201
|
Zhang X, Lu W, Zhou G, Li Q. Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902028. [PMID: 31250496 DOI: 10.1002/adma.201902028] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/15/2019] [Indexed: 05/23/2023]
Abstract
The development of fiber-based smart electronics has provoked increasing demand for high-performance and multifunctional fiber materials. Carbon nanotube (CNT) fibers, the 1D macroassembly of CNTs, have extensively been utilized to construct wearable electronics due to their unique integration of high porosity/surface area, desirable mechanical/physical properties, and extraordinary structural flexibility, as well as their novel corrosion/oxidation resistivity. To take full advantage of CNT fibers, it is essential to understand their mechanical and conductive properties. Herein, the recent progress regarding the intrinsic structure-property relationship of CNT fibers, as well as the strategies of enhancing their mechanical and conductive properties are briefly summarized, providing helpful guidance for scouting ideally structured CNT fibers for specific flexible electronic applications.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Weibang Lu
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Gengheng Zhou
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qingwen Li
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
202
|
Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens Bioelectron 2020; 150:111896. [DOI: 10.1016/j.bios.2019.111896] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/04/2023]
|
203
|
Xiao X, Liu W, Wang K, Li C, Sun X, Zhang X, Liu W, Ma Y. High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. NANOSCALE ADVANCES 2020; 2:296-303. [PMID: 36133974 PMCID: PMC9417925 DOI: 10.1039/c9na00562e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 05/14/2023]
Abstract
The increasing demand for large-scale manufacture of wearable electronics requires applicable energy storage devices with high-performance and safety. In this paper, we reported a solid-state Zn battery based on a free-standing organic cathode and metal Zn anode with an orderly aligned nano-architecture. The cathode is fabricated by depositing organic nanowire arrays on a carbon nanotube film via an in situ polymerization process, and the anode was prepared by electrodepositing Zn nanosheet arrays on carbon cloth. To avoid electrolyte leakage risks, a pseudo-solid-state PAAM-ZnSO4 gel electrolyte is employed, which is synthesized via a chemical cross-linking and film casting approach. The orderly aligned nanostructure of PANI nanowire arrays and zinc nanosheet arrays exhibits superior electrochemical performance, while the free-standing electrode configuration simplifies the battery fabrication process and offers excellent flexibility. The resulting solid-state Zn battery delivered a high capacity of 144 mA h g-1 at a current density of 0.2 A g-1, a 91.1% capacity retention after 150 cycles at a current density of 0.5 A g-1, and excellent flexibility under different bending states. This high-performance solid-state Zn battery provides a promising alternative energy storage device for next generation wearable electronics.
Collapse
Affiliation(s)
- Xingchi Xiao
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Wenjie Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Kai Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Chen Li
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xianzhong Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiong Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Wenhao Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yanwei Ma
- Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
204
|
Park S, Shin BG, Jang S, Chung K. Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3953-3960. [PMID: 31858779 DOI: 10.1021/acsami.9b19272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human skin is a unique functional material that perfectly covers body parts having various complicated shapes, spontaneously heals mechanical damage, and senses a touch. E-skin devices have been actively researched, focusing on the sensing functionality of skin. However, most e-skin devices still have limitations in their shapes, and it is a challenging issue of interest to realize multiple functionalities in one device as human skin does. Here, new artificial skin devices are demonstrated in application-oriented three-dimensional (3D) shapes, which can sense exact touch location and heal mechanical damage spontaneously. Beyond the conventional film-type e-skin devices, the artificial skin devices are fabricated in optimal three-dimensional structures, via systematic material design and characterization of ion-conductive self-healing hydrogel system and its extrusion-based 3D printing. The ring-shaped and fingertip-shaped artificial skin devices are successfully fabricated to fit perfectly on finger models, and shows large electronic signal contrast, ∼5.4 times increase in current, upon a human finger contact. Furthermore, like human skin, the device provides the exact positional information of an arbitrary touch location on a three-dimensional artificial skin device without complicated device fabrication or data processing.
Collapse
Affiliation(s)
- Sulbin Park
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| | - Byeong-Gwang Shin
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| | - Seongwan Jang
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| | - Kyeongwoon Chung
- 3D Printing Materials Center , Korea Institute of Materials Science (KIMS) , Changwon 51508 , South Korea
| |
Collapse
|
205
|
Xu W, Yi P, Gao J, Deng Y, Peng L, Lai X. Large-Area Stable Superhydrophobic Poly(dimethylsiloxane) Films Fabricated by Thermal Curing via a Chemically Etched Template. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3042-3050. [PMID: 31860263 DOI: 10.1021/acsami.9b19677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by nature, large-area stable superhydrophobic poly(dimethylsiloxane) (PDMS) films have generated extensive interest for various applications such as self-cleaning, corrosion protection, liquid transport, optical services, and flexible electronics. However, the current methods used to prepare such films are difficult to apply for efficient large-area fabrication. In this article, an effective technique for fabricating low adhesive superhydrophobic films based on the use of a chemically etched template followed by a thermal curing process is introduced. On the basis of this approach, the importance of chemical solution concentration as well as etching time is discussed to outline the specific rules required for forming different surface topographies of the templates. Then, PDMS films with varying wettabilities can be fabricated in which one can achieve CA > 160° and SA < 10°. Finally, for engineering needs and actual preparation, large-area PDMS films are obtained via a roll-to-roll (R2R) process, which show a superhydrophobic property even after high-intensity friction and have excellent acid and alkaline resistance, UV resistance, and optical transparency. The prepared large-area stable superhydrophobic PDMS films have the potential to be used in the aerospace field in the future because of their excellent anti-icing performance.
Collapse
Affiliation(s)
- Weitian Xu
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Peiyun Yi
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Jie Gao
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Yujun Deng
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Linfa Peng
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Xinmin Lai
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
206
|
He K, Liu Y, Wang M, Chen G, Jiang Y, Yu J, Wan C, Qi D, Xiao M, Leow WR, Yang H, Antonietti M, Chen X. An Artificial Somatic Reflex Arc. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905399. [PMID: 31803996 DOI: 10.1002/adma.201905399] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/20/2019] [Indexed: 05/19/2023]
Abstract
The emulation of human sensation, perception, and action processes has become a major challenge for bioinspired intelligent robotics, interactive human-machine interfacing, and advanced prosthetics. Reflex actions, enabled through reflex arcs, are important for human and higher animals to respond to stimuli from environment without the brain processing and survive the risks of nature. An artificial reflex arc system that emulates the functions of the reflex arc simplifies the complex circuit design needed for "central-control-only" processes and becomes a basic electronic component in an intelligent soft robotics system. An artificial somatic reflex arc that enables the actuation of electrochemical actuators in response to the stimulation of tactile pressures is reported. Only if the detected pressure by the pressure sensor is above the stimulus threshold, the metal-organic-framework-based threshold controlling unit (TCU) can be activated and triggers the electrochemical actuators to complete the motion. Such responding mechanism mimics the all-or-none law in the human nervous system. As a proof of concept, the artificial somatic reflex arc is successfully integrated into a robot to mimic the infant grasp reflex. This work provides a unique and simplifying strategy for developing intelligent soft robotics, next-generation human-machine interfaces, and neuroprosthetics.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Meng Xiao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Yang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
207
|
Dong JP, Shi ZZ, Li B, Wang LY. Synthesis of a novel 2D zinc(ii) metal-organic framework for photocatalytic degradation of organic dyes in water. Dalton Trans 2019; 48:17626-17632. [PMID: 31755489 DOI: 10.1039/c9dt03727f] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel 2D zinc(ii) metal-organic framework, formulated as [Zn(L)(H2O)]·H2O (1) (H2L = 4-(pyridine-4-yl) phthalic acid), has been successfully obtained under solvothermal conditions. This metal-organic framework (MOF) material exhibits efficient photocatalytic activity towards the degradation of organic dyes in the absence of any photosensitizer or cocatalyst. Its catalytic performance for rhodamine B (RhB) and methyl orange (MO) degradation was superior to most reported MOFs with a degradation efficiency of 98.5% for RhB and 83.8% for MO within 120 min in the absence of H2O2, which could be attributed to its high efficiency in generating ·O2- (an effective oxidant for the degradation of dyes). The possible mechanism of the reaction was discussed in detail. In addition, 1 shows stable catalytic efficiency after five reaction cycles, which indicates that 1 exhibits efficient catalytic activity and good reusability toward the degradation of organic dyes, enabling it to be a potential candidate for environmental governance.
Collapse
Affiliation(s)
- Jian-Peng Dong
- Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Water Diversion Project of Henan Province, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China.
| | | | | | | |
Collapse
|
208
|
Han L, Cui S, Yu HY, Song M, Zhang H, Grishkewich N, Huang C, Kim D, Tam KMC. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44642-44651. [PMID: 31684724 DOI: 10.1021/acsami.9b17030] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electronic skins are developed for applications such as biomedical sensors, robotic prosthetics, and human-machine interactions, which raise the interest in composite materials that possess both flexibility and sensing properties. Polypyrrole-coated cellulose nanocrystals and cellulose nanofibers were prepared using iron(III) chloride (FeCl3) oxidant, which were used to reinforce polyvinyl alcohol (PVA). The combination of weak H-bonds and iron coordination bonds and the synergistic effect of these components yielded self-healing nanocomposite films with robust mechanical strength (409% increase compared to pure PVA and high toughness up to 407.1%) and excellent adhesion (9670 times greater than its own weight) to various substrates in air and water. When damaged, the nanocomposite films displayed good mechanical (72.0-76.3%) and conductive (54.9-91.2%) recovery after a healing time of 30 min. More importantly, the flexible nanocomposites possessed high strain sensitivity under subtle strains (<48.5%) with a gauge factor (GF) of 2.52, which was relatively larger than the GF of ionic hydrogel-based skin sensors. These nanocomposite films possessed superior sensing performance for real-time monitoring of large and subtle human motions (finger bending motions, swallowing, and wrist pulse); thus, they have great potentials in health monitoring, smart flexible skin sensors. and wearable electronic devices.
Collapse
Affiliation(s)
- Lian Han
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Songbo Cui
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Hou-Yong Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, School of Materials Science and Engineering , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , Zhejiang , China
| | - Meili Song
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, School of Materials Science and Engineering , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , Zhejiang , China
| | - Haoyu Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Nathan Grishkewich
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Congguo Huang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
- School of Chemical Engineering , Xuzhou College of Industrial Technology , No. 1 Xiangwang Road , Xuzhou 221140 , Jiangsu , China
| | - Daesung Kim
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Kam Michael Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| |
Collapse
|
209
|
Ma H, Hu W, Yang J. Control of highly anisotropic electrical conductance of tellurene by strain-engineering. NANOSCALE 2019; 11:21775-21781. [PMID: 31701993 DOI: 10.1039/c9nr05660b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tailoring the electronic anisotropy of two-dimensional (2D) semiconductors with strain-engineering is critical in nanoelectronics. Recently, 2D tellurene has been predicted theoretically and fabricated experimentally. It has potential applications in nanoelectronics, in particular, β-phase tellurene (β-Te) shows a desirable direct band gap (1.47 eV), high carrier mobility (2.58 × 103 cm2 V-1 s-1) and high stability under ambient conditions. In this work, we demonstrated, with first-principles density functional theory calculations, that the highly anisotropic electron mobility and electrical conductance of β-Te can be controlled by strain-engineering. The direction of electrical conductance of β-Te can be changed from the armchair to the zigzag direction at the strain between -1% and 0%. Meanwhile, we found that the bandgap of β-Te under strain experiences an indirect-direct transition with a conduction band minimum (CBM) shift from the X to Γ point. The significant dispersion of the bottom of the conduction bands along the Γ-Y direction switches to the X-Γ direction under uniaxial or biaxial strain which makes the rotation of the effective masses tensor. The qualitative rotation of the spatial anisotropic electron effective masses tensor by 90° also rotates the direction of the electrical conduction as the carrier mobility is inversely dependent on the effective masses. On the another hand, we also found that the deformation potential constant also plays an important role in the rotation of electrical conductance anisotropy. While anisotropic conductance of hole is impregnable under strain. In order to verify that β-Te can sustain large strain, we studied its stability and mechanical properties and found that β-Te shows superior mechanical flexibility with a small Young's modulus (27.46 GPa (armchair)-61.99 GPa (zigzag)) and large anisotropic strain-stress (12.89 N m-1 at the strain of 38% along armchair direction and 25.72 N m-1 at the strain of 26% along zigzag direction). The high anisotropic carrier mobility and superior mechanical flexibility of β-Te make it a promising candidate for flexible nanoelectronics.
Collapse
Affiliation(s)
- Huanhuan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
210
|
Li Q, Bi S, Guo Q, Fan S, Liu Y, Jiang C, Song J. Paper-like Foldable Nanowave Circuit with Ultralarge Curvature and Ultrahigh Stability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43368-43375. [PMID: 31650831 DOI: 10.1021/acsami.9b15697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly foldable conducting interconnects are fundamental elements for multipurpose flexible electronic circuits, including wearable electronics and biomedical devices. Traditional metalized thin-film interconnects demonstrate stable electronic performances in rigid devices but low deformation tolerance in flexibility. Recently, several remarkable research studies on flexible electronics have been carried out, as interconnect structures of serpentine, wavy, and nanowire networks. However, all of the reported flexible interconnects possess either mechanical instability or fabrication difficulty, which restrict their practical applications. Here, we report a new flexible circuit system, which consists of nanowave structure metal interconnects with highly foldable and large-scale manufactured features. This kind of nanowave interconnects presents both stable and prominent electrical performances under mechanical deformation (down to 0.2 mm bending radius with interconnecting resistance variation less than 10%). Further, a highly flexible paper-like wireless accelerometer based on the nanowave interconnects is fabricated and characterized under several extreme strain situations. Our approach affords a comprehensive direction for constitutional realization of new flexible designs and implements the assembly of next-generation foldable electronic equipment.
Collapse
Affiliation(s)
- Qikun Li
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Sheng Bi
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Qinglei Guo
- School of Microelectronic , Shandong University , Jinan 250100 , Shandong , China
| | - Shiwen Fan
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Yun Liu
- Department of Mechanical Engineering , University of Maryland , College Park , Massachusetts 20742 , United States
| | - Chengming Jiang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , Liaoning , China
| | - Jinhui Song
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , Liaoning , China
| |
Collapse
|
211
|
Pang W, Cheng X, Zhao H, Guo X, Ji Z, Li G, Liang Y, Xue Z, Song H, Zhang F, Xu Z, Sang L, Huang W, Li T, Zhang Y. Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. Natl Sci Rev 2019; 7:342-354. [PMID: 34692050 PMCID: PMC8288899 DOI: 10.1093/nsr/nwz164] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/29/2023] Open
Abstract
The manufacture of 3D mesostructures is receiving rapidly increasing attention, because of the fundamental significance and practical applications across wide-ranging areas. The recently developed approach of buckling-guided assembly allows deterministic formation of complex 3D mesostructures in a broad set of functional materials, with feature sizes spanning nanoscale to centimeter-scale. Previous studies mostly exploited mechanically controlled assembly platforms using elastomer substrates, which limits the capabilities to achieve on-demand local assembly, and to reshape assembled mesostructures into distinct 3D configurations. This work introduces a set of design concepts and assembly strategies to utilize dielectric elastomer actuators as powerful platforms for the electro-mechanically controlled 3D assembly. Capabilities of sequential, local loading with desired strain distributions allow access to precisely tailored 3D mesostructures that can be reshaped into distinct geometries, as demonstrated by experimental and theoretical studies of ∼30 examples. A reconfigurable inductive–capacitive radio-frequency circuit consisting of morphable 3D capacitors serves as an application example.
Collapse
Affiliation(s)
- Wenbo Pang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Haojie Zhao
- School of Microelectronics, Soft Membrane Electronic Technology Laboratory, Hefei University of Technology, Hefei 230601, China
| | - Xiaogang Guo
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ziyao Ji
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Guorui Li
- Zhejiang Lab, Hangzhou 311100, China
| | | | - Zhaoguo Xue
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Honglie Song
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Fan Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zheng Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Sang
- School of Microelectronics, Soft Membrane Electronic Technology Laboratory, Hefei University of Technology, Hefei 230601, China
| | - Wen Huang
- School of Microelectronics, Soft Membrane Electronic Technology Laboratory, Hefei University of Technology, Hefei 230601, China
| | - Tiefeng Li
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
212
|
Ji X, Ying Y, Ge C, Zhu Y, Wang K, Di Y, Wang S, Li D, Zhang J, Hu P, Qiu Y. Asymmetrically synchronous reduction and assembly of graphene oxide film on metal foil for moisture responsive actuator. NANOTECHNOLOGY 2019; 30:445601. [PMID: 31344686 DOI: 10.1088/1361-6528/ab359e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene has drawn tremendous attention for the fabrication of actuators because of its unique chemical and structural features. Traditional graphene actuators need integration with polymers or other responsive components for shape-changeable behaviour. Searching for a sole material with asymmetric properties is difficult and challenging for actuators that are responsive to external stimulus. Herein, asymmetrically synchronous reduction and assembly of a graphene oxide (GO) film with oxygen-containing group gradients was prepared on various metal foils. Such film possessed asymmetric surface chemical components on both sides, which showed reversible deformation via alternating moisture. Importantly, we can detect the moisture change via recording the voltage pulse during self-deformation on the basis of spontaneous H3O+ ions diffusion across the GO film without the need of power input. Finally, a smart gripper was developed using a moisture responsive GO film. Present work opens a new avenue for developing smart actuator using a sole material and simultaneously realizing the detection of deformation in self-powered mode.
Collapse
Affiliation(s)
- Xinyang Ji
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Graphene-PEDOT: PSS Humidity Sensors for High Sensitive, Low-Cost, Highly-Reliable, Flexible, and Printed Electronics. MATERIALS 2019; 12:ma12213477. [PMID: 31652892 PMCID: PMC6862435 DOI: 10.3390/ma12213477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/17/2022]
Abstract
A comparison of the structure and sensitivity of humidity sensors prepared from graphene (G)-PEDOT: PSS (poly (3,4-ethylenedioxythiophene)) composite material on flexible and solid substrates is performed. Upon an increase in humidity, the G: PEDOT: PSS composite films ensure a response (a linear increase in resistance versus humidity) up to 220% without restrictions typical of sensors fabricated from PEDOT: PSS. It was found that the response of the examined sensors depends not only on the composition of the layer and on its thickness but, also, on the substrate used. The capability of flexible substrates to absorb the liquid component of the ink used to print the sensors markedly alters the structure of the film, making it more porous; as a result, the response to moisture increases. However, in the case of using paper, a hysteresis of resistance occurs during an increase or decrease of humidity; that hysteresis is associated with the capability of such substrates to absorb moisture and transfer it to the sensing layer of the sensor. A study of the properties of G: PEDOT: PSS films and test device structures under deformation showed that when the G: PEDOT: PSS films or structures are bent to a bending radius of 3 mm (1.5% strain), the properties of those films and structures remain unchanged. This result makes the composite humidity sensors based on G: PEDOT: PSS films promising devices for use in flexible and printed electronics.
Collapse
|
214
|
Zhou CG, Sun WJ, Jia LC, Xu L, Dai K, Yan DX, Li ZM. Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37094-37102. [PMID: 31512856 DOI: 10.1021/acsami.9b12504] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Flexible strain sensors based on elastomeric conductive polymer composites (ECPCs) play an important role in wearable sensing electronics. However, the achievement of good conjunction between broad detection range and high sensitivity is still challenging. Herein, a highly stretchable and sensitive strain sensor was developed with the formation of porous segregated conductive network in the carbon nanotube/thermoplastic polyurethane composite via a facile and nontoxic compression-molding plus salt-leaching method. The strain sensor with porous segregated conductive network exhibited perfect combination of ultrawide sensing range (800% strain), large sensitivity (gauge factor of 356.4), short response time (180 ms) and recovery time (180 ms), as well as superior stability and durability. The integrated porous structure intensifies the deformation of segregated conductive network when tension strain is applied, which benefits enhancement of the sensitivity. Our sensor could monitor not only subtle oscillation and physiological signals but also energetic human motions efficiently, revealing promising potential applications in wearable motion monitoring systems. This work provides a unique and effective strategy for realizing ECPCs based strain sensors with excellent comprehensive sensing performances.
Collapse
Affiliation(s)
| | | | | | | | - Kun Dai
- School of Materials Science and Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | | | | |
Collapse
|
215
|
Wu CT, Soliman AIA, Utsunomiya T, Ichii T, Sugimura H. Formation of submicron-sized silica patterns on flexible polymer substrates based on vacuum ultraviolet photo-oxidation. RSC Adv 2019; 9:32313-32322. [PMID: 35530761 PMCID: PMC9072887 DOI: 10.1039/c9ra07256j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Formation of precise and high-resolution silica micropatterns on polymer substrates is of importance in surface structuring for flexible device fabrication of optics, microelectronic, and biotechnology. To achieve that, substrates modified with affinity-patterns serve as a strategy for site-selective deposition. In the present paper, vacuum ultraviolet (VUV) treatment is utilized to achieve spatially-controlled surface functionalization on a cyclo-olefin polymer (COP) substrate. An organosilane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), preferentially deposits on the functionalized regions. Well-defined patterns of TMCTS are formed with a minimum feature of ∼500 nm. The secondary VUV/(O)-treatment converts TMCTS into SiO x , meanwhile etches the bare COP surface, forming patterned SiO x /COP microstructures with an average height of ∼150 nm. The resulting SiO x patterns retain a good copy of TMCTS patterns, which are also consistent with the patterns of photomask used in polymer affinity-patterning. The high quality SiO x patterns are of interests in microdevice fabrication, and the hydrophilicity contrast and adjustable heights reveal their potential application as a "stamp" for microcontact printing (μCP) techniques.
Collapse
Affiliation(s)
- Cheng-Tse Wu
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| | - Ahmed I A Soliman
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131.,Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| | - Takashi Ichii
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| |
Collapse
|
216
|
Tian W, VahidMohammadi A, Reid MS, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi MM. Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902977. [PMID: 31408235 DOI: 10.1002/adma.201902977] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/20/2019] [Indexed: 05/22/2023]
Abstract
The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3 C2 Tx ) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g-1 and a high conductivity of 295 S cm-1 . It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.
Collapse
Affiliation(s)
- Weiqian Tian
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
- Wallenberg Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Armin VahidMohammadi
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Michael S Reid
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Zhen Wang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Liangqi Ouyang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Johan Erlandsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
- Wallenberg Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| | - Majid Beidaghi
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Mahiar M Hamedi
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
- Wallenberg Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044, Stockholm, Sweden
| |
Collapse
|
217
|
Abdollahi A, Abnavi A, Ghasemi S, Mohajerzadeh S, Sanaee Z. Flexible free-standing vertically aligned carbon nanotube on activated reduced graphene oxide paper as a high performance lithium ion battery anode and supercapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
218
|
Zhao T, Chen L, Wang P, Li B, Lin R, Abdulkareem Al-Khalaf A, Hozzein WN, Zhang F, Li X, Zhao D. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat Commun 2019; 10:4387. [PMID: 31558724 PMCID: PMC6763480 DOI: 10.1038/s41467-019-12378-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the importance of nanoparticle's multipods topology in multivalent-interactions enhanced nano-bio interactions, the precise manipulation of multipods surface topological structures is still a great challenge. Herein, the surface-kinetics mediated multi-site nucleation strategy is demonstrated for the fabrication of mesoporous multipods with precisely tunable surface topological structures. Tribulus-like tetra-pods Fe3O4@SiO2@RF&PMOs (RF = resorcinol-formaldehyde resin, PMO = periodic mesoporous organosilica) nanocomposites have successfully been fabricated with a centering core@shell Fe3O4@SiO2@RF nanoparticle, and four surrounding PMO nanocubes as pods. By manipulating the number of nucleation sites through mediating surface kinetics, a series of multipods mesoporous nanocomposites with precisely controllable surface topological structures are formed, including Janus with only one pod, nearly plane distributed dual-pods and tri-pods, three-dimensional tetrahedral structured tetra-pods, etc. The multipods topology endows the mesoporous nanocomposites enhanced bacteria adhesion ability. Particularly, the tribulus-like tetra-pods mesoporous nanoparticles show ~100% bacteria segregation and long-term inhibition over 90% after antibiotic loading.
Collapse
Affiliation(s)
- Tiancong Zhao
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Liang Chen
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Peiyuan Wang
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Benhao Li
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Runfeng Lin
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | | | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Fan Zhang
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China.
| | - Dongyuan Zhao
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
219
|
Han Z, Li H, Xiao J, Song H, Li B, Cai S, Chen Y, Ma Y, Feng X. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33370-33379. [PMID: 31408310 DOI: 10.1021/acsami.9b12929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible pressure sensors have attracted considerable attention because of their potential applications in healthcare monitoring and human-machine interactions. However, the complicated fabrication process and the cos of sensing materials limit their widespread applications in practice. Herein, a flexible pressure sensor with outstanding performances is presented through an extremely simple and cost-efficient fabrication process. The sensing materials of the sensor are based on low-cost carbon black (CB)@airlaid paper (AP) composites, which are just prepared by drop-casting CB solutions onto APs. Through simply stacking multiple CB@APs with an irregular surface and a fiber-network structure, the obtained pressure sensor demonstrates an ultrahigh sensitivity of 51.23 kPa-1 and an ultralow detection limit of 1 Pa. Additionally, the sensor exhibits fast response time, wide working range, good stability, as well as excellent flexibility and biocompatibility. All the comprehensive and superior performances endow the sensor with abilities to precisely detect weak air flow, wrist pulse, phonation, and wrist bending in real time. In addition, an array electronic skin integrated with multiple CB@AP sensors has been designed to identify spatial pressure distribution and pressure magnitude. Through a biomimetic structure inspired by blooming flowers, a sensor with the open-petal structure has been designed to recognize the wind direction. Therefore, our study, which demonstrates a flexible pressure sensor with low cost, simple preparation, and superior performances, will open up for the exploration of cost-efficient pressure sensors in wearable devices.
Collapse
Affiliation(s)
| | | | - Jianliang Xiao
- Institute of Flexible Electronics Technology of THU , Jiaxing 314000 , Zhejiang , China
| | | | - Bo Li
- Institute of Flexible Electronics Technology of THU , Jiaxing 314000 , Zhejiang , China
| | | | - Ying Chen
- Institute of Flexible Electronics Technology of THU , Jiaxing 314000 , Zhejiang , China
| | | | | |
Collapse
|
220
|
An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.132] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
221
|
Silk Fibroin-Sheathed Conducting Polymer Wires as Organic Connectors for Biosensors. BIOSENSORS-BASEL 2019; 9:bios9030103. [PMID: 31466277 PMCID: PMC6784353 DOI: 10.3390/bios9030103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022]
Abstract
Conductive polymers, owing to their tunable mechanical and electrochemical properties, are viable candidates to replace metallic components for the development of biosensors and bioelectronics. However, conducting fibers/wires fabricated from these intrinsically conductive and mechanically flexible polymers are typically produced without protective coatings for physiological environments. Providing sheathed conductive fibers/wires can open numerous opportunities for fully organic biodevices. In this work, we report on a facile method to fabricate core-sheath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) PEDOT:PSS-silk fibroin conductive wires. The conductive wires are formed through a wet-spinning process, and then coated with an optically transparent, photocrosslinkable silk fibroin sheath for insulation and protection in a facile and scalable process. The sheathed fibers were evaluated for their mechanical and electrical characteristics and overall stability. These wires can serve as flexible connectors to an organic electrode biosensor. The entire, fully organic, biodegradable, and free-standing flexible biosensor demonstrated a high sensitivity and rapid response for the detection of ascorbic acid as a model analyte. The entire system can be proteolytically biodegraded in a few weeks. Such organic systems can therefore provide promising solutions to address challenges in transient devices and environmental sustainability.
Collapse
|
222
|
Miao W, Yao Y, Zhang Z, Ma C, Li S, Tang J, Liu H, Liu Z, Wang D, Camburn MA, Fang JC, Hao R, Fang X, Zheng S, Hu N, Wang X. Micro-/nano-voids guided two-stage film cracking on bioinspired assemblies for high-performance electronics. Nat Commun 2019; 10:3862. [PMID: 31455776 PMCID: PMC6711965 DOI: 10.1038/s41467-019-11803-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Current metal film-based electronics, while sensitive to external stretching, typically fail via uncontrolled cracking under a relatively small strain (~30%), which restricts their practical applications. To address this, here we report a design approach inspired by the stereocilia bundles of a cochlea that uses a hierarchical assembly of interfacial nanowires to retard penetrating cracking. This structured surface outperforms its flat counterparts in stretchability (130% versus 30% tolerable strain) and maintains high sensitivity (minimum detection of 0.005% strain) in response to external stimuli such as sounds and mechanical forces. The enlarged stretchability is attributed to the two-stage cracking process induced by the synergy of micro-voids and nano-voids. In-situ observation confirms that at low strains micro-voids between nanowire clusters guide the process of crack growth, whereas at large strains new cracks are randomly initiated from nano-voids among individual nanowires.
Collapse
Affiliation(s)
- Weining Miao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxing Yao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Zhiwei Zhang
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Chunping Ma
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Shengzhe Li
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiayue Tang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - He Liu
- University of Chinese Academy of Sciences, Beijing, China
| | - Zemin Liu
- University of Chinese Academy of Sciences, Beijing, China
| | - Dianyu Wang
- College of Chemistry, Jilin University, Changchun, China
| | - Michael A Camburn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Ruiran Hao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xinyu Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Shuang Zheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Nan Hu
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
223
|
Ji B, Mao Y, Zhou Q, Zhou J, Chen G, Gao Y, Tian Y, Wen W, Zhou B. Facile Preparation of Hybrid Structure Based on Mesodome and Micropillar Arrays as Flexible Electronic Skin with Tunable Sensitivity and Detection Range. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28060-28071. [PMID: 31306581 DOI: 10.1021/acsami.9b08419] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of flexible pressure sensors has attracted increasing research interest for potential applications such as wearable electronic skins and human healthcare monitoring. Herein, we demonstrated a piezoresistive pressure sensor based on AgNWs-coated hybrid architecture consisting of mesoscaled dome and microscaled pillar arrays. We experimentally showed that the key three-dimensional component for a pressure sensor can be conveniently acquired using a vacuum application during the spin-coating process instead of a sophisticated and expensive approach. The demonstrated hybrid structure exhibits dramatically improved sensing capability when compared with the conventional one-fold dome-based counterpart in terms of the sensitivity and detectable pressure range. The optimized sensing performance, by integrating D1000 dome and D50P100 MPA, reaches a superior sensitivity of 128.29 kPa-1 (0-200 Pa), 1.28 kPa-1 (0.2-10 kPa), and 0.26 kPa-1 (10-80 kPa) and a detection limit of 2.5 Pa with excellent durability. As a proof-of-concept, the pressure sensor based on the hybrid configuration was demonstrated as a versatile platform to accurately monitor different kinds of physical signals or pressure sources, e.g., wrist pulse, voice vibration, finger bending/touching, gas flow, as well as address spatial loading. We believe that the proposed architecture and developed methodology can be promising for future applications including flexible electronic devices, artificial skins, and interactive robotics.
Collapse
Affiliation(s)
| | - Yongyun Mao
- Department of Materials Science and Engineering , Southern University of Science and Technology , No. 1088, Xueyuan Road, Xili, Nanshan District , Shenzhen , Guangdong 518055 , China
| | | | - Jianhe Zhou
- Spinal Joint Surgery , Kanghua Hospital , Dongguan , Guangdong 523000 , China
| | | | - Yibo Gao
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077
| | - Yanqing Tian
- Department of Materials Science and Engineering , Southern University of Science and Technology , No. 1088, Xueyuan Road, Xili, Nanshan District , Shenzhen , Guangdong 518055 , China
| | - Weijia Wen
- Department of Physics , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077
| | | |
Collapse
|
224
|
Shi Q, Lee C. Self-Powered Bio-Inspired Spider-Net-Coding Interface Using Single-Electrode Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900617. [PMID: 31406673 PMCID: PMC6685466 DOI: 10.1002/advs.201900617] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Indexed: 05/19/2023]
Abstract
Human-machine interfaces are essential components between various human and machine interactions such as entertainment, robotics control, smart home, virtual/augmented reality, etc. Recently, various triboelectric-based interfaces have been developed toward flexible wearable and battery-less applications. However, most of them exhibit complicated structures and a large number of electrodes for multidirectional control. Herein, a bio-inspired spider-net-coding (BISNC) interface with great flexibility, scalability, and single-electrode output is proposed, through connecting information-coding electrodes into a single triboelectric electrode. Two types of coding designs are investigated, i.e., information coding by large/small electrode width (L/S coding) and information coding with/without electrode at a predefined position (0/1 coding). The BISNC interface shows high scalability with a single electrode for detection and/or control of multiple directions, by detecting different output signal patterns. In addition, it also has excellent reliability and robustness in actual usage scenarios, since recognition of signal patterns is in regardless of absolute amplitude and thereby not affected by sliding speed/force, humidity, etc. Based on the spider-net-coding concept, single-electrode interfaces for multidirectional 3D control, security code systems, and flexible wearable electronics are successfully developed, indicating the great potentials of this technology in diversified applications such as human-machine interaction, virtual/augmented reality, security, robotics, Internet of Things, etc.
Collapse
Affiliation(s)
- Qiongfeng Shi
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeBlock E6 #05‐11, 5 Engineering Drive 1Singapore117608Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of SingaporeBlock E6 #05‐3, 5 Engineering Drive 1Singapore117608Singapore
- NUS Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123P. R. China
- NUS Graduate School for Integrative Science and EngineeringNational University of SingaporeSingapore117456Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeBlock E6 #05‐11, 5 Engineering Drive 1Singapore117608Singapore
- Hybrid‐Integrated Flexible (Stretchable) Electronic Systems ProgramNational University of SingaporeBlock E6 #05‐3, 5 Engineering Drive 1Singapore117608Singapore
- NUS Suzhou Research Institute (NUSRI)Suzhou Industrial ParkSuzhou215123P. R. China
- NUS Graduate School for Integrative Science and EngineeringNational University of SingaporeSingapore117456Singapore
| |
Collapse
|
225
|
Liu Z, Wang H, Huang P, Huang J, Zhang Y, Wang Y, Yu M, Chen S, Qi D, Wang T, Jiang Y, Chen G, Hu G, Li W, Yu J, Luo Y, Loh XJ, Liedberg B, Li G, Chen X. Highly Stable and Stretchable Conductive Films through Thermal-Radiation-Assisted Metal Encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901360. [PMID: 31282042 DOI: 10.1002/adma.201901360] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin-like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long-term use. Thermal-radiation-assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer-scale format through a one-step process. As a proof of concept, both long-term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pingao Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yu Zhang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yuanyuan Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guoyu Hu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Bo Liedberg
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
226
|
Zhong W, Ding X, Li W, Shen C, Yadav A, Chen Y, Bao M, Jiang H, Wang D. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers (Basel) 2019; 11:E1289. [PMID: 31375016 PMCID: PMC6722995 DOI: 10.3390/polym11081289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Flexible pressure sensors have attracted tremendous research interests due to their wide applications in wearable electronics and smart robots. The easy-to-obtain fabrication and stable signal output are meaningful for the practical application of flexible pressure sensors. The graphene/polyurethane foam composites are prepared to develop a convenient method for piezo-resistive devices with simple structure and outstanding sensing performance. Graphene oxide was prepared through the modified Hummers method. Polyurethane foam was kept to soak in the obtained graphene oxide aqueous solution and then dried. After that, reduced graphene oxide/polyurethane composite foam has been fabricated under air phase reduction by hydrazine hydrate vapor. The chemical components and micro morphologies of the prepared samples have been observed by using FT-IR and scanning electron microscopy (SEM). The results predicted that the graphene is tightly adhered to the bare surface of the pores. The pressure sensing performance has been also evaluated by measuring the sensitivity, durability, and response time. The results indicate that the value of sensitivity under the range of 0-6 kPa and 6-25 kPa are 0.17 kPa-1 and 0.005 kPa-1, respectively. Cycling stability test has been performed 30 times under three varying pressures. The signal output just exhibits slight fluctuations, which represents the good cycling stability of the pressure sensor. At the same stage, the response time of loading and unloading of 20 g weight turned out to be about 300 ms. These consequences showed the superiority of graphene/polyurethane composite foam while applied in piezo-resistive devices including wide sensitive pressure range, high sensitivity, outstanding durability, and fast response.
Collapse
Affiliation(s)
- Weibing Zhong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xincheng Ding
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Weixin Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Chengyandan Shen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ashish Yadav
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Mingze Bao
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Haiqing Jiang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Dong Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
227
|
Jung YH, Park B, Kim JU, Kim TI. Bioinspired Electronics for Artificial Sensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803637. [PMID: 30345558 DOI: 10.1002/adma.201803637] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Indexed: 05/23/2023]
Abstract
Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
228
|
Hu X, Dou Y, Li J, Liu Z. Buckled Structures: Fabrication and Applications in Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804805. [PMID: 30740901 DOI: 10.1002/smll.201804805] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/22/2018] [Indexed: 05/21/2023]
Abstract
Wearable electronics have attracted a tremendous amount of attention due to their many potential applications, such as personalized health monitoring, motion detection, and smart clothing, where electronic devices must conformably form contacts with curvilinear surfaces and undergo large deformations. Structural design and material selection have been the key factors for the development of wearable electronics in the recent decades. As one of the most widely used geometries, buckling structures endow high stretchability, high mechanical durability, and comfortable contact for human-machine interaction via wearable devices. In addition, buckling structures that are derived from natural biosurfaces have high potential for use in cost-effective and high-grade wearable electronics. This review provides fundamental insights into buckling fabrication and discusses recent advancements for practical applications of buckled electronics, such as interconnects, sensors, transistors, energy storage, and conversion devices. In addition to the incorporation of desired functions, the simple and consecutive manipulation and advanced structural design of the buckled structures are discussed, which are important for advancing the field of wearable electronics. The remaining challenges and future perspectives for buckled electronics are briefly discussed in the final section.
Collapse
Affiliation(s)
- Xiaoyu Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin, 300071, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Dou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Jingjing Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin, 300071, China
| |
Collapse
|
229
|
Pan S, Liu Z, Wang M, Jiang Y, Luo Y, Wan C, Qi D, Wang C, Ge X, Chen X. Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903130. [PMID: 31259453 DOI: 10.1002/adma.201903130] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/08/2019] [Indexed: 05/26/2023]
Abstract
Stretchable strain sensors have aroused great interest for their application in human activity recognition, health monitoring, and soft robotics. For various scenarios involving the application of different strain ranges, specific sensitivities need to be developed, due to a trade-off between sensor sensitivity and stretchability. Traditional stretchable strain sensors are developed based on conductive sensing materials and still lack the function of customizable sensitivity. A novel strategy of mechanocombinatorics is proposed to screen the sensor sensitivity based on mechanically heterogeneous substrates. Strain redistribution over substrates is optimized by mechanics and structure parameters, which gives rise to customizable sensitivity. As a proof of concept, a local illumination method is used to fabricate heterogeneous substrates with customizable mechanics and structure parameters. A library of mechanocombinatorial strain sensors is created for extracting the specific sensitivity. Thus, not only is an effective strategy for screening of sensor sensitivity demonstrated, but a contribution to the mechanocombinatorial strategy for personalized stretchable electronics is also made.
Collapse
Affiliation(s)
- Shaowu Pan
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Zhiyuan Liu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Dianpeng Qi
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xiang Ge
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
230
|
Lei Z, Wu P. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat Commun 2019; 10:3429. [PMID: 31366932 PMCID: PMC6668389 DOI: 10.1038/s41467-019-11364-w] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
Intrinsically stretchable conductors have undergone rapid development in the past few years and a variety of strategies have been established to improve their electro-mechanical properties. However, ranging from electronically to ionically conductive materials, they are usually vulnerable either to large deformation or at high/low temperatures, mainly due to the fact that conductive domains are generally incompatible with neighboring elastic networks. This is a problem that is usually overlooked and remains challenging to address. Here, we introduce synergistic effect between conductive zwitterionic nanochannels and dynamic hydrogen-bonding networks to break the limitations. The conductor is highly transparent (>90% transmittance), ultra-stretchable (>10,000% strain), high-modulus (>2 MPa Young's modulus), self-healing, and capable of maintaining stable conductivity during large deformation and at different temperatures. Transparent integrated systems are further demonstrated via 3D printing of its precursor and could achieve diverse sensory capabilities towards strain, temperature, humidity, etc., and even recognition of different liquids.
Collapse
Affiliation(s)
- Zhouyue Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China.
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
231
|
Abstract
Semiconductor nanowires have attracted extensive interest as one of the best-defined classes of nanoscale building blocks for the bottom-up assembly of functional electronic and optoelectronic devices over the past two decades. The article provides a comprehensive review of the continuing efforts in exploring semiconductor nanowires for the assembly of functional nanoscale electronics and macroelectronics. Specifically, we start with a brief overview of the synthetic control of various semiconductor nanowires and nanowire heterostructures with precisely controlled physical dimension, chemical composition, heterostructure interface, and electronic properties to define the material foundation for nanowire electronics. We then summarize a series of assembly strategies developed for creating well-ordered nanowire arrays with controlled spatial position, orientation, and density, which are essential for constructing increasingly complex electronic devices and circuits from synthetic semiconductor nanowires. Next, we review the fundamental electronic properties and various single nanowire transistor concepts. Combining the designable electronic properties and controllable assembly approaches, we then discuss a series of nanoscale devices and integrated circuits assembled from nanowire building blocks, as well as a unique design of solution-processable nanowire thin-film transistors for high-performance large-area flexible electronics. Last, we conclude with a brief perspective on the standing challenges and future opportunities.
Collapse
Affiliation(s)
- Chuancheng Jia
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Huang
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
232
|
Gao L, Zhu C, Li L, Zhang C, Liu J, Yu HD, Huang W. All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25034-25042. [PMID: 31268663 DOI: 10.1021/acsami.9b07465] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flexible and wearable pressure sensors are of paramount importance for the development of personalized medicine and electronic skin. However, the preparation of easily disposable pressure sensors is still facing pressing challenges. Herein, we have developed an all paper-based piezoresistive (APBP) pressure sensor through a facile, cost-effective, and environmentally friendly method. This pressure sensor was based on a tissue paper coated with silver nanowires (AgNWs) as a sensing material, a nanocellulose paper (NCP) as a bottom substrate for printing electrodes, and NCP as a top encapsulating layer. The APBP pressure sensor showed a high sensitivity of 1.5 kPa-1 in the range of 0.03-30.2 kPa and retained excellent performance in the bending state. Furthermore, the APBP sensor has been mounted on the human skin to monitor physiological signals (such as arterial heart pulse and pronunciation from throat) and successfully applied as a soft electronic skin to respond to the external pressure. Due to the use of the common tissue paper, NCP, AgNWs, and conductive nanosilver ink only, the pressure sensor has advantages of low cost, facile craft, and fast preparation and can be disposed off easily by incineration. We believe that the developed sensor will propel the advancement of easily disposable pressure sensors and green paper-based flexible electronic devices.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Chengxian Zhu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Lin Li
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Chengwu Zhang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Jinhua Liu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM) & Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
- Xi'an Institute of Flexible Electronics , Northwestern Polytechnical University , 127 West Youyi Road , Xi'an 710072 , P. R. China
| |
Collapse
|
233
|
Pal M, Giri A, Kim DW, Shin S, Kong M, Thiyagarajan K, Kwak J, Okello OFN, Choi SY, Jeong U. Fabrication of Foldable Metal Interconnections by Hybridizing with Amorphous Carbon Ultrathin Anisotropic Conductive Film. ACS NANO 2019; 13:7175-7184. [PMID: 31149801 DOI: 10.1021/acsnano.9b02649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the advent of foldable electronics, it is necessary to develop a technology ensuring foldability when the circuit lines are placed on the topmost substrate rather than in the neutral plane used in the present industry. Considering the potential technological impacts, conversion of the conventional printed circuit boards to foldable ones is most desirable to achieve the topmost circuitry. This study realizes this unconventional conversion concept by coating an ultrathin anisotropic conductive film (UACF) on a printed metal circuit board. This study presents rapid large-area synthesis of hydrogenated amorphous carbon (a-C:H) thin films and their use as the UACF. Since the synthesized a-C:H thin film has electrical transparency, the metal/a-C:H hybrid board reflects the complexity of the underlying metal circuit board. The a-C:H thin film electrically connects the cracked area of the metal line; thus, the hybrid circuit board is foldable without resistance change during repeated folding cycles. The metal/UACF hybrid circuit board can be applied to the fabrication of various foldable electronic devices.
Collapse
Affiliation(s)
- Monalisa Pal
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Anupam Giri
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Dong Wook Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Sangbaie Shin
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Minsik Kong
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Kaliannan Thiyagarajan
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Junghyeok Kwak
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Odongo Francis Ngome Okello
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering , Pohang University of Science and Technology , Cheongam-Ro 77, Nam-Gu , Pohang , Gyeongbuk 790-784 , Korea
| |
Collapse
|
234
|
Kim SH, Seo H, Kang J, Hong J, Seong D, Kim HJ, Kim J, Mun J, Youn I, Kim J, Kim YC, Seok HK, Lee C, Tok JBH, Bao Z, Son D. An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways. ACS NANO 2019; 13:6531-6539. [PMID: 31072094 DOI: 10.1021/acsnano.9b00160] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Both self-healable conductors and stretchable conductors have been previously reported. However, it is still difficult to simultaneously achieve high stretchability, high conductivity, and self-healability. Here, we observed an intriguing phenomenon, termed "electrical self-boosting", which enables reconstructing of electrically percolative pathways in an ultrastretchable and self-healable nanocomposite conductor (over 1700% strain). The autonomously reconstructed percolative pathways were directly verified by using microcomputed tomography and in situ scanning electron microscopy. The encapsulated nanocomposite conductor shows exceptional conductivity (average value: 2578 S cm-1; highest value: 3086 S cm-1) at 3500% tensile strain by virtue of efficient strain energy dissipation of the self-healing polymer and self-alignment and rearrangement of silver flakes surrounded by spontaneously formed silver nanoparticles and their self-assembly in the strained self-healing polymer matrix. In addition, the conductor maintains high conductivity and stretchability even after recovered from a complete cut. Besides, a design of double-layered conductor enabled by the self-bonding assembly allowed a conducting interface to be located on the neutral mechanical plane, showing extremely durable operations in a cyclic stretching test. Finally, we successfully demonstrated that electromyogram signals can be monitored by our self-healable interconnects. Such information was transmitted to a prosthetic robot to control various hand motions for robust interactive human-robot interfaces.
Collapse
Affiliation(s)
- Sun Hong Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center , Seoul National University , 1-Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Hyunseon Seo
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Jiheong Kang
- Department of Chemical Engineering , Stanford University , Stanford , California 94305-5025 , United States
| | - Jaeyoung Hong
- Advanced Analysis Center , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Duhwan Seong
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Han-Jin Kim
- Department of Materials Science and Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Jaemin Kim
- Department of Chemical Engineering , Stanford University , Stanford , California 94305-5025 , United States
| | - Jaewan Mun
- Department of Chemical Engineering , Stanford University , Stanford , California 94305-5025 , United States
| | - Inchan Youn
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Jinseok Kim
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Yu-Chan Kim
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Hyun-Kwang Seok
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Changhee Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center , Seoul National University , 1-Gwanak-ro , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering , Stanford University , Stanford , California 94305-5025 , United States
| | - Zhenan Bao
- Department of Chemical Engineering , Stanford University , Stanford , California 94305-5025 , United States
| | - Donghee Son
- Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| |
Collapse
|
235
|
Fang L, Cai Z, Ding Z, Chen T, Zhang J, Chen F, Shen J, Chen F, Li R, Zhou X, Xie Z. Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21895-21903. [PMID: 31124644 DOI: 10.1021/acsami.9b03410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Double-network tough hydrogels have raised increasing interest in stretchable electronic applications as well as electronic skin (e-skin) owing to their excellent mechanical properties and functionalities. While hydrogels have been extensively explored as solid-state electrolytes, stretchable energy storage devices based on tough hydrogel electrolytes are still limited despite their high stretchability and strength. A key challenge remains in the robust electrode/electrolyte interface under large mechanical strains. Inspired by the skin structure that involves the microstructured interface for the tight connection between the dermis and epidermis, we demonstrated that a surface-microstructured tough hydrogel electrolyte composed of agar/polyacrylamide/LiCl (AG/PAAm/LiCl) could be exploited to allow stretchable supercapacitors with enhanced mechanical and electrochemical performance. The prestretched tough hydrogel electrolyte was treated to generate surface microstructures with a roughness of tens of micrometers simply via mechanical rubbing followed by the attachment of activated carbon electrodes on both sides to realize the fabrication of the stretchable supercapacitor. Through investigating the properties of the tough hydrogel electrolyte and the electrochemical performance of the as-fabricated supercapacitors under varied strains, the surface-microstructured hydrogel electrolyte was shown to enable robust adhesion to electrodes, improving electrochemical behavior and capacitance, as well as having better performance retention under repeated stretching cycles, which surpassed the pristine hydrogel with smooth surfaces. Our approach could provide an alternative and general strategy to improve the interfacial properties between the electrode and the hydrogel electrolyte, driving new directions for functional stretchable devices based on tough hydrogels.
Collapse
Affiliation(s)
- Lvye Fang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Zefan Cai
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Zhengqing Ding
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Tianyi Chen
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jiacheng Zhang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Fubin Chen
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jiayan Shen
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518055 , P. R. China
| | - Fan Chen
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518055 , P. R. China
| | - Rui Li
- School of Advanced Materials , Peking University Shenzhen Graduate School , Shenzhen 518055 , P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518055 , P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
236
|
Ke K, Sang Z, Manas-Zloczower I. Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. NANOSCALE ADVANCES 2019; 1:2337-2347. [PMID: 36131959 PMCID: PMC9418453 DOI: 10.1039/c9na00176j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/24/2019] [Indexed: 05/05/2023]
Abstract
Electrically conductive elastomer composites (CECs) have great potential in wearable and stretchable electronic applications. However, it is often challenging to trade off electrical conductivity and mechanical flexibility in melt-processed CECs for wearable electronic applications. Here, we develop CECs with high electrical conductivity and mechanical elasticity by controlling the segregated networks of carbon nanofillers formed at the elastomer interface. The carbon nanofiller dimensionality has a significant influence on the electrical and mechanical properties of thermoplastic polyurethane (TPU) composites. For instance, 3D branched carbon nanotubes (carbon nanostructures, CNSs) have a very low percolation threshold (Φ C = 0.01 wt%), which is about 8-10 times lower than that of 1D carbon nanotubes (CNTs) and 2D graphene nanosheets (GNSs). Besides, the TPU/CNS system has a higher electrical conductivity than other fillers at all filler contents (0.05-2 wt%). On the other hand, TPU/CNT systems can retain high elongation at break, whereas for the TPU/GNS systems elongation at break is severely deteriorated, especially at a high filler content. Different electrical and mechanical properties in the TPU-based CECs enable potential applications in flexible conductors/resistors and stretchable strain sensors, respectively.
Collapse
Affiliation(s)
- Kai Ke
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106-7202 USA
| | - Zhen Sang
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106-7202 USA
| | - Ica Manas-Zloczower
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106-7202 USA
| |
Collapse
|
237
|
Wen Y, Gao E, Hu Z, Xu T, Lu H, Xu Z, Li C. Chemically modified graphene films with tunable negative Poisson's ratios. Nat Commun 2019; 10:2446. [PMID: 31164652 PMCID: PMC6547682 DOI: 10.1038/s41467-019-10361-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Graphene-derived macroscopic assemblies feature hierarchical nano- and microstructures that provide numerous routes for surface and interfacial functionalization achieving unconventional material properties. We report that the microstructural hierarchy of pristine chemically modified graphene films, featuring wrinkles, delamination of close-packed laminates, their ordered and disordered stacks, renders remarkable negative Poisson’s ratios ranging from −0.25 to −0.55. The mechanism proposed is validated by the experimental characterization and theoretical analysis. Based on the understanding of microstructural origins, pre-strech is applied to endow chemically modified graphene films with controlled negative Poisson’s ratios. Modulating the wavy textures of the inter-connected network of close-packed laminates in the chemically modified graphene films also yields finely-tuned negative Poisson’s ratios. These findings offer the key insights into rational design of films constructed from two-dimensional materials with negative Poisson’s ratios and mechanomutable performance. Negative Poisson’s ratio, offering unusual properties, is displayed by several materials and predicted for graphene. This work demonstrates such behaviors in monolithic films with interconnected networks of close-packed graphene laminates, and tunability through the chemistry and microstructures.
Collapse
Affiliation(s)
- Yeye Wen
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhenxing Hu
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Tingge Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China.
| | - Chun Li
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
238
|
Li S, Luo P, Wu H, Wei C, Hu Y, Qiu G. Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shixiong Li
- School of Environment and EnergySouth China University of Technology Guangzhou 510006 P. R. China
- School of Chemical Engineering and Resource RecyclingWuzhou University Wuzhou 543002 P. R. China
| | - Pei Luo
- School of Environment and EnergySouth China University of Technology Guangzhou 510006 P. R. China
| | - Haizhen Wu
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou 510006 P. R. China
| | - Chaohai Wei
- School of Environment and EnergySouth China University of Technology Guangzhou 510006 P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of EducationSouth China University of Technology Guangzhou 510006 P. R. China
| | - Yun Hu
- School of Environment and EnergySouth China University of Technology Guangzhou 510006 P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of EducationSouth China University of Technology Guangzhou 510006 P. R. China
| | - Guanglei Qiu
- School of Environment and EnergySouth China University of Technology Guangzhou 510006 P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters Ministry of EducationSouth China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
239
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
240
|
Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydr Polym 2019; 211:322-328. [DOI: 10.1016/j.carbpol.2019.01.094] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 11/18/2022]
|
241
|
Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications. Prog Polym Sci 2019; 92:135-157. [PMID: 32831422 PMCID: PMC7441850 DOI: 10.1016/j.progpolymsci.2019.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electroconductive hydrogels (ECHs) are highly hydrated 3D networks generated through the incorporation of conductive polymers, nanoparticles, and other conductive materials into polymeric hydrogels. ECHs combine several advantageous properties of inherently conductive materials with the highly tunable physical and biochemical properties of hydrogels. Recently, the development of biocompatible ECHs has been investigated for various biomedical applications, such as tissue engineering, drug delivery, biosensors, flexible electronics, and other implantable medical devices. Several methods for the synthesis of ECHs have been reported, which include the incorporation of electrically conductive materials such as gold and silver nanoparticles, graphene, and carbon nanotubes, as well as various conductive polymers (CPs), such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxyythiophene) into hydrogel networks. Theses electroconductive composite hydrogels can be used as scaffolds with high swellability, tunable mechanical properties, and the capability to support cell growth both in vitro and in vivo. Furthermore, recent advancements in microfabrication techniques such as three dimensional (3D) bioprinting, micropatterning, and electrospinning have led to the development of ECHs with biomimetic microarchitectures that reproduce the characteristics of the native extracellular matrix (ECM). In addition, smart ECHs with controlled structures and healing properties have also been engineered into devices with prolonged half-lives and increased durability. The combination of sophisticated synthesis chemistries and modern microfabrication techniques have led to engineer smart ECHs with advanced architectures, geometries, and functionalities that are being increasingly used in drug delivery systems, biosensors, tissue engineering, and soft electronics. In this review, we will summarize different strategies to synthesize conductive biomaterials. We will also discuss the advanced microfabrication techniques used to fabricate ECHs with complex 3D architectures, as well as various biomedical applications of microfabricated ECHs.
Collapse
Affiliation(s)
- Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Roberto Portillo Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Emad Mogadam
- Department of Internal Medicine, Huntington Hospital, Pasadena, CA, 91105, USA
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chu Hsiang Yu
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - William Kimball
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
242
|
Troyano J, Carné-Sánchez A, Maspoch D. Programmable Self-Assembling 3D Architectures Generated by Patterning of Swellable MOF-Based Composite Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808235. [PMID: 30957295 DOI: 10.1002/adma.201808235] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Indexed: 06/09/2023]
Abstract
The integration of swellable metal-organic frameworks (MOFs) into polymeric composite films is a straightforward strategy to develop soft materials that undergo reversible shape transformations derived from the intrinsic flexibility of MOF crystals. However, a crucial step toward their practical application relies on the ability to attain specific and programmable actuation, which enables the design of self-shaping objects on demand. Herein, a chemical etching method is demonstrated for the fabrication of patterned composite films showing tunable self-folding response, predictable and reversible 2D-to-3D shape transformations triggered by water adsorption/desorption. These films are fabricated by selective removal of swellable MOF crystals allowing control over their spatial distribution within the polymeric film. Upon exposure to moisture, various programmable 3D architectures, which include a mechanical gripper, a lift, and a unidirectional walking device, are generated. Remarkably, these 2D-to-3D shape transformations can be reversed by light-induced desorption. The reported strategy offers a platform for fabricating flexible MOF-based autonomous soft mechanical devices with functionalities for micromanipulation, automation, and robotics.
Collapse
Affiliation(s)
- Javier Troyano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
243
|
Ji D, Li T, Hu W, Fuchs H. Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806070. [PMID: 30762268 DOI: 10.1002/adma.201806070] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/06/2018] [Indexed: 05/05/2023]
Abstract
Polymeric dielectrics play a key role in the realization of flexible organic electronics, especially for the fabrication of scalable device arrays and integrated circuits. Among a wide variety of polymeric dielectric materials, aromatic polyimides (PIs) are flexible, lightweight, and strongly resistant to high-temperature processing and corrosive etchants and, therefore, have become promising candidates as gate dielectrics with good feasibility in manufacturing organic electronic devices. More significantly, the characteristics of PIs can be conveniently modulated by the design of their chemical structures. Herein, from the perspective of structure optimization and interface engineering, a brief overview of recent progress in PI-based dielectrics for organic electronic devices and circuits is provided. Also, an outlook of future research directions and challenges for polyimide dielectric materials is presented.
Collapse
Affiliation(s)
- Deyang Ji
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenping Hu
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| |
Collapse
|
244
|
Irgashev RA, Demina NS, Kazin NA, Rusinov GL. Construction of new heteroacenes based on benzo[b]thieno[2,3-d]thiophene / quinoline or 1,8-naphthyridine systems using the Friedländer reaction. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
245
|
Li T, Li L, Bai Y, Cao Y, Lu Q, Li Y, Xu G, Zhang T. A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for micro-vibration detection in non-contact mode. NANOSCALE 2019; 11:5737-5745. [PMID: 30865743 DOI: 10.1039/c8nr09506j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To detect micro-vibration, flexible pressure sensors require that the sensing materials possess superior sensitivity in non-contact sensing mode. One type of matter, nanovesicles, has the characteristics of hollow spheres and crack junctions in a single body, and provides an exciting bionic idea to explore high-sensitivity sensing materials. Hence, in this study, novel hollow microspheres with a hierarchical nanovesicle-like architecture are designed, prepared via a controlled strategy of adjusting the surface energy, and employed to fabricate multiscale flexible pressure sensors that display a high response sensitivity of 11.3 kPa-1 and a low detection limit of 5.5 Pa with good stability for 2500 cycles. The working mechanism can be deduced as the synergistic effects from the stress concentration of microstructural patterns and the successive deformation of the nanovesicle-like structure, which is revealed by controlled experiments and finite element method simulations. The as-assembled flexible pressure sensor is used to detect the dynamic micro-vibration signals caused by fluid motion (water flow and airflow) and inelastic/elastic collision in non-contact mode, revealing good sensitivity, repeatability and stability. This work provides theoretical and experimental evidence for the development of hierarchical structure-based highly sensitive flexible sensors in the future.
Collapse
Affiliation(s)
- Tie Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, Dong H, Hu W. Organic crystalline materials in flexible electronics. Chem Soc Rev 2019; 48:1492-1530. [PMID: 30283937 DOI: 10.1039/c8cs00406d] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible electronics have attracted considerable attention recently given their potential to revolutionize human lives. High-performance organic crystalline materials (OCMs) are considered strong candidates for next-generation flexible electronics such as displays, image sensors, and artificial skin. They not only have great advantages in terms of flexibility, molecular diversity, low-cost, solution processability, and inherent compatibility with flexible substrates, but also show less grain boundaries with minimal defects, ensuring excellent and uniform electronic characteristics. Meanwhile, OCMs also serve as a powerful tool to probe the intrinsic electronic and mechanical properties of organics and reveal the flexible device physics for further guidance for flexible materials and device design. While the past decades have witnessed huge advances in OCM-based flexible electronics, this review is intended to provide a timely overview of this fascinating field. First, the crystal packing, charge transport, and assembly protocols of OCMs are introduced. State-of-the-art construction strategies for aligned/patterned OCM on/into flexible substrates are then discussed in detail. Following this, advanced OCM-based flexible devices and their potential applications are highlighted. Finally, future directions and opportunities for this field are proposed, in the hope of providing guidance for future research.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
Gold, one of the noble metals, has played a significant role in human society throughout history. Gold's excellent electrical, optical and chemical properties make the element indispensable in maintaining a prosperous modern electronics industry. In the emerging field of stretchable electronics (elastronics), the main challenge is how to utilize these excellent material properties under various mechanical deformations. This review covers the recent progress in developing "softening" gold chemistry for various applications in elastronics. We systematically present material synthesis and design principles, applications, and challenges and opportunities ahead.
Collapse
Affiliation(s)
- Bowen Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
248
|
Fabrication of one-dimensional architecture Bi5Nb3O15 nanowires by electrospinning for lithium-ion batteries with enhanced electrochemical performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
249
|
Wu Z, Wang Y, Liu X, Lv C, Li Y, Wei D, Liu Z. Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800716. [PMID: 30680813 DOI: 10.1002/adma.201800716] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 12/03/2018] [Indexed: 05/18/2023]
Abstract
Wearable electronics have received considerable attention in recent years. These devices have penetrated every aspect of our daily lives and stimulated interest in futuristic electronics. Thus, flexible batteries that can be bent or folded are desperately needed, and their electrochemical functions should be maintained stably under the deformation states, given the increasing demands for wearable electronics. Carbon nanomaterials, such as carbon nanotubes, graphene, and/or their composites, as flexible materials exhibit excellent properties that make them suitable for use in flexible batteries. Herein, the most recent progress on flexible batteries using carbon nanomaterials is discussed from the viewpoint of materials fabrication, structure design, and property optimization. Based on the current progress, the existing advantages, challenges, and prospects are outlined and highlighted.
Collapse
Affiliation(s)
- Ziping Wu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yonglong Wang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Xianbin Liu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Chao Lv
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Yesheng Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, P. R. China
| | - Di Wei
- Beijing Graphene Institute, Beijing, 100094, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100094, P. R. China
| |
Collapse
|
250
|
Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu XY, Guo W. A Biodegradable and Stretchable Protein-Based Sensor as Artificial Electronic Skin for Human Motion Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805084. [PMID: 30690886 DOI: 10.1002/smll.201805084] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/06/2019] [Indexed: 05/21/2023]
Abstract
Due to the natural biodegradability and biocompatibility, silk fibroin (SF) is one of the ideal platforms for on-skin and implantable electronic devices. However, the development of SF-based electronics is still at a preliminary stage due to the SF film intrinsic brittleness as well as the solubility in water, which prevent the fabrication of SF-based electronics through traditional techniques. In this article, a flexible and stretchable silver nanofibers (Ag NFs)/SF based electrode is synthesized through water-free procedures, which demonstrates outstanding performance, i.e., low sheet resistance (10.5 Ω sq-1 ), high transmittance (>90%), excellent stability even after bending cycles >2200 times, and good extensibility (>60% stretching). In addition, on the basis of such advanced (Ag NFs)/SF electrode, a flexible and tactile sensor is further fabricated, which can simultaneously detect pressure and strain signals with a large monitoring window (35 Pa-700 kPa). Besides, this sensor is air-permeable and inflammation-free, so that it can be directly laminated onto human skins for long-term health monitoring. Considering the biodegradable and skin-comfortable features, this sensor may become promising to find potential applications in on-skin or implantable health-monitoring devices.
Collapse
Affiliation(s)
- Chen Hou
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zijie Xu
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wu Qiu
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Ronghui Wu
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yanan Wang
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qingchi Xu
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Xiang Yang Liu
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117542, Singapore
| | - Wenxi Guo
- Research Institute for Biomimetics and Soft Matter, College of Materials, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute, Xiamen University, Shenzhen, 518057, P. R. China
| |
Collapse
|