201
|
Basselin M, Chang L, Rapoport SI. Chronic lithium chloride administration to rats elevates glucose metabolism in wide areas of brain, while potentiating negative effects on metabolism of dopamine D2-like receptor stimulation. Psychopharmacology (Berl) 2006; 187:303-11. [PMID: 16786332 DOI: 10.1007/s00213-006-0425-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 04/17/2006] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES The regional cerebral metabolic rate for glucose (rCMRglc) can be imaged in vivo as a marker of brain functional activity. The effects of chronic lithium administration on baseline values of rCMRglc and values in response to administration of dopamine D2-like receptor agonists have not been examined in humans or rats. Knowing these effects may elucidate and localize the therapeutic action of lithium in bipolar disorder. METHODS In unanesthetized rats, we used the 2-deoxy-D-glucose (2-DG) technique to image the effects of a 6-week control diet or LiCl diet sufficient to produce a plasma lithium concentration therapeutically relevant to bipolar disorder, on rCMRglc at baseline and in response to the dopaminergic D2-like receptor agonist, quinpirole (1 mg/kg i.v.), or to i.v. saline. RESULTS Baseline rCMRglc was significantly elevated in 30 of 81 brain regions examined, in LiCl diet compared with control diet rats. Affected were visual and auditory structures, frontal cortex, amygdala, hippocampus, nucleus accumbens, caudate-putamen, interpeduncular nucleus, and substantia nigra. Acute quinpirole significantly decreased rCMRglc in four areas of the caudate-putamen in control diet rats, and in these and 19 additional brain areas in LiCl-fed rats. CONCLUSIONS In unanesthetized rats, chronic lithium administration widely upregulates baseline rCMRglc and potentiates the negative effects on rCMRglc of D2-like receptor stimulation. The baseline elevation may relate to lithium's reported ability to increase auditory and visual evoked responses in humans, whereas lithium's potentiation of quinpirole's negative effects on rCMRglc may be related to its therapeutic efficacy in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg 9, Room 1S126, 9 Memorial Drive, Bethesda, MD 20892-0947, USA.
| | | | | |
Collapse
|
202
|
Watts AG, Khan AM, Sanchez-Watts G, Salter D, Neuner CM. Activation in neural networks controlling ingestive behaviors: what does it mean, and how do we map and measure it? Physiol Behav 2006; 89:501-10. [PMID: 16828817 DOI: 10.1016/j.physbeh.2006.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/05/2006] [Accepted: 05/25/2006] [Indexed: 01/14/2023]
Abstract
Over the past thirty years many of different methods have been developed that use markers to track or image the activity of the neurons within the central networks that control ingestive behaviors. The ultimate goal of these experiments is to identify the location of neurons that participate in the response to an identified stimulus, and more widely to define the structure and function of the networks that control specific aspects of ingestive behavior. Some of these markers depend upon the rapid accumulation of proteins, while others reflect altered energy metabolism as neurons change their firing rates. These methods are widely used in behavioral neuroscience, but the way results are interpreted within the context of defining neural networks is constrained by how we answer the following questions. How well can the structure of the behavior be documented? What do we know about the processes that lead to the accumulation of the marker? What is the function of the marker within the neuron? How closely in time does the marker accumulation track the stimulus? How long does the marker persist after the stimulus is removed? We will review how these questions can be addressed with regard to ingestive and related behaviors. We will also discuss the importance of plotting the location of labeled cells using standardized atlases to facilitate the presentation and comparison of data between experiments and laboratories. Finally, we emphasize the importance of comprehensive and accurate mapping for using newly emerging technologies in neuroinfomatics.
Collapse
Affiliation(s)
- Alan G Watts
- Neuroscience Research Institute and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089-2520, United States.
| | | | | | | | | |
Collapse
|
203
|
Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 2006; 26:865-77. [PMID: 16407855 DOI: 10.1038/sj.jcbfm.9600263] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prior 13C magnetic resonance spectroscopy (MRS) experiments, which simultaneously measured in vivo rates of total glutamate-glutamine cycling (V(cyc(tot))) and neuronal glucose oxidation (CMR(glc(ox), N)), revealed a linear relationship between these fluxes above isoelectricity, with a slope of approximately 1. In vitro glial culture studies examining glutamate uptake indicated that glutamate, which is cotransported with Na+, stimulated glial uptake of glucose and release of lactate. These in vivo and in vitro results were consolidated into a model: recycling of one molecule of neurotransmitter between glia and neurons was associated with oxidation of one glucose molecule in neurons; however, the glucose was taken up only by glia and all the lactate (pyruvate) generated by glial glycolysis was transferred to neurons for oxidation. The model was consistent with the 1:1 relationship between DeltaCMR(glc(ox), N) and DeltaV(cyc(tot)) measured by 13C MRS. However, the model could not specify the energetics of glia and gamma-amino butyric acid (GABA) neurons because quantitative values for these pathways were not available. Here, we review recent 13C and 14C tracer studies that enable us to include these fluxes in a more comprehensive model. The revised model shows that glia produce at least 8% of total oxidative ATP and GABAergic neurons generate approximately 18% of total oxidative ATP in neurons. Neurons produce at least 88% of total oxidative ATP, and take up approximately 26% of the total glucose oxidized. Glial lactate (pyruvate) still makes the major contribution to neuronal oxidation, but approximately 30% less than predicted by the prior model. The relationship observed between DeltaCMR(glc(ox), N) and DeltaV(cyc(tot)) is determined by glial glycolytic ATP as before. Quantitative aspects of the model, which can be tested by experimentation, are discussed.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Kiyatkin EA. Brain hyperthermia as physiological and pathological phenomena. ACTA ACUST UNITED AC 2006; 50:27-56. [PMID: 15890410 DOI: 10.1016/j.brainresrev.2005.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/04/2005] [Accepted: 04/05/2005] [Indexed: 12/18/2022]
Abstract
Although brain metabolism consumes high amounts of energy and is accompanied by intense heat production, brain temperature is usually considered a stable, tightly "regulated" homeostatic parameter. Current research, however, revealed relatively large and rapid brain temperature fluctuations (3-4 degrees C) in animals during various normal, physiological, and behavioral activities at stable ambient temperatures. This review discusses these data and demonstrates that physiological brain hyperthermia has an intra-brain origin, resulting from enhanced neural metabolism and increased intra-brain heat production. Therefore, brain temperature is an important physiological parameter that both reflects alterations in metabolic neural activity and affects various neural functions. This work also shows that brain hyperthermia may be induced by various drugs of abuse that cause metabolic brain activation and impair heat dissipation. While individual drugs (i.e., heroin, cocaine, methamphetamine, MDMA) have specific, dose-dependent effects on brain and body temperatures, these effects are strongly modulated by an individual's activity state and environmental conditions, and change dramatically during the development of drug self-administration. Thus, brain thermorecording may provide new information on the central effects of various addictive drugs, drug-activity-environment interactions in mediating drugs' adverse effects, and alterations in metabolic neural activity associated with the development of drug-seeking and drug-taking behavior. While ambient temperatures and impairment of heat dissipation may also affect brain temperature, these environmental conditions strongly potentiate thermal effects of psychomotor stimulant drugs, resulting in pathological brain overheating. Since hyperthermia exacerbates drug-induced toxicity and is destructive to neural cells and brain functions, use of these drugs under activated conditions that restrict heat loss may pose a significant health risk, resulting in both acute life-threatening complications and chronic destructive CNS changes.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock, Baltimore, MD 21224, USA.
| |
Collapse
|
205
|
Rosengarten B, Hecht M, Kaps M. Carotid compression: investigation of cerebral autoregulative reserve in rats. J Neurosci Methods 2005; 152:202-9. [PMID: 16253338 DOI: 10.1016/j.jneumeth.2005.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/25/2005] [Accepted: 09/02/2005] [Indexed: 11/17/2022]
Abstract
Easy-to-perform, reversible techniques to analyse cerebral autoregulation are still missing in animal research. The carotid compression technique has been established to investigate dynamic cerebral autoregulation in humans. Adapting the carotid compression technique, we compared data from the new application with that of a classical exsanguination method. Compressing the ipsilateral carotid artery with a non-traumatic clip device for 10s modulated cerebral perfusion pressure. After clip release, the peaking laser-Doppler flow velocity increase over the somatosensory cortex allowed calculation of the transient hyperaemic response ratio (THRR) in relation to baseline. Modulating blood-pressure levels maintenance of cerebral blood-flow velocity was compared with THRR responses. With decreasing blood-pressure levels, the THRR first increased (29+/-16% at 95+/-10 mmHg to 39+/-13% at 75+/-10 mmHg) before it returned to baseline values at 54+/-10 mmHg (27+/-14%). THRR significantly dropped to 11+/-12% at 34+/-11 mmHg when resting cerebral blood-flow velocity levels also started to decline. Based on the close correlation between blood-flow velocity levels and THRR responses, we have concluded that carotid compression is an alternative technique that can be used to assess cerebral autoregulation in rats. The technique allows less invasive and reversible testing of dynamic autoregulation to be performed, and the technique can easily be applied in conjunction with functional tests to potentially allow deeper insights into cerebral vasoregulative mechanisms.
Collapse
Affiliation(s)
- Bernhard Rosengarten
- Department of Neurology, Justus-Liebig University Giessen, Am Steg 14, D-35392 Giessen, Germany
| | | | | |
Collapse
|
206
|
Uribe-Querol E, Martínez-Martínez E, Tapia-Rodríguez M, Hernández LR, Toscano-Márquez B, Padilla P, Gutiérrez-Ospina G. Metabolic indices shift in the hypothalamic-neurohypophysial system during lactation: implications for interpreting their relationship with neuronal activity. Neuroscience 2005; 134:1217-22. [PMID: 16054766 DOI: 10.1016/j.neuroscience.2005.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/11/2005] [Accepted: 05/12/2005] [Indexed: 11/28/2022]
Abstract
Metabolic indices of neuronal activity are thought to predict changes in the frequency of action potentials. There are stimuli that do not shift action potential frequency but change the temporal organization of neuronal firing following modifications of excitatory inputs by inhibitory synaptic activation. To our knowledge it is unknown whether this kind of stimulus associates with adjustments of metabolic markers of neuronal activity. Here, we used the hypothalamic-neurohypophysial system of lactating rats to address whether shifts in the temporal organization of neuronal firing relate with modifications of metabolic markers of neuronal activity. Cytochrome oxidase activity, (3)H-2-deoxyglucose uptake, and the area occupied by blood vessels increased in the paraventricular nucleus and neurohypophysis of lactating rats, as compared with their virgin counterparts. Taken together, these results suggest that metabolic demands denote shifts in the temporal organization of action potentials related with the adjustment of excitatory synaptic activation, and support that changes in metabolic markers do not necessarily reflect shifts in the frequency of action potentials.
Collapse
Affiliation(s)
- E Uribe-Querol
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
| | | | | | | | | | | | | |
Collapse
|
207
|
Moulin-Sallanon M, Millet P, Rousset C, Zimmer L, Debilly G, Petit JM, Cespuglio R, Magistretti P, Ibáñez V. Chloramphenicol decreases brain glucose utilization and modifies the sleep-wake cycle architecture in rats. J Neurochem 2005; 93:1623-32. [PMID: 15935079 DOI: 10.1111/j.1471-4159.2005.03167.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the effects of chloramphenicol on brain glucose utilization and sleep-wake cycles in rat. After slightly anaesthetized animals were injected with [18F]fluoro-2-deoxy-D-glucose, we acquired time-concentration curves from three radiosensitive beta microprobes inserted into the right and left frontal cortices and the cerebellum, and applied a three-compartment model to calculate the cerebral metabolic rates for glucose. The sleep-wake cycle architecture was analysed in anaesthetic-free rats by recording electroencephalographic and electromyographic signals. Although chloramphenicol is a well-established inhibitor of oxidative phosphorylation, no compensatory increase in glucose utilization was detected in frontal cortex. Instead, chloramphenicol induced a significant 23% decrease in the regional cerebral metabolic rate for glucose. Such a metabolic response indicates a potential mismatch between energy supply and neuronal activity induced by chloramphenicol administration. Regarding sleep-wake states, chloramphenicol treatment was followed by a 64% increase in waking, a 20% decrease in slow-wave sleep, and a marked 59% loss in paradoxical sleep. Spectral analysis of the electroencephalogram indicates that chloramphenicol induces long-lasting modifications of delta-band power during slow-wave sleep.
Collapse
|
208
|
Bhattacharjee AK, Chang L, Lee HJ, Bazinet RP, Seemann R, Rapoport SI. D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology (Berl) 2005; 180:735-42. [PMID: 16163535 DOI: 10.1007/s00213-005-2208-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Signal transduction involving the activation of phospholipase A2 (PLA2) to release arachidonic acid (AA) from membrane phospholipids, when coupled to dopamine D1- and D2-type receptors, can be imaged in rats having a chronic unilateral lesion of the substantia nigra. It is not known, however, if the signaling responses occur in the absence of a lesion. To determine this, we used our in vivo fatty acid method to measure signaling in response to D1 and D2 receptor agonists given acutely to unanesthetized rats. METHODS [1-(14)C]AA was injected intravenously in unanesthetized rats, and incorporation coefficients k* for AA (brain radioactivity/integrated plasma radioactivity) were measured using quantitative autoradiography in 61 brain regions. The animals were administered i.v. the D2 receptor agonist, quinpirole (1 mg kg(-1), i.v.), the D1 receptor agonist SKF-38393 (5 mg kg(-1), i.v.), or vehicle/saline. RESULTS Quinpirole increased k* significantly in multiple brain regions rich in D2-type receptors, whereas SKF-38393 did not change k* significantly in any of the 61 regions examined. CONCLUSIONS In the intact rat brain, D2 but not D1 receptors are coupled to the activation of PLA2 and the release of AA.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S128, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Velísková J, Miller AM, Nunes ML, Brown LL. Regional neural activity within the substantia nigra during peri-ictal flurothyl generalized seizure stages. Neurobiol Dis 2005; 20:752-9. [PMID: 15950481 PMCID: PMC1578684 DOI: 10.1016/j.nbd.2005.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 11/17/2022] Open
Abstract
Structures responsible for the onset, propagation, and cessation of generalized seizures are not known. Lesion and microinfusion studies suggest that the substantia nigra pars reticulata (SNR) seizure-controlling network could play a key role. However, the expression of neural activity within the SNR and its targets during discrete pre- and postictal periods has not been investigated. In rats, we used flurothyl to induce generalized seizures over a controlled time period and 2-deoxyglucose autoradiography mapping technique. Changes in neural activity within the SNR were region-specific. The SNRposterior was selectively active during the pre-clonic period and may represent an early gateway to seizure propagation. The SNRanterior and superior colliculus changed their activity during progression to tonic-clonic seizure, suggesting the involvement in coordinated regional activity that results in inhibitory effects on seizures. The postictal suppression state was correlated with changes in the SNR projection targets, specifically the pedunculopontine tegmental nucleus and superior colliculus.
Collapse
Affiliation(s)
- Jana Velísková
- Department of Neurology, Albert Einstein College of Medicine, AECOM, K314, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
210
|
Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:1064-75. [PMID: 15812572 DOI: 10.1038/sj.npp.1300671] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the effect of lithium chloride on dopaminergic neurotransmission via D2-like receptors coupled to phospholipase A2 (PLA2). In unanesthetized rats injected i.v. with radiolabeled arachidonic acid (AA, 20:4 n-6), regional PLA2 activation was imaged by measuring regional incorporation coefficients k* of AA (brain radioactivity divided by integrated plasma radioactivity) using quantitative autoradiography, following administration of the D2-like receptor agonist, quinpirole. In rats fed a control diet, quinpirole at 1 mg/kg i.v. increased k* for AA significantly in 17 regions with high densities of D2-like receptors, of 61 regions examined. Increases in k* were found in the prefrontal cortex, frontal cortex, accumbens nucleus, caudate-putamen, substantia nigra, and ventral tegmental area. Quinpirole, 0.25 mg/kg i.v. enhanced k* significantly only in the caudate-putamen. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, neither 0.25 mg/kg nor 1 mg/kg quinpirole increased k* significantly in any region. Orofacial movements following quinpirole were modified but not abolished by LiCl feeding. The results suggest that downregulation by lithium of D2-like receptor signaling involving PLA2 and AA may contribute to lithium's therapeutic efficacy in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
211
|
Aron A, Fisher H, Mashek DJ, Strong G, Li H, Brown LL. Reward, motivation, and emotion systems associated with early-stage intense romantic love. J Neurophysiol 2005; 94:327-37. [PMID: 15928068 DOI: 10.1152/jn.00838.2004] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Early-stage romantic love can induce euphoria, is a cross-cultural phenomenon, and is possibly a developed form of a mammalian drive to pursue preferred mates. It has an important influence on social behaviors that have reproductive and genetic consequences. To determine which reward and motivation systems may be involved, we used functional magnetic resonance imaging and studied 10 women and 7 men who were intensely "in love" from 1 to 17 mo. Participants alternately viewed a photograph of their beloved and a photograph of a familiar individual, interspersed with a distraction-attention task. Group activation specific to the beloved under the two control conditions occurred in dopamine-rich areas associated with mammalian reward and motivation, namely the right ventral tegmental area and the right postero-dorsal body and medial caudate nucleus. Activation in the left ventral tegmental area was correlated with facial attractiveness scores. Activation in the right anteromedial caudate was correlated with questionnaire scores that quantified intensity of romantic passion. In the left insula-putamen-globus pallidus, activation correlated with trait affect intensity. The results suggest that romantic love uses subcortical reward and motivation systems to focus on a specific individual, that limbic cortical regions process individual emotion factors, and that there is localization heterogeneity for reward functions in the human brain.
Collapse
Affiliation(s)
- Arthur Aron
- Department of Psychology, State University of New York at Stony Brook, USA
| | | | | | | | | | | |
Collapse
|
212
|
Porras OH, Loaiza A, Barros LF. Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci 2005; 24:9669-73. [PMID: 15509754 PMCID: PMC6730152 DOI: 10.1523/jneurosci.1882-04.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although it is known that brain activity is fueled by glucose, the identity of the cell type that preferentially metabolizes the sugar remains elusive. To address this question, glucose uptake was studied simultaneously in cultured hippocampal neurons and neighboring astrocytes using a real-time assay based on confocal epifluorescence microscopy and fluorescent glucose analogs. Glutamate, although stimulating glucose transport in astrocytes, strongly inhibited glucose transport in neurons, producing in few seconds a 12-fold increase in the ratio of astrocytic-to-neuronal uptake rate. Neuronal transport inhibition was reversible on removal of the neurotransmitter and displayed an IC50 of 5 microm, suggesting its occurrence at physiological glutamate concentrations. The phenomenon was abolished by CNQX and mimicked by AMPA, demonstrating a role for the cognate subset of ionotropic glutamate receptors. Transport inhibition required extracellular sodium and calcium and was mimicked by veratridine but not by membrane depolarization with high K+ or by calcium overloading with ionomycin. Therefore, glutamate inhibits glucose transport via AMPA receptor-mediated sodium entry, whereas calcium entry plays a permissive role. This phenomenon suggests that glutamate redistributes glucose toward astrocytes and away from neurons and represents a novel molecular mechanism that may be important for functional imaging of the brain using positron emission tomography.
Collapse
Affiliation(s)
- Omar H Porras
- Centro de Estudios Científicos, Casilla 1469, Valdivia, Chile
| | | | | |
Collapse
|
213
|
Abstract
Neuronal activity is fueled by glucose metabolism, a phenomenon exploited in basic research and clinical diagnosis using fluorodeoxyglucose positron emission tomography (FDG-PET). According to the current view, glucose transport into the brain is not rate-limiting; thus, it cannot exert control over metabolism. This article challenges such a view by showing that basal transport hovers near its maximum, making metabolic activation unable to increase flux on its own. In the light of recent evidence on the identity of the cell type that preferentially breaks down glucose, we suggest that FDG-PET reports the synergistic activation of glucose transport and metabolism in astrocytes, rather than in neurons.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos CECS, Arturo Prat 514, Casilla 1469, Valdivia, Chile.
| | | | | |
Collapse
|
214
|
Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI. Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:461-72. [PMID: 15562295 DOI: 10.1038/sj.npp.1300611] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of chronic lithium administration on regional brain incorporation coefficients k* of arachidonic acid (AA), a marker of phospholipase A2 (PLA2) activation, were determined in unanesthetized rats administered i.p. saline or 1 mg/kg i.p. (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), a 5-HT2A/2C receptor agonist. After injecting [1-(14)C]AA intravenously, k* (brain radioactivity/integrated plasma radioactivity) was measured in each of 94 brain regions by quantitative autoradiography. Studies were performed in rats fed a LiCl or a control diet for 6 weeks. In the control diet rats, DOI significantly increased k* in widespread brain areas containing 5-HT2A/2C receptors. In the LiCl-fed rats, the significant positive k* response to DOI did not differ from that in control diet rats in most brain regions, except in auditory and visual areas, where the response was absent. LiCl did not change the head turning response to DOI seen in control rats. In summary, LiCl feeding blocked PLA2-mediated signal involving AA in response to DOI in visual and auditory regions, but not generally elsewhere. These selective effects may be related to lithium's therapeutic efficacy in patients with bipolar disorder, particularly its ability to ameliorate hallucinations in that disease.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
215
|
Abstract
A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.
Collapse
Affiliation(s)
- Martin Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| |
Collapse
|
216
|
Mosconi L, Herholz K, Prohovnik I, Nacmias B, De Cristofaro MTR, Fayyaz M, Bracco L, Sorbi S, Pupi A. Metabolic interaction between ApoE genotype and onset age in Alzheimer's disease: implications for brain reserve. J Neurol Neurosurg Psychiatry 2005; 76:15-23. [PMID: 15607989 PMCID: PMC1739315 DOI: 10.1136/jnnp.2003.030882] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Clinically apparent Alzheimer's disease (AD) is thought to result when brain tissue damage exceeds a critical threshold of "brain reserve", a process possibly accelerated by the apolipoprotein E (ApoE) E4 allele. The interaction between onset age and ApoE genotype was investigated to assess whether early disease onset (<65 years) in patients carrying the E4 allele is associated with greater cerebral metabolic (regional cerebral metabolic rate of glucose utilisation, rCMRgl) reduction. METHODS AD patients, divided into early (EOAD; 27 patients) and late onset (LOAD; 65 patients) groups, both groups balanced as to the number of E4 carriers (E4+) and non-carriers (E4-), and matched controls (NC; 35 cases) underwent (18)F-FDG PET ([(18)F]fluorodeoxyglucose positron emission tomography) scanning. SPM'99 software was used to compare AD patients to NC and to perform a two way ANOVA with onset age and ApoE genotype as grouping factors. Results were considered significant at p<0.001, uncorrected. RESULTS AD patients demonstrated rCMRgl reductions compared to NC, with rCMRgl lower in association cortex and relatively higher in limbic areas in EOAD compared to LOAD subjects. rCMRgl was lower in the anterior cingulate and frontal cortex for E4+ compared to E4- subjects. A significant onset age by ApoE interaction was detected in the hippocampi and basal frontal cortex, with EOAD E4+ subjects having the greatest rCMRgl reduction. CONCLUSIONS The interactive effects of early onset age, possibly reflecting lower brain reserve, and ApoE E4 allele, possibly leading to greater tissue damage, lead to reduced tolerance to the pathophysiological effects of AD in key brain regions.
Collapse
Affiliation(s)
- L Mosconi
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, viale Morgagni 85, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Rilling JK, Winslow JT, Kilts CD. The neural correlates of mate competition in dominant male rhesus macaques. Biol Psychiatry 2004; 56:364-75. [PMID: 15336519 DOI: 10.1016/j.biopsych.2004.06.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 04/06/2004] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Male sexual jealousy provoked by threatened exclusive access to a female mate is a frequently reported motive in cases involving spousal abuse. Dominant male rhesus macaques also respond aggressively to threats to mating exclusivity. METHODS Nine dominant male monkeys were injected with [(18)F]-fluorodeoxyglucose ([(18)F]-FDG) and then exposed to one of two conditions: a "challenge" condition in which they witnessed a potential sexual interaction between their female consort and a rival male, and a control condition in which the consort was present without the rival male. After the brain uptake period for [(18)F]-FDG, dominant males were sedated, blood samples were drawn, and regional cerebral glucose metabolism was measured with positron emission tomographic imaging. RESULTS Males that showed larger increases in plasma testosterone in the challenge condition showed more aggression and greater activation in the central gray matter of the midbrain, a brain area rich in androgen receptors. The challenge condition was associated with activation in both right superior temporal sulcus and right amygdala, which might relate to increased social vigilance and anxiety, respectively. CONCLUSIONS Sexual jealousy in male humans is also often accompanied by vigilance behavior and anxiety and might recruit a similar neural network to that described here.
Collapse
Affiliation(s)
- James K Rilling
- Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
218
|
Thomsen K, Offenhauser N, Lauritzen M. Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum. J Physiol 2004; 560:181-9. [PMID: 15272036 PMCID: PMC1665203 DOI: 10.1113/jphysiol.2004.068072] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuronal activity, cerebral blood flow, and metabolic responses are all strongly coupled, although the mechanisms behind the coupling remain unclear. One of the key questions is whether or not increases in spiking activity in the stimulated neurons are sufficient to drive the activity-dependent rises in cerebral blood flow (CBF) that form the basis of the signals used in functional neuroimaging such as the blood oxygen level-dependent (BOLD) signal. To this end the present study examined the effect of enhanced spike activity per se on CBF in rat cerebellar cortex under conditions of disinhibition, achieved by blocking GABA(A) receptors using either bicuculline or picrotoxin. Purkinje cell spiking activity and local field potentials were recorded by glass microelectrodes, and laser Doppler flowmetry was used to monitor CBF. Disinhibition increased Purkinje cell spiking rate to 200-300% of control without incurring any increase in basal CBF. This demonstrates that increased spike activity per se is not sufficient to affect basal CBF. The neurovascular coupling between excitatory synaptic activity and CBF responses evoked by inferior olive (climbing fibre) stimulation was preserved during disinhibition. Thus, the unchanged basal CBF in the presence of the dramatic rise in Purkinje cell spiking rate was not explained by impaired synaptic activity-CBF coupling. On the basis of our previous and the present studies, we conclude that increased spiking activity of principal neurons is neither sufficient nor necessary to elicit CBF responses and in turn BOLD signals, and that activation-dependent vascular signals reflect excitatory synaptic activity.
Collapse
Affiliation(s)
- Kirsten Thomsen
- Department of Medical Physiology, Panum Institute 12.5, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
219
|
Vafaee MS, Gjedde A. Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage 2004; 21:507-15. [PMID: 14980553 DOI: 10.1016/j.neuroimage.2003.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 09/08/2003] [Accepted: 10/03/2003] [Indexed: 11/28/2022] Open
Abstract
The relationships among cerebral blood flow (CBF), oxygen consumption (CMRO(2)) and glucose use (CMR(glc)) constitute the basis of functional brain-imaging. Here we report spatially dissociated changes of CMRO(2) and CBF during motor activity that lead us to propose a revision of conventional CBF-CMRO(2) coupling models. In the left primary and supplementary motor cortices, CBF and CMRO(2) rose significantly during finger-thumb tapping. However, in the right putamen CBF did not rise, despite a significant increase in CMRO(2). We explain these observations by invoking a central command mechanism that regulates CBF in the putamen in anticipation of movement. By this mechanism, CBF rose in the putamen before the measurements of CBF and CMRO(2) while CMRO(2) rose when actual motion commenced.
Collapse
Affiliation(s)
- Manouchehr S Vafaee
- Center of Functionally Integrative Neuroscience, University of Aarhus, and PET Center, Aarhus University Hospitals, Aarhus, Denmark.
| | | |
Collapse
|
220
|
Tieman SB, Möllers S, Tieman DG, White J. The blood supply of the cat's visual cortex and its postnatal development. Brain Res 2004; 998:100-12. [PMID: 14725973 DOI: 10.1016/j.brainres.2003.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We examined the blood supply of the cat's visual cortex using alkaline phosphatase histochemistry to demonstrate the capillary endothelial cells. In the adult, layer 4 is marked by a band that is of obviously greater density, extends throughout areas 17 and 18, and ends abruptly at the 18/19 border. We quantified blood vessel density in area 17, observing a 23% greater density in layer 4 than in supragranular and infragranular layers. This difference reflects a laminar difference in metabolic rate. In three animals studied using the metabolic marker 2-deoxyglucose, layer 4 was 25% denser than the other layers. The band of greater density in layer 4 is not present in newborn kittens, but becomes apparent at about 5 weeks of age. Early in development, the endothelial cells form filopodia as the capillaries grow and branch. The density of blood vessels decreases slightly during the first week of postnatal life, but increases between 1 and 6 weeks of age, so that by 6 weeks, the blood supply of the visual cortex resembles that seen in the adult. This pattern resembles that of cortical metabolism seen with 2-deoxyglucose [J. Cereb. Blood Flow Metab. 11 (1991) 35], but the increase in vascular density precedes that in glucose metabolism.
Collapse
Affiliation(s)
- Suzannah Bliss Tieman
- Center for Neuroscience Research and Department of Biological Sciences, The University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
221
|
Mitchum RD, Kiyatkin EA. Brain hyperthermia and temperature fluctuations during sexual interaction in female rats. Brain Res 2004; 1000:110-22. [PMID: 15053959 DOI: 10.1016/j.brainres.2003.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/21/2022]
Abstract
Since the metabolic activity of neural cells is accompanied by heat release, brain temperature monitoring provides insight into behavior-associated changes in neural activity. In the present study, local temperatures were continuously recorded in several brain structures (nucleus accumbens, medial-preoptic hypothalamus and hippocampus) and a non-locomotor head muscle (musculus temporalis) in a receptive female rat during sexually arousing stimulation and subsequent copulatory behavior with an experienced male. Placement of the male into a neighboring compartment increased the female's temperature (approximately 0.8 degrees C) and additional, transient increases (approximately 0.2 degrees C) occurred when the rats were allowed to see and smell each other through a transparent barrier. Temperatures gradually increased further as the male repeatedly mounted and achieved intromissions, peaked 2-3 min after male's ejaculation (0.2-0.4 degrees C), and abruptly dropped until the male initiated a new copulatory cycle. Similar biphasic fluctuations accompanied subsequent copulatory cycles. Although both arousal-related temperature increases and biphasic fluctuations associated with copulatory cycles were evident in each recording location, brain sites showed consistently faster and stronger increases than the muscle, suggesting metabolic brain activation as the primary source of brain temperature fluctuations and a force behind associated changes in brain temperature. Robust brain hyperthermia and the generally similar pattern of phasic temperature fluctuations associated with individual events of sexual interaction found in males and females suggest widespread neural activation (motivational arousal) as a driving force underlying this cooperative motivated behavior in animals of both sexes. Females, however, showed different temperature changes in association with the initial (first mount or intromission) and final (ejaculation) events of each copulatory cycle, suggesting sex-specific differences in neural activity associated with the initiation and regulation of sexual behavior.
Collapse
Affiliation(s)
- Robert D Mitchum
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
222
|
Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2004; 20:1894-8. [PMID: 14642499 DOI: 10.1016/j.neuroimage.2003.07.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is classically recognized that regional cerebral glucose consumption (CMRglc), as measured by positron emission tomography (PET) and [18F]-2-fluorodeoxyglucose (FDG), is a precise index of the integrated local neuronal activity. However, despite extensive use of the FDG-PET method, the significance of the measured CMRglc has been little addressed so far. In the present study, we aimed for the first time to test whether resting-state CMRglc is directly related to synaptic density. To this end, we investigated in the baboon the relationships between CMR(glc) and the levels of synaptophysin (SY), a presynaptic protein classically used to assess synaptic density. CMR(glc), measured in vivo by FDG-PET at the resting-state, and SY levels, assessed postmortem by the Western blot technique, were quantified in seven brain areas of five baboons. By applying these two techniques to the same animals, we found significant positive correlations between CMR(glc) and SY levels, across all regions and all animals, as well as within individual baboons. These findings strongly support the hypothesis that resting-state CMR(glc) reflects integrated synaptic activity.
Collapse
|
223
|
Histopathology of Cerebral Ischemia. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
224
|
Chih CP, Roberts EL. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 2003; 23:1263-81. [PMID: 14600433 DOI: 10.1097/01.wcb.0000081369.51727.6f] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucose had long been thought to fuel oxidative metabolism in active neurons until the recently proposed astrocyte-neuron lactate shuttle hypothesis (ANLSH) challenged this view. According to the ANLSH, activity-induced uptake of glucose takes place predominantly in astrocytes, which metabolize glucose anaerobically. Lactate produced from anaerobic glycolysis in astrocytes is then released from astrocytes and provides the primary metabolic fuel for neurons. The conventional hypothesis asserts that glucose is the primary substrate for both neurons and astrocytes during neural activity and that lactate produced during activity is removed mainly after neural activity. The conventional hypothesis does not assign any particular fraction of glucose metabolism to the aerobic or anaerobic pathways. In this review, the authors discuss the theoretical background and critically review the experimental evidence regarding these two hypotheses. The authors conclude that the experimental evidence for the ANLSH is weak, and that existing evidence and theoretical considerations support the conventional hypothesis.
Collapse
Affiliation(s)
- Ching-Ping Chih
- Geriatric Research, Education, and Clinical Center, and Research Office, Miami VA Medical Center, Miami, Florida, USA
| | | |
Collapse
|
225
|
Cooper M, Metz J. Positron emission tomography in central nervous system drug discovery and development. Neuroimaging Clin N Am 2003; 13:851-6, xi. [PMID: 15024966 DOI: 10.1016/s1052-5149(03)00095-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetics, neuroscience, and imaging science have advanced greatly in the last few years. These advances can be brought together and applied in creative new ways to make available better drugs for treating neuropsychiatric disorders and for getting candidate drugs through the development process faster. One particular approach, built around [18F]fluordeoxyglucose positron emission tomography, is described.
Collapse
Affiliation(s)
- Malcolm Cooper
- Department of Radiology, University of Chicago, 2843 West Rascher, Chicago, IL 60625, USA
| | | |
Collapse
|
226
|
Esaki T, Suzuki H, Cook M, Shimoji K, Cheng SY, Sokoloff L, Nunez J. Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology 2003; 144:4117-22. [PMID: 12933686 DOI: 10.1210/en.2003-0414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neonatal hypothyroidism impairs structural maturation in the brain and results in diminished electrical activities and energy metabolism. We recently found that glucose utilization (CMR(glc)) is markedly depressed throughout the brain in mice with targeted mutations in thyroid hormone receptor alpha1 (TR alpha 1), but not TR beta. Previous studies had shown that CMR(glc) increases linearly with spike frequency in the afferent pathways to synapse-rich regions in neuropil, but not in neuronal cell bodies. To determine whether the decreased CMR(glc) in mutant TR alpha 1(PV/+) mice reflected lesser synaptic density or reduced functional activity in existing synapses, we stimulated vibrissae unilaterally and measured CMR(glc) bilaterally in four stations of the whisker-to-barrel cortex pathway. Baseline CMR(glc) (unstimulated side) was markedly lower in all four stations in the TR alpha 1(PV/+) mutants than in wild-type controls, even though Northern blot and immunohistochemical examinations showed normal Na(+),K(+)-adenosine triphosphatase expression and neuronal differentiation. Despite the lower baseline CMR(glc), however, vibrissal stimulation evoked percent increases in CMR(glc) in the TR alpha 1(PV/+) mutants that were as great as those in wild-type mice. These results indicate that in the TR alpha 1(PV/+) mutants there it is a reduction in synaptic density that is responsible for the decrease in CMR(glc), but functionality of existing synapses is retained.
Collapse
Affiliation(s)
- Takanori Esaki
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MAryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 2003. [PMID: 12917367 DOI: 10.1523/jneurosci.23-19-07337.2003] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate stimulates glycolysis in astrocytes, a phenomenon that couples astrocytic metabolism with neuronal activity. However, it is not known whether glutamate also affects glucose transporter-1 (GLUT1), the transporter responsible for glucose entry into astrocytes. To address this question, two different real-time single-cell hexose uptake assays were applied to cultured hippocampal astrocytes using confocal epifluorescence microscopy. Glutamate caused a twofold to threefold increase in the zero-trans uptake rates of the fluorescent hexoses 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) and 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG). Galactose uptake, determined by the calcein volumetric assay, was stimulated to a similar extent, confirming the fluorescent hexose data, and also demonstrating that glutamate stimulation is a Vmax effect. Remarkably, glucose transport stimulation developed fully inside 10 sec, which is 100 times faster than acute stimulations of glucose transport in other cell types. Glutamate did not significantly affect the rate of 6-NBDG uptake by GLUT1-expressing epithelial Clone 9 cells, suggesting that an astrocyte-specific factor is required for transport stimulation. We conclude that glucose transport stimulation occurs early during astrocytic activation by glutamate, which provides a novel regulatory node to current models of brain energy metabolism. This mechanism should also be considered for the interpretation of functional imaging data based on hexoses.
Collapse
|
228
|
Qu Y, Chang L, Klaff J, Seemann R, Rapoport SI. Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology 2003; 28:1219-26. [PMID: 12784122 DOI: 10.1038/sj.npp.1300177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluoxetine, a selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor, is used widely to treat depression and related disorders. By inhibiting presynaptic 5-HT reuptake, fluoxetine is thought to act by increasing 5-HT in the synaptic cleft, thus 5-HT binding to postsynaptic 5-HT(2A/2C) receptors. These receptors can be coupled via a G-protein to phospholipase A(2) (PLA(2)), which when activated releases the second messenger arachidonic acid from synaptic membrane phospholipids. To image this activation, fluoxetine (10 mg/kg) or saline vehicle was administered i.p. to unanesthetized rats, and regional brain incorporation coefficients k(*) of intravenously injected radiolabeled arachidonic acid were measured after 30 min. Compared with vehicle, fluoxetine significantly increased k(*) in prefrontal, motor, somatosensory, and olfactory cortex, as well as in the basal ganglia, hippocampus, and thalamus. Many of these regions demonstrate high densities of the serotonin reuptake transporter and of 5-HT(2A/2C) receptors. Brain stem, spinal cord, and cerebellum, which showed no significant response to fluoxetine, have low densities of the transporters and receptors. The results show that it is possible to image quantitatively PLA(2)-mediated signal transduction in vivo in response to fluoxetine.
Collapse
Affiliation(s)
- Ying Qu
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
229
|
|
230
|
Rothman DL, Behar KL, Hyder F, Shulman RG. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 2003; 65:401-27. [PMID: 12524459 DOI: 10.1146/annurev.physiol.65.092101.142131] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until very recently, non-invasive measurement of the glutamate-glutamine cycle in the intact mammalian brain had not been possible. In this review, we describe some studies that have led to quantitative assessment of the glutamate-glutamine cycle (Vcyc), as well as other important metabolic fluxes (e.g., glucose oxidation, CMRglc(ox)), with (13)C magnetic resonance spectroscopy (MRS) in vivo. These (13)C MRS studies clearly demonstrate that glutamate released from presynaptic neurons is taken up by the astrocyte for subsequent glutamine synthesis. Contrary to the earlier concept of a small, metabolically inactive neurotransmitter pool, in vivo (13)C MRS studies demonstrate that glutamate release and recycling is a major metabolic pathway that cannot be distinguished from its actions of neurotransmission. Furthermore, the in vivo (13)C MRS studies demonstrate in the rat cerebral cortex that increases in Vcyc and neuronal CMRglc(ox) are linearly related with a close to 1:1 slope. Measurements in human cerebral cortex are in agreement with this result. This relationship is consistent with more than two thirds of the energy yielded by glucose oxidation being used to support events associated with glutamate neurotransmission, and it supports a molecular model of a stoichiometric coupling between glutamate neurotransmission and functional glucose oxidation. (13)C MRS measurements of resting human cerebral cortex have found a high level of glutamate-glutamine cycling. This high resting neuronal activity, which is subtracted away in brain mapping studies by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has significant implications for the interpretations of functional imaging data. Here we review and discuss the importance of neurotransmission and neuroenergetics as measured by (13)C MRS for understanding brain function and interpreting fMRI.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Center for Research in Metabolism and Physiology, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | |
Collapse
|
231
|
Qu Y, Chang L, Klaff J, Balbo A, Rapoport SI. Imaging brain phospholipase A2 activation in awake rats in response to the 5-HT2A/2C agonist (+/-)2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI). Neuropsychopharmacology 2003; 28:244-52. [PMID: 12589377 DOI: 10.1038/sj.npp.1300022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Incorporation coefficients k(*) of intravenously injected [(3)H]arachidonic acid from blood into brain reflect the release from phospholipids of arachidonic acid by receptor-initiated activation of phospholipase A(2) (PLA(2)). In unanesthetized adult rats, 2.5 mg/kg intraperitoneally (i.p.) (+/-)2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI), which is a 5-HT(2A/2C) receptor agonist, has been reported to produce the behavioral changes of what is known as the 5-HT(2) syndrome, but only a few small regional decrements in brain glucose metabolism. In this study, 2.5 mg/kg i.p. DOI, when administered to unanesthetized rats, produced widespread and significant increases, of the order of 60%, in k(*) for arachidonate, particularly in neocortical brain regions reported to have high densities of 5-HT(2A) receptors. The increases could be entirely blocked by chronic pretreatment with mianserin, a 5-HT(2) receptor antagonist. The results suggest that the 5-HT(2) syndrome involves widespread brain activation of PLA(2) via 5-HT(2A) receptors, leading to the release of the second messenger, arachidonic acid. Chronic mianserin, a 5-HT(2) antagonist, prevents this activation.
Collapse
Affiliation(s)
- Ying Qu
- Brain Physiology and Metabolism Section, National Institute of Aging, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
232
|
Rapoport SI. Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease. Neurotox Res 2003; 5:385-98. [PMID: 14715441 DOI: 10.1007/bf03033167] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vivo, post-mortem and biopsy data suggest that coupled declines occur in brain synaptic activity and brain energy consumption during the evolution of Alzheimer disease. In the first stage of these declines, changes in synaptic structure and function reduce neuronal energy demand and lead to potentially reversible downregulation of oxidative phosphorylation (OXPHOS) within neuronal mitochondria. At this stage, measuring brain glucose metabolism or brain blood flow in patients, using positron emission tomography (PET), shows that the brain can be almost normally activated in response to stimulation. Thus, therapy at this stage should be designed to re-establish synaptic integrity or prevent its further deterioration. As disease progresses, neurofibrillary tangles with abnormally phosphorylated tau protein accumulate within neuronal cytoplasm, to the point that they co-opt the nonphosphorylated tau necessary for axonal transport of mitochondria between the cell nucleus and the synapse. In this second stage, severe energy depletion and other pathological processes associated with irreversibly downregulated OXPHOS lead to cell death, and the brain cannot normally respond to functional stimulation.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Sections, Bldg. 10, Rm. 6N202, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
233
|
Abstract
Plasticity includes the brain's capacity to be shaped or moulded by experience, the capacity to learn and remember, and the ability to reorganize and recover after injury. Mechanisms for plasticity include activity-dependent refinement of neuronal connections and synaptic plasticity as a substrate for learning and memory. The molecular mechanisms for these processes utilize signalling cascades that relay messages from synaptic receptors to the nucleus and the cytoskeleton to control the structure of axons and dendrites. Several paediatric neurological disorders such as neurofibromatosis-1, Fragile X syndrome, Rett syndrome, and other syndromic and non-specific forms of mental retardation involve lesions in these signalling pathways. Acquired disorders such as hypoxic-ischaemic encephalopathy, lead poisoning and epilepsy also involve signalling pathways including excitatory glutamate receptors. Information about these 'plasticity pathways' is useful for understanding their pathophysiology and potential therapy.
Collapse
Affiliation(s)
- Michael V Johnston
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
234
|
Gibbs ME, Summers RJ. Effects of glucose and 2-deoxyglucose on memory formation in the chick: interaction with beta(3)-adrenoceptor agonists. Neuroscience 2002; 114:69-79. [PMID: 12207955 DOI: 10.1016/s0306-4522(02)00229-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Consolidation of a weakly reinforced memory that would otherwise fade after 30 min can be achieved by central or peripheral injection of the selective beta(3)-adrenoceptor agonist CL316243 as well as the beta(2)-adrenoceptor agonist zinterol and the alpha(1)-adrenoceptor antagonist prazosin in the day-old chick. The effect of the beta(3)-adrenoceptor agonist is mimicked by peripheral or central injection of glucose that is effective in enhancing memory from 25 min before to 25 min after training. Glucose uptake into various cell types has been described following activation of beta(3)-adrenoceptors and in this paper we demonstrate that activation of beta(3)-adrenoceptors by CL316243 facilitates the effect of a dose of glucose that does not normally enhance memory, whereas a beta(2)-adrenoceptor agonist and an alpha(1)-adrenoceptor antagonist have no effect. Administration of the glucose uptake inhibitor 2-deoxyglucose prevented the consolidation of strongly reinforced training. The beta(3)-adrenoceptor agonist facilitated the effect of a non-amnestic dose of 2-deoxyglucose to inhibit memory. There are two time periods relative to the learning trial where memory is vulnerable to interference by centrally administered 2-deoxyglucose: one related to short-term memory and one at the time of consolidation into long-term memory. Peripheral injection of 2-deoxyglucose is only effective at the time of consolidation. The action of the beta(3)-adrenoceptor agonist to facilitate the action of 2-deoxyglucose only occurs at the time of consolidation. We suggest that a noradrenergic agonist acting at beta(3)-adrenoceptors enhances memory formation by facilitation of glucose uptake at the time of memory consolidation. This may represent a novel mechanism that would be beneficial for developing compounds for the facilitation of memory in diseases with cognitive deficits.
Collapse
Affiliation(s)
- M E Gibbs
- Department of Pharmacology, P.O. Box 13E, Monash University, Clayton, Vic 3800, Australia.
| | | |
Collapse
|
235
|
Martín-Cora FJ, Fornal CA, Metzler CW, Jacobs BL. Insulin-induced hypoglycemia decreases single-unit activity of serotonergic medullary raphe neurons in freely moving cats: relationship to sympathetic and motor output. Eur J Neurosci 2002; 16:722-34. [PMID: 12270048 DOI: 10.1046/j.1460-9568.2002.02144.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serotonergic single-unit activity during glucoregulatory challenges was studied in the nuclei raphe obscurus (NRO) and raphe pallidus (NRP) of freely moving cats. Systemic insulin administration (2-4 IU/kg, i.v.) suppressed neuronal activity by approximately 40% in direct relationship to blood glucose levels and in inverse relationship to plasma catecholamine levels. NRO and NRP serotonergic neurons displayed a temporary recovery in unit activity in response to i.v. glucose administration (500 mg/kg), which temporarily reversed insulin-induced hypoglycemia. The neuronal responses to insulin and subsequent glucose administration were also directly related to changes in integrated nuchal electromyographic activity. Serotonergic unit activity remained unchanged after glucose loading (500 mg/kg, i.v.), which produced a four-fold increase in blood glucose. Thus, medullary serotonergic neurons appear to be sensitive to reductions, but not increases, in blood glucose. The observed inverse relationship between unit activity and plasma catecholamines does not support a postulated sympathoexcitatory role for these neurons. Instead, the parallel changes in single-unit activity and integrated muscle activity support the hypothesis that the activity of medullary serotonergic neurons is linked to motor output. These neurons may modulate autonomic outflow, but only in relationship to their primary role in motor control. Finally, medullary serotonergic neurons may play a protective role in maintaining glucose homeostasis by disfacilitating the output of the somatomotor system, and hence diminishing muscle energy demands, when peripheral glucose availability is low.
Collapse
|
236
|
Shram N, Netchiporouk L, Cespuglio R. Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states. Eur J Neurosci 2002; 16:461-6. [PMID: 12193189 DOI: 10.1046/j.1460-9568.2002.02081.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical lactate was monitored voltammetrically in freely moving rats equipped with polygraphic electrodes. Differential normal pulse voltammetric measurements were carried out using a lactate biosensor coated with lactate oxidase and cellulose acetate. Changes occurring in lactate level were in keeping with sleep-wake states. During slow wave sleep (SWS), the lactate level decreased significantly (-16.2%) vs. the spontaneous waking state (W) referenced to as 100%. During paradoxical sleep (PS), and still vs. W, it remained low (-9.0%) but this variation was not statistically significant. However, when this PS change was compared to the SWS variation, a significant increase in lactate level was then revealed (+8.5%). Finally, during the active waking (aW) triggered by a water puff stress, lactate level rose significantly in accordance with the animal activity (+53% compared to W). Long-term monitoring also allowed the determination of a circadian component in lactate production, the lowest and highest values being monitored during light and dark periods, respectively. The acrophasis of the circadian change occurred during the dark period, about 3 h after the light-off (+89%). It is suggested that during wakefulness astrocyte metabolism allows the transformation of the blood-borne glucose into lactate. The increase in this substrate observed during PS may fulfil the oxidative phosphorylation in order to supply the important ATP need of PS.
Collapse
Affiliation(s)
- Nataliya Shram
- INSERM Unit 480, Claude Bernard University, 8 av. Rockefeller, 69373 Lyon cedex 08, France
| | | | | |
Collapse
|
237
|
Kiyatkin EA, Brown PL, Wise RA. Brain temperature fluctuation: a reflection of functional neural activation. Eur J Neurosci 2002; 16:164-8. [PMID: 12153543 DOI: 10.1046/j.1460-9568.2002.02066.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although it is known that relatively large increases in local brain temperature can occur during behaviour and in response to various novel, stressful and emotionally arousing environmental stimuli, the source of this heat is not clearly established. To clarify this issue, we monitored the temperature in three brain structures (dorsal and ventral striatum, cerebellum) and in arterial blood at the level of the abdominal aorta in freely moving rats exposed to several environmental challenges ranging from traditional stressors to simple sensory stimuli (cage change, tail pinch, exposure to another male rat, a female rat, a mouse or an unexpected sound). We found that brain temperature was consistently higher than arterial blood temperature, and that brain temperature increased prior to, and to a greater extent than, the increase in blood temperature evoked by each test challenge. Thus, the local metabolic consequences of widely correlated neural activity appear to be the primary source of increases in brain temperature and a driving force behind the associated changes in body temperature.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioural Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
238
|
Abstract
Asphyxia and other insults to the developing brain are responsible for several human neurodevelopmental disorders. The pattern of neonatal brain injury differs from that seen in the adult nervous system, and there are wide differences in regional vulnerability. Recent evidence suggests that two events that contribute to this pattern of selective vulnerability are developmental changes in excitatory glutamate-containing neurotransmitter circuits and the propensity for immature neurons to die by apoptosis rather than necrosis. Developmental up-regulation of NMDA receptors with enhanced function and increased expression of caspase-3 at critical periods in development are linked to these mechanisms. Although these molecular changes enhance the developing brain's capacity for plasticity by helping to prune redundant synapses and neurons, they can become "Achilles heels" in the face of a brain energy crisis.
Collapse
Affiliation(s)
- Michael V Johnston
- Department of Neurology and Pediatrics and Kenedy Kreger Research Institute, John Hopkins University School of Medicine, Baltimore, Maryland 21205,USA.
| | | | | |
Collapse
|
239
|
Johnston MV. Excitotoxicity in neonatal hypoxia. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:229-34. [PMID: 11754516 DOI: 10.1002/mrdd.1032] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) in neonates is a disorder of excessive neuronal excitation that includes seizures, abnormal EEG activity, and delayed failure of oxidative metabolism with elevated levels of lactic acid in the brain. Evidence from experimental models and clinical investigation indicates that HIE is triggered by a profound disruption in the function of glutamate synapses so that re-uptake of glutamate from the synapse is impaired and post-synaptic membranes containing glutamate receptors are depolarized. Severe hypoxemia preferentially depolarizes neuronal membranes, while ischemia probably has greater impact on the activity of glial glutamate re-uptake. Together, severe hypoxia and ischemia trigger a delayed cascade of events that may result in cell death by necrosis and/or apoptosis. Apoptosis is far more prominent in the neonate than in the adult and activation of cysteine proteases such as caspase-3 is a very important pathway in excitotoxic neonatal injury. Understanding the complex molecular networks triggered by an excitotoxic insult in the neonate provides insight into patterns of selective neuronal vulnerability and potential therapeutic strategies.
Collapse
Affiliation(s)
- M V Johnston
- Division of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA.
| |
Collapse
|
240
|
Ibberson M, Riederer BM, Uldry M, Guhl B, Roth J, Thorens B. Immunolocalization of GLUTX1 in the testis and to specific brain areas and vasopressin-containing neurons. Endocrinology 2002; 143:276-84. [PMID: 11751619 DOI: 10.1210/endo.143.1.8587] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.
Collapse
Affiliation(s)
- Mark Ibberson
- Institute of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
241
|
Abstract
There is evidence that the metabolic responses to afferent and efferent nervous activity are dissociated at sites of neuronal excitation in brain. Whether efferent activity follows afferent activity depends on the responsiveness of postsynaptic neurons, which in turn depends on the summation of excitatory and inhibitory postsynaptic potentials. The afferent activity excites the presynaptic terminals and astrocytes, whereas the efferent activity arises from excitation of the dendrites of projection neurons. Measurements in vivo indicate that primary stimulation, elicited by simple stimuli, gives rise to limited increases of energy metabolism associated with afferent activity. Reports show that a major consequence of afferent activity, in addition to the release of excitatory neurotransmitters from presynaptic terminals and the import of glutamate by astrocytes, is the establishment of rates of blood flow commensurate with increased rates of oxidative energy metabolism associated with efferent activity projecting from the site of activation. Increased flow rates overcome the inherent diffusion limitation of oxygen delivery, while increased rates of glycolysis elevate tissue pyruvate contents, to which oxygen consumption rates are matched. In vivo, neurons in the baseline condition sustain no net import of pyruvate or lactate, and the reported changes of metabolism subserving afferent and efferent activity are additive rather than linked by significant additional transfer of pyruvate or lactate from astrocytes. The dissociation of blood flow changes from efferent activity weakens the identification of functional states by changes of blood flow alone. It raises the possibility that uncoupling of flow from oxidative metabolism occurs at sites of low efferent activity, such that dissociations of flow and glycolysis from oxygen consumption signify imbalances of afferent and efferent activity.
Collapse
Affiliation(s)
- Albert Gjedde
- Pathophysiology and Experimental Tomography Center, Aarhus University Hospital, Aarhus University, Denmark 8000
| | | | | |
Collapse
|
242
|
Abstract
The coupling of electrical activity in the brain to changes in cerebral blood flow (CBF) is of interest because hemodynamic changes are used to track brain function. Recent studies, especially those investigating the cerebellar cortex, have shown that the spike rate in the principal target cell of a brain region (i.e. the efferent cell) does not affect vascular response amplitude. Subthreshold integrative synaptic processes trigger changes in the local microcirculation and local glucose consumption. The spatial specificity of the vascular response on the brain surface is limited because of the functional anatomy of the pial vessels. Within the cortex there is a characteristic laminar flow distribution, the largest changes of which are observed at the depth of maximal synaptic activity (i.e. layer IV) for an afferent input system. Under most conditions, increases in CBF are explained by activity in postsynaptic neurons, but presynaptic elements can contribute. Neurotransmitters do not mediate increases in CBF that are triggered by the concerted action of several second messenger molecules. It is important to distinguish between effective synaptic inhibition and deactivation that increase and decrease CBF and glucose consumption, respectively. In summary, hemodynamic changes evoked by neuronal activity depend on the afferent input function (i.e. all aspects of presynaptic and postsynaptic processing), but are totally independent of the efferent function (i.e., the spike rate of the same region). Thus, it is not possible to conclude whether the output level of activity of a region is increased based on brain maps that use blood-flow changes as markers.
Collapse
Affiliation(s)
- M Lauritzen
- Department of Clinical Neurophysiology, Glostrup Hospital and University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
243
|
Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR IN BIOMEDICINE 2001; 14:413-431. [PMID: 11746934 DOI: 10.1002/nbm.733] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret the neurophysiologic basis of blood oxygenation level dependent (BOLD) image-contrast at 7 T in glutamatergic neurons of rat cerebral cortex. Multi-modal MRI and MRS measurements of CMR(O2), CBF, CBV and BOLD signal (both gradient-echo and spin-echo) are used to interpret the neuroenergetic basis of BOLD image-contrast. Since each parameter that can influence the BOLD image-contrast is measured quantitatively and separately, multi-modal measurements of changes in CMR(O2), CBF, CBV, BOLD fMRI signal allow calibration and validation of the BOLD image-contrast. Good agreement between changes in CMR(O2) calculated from BOLD theory and measured by (13)C MRS, reveals that BOLD fMRI signal-changes at 7 T are closely linked with alterations in neuronal glucose oxidation, both for activation and deactivation paradigms. To determine the neurochemical basis of BOLD, pharmacological treatment with lamotrigine, which is a neuronal voltage-dependent Na(+) channel blocker and neurotransmitter glutamate release inhibitor, is used in a rat forepaw stimulation model. Attenuation of the functional changes in CBF and BOLD with lamotrigine reveals that the fMRI signal is associated with release of glutamate from neurons, which is consistent with a link between neurotransmitter cycling and energy metabolism. Comparisons of CMR(O2) and CBF over a wide dynamic range of neuronal activity provide insight into the regulation of energy metabolism and oxygen delivery in the cerebral cortex. The current results reveal the energetic and physiologic components of the BOLD fMRI signal and indicate the required steps towards mapping neuronal activity quantitatively by fMRI at steady-state. Consequences of these results from rat brain for similar calibrated BOLD fMRI studies in the human brain are discussed.
Collapse
Affiliation(s)
- F Hyder
- Department of Diagnostic Radiology, Magnetic Resonance Center for Research in Metabolism and Physiology, Yale University, New Haven, CT 06510, USA.
| | | | | | | | | | | |
Collapse
|
244
|
Shulman RG, Hyder F, Rothman DL. Lactate efflux and the neuroenergetic basis of brain function. NMR IN BIOMEDICINE 2001; 14:389-396. [PMID: 11746930 DOI: 10.1002/nbm.741] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the unstimulated brain energy is primarily supplied by the oxidation of glucose. However the oxygen-to-glucose index (OGI), which is the ratio of metabolic rates of oxygen to glucose, CMR(O2)/CMR(glc), diverges from the theoretical value of 6 as activity is increased. In vivo measurements of brain lactate show its concentration to increase with stimulation. The decreasing OGI with stimulation had led to the suggestion that activation, unlike resting activity, is supported by anaerobic glycolysis. To date a unifying concept that accommodates glucose oxidation at rest with lactate generation and OGI decrease during stimulation of brain is lacking. Furthermore, energetics that change with increasing activity are not consistent with a neuroenergetic model that has been proposed from 1-(13)C-glucose MRS experiments. That model, based upon in vivo MRS measurements and cellular studies by Pellerin and Magistretti, showed that glutamate neurotransmitter cycling was coupled to glucose oxidation over a wide range of brain activities from rest down to deep anesthesia. Here we reconcile these paradoxical observations by suggesting that anaerobic glucose consumption (which can provide energy rapidly) increases with activation to meet the power requirements of millisecond neuronal firing. It is proposed, in accord with our neuroenergetic model, that the extra glucose mobilized rapidly for glial clearance of glutamate, is not needed for the oxidative processes that are responsible for neuronal firing and glutamate release, and consequently it is effluxed as lactate. A stoichiometric relation between OGI and lactate concentration is derived from the neuroenergetic model, showing that the enhanced glucose uptake during activation is consistent with neuronal activity being energetically supported by glucose oxidation.
Collapse
Affiliation(s)
- R G Shulman
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520-8024, USA.
| | | | | |
Collapse
|
245
|
Itoh Y, Esaki T, Kaneshige M, Suzuki H, Cook M, Sokoloff L, Cheng SY, Nunez J. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc Natl Acad Sci U S A 2001; 98:9913-8. [PMID: 11481455 PMCID: PMC55552 DOI: 10.1073/pnas.171319498] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2001] [Indexed: 11/18/2022] Open
Abstract
Brain glucose utilization is markedly depressed in adult rats made cretinous after birth. To ascertain which subtype of thyroid hormone (TH) receptors, TRalpha1 or TRbeta, is involved in the regulation of glucose utilization during brain development, we used the 2-[(14)C]deoxyglucose method in mice with a mutation in either their TRalpha or TRbeta gene. A C insertion produced a frameshift mutation in their carboxyl terminus. These mutants lacked TH binding and transactivation activities and exhibited potent dominant negative activity. Glucose utilization in the homozygous TRbetaPV mutant mice and their wild-type siblings was almost identical in 19 brain regions, whereas it was markedly reduced in all brain regions of the heterozygous TRalpha1PV mice. These suggest that the alpha1 receptor mediates the TH effects in brain. Inasmuch as local cerebral glucose utilization is closely related to local synaptic activity, we also examined which thyroid hormone receptor is involved in the expression of synaptotagmin-related gene 1 (Srg1), a TH-positively regulated gene involved in the formation and function of synapses [Thompson, C. C. (1996) J. Neurosci. 16, 7832-7840]. Northern analysis showed that Srg1 expression was markedly reduced in the cerebellum of TRalpha(PV/+) mice but not TRbeta(PV/PV) mice. These results show that the same receptor, TRalpha1, is involved in the regulation by TH of both glucose utilization and Srg1 expression.
Collapse
Affiliation(s)
- Y Itoh
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4030, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Affiliation(s)
- Peter Herscovitch
- PET Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
247
|
Nakao Y, Itoh Y, Kuang TY, Cook M, Jehle J, Sokoloff L. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci U S A 2001; 98:7593-8. [PMID: 11390971 PMCID: PMC34713 DOI: 10.1073/pnas.121179898] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2001] [Indexed: 11/18/2022] Open
Abstract
Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMR(glc)) induced by functional activation is generally carried out in animals under anesthesia, usually alpha-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions. Results of studies on the role of nitric oxide (NO) in the mechanism of functional activation of lCBF have differed in unanesthetized and anesthetized animals. NO synthase inhibition markedly attenuates or eliminates the lCBF responses in anesthetized animals but not in unanesthetized animals. The present study examines in conscious rats and rats anesthetized with alpha-chloralose the effects of vibrissal stimulation on lCMR(glc) and lCBF in the whisker-to-barrel cortex pathway and on the effects of NO synthase inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME) on the magnitude of the responses. Anesthesia markedly reduced the lCBF and lCMR(glc) responses in the ventral posteromedial thalamic nucleus and barrel cortex but not in the spinal and principal trigeminal nuclei. L-NAME did not alter the lCBF responses in any of the structures of the pathway in the unanesthetized rats and also not in the trigeminal nuclei of the anesthetized rats. In the thalamus and sensory cortex of the anesthetized rats, where the lCBF responses to stimulation had already been drastically diminished by the anesthesia, L-NAME treatment resulted in loss of statistically significant activation of lCBF by vibrissal stimulation. These results indicate that NO does not mediate functional activation of lCBF under physiological conditions.
Collapse
Affiliation(s)
- Y Nakao
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4030, USA
| | | | | | | | | | | |
Collapse
|
248
|
Abstract
Hypoxic ischemia is a common cause of damage to the fetal and neonatal brain. Although systemic and cerebrovascular physiologic factors play an important role in the initial phases of hypoxic-ischemic injuries, the intrinsic vulnerability of specific cell types and systems in the developing brain may be more important in determining the final pattern of damage and functional disability. Excitotoxicity, a term applied to the death of neurons and certain other cells caused by overstimulation of excitatory, mainly glutamate, neurotransmitter receptors, plays a critical role in these processes. Selected neuronal circuits as well as certain populations of glia such as immature periventricular oligodendroglia may die from excitotoxicity triggered by hypoxic ischemia. These patterns of neuropathologic vulnerability are associated with clinical syndromes of neurologic disability such as the extrapyramidal and spastic diplegia forms of cerebral palsy. The cascade of biochemical and histopathologic events triggered by hypoxic ischemia can extend for days to weeks after the insult is triggered, creating the potential for therapeutic interventions.
Collapse
Affiliation(s)
- M V Johnston
- Division of Neurology and Developmental Medicine and Neuroscience Laboratory, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
249
|
Ewert JP, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, Röttgen A, Schürg-Pfeiffer E, Schwippert WW. Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, learning. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:417-61. [PMID: 11246037 DOI: 10.1016/s1095-6433(00)00333-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present review points out that visuomotor functions in anurans are modifiable and provides neurophysiological data which suggest modulatory forebrain functions. The retino-tecto/tegmento-bulbar/spinal serial processing streams are sufficient for stimulus-response mediation in prey-catching behaviour. Without its modulatory connections to forebrain structures, however, these processing streams cannot manage perceptual tasks, directed attention, learning performances, and motor skills. (1) Visual prey/non-prey discrimination is based on the interaction of this processing stream with the pretectal thalamus involving the neurotransmitter neuropeptide-Y. (2) Experiments applying the dopamine agonist apomorphine in combination with 2DG mapping and single neurone recording suggest that prey-catching strategies in terms of hunting prey and waiting for prey depend on dose dependent dopaminergic adjustments in the neural macronetwork in which retinal, pretecto-tectal, basal ganglionic, limbic, and mesolimbic structures participate. (3) Visual response properties of striatal efferent neurones support the concept that ventral striatum is involved in directed attention. (4) Various modulatory loops involving the ventral medial pallium modify prey-recognition in the course of visual or visual-olfactory learning (associative learning) or are responsible for stimulus-specific habituation (non-associative learning). (5) The circuits suggested to underlie modulatory forebrain functions are accentuated in standard schemes of the neural macronetwork. These provide concepts suitable for future decisive experiments.
Collapse
Affiliation(s)
- J P Ewert
- Department of Neurobiology, FB19 Biology/Chemistry, University of, Kassel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Gotoh J, Kuang TY, Nakao Y, Cohen DM, Melzer P, Itoh Y, Pak H, Pettigrew K, Sokoloff L. Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am J Physiol Heart Circ Physiol 2001; 280:H821-9. [PMID: 11158982 DOI: 10.1152/ajpheart.2001.280.2.h821] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrissal stimulation raises cerebral blood flow (CBF) in the ipsilateral spinal and principal sensory trigeminal nuclei and contralateral ventroposteromedial (VPM) thalamic nucleus and barrel cortex. To investigate possible roles of adenosine and nitric oxide (NO) in these increases, local CBF was determined during unilateral vibrissal stimulation in unanesthetized rats after adenosine receptor blockade with caffeine or NO synthase inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME) or 7-nitroindazole (7-NI). Caffeine lowered baseline CBF in all structures but reduced the percent increase during stimulation only in the two trigeminal nuclei. L-NAME and 7-NI lowered baseline CBF but reduced the percent increase during stimulation only in the higher stations of this sensory pathway, i.e., L-NAME in the VPM nucleus and 7-NI in both the VPM nucleus and barrel cortex. Combinations of caffeine with 7-NI or L-NAME did not have additive effects, and none alone or in combination completely eliminated functional activation of CBF. These results suggest that caffeine-sensitive and NO-dependent mechanisms are involved but with different regional distributions, and neither fully accounts for the functional activation of CBF.
Collapse
Affiliation(s)
- J Gotoh
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892-4030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|