, Weissert R, Schild H, Kruisbeek AM, Melms A. Analysis of autoreactive CD4 T cells in experimental autoimmune encephalomyelitis after primary and secondary challenge using MHC class II tetramers. THE JOURNAL OF IMMUNOLOGY 2004; 172:2878-84. [PMID: 14978089 DOI: 10.4049/jimmunol.172.5.2878] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, is primarily mediated by CD4 T cells specific for Ags in the CNS. Using MHC class II tetramers, we assessed expansion and phenotypic differentiation of polyclonal self-reactive CD4 T cells during EAE after primary and secondary challenge with the specific Ag. After EAE induction in SJL mice with proteolipid protein 139-151, CNS-specific T cells up-regulated activation markers and expanded in the draining lymph nodes and in the spleen. Less than 20% of total autoreactive T cells entered the CNS simultaneously with Th cells of other specificities. Almost all tetramer-positive cells in the CNS were activated and phenotypically distinct from the large peripheral pool. When EAE was induced in Ag-experienced mice, disease symptoms developed earlier and persisted longer; autoreactive T cells were more rapidly activated and invaded the CNS earlier. In striking contrast to specific CTLs that respond after secondary viral challenge, the absolute numbers of autoreactive CD4 T cells were not increased, indicating that the accelerated autoreactivity in Ag-experienced mice is not related to higher frequencies of autoreactive CD4 T cells.
Collapse
Affiliation(s)
- Felix Bischof
- Department of Neurology and Institute for Cell Biology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Ye M, Kasey S, Khurana S, Nguyen NT, Schubert S, Nugent CT, Kuus-Reichel K, Hampl J. MHC class II tetramers containing influenza hemagglutinin and EBV EBNA1 epitopes detect reliably specific CD4+ T cells in healthy volunteers. Hum Immunol 2004; 65:507-13. [PMID: 15172451 DOI: 10.1016/j.humimm.2004.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/15/2004] [Accepted: 02/03/2004] [Indexed: 11/19/2022]
Abstract
Tracking antigen specific T cells with major histocompatibility complex (MHC) tetramers has provided us with insights into the dynamics of the adaptive immune system and holds great promise to aid in patient management and drug and vaccine development. Progress has been made primarily using MHC class I tetramers to monitor CD8(+) T cells, whereas corresponding efforts to stain CD4(+) T cells with class II tetramers have not been as successful. Two major reasons have been proposed for this lack of progress: (1). The frequency of antigen-specific CD4(+) T cells is lower than the frequency of CD8(+) T cells and (2). some, but not all, antigen- specific CD4(+) T cells can bind tetramer because of low functional avidity. In this study, we asked if CD4(+) T cells specific for common human viruses (e.g., influenza and Epstein-Barr) can be detected in healthy individuals previously exposed to them. We were able to clearly detect specific CD4(+) T cells in all donors after in vitro expansion of peripheral blood mononuclear cells. Furthermore, we observe a clear separation of tetramer negative and tetramer positive CD4(+) T cells in most samples similar to patterns commonly seen with class I tetramers. The data indicate that MHC class II tetramers can be used reliably for the identification of CD4(+) T cells specific for ubiquitous infectious agents in normal donors.
Collapse
Affiliation(s)
- Ming Ye
- Cell Analysis Development Center, Beckman Coulter, Inc, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Fourneau JM, Cohen H, van Endert PM. A chaperone-assisted high yield system for the production of HLA-DR4 tetramers in insect cells. J Immunol Methods 2004; 285:253-64. [PMID: 14980439 DOI: 10.1016/j.jim.2003.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/06/2003] [Accepted: 11/20/2003] [Indexed: 01/13/2023]
Abstract
MHC tetramers have become essential tools for the analysis of antigen specific responses of CD8+ and CD4+ T cells. However, the use of MHC class II tetramers is hampered by the relatively low yields of most current expression systems. We have devised an insect cell/baculovirus expression system in which yields of 50-70 mg of recombinant HLA-DR4 molecules, with or without covalently linked peptide, per liter of insect cell supernatant, are routinely obtained. These yields are rendered possible by an optimized design and use of DRalpha and DRbeta expression cassettes and by co-expression of a housekeeping chaperone of the endoplasmic reticulum, calreticulin, which, due to its co-secretion, increases secretion of HLA-DR molecules two- to threefold. A tetramer produced in the system specifically was shown to stain an HLA-DR4 restricted T cell line obtained from a healthy donor by in vitro priming, but which recognizes a type I diabetes autoantigen. Co-expression of chaperones may represent a general strategy for enhancing yields of recombinant proteins expressed in insect cells and facilitate production of MHC class II tetramers in the future.
Collapse
Affiliation(s)
- Jean-Marie Fourneau
- Institut National de la Santé et de la Recherche Médicale Unité 580, Hôpital Necker, 161 rue de Sèvres, 75015 Paris, France
| | | | | |
Collapse
|
216
|
Crawford F, Huseby E, White J, Marrack P, Kappler JW. Mimotopes for alloreactive and conventional T cells in a peptide-MHC display library. PLoS Biol 2004; 2:E90. [PMID: 15094798 PMCID: PMC387264 DOI: 10.1371/journal.pbio.0020090] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 01/21/2004] [Indexed: 12/29/2022] Open
Abstract
The use of peptide libraries for the identification and characterization of T cell antigen peptide epitopes and mimotopes has been hampered by the need to form complexes between the peptides and an appropriate MHC molecule in order to construct a complete T cell ligand. We have developed a baculovirus-based peptide library method in which the sequence encoding the peptide is embedded within the genes for the MHC molecule in the viral DNA, such that insect cells infected with virus encoding a library of different peptides each displays a unique peptide-MHC complex on its surface. We have fished in such a library with two different fluorescent soluble T cell receptors (TCRs), one highly peptide specific and the other broadly allo-MHC specific and hypothesized to be much less focused on the peptide portion of the ligand. A single peptide sequence was selected by the former alphabetaTCR that, not unexpectedly, was highly related to the immunizing peptide. As hypothesized, the other alphabetaTCR selected a large family of peptides, related only by a similarity to the immunizing peptide at the p5 position. These findings have implications for the relative importance of peptide and MHC in TCR ligand recognition. This display method has broad applications in T cell epitope identification and manipulation and should be useful in general in studying interactions between complex proteins.
Collapse
Affiliation(s)
- Frances Crawford
- 1Howard Hughes Medical Institute, Integrated Department of ImmunologyNational Jewish Medical and Research Center, Denver, ColoradoUnited States of America
- 2Integrated Department of Immunology, University of Colorado Health Science CenterDenver, ColoradoUnited States of America
| | - Eric Huseby
- 1Howard Hughes Medical Institute, Integrated Department of ImmunologyNational Jewish Medical and Research Center, Denver, ColoradoUnited States of America
- 2Integrated Department of Immunology, University of Colorado Health Science CenterDenver, ColoradoUnited States of America
| | - Janice White
- 1Howard Hughes Medical Institute, Integrated Department of ImmunologyNational Jewish Medical and Research Center, Denver, ColoradoUnited States of America
| | - Philippa Marrack
- 1Howard Hughes Medical Institute, Integrated Department of ImmunologyNational Jewish Medical and Research Center, Denver, ColoradoUnited States of America
- 2Integrated Department of Immunology, University of Colorado Health Science CenterDenver, ColoradoUnited States of America
- 3Department of Biochemistry and Molecular Genetics, University of Colorado Health Science CenterDenver, ColoradoUnited States of America
| | - John W Kappler
- 1Howard Hughes Medical Institute, Integrated Department of ImmunologyNational Jewish Medical and Research Center, Denver, ColoradoUnited States of America
- 2Integrated Department of Immunology, University of Colorado Health Science CenterDenver, ColoradoUnited States of America
- 4Department of Pharmacology and the Program in Biomolecular Structure, University of Colorado Health Science CenterDenver, ColoradoUnited States of America
| |
Collapse
|
217
|
Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 2004; 104:735-43. [PMID: 15069016 DOI: 10.1182/blood-2003-10-3413] [Citation(s) in RCA: 548] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder with familial and acquired forms. The familial form is associated with mutations in the perforin gene and both forms are associated with severe defects in lymphocyte cytotoxic function. We examined perforin-deficient mice as a model of HLH in order to gain insight into this poorly understood disorder. While these mice do not spontaneously develop HLH-like symptoms, we found that they manifest all of the features of HLH after infection with lymphocytic choriomeningitic virus (LCMV). Following LCMV infection, perforin-deficient mice develop fever, splenomegaly, pancytopenia, hypertriglyceridemia, hypofibrinogenemia, and elevation of multiple serum cytokine levels, and hemophagocytosis is evident in many tissues. Investigation into how this phenotype develops has revealed that CD8+ T cells, but not natural killer (NK) cells, are necessary for the development of this disorder. Cytokine neutralization studies have revealed that interferon gamma (IFNgamma) is uniquely essential as well. Finally, the excessive amount of IFNgamma seen in affected mice appears to be driven by increased antigen presentation to CD8+ T cells. These studies provide insight into the pathophysiology of HLH, and provide new targets for specific therapeutic intervention in this fatal disorder.
Collapse
Affiliation(s)
- Michael B Jordan
- Integrated Department of Immunology, University of Colorado Health Sciences Center, Denver, USA.
| | | | | | | |
Collapse
|
218
|
Mallone R, Kochik SA, Laughlin EM, Gersuk VH, Reijonen H, Kwok WW, Nepom GT. Differential recognition and activation thresholds in human autoreactive GAD-specific T-cells. Diabetes 2004; 53:971-7. [PMID: 15047612 DOI: 10.2337/diabetes.53.4.971] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activation requirements of autoreactive CD4(+) T-cells were investigated in GAD65-specific HLA-DR0401-restricted clones derived from a diabetic patient using major histocompatibility complex (MHC) class II tetramers (TMrs) as stimulating agents. Despite the fact that TMrs loaded with an immunodominant-altered GAD peptide (TMr-GAD) bound a limited number of T-cell receptors, they were capable of efficiently delivering activation signals. These signals ranged from the early steps of phospholipase C (PLC)-gamma(1) phosphorylation and Ca(2+) mobilization to more complex events, such as CD69 upregulation, cytokine mRNA transcription and secretion, and proliferation. All the effects triggered by TMr-GAD were dose dependent. On the contrary, [(3)H]-thymidine incorporation decreased at high TMr-GAD concentrations because of activation-induced cell death (AICD) after initial proliferation. Lower-avidity clones (as defined by TMr-GAD binding) were less sensitive to activation as well as less susceptible to AICD compared with higher-avidity clones. Induction of apoptosis is a potential immunomodulatory target for therapeutic applications of MHC class II multimers, but the relative resistance of low-avidity T-cells may limit its benefits.
Collapse
Affiliation(s)
- Roberto Mallone
- Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Hermans IF, Silk JD, Yang J, Palmowski MJ, Gileadi U, McCarthy C, Salio M, Ronchese F, Cerundolo V. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J Immunol Methods 2004; 285:25-40. [PMID: 14871532 DOI: 10.1016/j.jim.2003.10.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 10/10/2003] [Accepted: 10/27/2003] [Indexed: 01/08/2023]
Abstract
Assessment of cell-mediated toxicity has traditionally been achieved by measuring the specific activity of enriched effector cell populations against antigen-loaded target cells labeled with radioactive isotopes in vitro. Fluorometric techniques are viewed as a promising alternative to the use of radioactive isotopes for these analyses. Direct assessment of cytotoxicity in vivo can be achieved by monitoring survival of injected fluorescent targets relative to a differentially labeled internal control population without specific antigen. We have developed this approach, incorporating the use of multiple target cell populations labeled with different dyes so that cytotoxicity can be assessed against titrated doses of a given antigen, or against a range of different antigens, simultaneously. We show that this assay, referred to as the VITAL assay, can be used to assess cytotoxic activity of CTL and iNKT cells in vivo and in vitro. CTL responses measured in vivo could be correlated with antigen doses used in immunization strategies, and also with the size of specific CTL populations enumerated in the blood with fluorescent MHC/peptide tetramers. The VITAL assay is, therefore, a sensitive technique allowing analysis of complex multi-epitope responses.
Collapse
Affiliation(s)
- Ian F Hermans
- Tumour Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Wooldridge L, Hutchinson SL, Choi EM, Lissina A, Jones E, Mirza F, Dunbar PR, Price DA, Cerundolo V, Sewell AK. Anti-CD8 antibodies can inhibit or enhance peptide-MHC class I (pMHCI) multimer binding: this is paralleled by their effects on CTL activation and occurs in the absence of an interaction between pMHCI and CD8 on the cell surface. THE JOURNAL OF IMMUNOLOGY 2004; 171:6650-60. [PMID: 14662868 DOI: 10.4049/jimmunol.171.12.6650] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytotoxic T lymphocytes recognize short peptides presented in association with MHC class I (MHCI) molecules on the surface of target cells. The Ag specificity of T lymphocytes is conferred by the TCR, but invariable regions of the peptide-MHCI (pMHCI) molecule also interact with the cell surface glycoprotein CD8. The distinct binding sites for CD8 and the TCR allow pMHCI to be bound simultaneously by both molecules. Even before it was established that the TCR recognized pMHCI, it was shown that CTL exhibit clonal heterogeneity in their ability to activate in the presence of anti-CD8 Abs. These Ab-based studies have since been interpreted in the context of the interaction between pMHCI and CD8 and have recently been extended to show that anti-CD8 Ab can affect the cell surface binding of multimerized pMHCI Ags. In this study, we examine the role of CD8 further using point-mutated pMHCI Ag and show that anti-CD8 Abs can either enhance or inhibit the activation of CTL and the stable cell surface binding of multimerized pMHCI, regardless of whether there is a pMHCI/CD8 interaction. We further demonstrate that multimerized pMHCI Ag can recruit CD8 in the absence of a pMHCI/CD8 interaction and that anti-CD8 Abs can generate an intracellular activation signal resulting in CTL effector function. These results question many previous assumptions as to how anti-CD8 Abs must function and indicate that CD8 has multiple roles in CTL activation that are not necessarily dependent on an interaction with pMHCI.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Blocking/pharmacology
- Binding Sites, Antibody
- Binding, Competitive/immunology
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Cell Line
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Clone Cells
- Cross-Linking Reagents/metabolism
- Cytotoxicity, Immunologic/immunology
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- HLA-A2 Antigen/metabolism
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Lymphocyte Activation/immunology
- Mice
- Peptides/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Linda Wooldridge
- T Cell Modulation Group, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Schell TD. In vivo expansion of the residual tumor antigen-specific CD8+ T lymphocytes that survive negative selection in simian virus 40 T-antigen-transgenic mice. J Virol 2004; 78:1751-62. [PMID: 14747540 PMCID: PMC369430 DOI: 10.1128/jvi.78.4.1751-1762.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice that express the viral oncoprotein simian virus 40 (SV40) large T antigen (T-Ag) as a transgene provide useful models for the assessment of the state of the host immune response in the face of spontaneous tumor progression. Line SV11 (H2(b)) mice develop rapidly progressing choroid plexus tumors due to expression of full-length T-Ag from the SV40 promoter. In addition, T-Ag expression in the thymus of SV11 mice results in the deletion of CD8(+) T cells specific for the three H2(b)-restricted immunodominant epitopes of T-Ag. Whether CD8(+) T cells specific for the immunorecessive H2-D(b)-restricted epitope V of T-Ag survive negative selection in SV11 mice has not been determined. Immunization of SV11 mice with rVV-ES-V, a recombinant vaccinia virus expressing epitope V as a minigene, resulted in the induction of weak, but reproducible, epitope V-specific cytotoxic T-lymphocyte (CTL) responses. This weak lytic response corresponded with a decreased frequency of epitope V-specific CTL that could be recruited in SV11 mice. In addition, CTL lines derived from rVV-ES-V-immunized SV11 mice had reduced avidities compared to that seen with CTL derived from healthy mice. Despite this initial weak response, significant numbers of epitope V-specific CD8(+) T cells were detected in SV11 mice ex vivo following a priming-boosting approach and these cells demonstrated high avidity for epitope V. The results suggest that low numbers of tumor-reactive CD8(+) T cells with high avidity for epitope V survive negative selection in SV11 mice but can be expanded by specific boosting approaches in the tumor bearing host.
Collapse
Affiliation(s)
- Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| |
Collapse
|
222
|
Mallone R, Nepom GT. MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clin Immunol 2004; 110:232-42. [PMID: 15047201 DOI: 10.1016/j.clim.2003.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Selective expansion and activation of a very small number of antigen-specific CD4(+) T cells is a remarkable and essential property of the adaptive immune response. Antigen-specific T cells were until recently identified only indirectly by functional assays, such as antigen-induced cytokine secretion and proliferation. The advent of MHC Class II tetramers has added a pivotal tool to our research armamentarium, allowing the definition of allo- and autoimmune responses in deeper detail. Rare antigen-specific CD4(+) cells can now be selectively identified, isolated and characterized. The same tetramer reagents also provide a new mean of stimulating T cells, more closely reproducing the MHC-peptide/TCR interaction. This property allows the use of tetramers to direct T cells toward the more desirable outcome, that is, activation (in malignancies and infectious diseases) or Th2/T regulatory cell deviation, anergy and deletion (in autoimmune diseases). These experimental approaches hold promise for diagnostic, prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Roberto Mallone
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA.
| | | |
Collapse
|
223
|
Jang MH, Seth NP, Wucherpfennig KW. Ex vivo analysis of thymic CD4 T cells in nonobese diabetic mice with tetramers generated from I-A(g7)/class II-associated invariant chain peptide precursors. THE JOURNAL OF IMMUNOLOGY 2004; 171:4175-86. [PMID: 14530340 DOI: 10.4049/jimmunol.171.8.4175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC determines susceptibility and resistance to type 1 diabetes in humans and nonobese diabetic (NOD) mice. To investigate how a disease-associated MHC molecule shapes the T cell repertoire in NOD mice, we generated a series of tetramers from I-A(g7)/class II-associated invariant chain peptide precursors by peptide exchange. No CD4 T cell populations could be identified for two glutamic acid decarboxylase 65 peptides, but tetramers with a peptide mimetic recognized by the BDC-2.5 and other islet-specific T cell clones labeled a distinct population in the thymus of young NOD mice. Tetramer-positive cells were identified in the immature CD4(+)CD8(low) population that arises during positive selection, and in larger numbers in the more mature CD4(+)CD8(-) population. Tetramer labeling was specific based on the use of multiple control tetramers, including one with a single amino acid analog peptide in which a critical TCR contact residue was substituted. The T cell population was already present in the thymus of 2-wk-old NOD mice before the typical onset of insulitis and was detected in B10 mice congenic for the NOD MHC locus, but not B10 control mice. These results demonstrate that a T cell population can expand in the thymus of NOD mice to levels that are at least two to three orders of magnitude higher than estimated for a given specificity in the naive T cell pool. Based on these data, we propose a model in which I-A(g7) confers susceptibility to type 1 diabetes by biasing positive selection in the thymus and later presenting peptides from islet autoantigens to such T cells in the periphery.
Collapse
Affiliation(s)
- Mei-Huei Jang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
224
|
Abstract
There is considerable evidence of a key role for CD4+ T cells in the pathogenesis of rheumatoid arthritis. Several attractive candidate antigens, mostly joint-specific, have been studied, but information regarding T cell responses to these antigens in patients is limited and occasionally contradictory. Novel reagents (such as major histocompatibility complex and peptide tetramers) and sensitive techniques (such as intracellular cytokine staining) will aid in future studies to identify antigen-specific T cells. In addition, a new animal model of inflammatory arthritis has recently provided new perspective to the study of rheumatoid arthritis by drawing attention to systemic self-antigens as targets of autoimmunity and anti-self antibodies as markers of T cell activity and effectors of disease.
Collapse
Affiliation(s)
- Sean R Bennett
- Division of Clinical Immunology (B164), SOM #4627, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
225
|
Lee PP. T-cell responses to cancer. Methods Cell Biol 2004; 75:513-32. [PMID: 15603440 DOI: 10.1016/s0091-679x(04)75021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
226
|
Affiliation(s)
- John D Altman
- Emory University, School of Medicine, Department of Microbiology and Immunology, The Emory Vaccine Center, Atlanta, Georgia 30329, USA
| |
Collapse
|
227
|
Choi EML, Chen JL, Wooldridge L, Salio M, Lissina A, Lissin N, Hermans IF, Silk JD, Mirza F, Palmowski MJ, Dunbar PR, Jakobsen BK, Sewell AK, Cerundolo V. High Avidity Antigen-Specific CTL Identified by CD8-Independent Tetramer Staining. THE JOURNAL OF IMMUNOLOGY 2003; 171:5116-23. [PMID: 14607910 DOI: 10.4049/jimmunol.171.10.5116] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/analysis
- Antigens, Neoplasm/metabolism
- Binding Sites/genetics
- Binding Sites/immunology
- CD8 Antigens/analysis
- CD8 Antigens/genetics
- CD8 Antigens/metabolism
- Cell Line
- Cell Line, Tumor
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- Humans
- Immunization, Secondary
- Jurkat Cells
- Lymphocyte Activation/genetics
- Membrane Proteins
- Mice
- Mice, Transgenic
- Plasmids/administration & dosage
- Proteins/analysis
- Proteins/genetics
- Proteins/metabolism
- Staining and Labeling
- T-Lymphocytes, Cytotoxic/chemistry
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Vaccinia/genetics
- Vaccinia/immunology
- beta 2-Microglobulin/analysis
- beta 2-Microglobulin/metabolism
Collapse
Affiliation(s)
- Ed Man-Lik Choi
- Tumour Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Application of MHC-peptide tetramers in the study of type-1 diabetes. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-2425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
229
|
Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9:1377-82. [PMID: 14528297 DOI: 10.1038/nm942] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 09/03/2003] [Indexed: 11/08/2022]
Abstract
We isolated pure, viable populations of tumor-cytolytic T cells directly from patient blood samples using flow cytometric quantification of the surface mobilization of CD107a-an integral membrane protein in cytolytic granules-as a marker for degranulation after tumor stimulation. We show that tumor-cytolytic T cells are indeed elicited in patients after cancer vaccination, and that tumor reactivity is strongly correlated with efficient T-cell recognition of peptide-bearing targets. We combined CD107a mobilization with peptide-major histocompatibility complex (P-MHC) tetramer staining to directly correlate antigen specificity and cytolytic ability on a single-cell level. This showed that tumor-cytolytic T cells with high recognition efficiency represent only a minority of peptide-specific T cells elicited in patients after heteroclitic peptide vaccination. We were also able to expand these cells to high numbers ex vivo while maintaining their cytolytic potential. These techniques will be useful not only for immune monitoring of cancer vaccine trials, but also for adoptive cellular immunotherapy after ex vivo expansion. The ability to rapidly identify and isolate tumor-cytolytic T cells would be very useful in cancer immunotherapy.
Collapse
Affiliation(s)
- Valerie Rubio
- Department of Medicine, Stanford University, 269 Campus Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Kerry SE, Buslepp J, Cramer LA, Maile R, Hensley LL, Nielsen AI, Kavathas P, Vilen BJ, Collins EJ, Frelinger JA. Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide-MHC/TCR interaction overcomes lack of CD8 engagement. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:4493-503. [PMID: 14568922 PMCID: PMC3755740 DOI: 10.4049/jimmunol.171.9.4493] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8 engagement is believed to be a critical event in the activation of naive T cells. In this communication, we address the effects of peptide-MHC (pMHC)/TCR affinity on the necessity of CD8 engagement in T cell activation of primary naive cells. Using two peptides with different measured avidities for the same pMHC-TCR complex, we compared biochemical affinity of pMHC/TCR and the cell surface binding avidity of pMHC/TCR with and without CD8 engagement. We compared early signaling events and later functional activity of naive T cells in the same manner. Although early signaling events are altered, we find that high-affinity pMHC/TCR interactions can overcome the need for CD8 engagement for proliferation and CTL function. An integrated signal over time allows T cell activation with a high-affinity ligand in the absence of CD8 engagement.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Aspartic Acid/genetics
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- COS Cells
- Chlorocebus aethiops
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Glycoproteins/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigen H-2D
- Ligands
- Lymphocyte Activation/genetics
- Lymphocytic choriomeningitis virus/immunology
- Lysine/genetics
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis, Site-Directed
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Structure, Tertiary/genetics
- Receptor Cross-Talk/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Samantha E. Kerry
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Jennifer Buslepp
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Lorraine A. Cramer
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Robert Maile
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Lucinda L. Hensley
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Alma I. Nielsen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Paula Kavathas
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520
| | - Barbara J. Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Edward J. Collins
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Jeffrey A. Frelinger
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
231
|
Iyasere C, Tilton JC, Johnson AJ, Younes S, Yassine-Diab B, Sekaly RP, Kwok WW, Migueles SA, Laborico AC, Shupert WL, Hallahan CW, Davey RT, Dybul M, Vogel S, Metcalf J, Connors M. Diminished proliferation of human immunodeficiency virus-specific CD4+ T cells is associated with diminished interleukin-2 (IL-2) production and is recovered by exogenous IL-2. J Virol 2003; 77:10900-9. [PMID: 14512540 PMCID: PMC224997 DOI: 10.1128/jvi.77.20.10900-10909.2003] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.
Collapse
Affiliation(s)
- Christiana Iyasere
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Stanic AK, Shashidharamurthy R, Bezbradica JS, Matsuki N, Yoshimura Y, Miyake S, Choi EY, Schell TD, Van Kaer L, Tevethia SS, Roopenian DC, Yamamura T, Joyce S. Another View of T Cell Antigen Recognition: Cooperative Engagement of Glycolipid Antigens by Va14Ja18 Natural TCR. THE JOURNAL OF IMMUNOLOGY 2003; 171:4539-51. [PMID: 14568927 DOI: 10.4049/jimmunol.171.9.4539] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Va14Ja18 natural T (iNKT) cells rapidly elicit a robust effector response to different glycolipid Ags, with distinct functional outcomes. Biochemical parameters controlling iNKT cell function are partly defined. However, the impact of iNKT cell receptor beta-chain repertoire and how alpha-galactosylceramide (alpha-GalCer) analogues induce distinct functional responses have remained elusive. Using altered glycolipid ligands, we discovered that the Vb repertoire of iNKT cells impacts recognition and Ag avidity, and that stimulation with suboptimal avidity Ag results in preferential expansion of high-affinity iNKT cells. iNKT cell proliferation and cytokine secretion, which correlate with iNKT cell receptor down-regulation, are induced within narrow biochemical thresholds. Multimers of CD1d1-alphaGalCer- and alphaGalCer analogue-loaded complexes demonstrate cooperative engagement of the Va14Ja18 iNKT cell receptor whose structure and/or organization appear distinct from conventional alphabeta TCR. Our findings demonstrate that iNKT cell functions are controlled by affinity thresholds for glycolipid Ags and reveal a novel property of their Ag receptor apparatus that may have an important role in iNKT cell activation.
Collapse
MESH Headings
- Animals
- Antigens/metabolism
- Antigens, CD1/metabolism
- Antigens, CD1d
- Cell Line
- Clone Cells
- Cytotoxicity Tests, Immunologic
- Galactosylceramides/immunology
- Galactosylceramides/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sensitivity and Specificity
- Sphingosine/immunology
- Sphingosine/metabolism
- Structure-Activity Relationship
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Aleksandar K Stanic
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
|
234
|
Holmberg K, Mariathasan S, Ohteki T, Ohashi PS, Gascoigne NRJ. TCR binding kinetics measured with MHC class I tetramers reveal a positive selecting peptide with relatively high affinity for TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2427-34. [PMID: 12928390 DOI: 10.4049/jimmunol.171.5.2427] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interaction between TCR and peptide-MHC (pMHC) complexes is crucial for the activation of T cells as well as for positive and negative selection in the thymus. The kinetics and affinity of this interaction and the densities of TCR and pMHC complexes on the cell surface are determining factors for different outcomes during thymic selection. In general, it is thought that agonist pMHC, which cause negative selection, have higher affinities and, in particular, slower off-rates than partial or weak agonists and antagonists, which cause positive selection. In this study, we have used pMHC tetramers to investigate the kinetics of TCR-pMHC interaction for agonist, weak agonist, and antagonist ligands of the anti-lymphocytic choriomeningitis virus P14 TCR. Kinetics determined on the cell surface may be biologically more relevant than methods using soluble proteins. We can distinguish between agonists and weak agonists or antagonists based on the half-life and the avidity of tetramer-TCR interaction. Furthermore, we show that a weak agonist self-peptide that positively selects P14 TCR(+) thymocytes has a tetramer half-life and avidity only slightly weaker than strong agonists. We show that, in fact, it can act as quite a strong agonist, but that its poor ability to stabilize MHC causes it instead to have a weak agonist phenotype.
Collapse
MESH Headings
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/immunology
- Binding, Competitive/immunology
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Dose-Response Relationship, Immunologic
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/metabolism
- Half-Life
- Histocompatibility Antigen H-2D
- Kinetics
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligopeptides/agonists
- Oligopeptides/antagonists & inhibitors
- Oligopeptides/metabolism
- Protein Binding/immunology
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kaisa Holmberg
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
235
|
Huang JC, Han M, Minguela A, Pastor S, Qadri A, Ward ES. T cell recognition of distinct peptide:I-Au conformers in murine experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2467-77. [PMID: 12928395 DOI: 10.4049/jimmunol.171.5.2467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have used T cells bearing TCRs that are closely related in sequence as probes to detect conformational variants of peptide-MHC complexes in murine experimental autoimmune encephalomyelitis in H-2(u) mice. The N-terminal epitope of myelin basic protein (MBP) is immunodominant in this model. Our studies have primarily focused on T cell recognition of a position 4 analog of this peptide (MBP1-9[4Y]) complexed with I-A(u). Using site-directed mutagenesis, we have mapped the functionally important complementarity determining region residues of the 1934.4 TCR Valpha domain. One of the resulting mutants (Tyr(95) to alanine in CDR3alpha, Y95A) has interesting properties: relative to the parent wild-type TCR, this mutant poorly recognizes Ag complexes generated by pulsing professional APCs (PL-8 cells) with MBP1-9[4Y] while retaining recognition of MBP1-9[4Y]-pulsed unconventional APCs or insect cell-expressed complexes of I-A(u) containing tethered MBP1-9[4Y]. Insect cell expression of recombinant I-A(u) with covalently tethered class II-associated invariant chain peptide or other peptides which bind relatively weakly, followed by proteolytic cleavage of the peptide linker and replacement by MBP1-9[4Y] in vitro, results in complexes that resemble peptide-pulsed PL-8 cells. Therefore, the distinct conformers can be produced in recombinant form. T cells that can distinguish these two conformers can also be generated by the immunization of H-2(u) mice, indicating that differential recognition of the conformers is observed for responding T cells in vivo. These studies have relevance to understanding the molecular details of T cell recognition in murine experimental autoimmune encephalomyelitis. They are also of particular importance for the effective use of multimeric peptide-MHC complexes to characterize the properties of Ag-specific T cells.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Line
- Cell Line, Tumor
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Hybridomas
- Male
- Mice
- Mice, Transgenic
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Myelin Basic Protein/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection
Collapse
Affiliation(s)
- Jason C Huang
- Center for Immunology and Cancer Immunobiology Center, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
236
|
Stratmann T, Martin-Orozco N, Mallet-Designe V, Poirot L, McGavern D, Losyev G, Dobbs CM, Oldstone MBA, Yoshida K, Kikutani H, Mathis D, Benoist C, Haskins K, Teyton L. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J Clin Invest 2003; 112:902-14. [PMID: 12975475 PMCID: PMC193666 DOI: 10.1172/jci18337] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 07/08/2003] [Indexed: 12/31/2022] Open
Abstract
To detect and characterize autoreactive T cells in diabetes-prone NOD mice, we have developed a multimeric MHC reagent with high affinity for the BDC-2.5 T cell receptor, which is reactive against a pancreatic autoantigen. A distinct population of T cells is detected in NOD mice that recognizes the same MHC/peptide target. These T cells are positively selected in the thymus at a surprisingly high frequency and exported to the periphery. They are activated specifically in the pancreatic LNs, demonstrating an autoimmune specificity that recapitulates that of the BDC-2.5 cell. These phenomena are also observed in mouse lines that share with NOD the H-2g7 MHC haplotype but carry diabetes-resistance background genes. Thus, a susceptible haplotype at the MHC seems to be the only element required for the selection and emergence of autoreactive T cells, without requiring other diabetogenic loci from the NOD genome.
Collapse
Affiliation(s)
- Thomas Stratmann
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Wang XL, Altman JD. Caveats in the design of MHC class I tetramer/antigen-specific T lymphocytes dissociation assays. J Immunol Methods 2003; 280:25-35. [PMID: 12972185 DOI: 10.1016/s0022-1759(03)00079-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Relative avidities of antigen-specific T cells for major histocompatibility complex peptide complexes (MHCp) have recently been measured by MHC tetramer dissociation assays, but there is no consensus on the methodologies used for these experiments. While we do not question the conclusions reached in previous studies, in this paper we discuss the caveats that are present in the design of all MHCp tetramer dissociation protocols, and we propose a set of criteria that should be met in the evaluation of appropriate methodologies. We find that it is necessary to use specific reagents to compete with rebinding of the labeled tetramer, but that when either intact anti-MHC antibodies or cold MHC tetramers are used, the dissociation rates are dependent upon the concentrations of the competitor. In contrast, we demonstrate that apparent dissociation rates are independent of the competitor concentration when blocking anti-MHC Fab fragments are used, suggesting that these are the most appropriate reagents to use for tetramer dissociation experiments.
Collapse
Affiliation(s)
- Xiaochi L Wang
- Department of Microbiology and Immunology, Emory Vaccine Center at Yerkes, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | |
Collapse
|
238
|
Application of MHC-peptide tetramers in the study of type-1 diabetes. Int J Pept Res Ther 2003. [DOI: 10.1007/bf02442588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
239
|
Chen C, Lee WH, Yun P, Snow P, Liu CP. Induction of autoantigen-specific Th2 and Tr1 regulatory T cells and modulation of autoimmune diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:733-44. [PMID: 12847240 DOI: 10.4049/jimmunol.171.2.733] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantigen-based immunotherapy can modulate autoimmune diabetes, perhaps due to the activation of Ag-specific regulatory T cells. Studies of these regulatory T cells should help us understand their roles in diabetes and aid in designing a more effective immunotherapy. We have used class II MHC tetramers to isolate Ag-specific T cells from nonobese diabetic (NOD) mice and BALB/c mice treated with glutamic acid decarboxylase 65 peptides (p206 and p221). Based on their cytokine secretion profiles, immunization of NOD mice with the same peptide induced different T cell subsets than in BALB/c mice. Treatment of NOD mice induced not only Th2 cells but also IFN-gamma/IL-10-secreting T regulatory type 1 (Tr1) cells. Adoptive transfer experiments showed that isolated tetramer(+) T cells specific for p206 or p221 could inhibit diabetes development. These cells were able to suppress the in vitro proliferation of other NOD mouse T cells without cell-cell contact. They performed their regulatory functions probably by secreting cytokines, and Abs against these cytokines could block their suppressive effect. Interestingly, the presence of both anti-IL-10 and anti-IFN-gamma could enhance the target cell proliferation, suggesting that Tr1 cells play an important role. Further in vivo experiments showed that the tetramer(+) T cells could block diabetogenic T cell migration into lymph nodes. Therefore, treatment of NOD mice with autoantigen could induce Th2 and Tr1 regulatory cells that can suppress the function and/or block the migration of other T cells, including diabetogenic T cells, and inhibit diabetes development.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- Autoantigens/biosynthesis
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen
- Cell Separation
- Cells, Cultured
- Coculture Techniques
- Cytokines/immunology
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Glutamate Decarboxylase/immunology
- Histocompatibility Antigens Class II/biosynthesis
- Isoenzymes/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Cyndi Chen
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
240
|
Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. J Pept Sci 2003; 9:255-81. [PMID: 12803494 DOI: 10.1002/psc.456] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analytical biochemistry and synthetic peptide based chemistry have helped to reveal the pivotal role that peptides play in determining the specificity, magnitude and quality of both humoral (antibody) and cellular (cytotoxic and helper T cell) immune responses. In addition, peptide based technologies are now at the forefront of vaccine design and medical diagnostics. The chemical technologies used to assemble peptides into immunogenic structures have made great strides over the past decade and assembly of highly pure peptides which can be incorporated into high molecular weight species, multimeric and even branched structures together with non-peptidic material is now routine. These structures have a wide range of applications in designer vaccines and diagnostic reagents. Thus the tools of the peptide chemist are exquisitely placed to answer questions about immune recognition and along the way to provide us with new and improved vaccines and diagnostics.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
241
|
You S, Chen C, Lee WH, Wu CH, Judkowski V, Pinilla C, Wilson DB, Liu CP. Detection and characterization of T cells specific for BDC2.5 T cell-stimulating peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4011-20. [PMID: 12682229 DOI: 10.4049/jimmunol.170.8.4011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonobese diabetic (NOD) mice expressing the BDC2.5 TCR transgene are useful for studying type 1 diabetes. Several peptides have been identified that are highly active in stimulating BDC2.5 T cells. Herein, we describe the use of I-Ag7 tetramers containing two such peptides, p79 and p17, to detect and characterize peptide-specific T cells. The tetramers could stain CD4(+) T cells in the islets and spleens of BDC2.5 transgenic mice. The percentage of CD4(+), tetramer(+) T cells increased in older mice, and it was generally higher in the islets than in the spleens. Our results also showed that tetAg7/p79 could stain a small population of CD4(+) T cells in both islets and spleens of NOD mice. The percentage of CD4(+), tetramer(+) T cells increased in cells that underwent further cell division after being activated by peptides. The avidity of TCRs on purified tetAg7/p79(+) T cells for tetAg7/p79 was slightly lower than that of BDC2.5 T cells. Although tetAg7/p79(+) T cells, like BDC2.5 T cells, secreted a large quantity of IFN-gamma, they were biased toward being IL-10-producing cells. Additionally, <3% of these cells expressed TCR Vbeta4. In vivo adoptive transfer experiments showed that NOD/scid recipient mice cotransferred with tetAg7/p79(+) T cells and NOD spleen cells, like mice transferred with NOD spleen cells only, developed diabetes. Therefore, we have generated Ag-specific tetramers that could detect a heterogeneous population of T cells, and a very small number of NOD mouse T cells may represent BDC2.5-like cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/chemistry
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/transplantation
- Cell Movement/genetics
- Cell Movement/immunology
- Cell Separation
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Glutamate Decarboxylase/administration & dosage
- Glutamate Decarboxylase/immunology
- Glutamate Decarboxylase/metabolism
- Histocompatibility Antigens Class II/administration & dosage
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Islets of Langerhans/chemistry
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Isoenzymes/administration & dosage
- Isoenzymes/immunology
- Isoenzymes/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Biozzi
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/chemical synthesis
- Peptide Fragments/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Spleen/chemistry
- Spleen/immunology
- Spleen/transplantation
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Sylvaine You
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Affiliation(s)
- Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
| | | |
Collapse
|
243
|
Slifka MK, Blattman JN, Sourdive DJD, Liu F, Huffman DL, Wolfe T, Hughes A, Oldstone MBA, Ahmed R, Von Herrath MG. Preferential escape of subdominant CD8+ T cells during negative selection results in an altered antiviral T cell hierarchy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1231-9. [PMID: 12538681 DOI: 10.4049/jimmunol.170.3.1231] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Negative selection is designed to purge the immune system of high-avidity, self-reactive T cells and thereby protect the host from overt autoimmunity. In this in vivo viral infection model, we show that there is a previously unappreciated dichotomy involved in negative selection in which high-avidity CD8(+) T cells specific for a dominant epitope are eliminated, whereas T cells specific for a subdominant epitope on the same protein preferentially escape deletion. Although this resulted in significant skewing of immunodominance and a substantial depletion of the most promiscuous T cells, thymic and/or peripheral deletion of high-avidity CD8(+) T cells was not accompanied by any major change in the TCR V beta gene family usage or an absolute deletion of a single preferred complementarity-determining region 3 length polymorphism. This suggests that negative selection allows high-avidity CD8(+) T cells specific for subdominant or cryptic epitopes to persist while effectively deleting high-avidity T cells specific for dominant epitopes. By allowing the escape of subdominant T cells, this process still preserves a relatively broad peripheral TCR repertoire that can actively participate in antiviral and/or autoreactive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clonal Deletion/genetics
- Clonal Deletion/immunology
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunodominant Epitopes/immunology
- Lymphocyte Activation/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Multigene Family/immunology
- Nucleoproteins/biosynthesis
- Nucleoproteins/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Mark K Slifka
- Oregon Health and Science University Vaccine and Gene Therapy Institute, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Starwalt SE, Masteller EL, Bluestone JA, Kranz DM. Directed evolution of a single-chain class II MHC product by yeast display. Protein Eng Des Sel 2003; 16:147-56. [PMID: 12676983 DOI: 10.1093/proeng/gzg018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many autoimmune diseases have been linked to the class II region of the major histocompatibility complex (MHC). The linkage is thought to be a result of autoreactive T cells that recognize self-peptides bound to a product of this locus. For example, T cells from non-obese diabetic mice recognize specific 'diabetogenic' peptides bound to a class II MHC allele called I-A(g7). The I-A(g7) molecule is noted for being unstable and difficult to work with, especially in soluble form. In this work, yeast surface display combined with fluorescence-activated cell sorting was used as a means of directed evolution to engineer stabilized variants of a single-chain form of I-A(g7). A library containing mutations at two residues (positions 56 and 57 of the I-A(g7) beta-chain) that are important in the class II disease associations yielded stabilized mutants with preferences for a glutamic acid at residue 56 and a leucine at residue 57. Random mutation of I-A(g7) followed by selection with an anti-I-A(g7) antibody also yielded stabilized variants with mutations in other residues. The methods described here allow the discovery of novel MHC complexes that could facilitate structural studies and provide new opportunities in the development of diagnostics or antagonists of class II MHC-associated diseases.
Collapse
Affiliation(s)
- Scott E Starwalt
- Department of Biochemistry, University of Illinois, 600 S Matthews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
245
|
Eisenbarth GS, Kotzin BL. Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction. J Clin Invest 2003; 111:179-81. [PMID: 12531872 PMCID: PMC151887 DOI: 10.1172/jci17621] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- George S Eisenbarth
- Department of Pediatrics, Barbara Davis Diabetes Center for Childhood Diabetes, Denver, Colorado, USA.
| | | |
Collapse
|
246
|
Reddy J, Bettelli E, Nicholson L, Waldner H, Jang MH, Wucherpfennig KW, Kuchroo VK. Detection of autoreactive myelin proteolipid protein 139-151-specific T cells by using MHC II (IAs) tetramers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:870-7. [PMID: 12517952 DOI: 10.4049/jimmunol.170.2.870] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of autoreactive T cells using MHC II tetramers is difficult because of the low affinity of their TCR. We have generated a class II tetramer using the IA(s) class II molecule combined with an autoantigenic peptide from myelin proteolipid protein (PLP; PLP(139-151)) and used it to analyze myelin PLP(139-151)-reactive T cells. Using monomers and multimerized complexes labeled with PE, we confirmed the specificity of the reagent by bioassay and flow cytometry. The IA(s) tetramers stimulated and stained the PLP(139-151)-specific 5B6 TCR transgenic T cells and a polyclonal cell line specific for PLP(139-151), but not a control T cell line specific for PLP(178-191). We used this reagent to optimize conditions to detect low affinity autoreactive T cells. We found that high pH ( approximately 8.0) and neuraminidase treatment enhances the staining capacity of PLP(139-151) tetramer without compromising specificity. Furthermore, we found that induction of calcium fluxing by tetramers in T cells may be used as a sensitive measure to detect autoreactive T cells with a low affinity. Taken together, the data show that the tetrameric reagent binds and stimulates PLP(139-151)-reactive T cells with specificity. This tetrameric reagent will be useful in studying the evolution of PLP(139-151)-specific repertoire in naive mice and its expansion during the autoimmune disease experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Jayagopala Reddy
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Mallet-Designe VI, Stratmann T, Homann D, Carbone F, Oldstone MBA, Teyton L. Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:123-31. [PMID: 12496391 DOI: 10.4049/jimmunol.170.1.123] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Subtle differences oppose CD4+ to CD8+ T cell physiologies that lead to different arrays of effector functions. Interestingly, this dichotomy has also unexpected practical consequences such as the inefficacy of many MHC class II tetramers in detecting specific CD4+ T cells. As a mean to study the CD4+ anti-OVA response in H-2(d) and H-2(b) genetic backgrounds, we developed I-A(d)- and I-A(b)-OVA recombinant MHC monomers and tetramers. We were able to show that in this particular system, despite normal biological activity, MHC class II tetramers failed to stain specific T cells. This failure was shown to be associated with a lack of cooperation between binding sites within the tetramer as measured by surface plasmon resonance. This limited cooperativeness translated into a low "functional avidity" and very transient binding of the tetramers to T cells. To overcome this biophysical barrier, recombinant artificial APC that display MHC molecules in a lipid bilayer were developed. The plasticity and size of the MHC-bearing fluorescent liposomes allowed binding to Ag-specific T cells and the detection of low numbers of anti-OVA T cells following immunization. The same liposomes were able, at 37 degrees C, to induce the full reorganization of the T cell signaling molecules and the formation of an immunological synapse. Artificial APC will allow T cell detection and the dissection of the molecular events of T cell activation and will help us understand the fundamental differences between CD4+ and CD8+ T cells.
Collapse
|
248
|
Abstract
Autoreactive T cells are thought to play a role in the immunopathogenesis of autoimmune diseases. Analysis of such cells had long been hampered by lack of suitable assays. Recently developed tetramer technology is based on the recognition of specific peptide-MHC complex by T cell receptor and on the increased binding affinity of multimerized peptide-MHC complex. MHC class I and class II tetramers can be used to detect autoreactive CD4(+) and CD8(+) T cells, while nonclassical MHC (such as CD1d) tetramer can be used to detect other T cell groups, for example natural killer T cells. Tetramer technologies enable direct quantitation of autoreactive T cells in blood and affected tissues. It is also possible to carry out phenotypic and functional characterization of specific T cells on a single cell basis by using tetramers. Of special interest, in situ tetramer staining has the great potential of analyzing autoreactive T cells in their cellular environments. Utilization of tetramers in studies of autoreactive T cells is expected to generate important information regarding the role of such cells in the underlying mechanisms of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroto Kita
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
249
|
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute, Virginia Mason Research Center, Seattle, WA 98101, USA.
| |
Collapse
|
250
|
Arnold PY, Vignali KM, Miller TB, La Gruta NL, Cauley LS, Haynes L, Scott Adams P, Swain SL, Woodland DL, Vignali DAA. Reliable generation and use of MHC class II:gamma2aFc multimers for the identification of antigen-specific CD4(+) T cells. J Immunol Methods 2002; 271:137-51. [PMID: 12445737 DOI: 10.1016/s0022-1759(02)00343-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
MHC tetramers have proven to be powerful reagents for the analysis of MHC class I-restricted T cells. However, generating similarly reliable reagents for MHC class II-restricted T cells has been elusive. Here we evaluated the utility of MHC class II:gamma2aFc multimers, which contain the MHC class II extracellular domains, with or without recombinantly attached peptides, dimerized via a fos-jun leucine zipper and attached to the hinge of murine IgG2a. We have successfully generated 24 multimers in either myeloma or Drosophila melanogaster S2 cells, with an average yield of 7 mg/L. 'Empty' MHC class II:gamma2aFc multimers were effectively used in peptide binding assays. Similar versions that contained recombinantly attached peptides stimulated T cells in an antigen-specific, MHC-restricted manner, and identified antigen-specific nai;ve and effector T cells by flow cytometry. Furthermore, we have successfully used these reagents to stain T cells generated following viral infection. Thus, MHC class II:gamma2aFc multimers are robust and reliable reagents for the analysis of MHC class II-restricted T cells.
Collapse
Affiliation(s)
- Paula Y Arnold
- Department of Immunology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|