201
|
Vincenzi B, Napolitano A, Frezza AM, Schiavon G, Santini D, Tonini G. Wide-spectrum characterization of trabectedin: biology, clinical activity and future perspectives. Pharmacogenomics 2010; 11:865-78. [DOI: 10.2217/pgs.10.69] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ecteinascidin-743 (trabectedin, Yondelis®; PharmaMar, Madrid, Spain), a 25-year-old antineoplastic alkylating agent, has recently shown unexpected and interesting mechanisms of action. Trabectedin causes perturbation in the transcription of inducible genes (e.g., the multidrug resistance gene MDR1) and interaction with DNA repair mechanisms (e.g., the nucleotide excision repair pathway) owing to drug-related DNA double strand breaks and adduct formation. Trabectedin was the first antineoplastic agent from a marine source (namely, the Caribbean tunicate Ecteinascidia turbinata) to receive marketing authorization. This article summarizes the mechanisms of action, the complex metabolism, the main toxicities, the preclinical and clinical evidences of its antineoplastic effects in different types of cancer and, finally, the future perspectives of this promising drug.
Collapse
Affiliation(s)
| | - Andrea Napolitano
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Maria Frezza
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gaia Schiavon
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Daniele Santini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
202
|
Ou Z, Huang M, Zhao L, Xie W. Use of transgenic mice in UDP-glucuronosyltransferase (UGT) studies. Drug Metab Rev 2010; 42:123-31. [PMID: 20070245 DOI: 10.3109/03602530903208983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transgenic mouse models are useful to understand the function and regulation of drug-metabolizing enzymes in vivo. This article is intended to describe the general strategies and to discuss specific examples on how to use transgenic, gene knockout, and humanized mice to study the function as well as genetic and pharmacological regulation of UDP-glucuronosyltransferases (UGTs). The physiological and pharmacological implications of transcription factor-mediated UGT regulation will also be discussed. The UGT-regulating transcription factors to be discussed in this article include nuclear hormone receptors (NRs), aryl hydrocarbon receptor (AhR), and nuclear factor erythroid 2-related factor 2 (Nrf2).
Collapse
Affiliation(s)
- Zhimin Ou
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
203
|
Meyer zu Schwabedissen HE, Kim RB. Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm 2010; 6:1644-61. [PMID: 19558188 DOI: 10.1021/mp9000298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drug uptake transporters are now increasingly recognized as clinically relevant determinants of variable drug responsiveness and unexpected drug-drug interactions. Emerging evidence strongly suggests members of the organic anion transporting polypeptide (OATP) family appear to be particularly important to the disposition of many drugs in clinical use today. Specifically, the liver-enriched OATP1B subfamily members OATP1B1 and OATP1B3 exhibit broad substrate specificity and the ability to transport drugs which are ligands for xenobiotic sensing nuclear receptors such as the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Accordingly, OATP1B transporters may indirectly regulate expression of drug metabolism genes via modulation of the intracellular concentration of PXR and CAR ligands. Moreover, a number of functionally important single nucleotide polymorphisms (SNPs) in OATP1B transporters have been described. In this review, a brief summary of known SNPs in PXR and CAR will be followed by an in-depth outline of OATP1B1 and OATP1B3 transporters particularly in relation to the known SNPs in these OATPs and the interplay between OATP1B transporters with PXR and CAR, both in vitro and in vivo.
Collapse
|
204
|
Murray M. Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents. J Pharm Pharmacol 2010; 58:871-85. [PMID: 16805946 DOI: 10.1211/jpp.58.7.0001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Cytochrome P450 (CYP) drug oxidases play a pivotal role in the elimination of antipsychotic agents, and therefore influence the toxicity and efficacy of these drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes with antipsychotic agents. In particular, aspects of CYP pharmacogenetics, and the processes of CYP induction and inhibition all influence in-vivo rates of drug elimination. Certain CYPs that mediate the oxidation of antipsychotic drugs exhibit genetic variants that may influence in-vivo activity. Thus, single nucleotide polymorphisms (SNPs) in CYP genes have been shown to encode enzymes that have decreased drug oxidation capacity. Additionally, psychopharmacotherapy has the potential for drug-drug inhibitory interactions involving CYPs, as well as drug-mediated CYP induction. Literature evidence supports a role for CYP1A2 in the clearance of the atypical antipsychotics clozapine and olanzapine; CYP1A2 is inducible by certain drugs and environmental chemicals. Recent studies have suggested that specific CYP1A2 variants possessing individual SNPs, and possibly also SNP combinations (haplotypes), in the 5′-regulatory regions may respond differently to inducing chemicals. CYP2D6 is an important catalyst of the oxidation of chlorpromazine, thioridazine, risperidone and haloperidol. Certain CYP2D6 allelic variants that encode enzymes with decreased drug oxidation capacity are more common in particular ethnic groups, which may lead to adverse effects with standard doses of psychoactive drugs. Thus, genotyping may be useful for dose optimization with certain psychoactive drugs that are substrates for CYP2D6. However, genotyping for inducible CYPs is unlikely to be sufficient to direct therapy with all antipsychotic agents. In-vivo CYP phenotyping with cocktails of drug substrates may assist at the commencement of therapy, but this approach could be complicated by pharmacokinetic interactions if applied when an antipsychotic drug regimen is ongoing.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
205
|
Audet-Walsh E, Auclair-Vincent S, Anderson A. Glucocorticoids and phenobarbital induce murine CYP2B genes by independent mechanisms. Expert Opin Drug Metab Toxicol 2010; 5:1501-11. [PMID: 19732027 DOI: 10.1517/17425250903234709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Genes for CYP of the 2B subfamily (CYP2B genes) have long been known to be inducible in murine liver by phenobarbital and phenobarbital-like inducers. More recently, it has become clear that glucocorticoids can also induce these genes by a mechanism independent of that of phenobarbital-like inducers. OBJECTIVE To summarize the evidence for the existence of two distinct molecular mechanisms for induction of murine CYP2B genes and to analyze the wider implications of this situation for inducible xenobiotic metabolism. METHODS The mechanism of action of phenobarbital-like inducers of murine CYP2B genes is first briefly summarized. The role of glucocorticoids in the induction of various proteins, particularly rat phosphoenolpyruvate carboxykinase, where transcriptional activation is achieved via a glucocorticoid response unit, is also discussed. Finally, recent results are presented on glucocorticoid induction of murine CYP2B genes, including evidence for the presence of a functional glucocorticoid response unit in the rat CYP2B2 gene and for the role of constitutive androstane receptor as an accessory factor in this response. RESULTS/CONCLUSION Murine CYP2B genes are seen to respond to two distinct regulatory mechanisms, but much remains to be learned concerning the interactions between these two regulatory loops, as well as the details of glucocorticoid induction.
Collapse
Affiliation(s)
- Etienne Audet-Walsh
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, 11, côte du Palais, Québec, Canada
| | | | | |
Collapse
|
206
|
The protective role of pregnane X receptor in lipopolysaccharide/D-galactosamine-induced acute liver injury. J Transl Med 2010; 90:257-65. [PMID: 19997066 PMCID: PMC2814901 DOI: 10.1038/labinvest.2009.129] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor transcription factor regulating drug-metabolizing enzymes and transporters that facilitate xenobiotic and endobiotic detoxification. Recent studies show that PXR is important in abrogating intestinal tissue damage. This study examines the role of PXR in lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced acute liver injury using wild-type and PXR-null mice. LPS/GalN-treated PXR-null mice had greater increases of alanine transaminase (ALT), hepatocyte apoptosis, necrosis, and hemorrhagic liver injury than wild-type mice. LPS/GalN-mediated phosphorylation of JNK1/2 and ERK1/2 was differentially regulated in wild-type and PXR-null mice. Importantly, LPS/GalN-induced hepatic Stat3 survival signaling was impaired and early activation of Jak2 was delayed in PXR-null mice. Expression levels of pro-survival proteins Bcl-xL and heme oxygenase-1 (HO-1), which are downstream of Stat3, were substantially lower in PXR-null than wild-type mouse livers after LPS/GalN treatment. Autophagy is also involved in LPS/GalN-induced liver injury. Lack of PXR resulted in a significant reduction of LC3B-I, -II as well as Beclin-1 protein levels after LPS/GalN treatment. In addition, PXR is implicated in hepatocytes homeostasis. Taken together, PXR is a critical hepatoprotective factor. Increases of LPS/GalN-induced hepatocyte apoptosis and liver injury in PXR-null mice are due to deregulated mitogen-activated protein (MAP) kinase activation as well as delayed Jak2/Stat3 activation, which lead to a compromise in defense mechanisms that involve Bcl-xL-, HO-1, and autophagy-mediated pathways.
Collapse
|
207
|
Strom SC, Davila J, Grompe M. Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol 2010; 640:491-509. [PMID: 20645070 PMCID: PMC3136240 DOI: 10.1007/978-1-60761-688-7_27] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent developments in animal models have allowed the creation of mice with genetic alterations that cause hepatocyte damage that results, over time, in the loss of native hepatocytes. If donor, human hepatocytes are transplanted into these animals, they repopulate the host liver, frequently replacing over 70% of the native liver with human cells. Immunodeficient mice that overexpress urokinase-type plasminogen activator (uPA) and, alternatively, with a knockout of the fumarylacetoacetate hydrolase (Fah) genes are the two most common mouse models for these studies. These mice are called chimeric or "humanized" because the liver is now partially repopulated with human cells. In this report we will review the published work with respect to Phase I and Phase II metabolic pathways and the expression of hepatic transport proteins. While the studies are still at the descriptive stage, it is already clear that some humanized mice display high levels of repopulation with human hepatocytes, express basal and inducible human CYP450 genes, and human conjugation and hepatic transport pathways. When the strengths and weaknesses of these humanized mouse models are fully understood, they will likely be quite valuable for investigations of human liver-mediated metabolism and excretion of drugs and xenobiotics, drug-drug interactions, and for short- and long-term investigation of the toxicity of drugs or chemicals with significant human exposure.
Collapse
Affiliation(s)
- Stephen C Strom
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
208
|
Owen BM, Milona A, van Mil S, Clements P, Holder J, Boudjelal M, Cairns W, Parker M, White R, Williamson C. Intestinal detoxification limits the activation of hepatic pregnane X receptor by lithocholic acid. Drug Metab Dispos 2010; 38:143-9. [PMID: 19797606 PMCID: PMC2802420 DOI: 10.1124/dmd.109.029306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The intestinal-derived secondary bile acid (BA) lithocholic acid (LCA) is hepatotoxic and is implicated in the pathogenesis of cholestatic diseases. LCA is an endogenous ligand of the xenobiotic nuclear receptor pregnane X receptor (PXR), but there is currently no consensus on the respective roles of hepatic and intestinal PXR in mediating protection against LCA in vivo. Under the conditions reported here, we show that mice lacking Pxr are resistant to LCA-mediated hepatotoxicity. This unexpected phenotype is found in association with enhanced urinary BA excretion and elevated basal expression of drug metabolism enzymes and the hepatic sulfate donor synthesis enzyme Papss2 in Pxr(-/-) mice. By subsequently comparing molecular responses to dietary and intraperitoneal administration of LCA, we made two other significant observations: 1) LCA feeding induces intestinal, but not hepatic, drug-metabolizing enzymes in a largely Pxr-independent manner; and 2) in contrast to LCA feeding, bypassing first-pass gut transit by intraperitoneal administration of LCA did induce hepatic detoxification machinery and in a Pxr-dependent manner. These data reconcile important discrepancies in the reported molecular responses to this BA and suggest that Pxr plays only a limited role in mediating responses to gut-derived LCA. Furthermore, the route of administration must be considered in the future planning and interpretation of experiments designed to assess hepatic responses to BAs, orally administered pharmaceuticals, and dietary toxins.
Collapse
Affiliation(s)
- Bryn M. Owen
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Alexandra Milona
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Saskia van Mil
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Peter Clements
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Julie Holder
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Mohamed Boudjelal
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - William Cairns
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Malcolm Parker
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Roger White
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Catherine Williamson
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| |
Collapse
|
209
|
Caccia S, Garattini S, Pasina L, Nobili A. Predicting the clinical relevance of drug interactions from pre-approval studies. Drug Saf 2009; 32:1017-39. [PMID: 19810775 DOI: 10.2165/11316630-000000000-00000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drug interactions (DIs) may result in adverse drug events that could be prevented, but in many cases the available information on potential DIs is not easily transferable to clinical practice. The majority of studies date from preclinical or premarketing phases, using animals or human-derived sources that may not accurately reflect the growing clinical complexity of high-risk populations, such as the elderly, women, children, patients with chronic disease, polytherapy and impaired organ functions. Thus, at the time of approval of a new drug the information in the summary of product characteristics refers to potential DIs, but lacks specific management recommendations and is of limited clinical utility. Therefore, we set out to review in vitro and in vivo methods to predict and quantify potential DIs, to see whether these studies could help the physician tackle daily problems of the assessment and choice of combined drug therapies, and to propose, from a clinical point of view, how premarketing studies could be improved so as to help the physician at the patient's bedside. Preclinical and premarketing study design needs to be improved to make information easily accessible and clinically transferable. Studies should also take into account appropriate sample size, duration, co-morbidity, number of coadministered drugs, within- and between-subject variability, specific at-risk populations and/or drugs with a relatively narrow therapeutic window, and clinical endpoints. After premarketing development in situations where there is potential high risk of serious adverse events, specific phase IV studies (and/or active pharmacovigilance studies) should be required to monitor and quantitatively assess their clinical impact.
Collapse
Affiliation(s)
- Silvio Caccia
- Laboratory of Drug Metabolism, 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | | | | | | |
Collapse
|
210
|
Abstract
Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.
Collapse
|
211
|
Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:299-310. [PMID: 19857603 DOI: 10.1016/j.bbalip.2009.10.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/08/2023]
Abstract
Fatty liver disease comprises a spectrum ranging from simple steatosis to steatohepatitis which can progress to liver cirrhosis and hepatocellular cancer. Hepatic lipotoxicity may ensue when the hepatic capacity to utilize, store and export fatty acids (FA) as triglycerides is overwhelmed. Additional mechanisms of hepatic lipotoxicity include abnormal FA oxidation with formation of reactive oxygen species, disturbances in cellular membrane FA and phospholipid composition, alterations of cholesterol content and ceramide signalling. Lipotoxicity is a key factor for the progression of fatty liver disease by inducing hepatocellular death, activating Kupffer cells and an inflammatory response, impairing hepatic insulin signalling resulting in insulin resistance, and activation of a fibrogenic response in hepatic stellate cells that can ultimately lead to cirrhosis. Therefore, the concept of hepatic lipotoxicity should be considered in future therapeutic concepts for fatty liver disease.
Collapse
Affiliation(s)
- Michael Trauner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | | | | |
Collapse
|
212
|
Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 2009; 37:2112-7. [PMID: 19581388 PMCID: PMC2769037 DOI: 10.1124/dmd.109.027680] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/30/2009] [Indexed: 02/02/2023] Open
Abstract
CYP3A4 metabolizes many drugs on the market. Although transcriptional regulation of CYP3A4 is known to be tightly controlled by some nuclear receptors (NR) including vitamin D receptor (VDR/NR1I1), posttranscriptional regulation of CYP3A4 remains elusive. In this study, we show that noncoding microRNAs (miRNAs) may control posttranscriptional and transcriptional regulation of CYP3A4 by directly targeting the 3'-untranslated region (3'UTR) of CYP3A4 and indirectly targeting the 3'UTR of VDR, respectively. Luciferase reporter assays showed that CYP3A4 3'UTR-luciferase activity was significantly decreased in human embryonic kidney 293 cells transfected with plasmid that expressed microRNA-27b (miR-27b) or mouse microRNA-298 (mmu-miR-298), whereas the activity was unchanged in cells transfected with plasmid that expressed microRNA-122a or microRNA-328. Disruption of the corresponding miRNA response element (MRE) within CYP3A4 3'UTR led to a 2- to 3-fold increase in luciferase activity. Immunoblot analyses indicated that CYP3A4 protein was down-regulated over 30% by miR-27b and mmu-miR-298 in LS-180 and PANC1 cells. The decrease in CYP3A4 protein expression was associated with significantly decreased CYP3A4 mRNA levels, as determined by quantitative real-time PCR (qPCR) analyses. Likewise, interactions of miR-27b or mmu-miR-298 with VDR 3'UTR were supported by luciferase reporter assays. The mmu-miR-298 MRE site is well conserved within the 3'UTR of mouse, rat, and human VDR. Down-regulation of VDR by the two miRNAs was supported by immunoblot and qPCR analyses. Furthermore, overexpression of miR-27b or mmu-miR-298 in PANC1 cells led to a lower sensitivity to cyclophosphamide. Together, these findings suggest that CYP3A4 gene expression may be regulated by miRNAs at both the transcriptional and posttranscriptional level.
Collapse
Affiliation(s)
- Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Wenqing Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ai-Ming Yu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
213
|
Krämer S, Testa B. The Biochemistry of Drug Metabolism - An Introduction. Chem Biodivers 2009; 6:1477-660, table of contents. [DOI: 10.1002/cbdv.200900233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
214
|
He J, Cheng Q, Xie W. Minireview: Nuclear receptor-controlled steroid hormone synthesis and metabolism. Mol Endocrinol 2009; 24:11-21. [PMID: 19762543 DOI: 10.1210/me.2009-0212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Steroid hormones are essential in normal physiology whereas disruptions in hormonal homeostasis represent an important etiological factor for many human diseases. Steroid hormones exert most of their functions through the binding and activation of nuclear hormone receptors (NRs or NHRs), a superfamily of DNA-binding and often ligand-dependent transcription factors. In recent years, accumulating evidence has suggested that NRs can also regulate the biosynthesis and metabolism of steroid hormones. This review will focus on the recent progress in our understanding of the regulatory role of NRs in hormonal homeostasis and the implications of this regulation in physiology and diseases.
Collapse
Affiliation(s)
- Jinhan He
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
215
|
Liu MJ, Takahashi Y, Wada T, He J, Gao J, Tian Y, Li S, Xie W. The aldo-keto reductase Akr1b7 gene is a common transcriptional target of xenobiotic receptors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol 2009; 76:604-11. [PMID: 19542321 PMCID: PMC2730391 DOI: 10.1124/mol.109.057455] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/19/2009] [Indexed: 01/26/2023] Open
Abstract
Aldo-keto reductase (AKR) family 1, member 7 (AKR1B7), a member of the AKR superfamily, has been suggested to play an important role in the detoxification of lipid peroxidation by-products. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenosensors postulated to alleviate xeno- and endobiotic chemical insults. In this study, we show that the mouse Akr1b7 is a shared transcriptional target of PXR and CAR in the liver and intestine. Treatment of wild-type mice with the PXR agonist pregnenolone-16alpha-carbonitrile (PCN) activated Akr1b7 gene expression, whereas the effect was abrogated in PXR(-/-) mice. Similarly, the activation of Akr1b7 gene expression by the CAR agonist 1,4-bis[2-(3,5-dichlorpyridyloxyl)]-benzene, seen in wild-type mice, was abolished in CAR(-/-) mice. The promoter of Akr1b7 gene was activated by PXR and CAR, and this activation was achieved through the binding of PXR-retinoid X receptor (RXR) or CAR-RXR heterodimers to direct repeat-4 type nuclear receptor-binding sites found in the Akr1b7 gene promoter. At the functional level, treatment with PCN in wild-type mice, but not PXR(-/-) mice, led to a decreased intestinal accumulation of malondialdehyde, a biomarker of lipid peroxidation. The regulation of Akr1b7 by PXR was independent of the liver X receptor (LXR), another nuclear receptor known to regulate this AKR isoform. Because a major function of Akr1b7 is to detoxify lipid peroxidation, the PXR-, CAR-, and LXR-controlled regulatory network of Akr1b7 may have contributed to alleviate toxicity associated with lipid peroxidation.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Chang TKH. Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by herbal medicines. AAPS JOURNAL 2009; 11:590-601. [PMID: 19688601 DOI: 10.1208/s12248-009-9135-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 12/14/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are transcription factors that control the expression of a broad array of genes involved not only in transcellular transport and biotransformation of many drugs, other xenochemicals, and endogenous substances, such as bile acid, bilirubin, and certain vitamins, but also in various physiological/pathophysiological processes such as lipid metabolism, glucose homeostasis, and inflammation. Ligands of PXR and CAR are chemicals of diverse structures, including naturally occurring compounds present in herbal medicines. The overall aim of this article is to provide an overview of our current understanding of the role of herbal medicines as modulators of PXR and CAR.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
217
|
Chen S, Wang K, Wan YJY. Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem Pharmacol 2009; 79:270-6. [PMID: 19686701 DOI: 10.1016/j.bcp.2009.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Retinoids and carotenoids are frequently used as antioxidants to prevent cancer. In this study, a panel of retinoids and carotenoids was examined to determine their effects on activation of RXR/CAR-mediated pathway and regulation of CYP3A gene expression. Transient transfection assays of HepG2 cells revealed that five out of thirteen studied retinoids significantly induced RXRalpha/CAR-mediated activation of luciferase activity that is driven by the thymidine kinase promoter linked with a PXR binding site in the CYP3A4 gene [tk-(3A4)(3)-Luc reporter]. All-trans retinoic acid (RA) and 9-cis RA were more effective than CAR agonist TCBOPOP in induction of the tk-(3A4)(3)-Luc reporter. Addition of retinoid and TCBOPOP further enhanced the inducibility and the induction was preferentially mediated by RXRalpha/CAR and RXRgamma/CAR heterodimer. Chromatin immunoprecipitation assay showed that retinoids recruit RXRalpha and CAR to the proximal ER6 and distal XREM nuclear receptor response elements of the CYP3A4 gene promoter. The experimental data demonstrate that retinoids can effectively regulate CYP3A gene expression through the RXR/CAR-mediated pathway.
Collapse
Affiliation(s)
- Shiyong Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Biomedical Research Center Building/KLSIC, 2146 W 39th Avenue, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
218
|
Pondugula SR, Dong H, Chen T. Phosphorylation and protein-protein interactions in PXR-mediated CYP3A repression. Expert Opin Drug Metab Toxicol 2009; 5:861-73. [PMID: 19505191 PMCID: PMC2719259 DOI: 10.1517/17425250903012360] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The expression of drug-metabolizing enzymes CYPs is controlled by pregnane X receptor (PXR), and, therefore, understanding how PXR modulates CYP expression is important to minimize adverse drug interactions, one type of preventable adverse drug reaction. OBJECTIVE We review the mechanisms of PXR-mediated repression of CYP expression. METHODS We discuss the clinical implications of CYP repression and the role of signal cross-talks, including protein-protein interactions and phosphorylation of PXR and coregulators, in inhibiting PXR and repressing CYP expression. RESULTS/CONCLUSION Kinases such as cyclin-dependent kinase 2, protein kinase A, PKC and 70 kDa form of ribosomal protein S6 kinase repress CYP expression by phosphorylating and inhibiting PXR. Growth factor signaling represses CYP expression by phosphorylating and inhibiting forkhead in rhabdomyosarcoma, a co-activator of PXR. During inflammation, NF-kappaB represses both PXR and CYP expression through protein-protein interactions with the PXR pathway.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, USA
| | | | | |
Collapse
|
219
|
Biswas A, Mani S, Redinbo MR, Krasowski MD, Li H, Ekins S. Elucidating the 'Jekyll and Hyde' nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharm Res 2009; 26:1807-15. [PMID: 19415465 PMCID: PMC2846309 DOI: 10.1007/s11095-009-9901-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/16/2009] [Indexed: 12/15/2022]
Abstract
The pregnane X receptor belongs to the nuclear hormone receptor superfamily and is involved in the transcriptional control of numerous genes. It was originally thought that it was a xenobiotic sensor controlling detoxification pathways. Recent studies have shown an increasingly important role in inflammation and cancer, supporting its function in abrogating tissue damage. PXR orthologs and PXR-like pathways have been identified in several non-mammalian species which corroborate a conserved role for PXR in cellular detoxification. In summary, PXR has a multiplicity of roles in vivo and is being revealed as behaving like a "Jekyll and Hyde" nuclear hormone receptor. The importance of this review is to elucidate the need for discovery of antagonists of PXR to further probe its biology and therapeutic applications. Although several PXR agonists are already reported, virtually nothing is known about PXR antagonists. Here, we propose the development of PXR antagonists through chemical, genetic and molecular modeling approaches. Based on this review it will be clear that antagonists of PXR and PXR-like pathways will have widespread utility in PXR biology and therapeutics.
Collapse
Affiliation(s)
- Arunima Biswas
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
220
|
Wada T, Gao J, Xie W. PXR and CAR in energy metabolism. Trends Endocrinol Metab 2009; 20:273-9. [PMID: 19595610 DOI: 10.1016/j.tem.2009.03.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 02/06/2023]
Abstract
The nuclear receptors pregnane X receptor (PXR, or NR1I2) and constitutive androstane receptor (CAR, or NR1I3) were originally identified as xenosensors that regulate the expression of Phase I and Phase II drug-metabolizing enzymes and transporters. Recent results suggest that PXR and CAR also have important endobiotic roles in energy metabolism by affecting the metabolism of fatty acids, lipids and glucose. PXR and CAR exert their effects on energy metabolism through direct gene regulation or through crosstalk with other transcriptional regulators. This review focuses on the roles of CAR and PXR in energy metabolism and offers a perspective on whether PXR and CAR represent novel therapeutic targets for the management of metabolic syndrome.
Collapse
Affiliation(s)
- Taira Wada
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
221
|
Dong B, Qatanani M, Moore DD. Constitutive androstane receptor mediates the induction of drug metabolism in mouse models of type 1 diabetes. Hepatology 2009; 50:622-9. [PMID: 19489075 PMCID: PMC2721020 DOI: 10.1002/hep.23025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Untreated type 1 diabetes increases hepatic drug metabolism in both human patients and rodent models. We used knockout mice to test the role of the nuclear xenobiotic receptors constitutive androstane receptor (CAR) and pregnane and xenobiotic receptor (PXR) in this process. Streptozotocin-induced diabetes resulted in increased expression of drug metabolizing cytochrome P450s and also increased the clearance of the cytochrome P450 substrate zoxazolamine. This induction was completely absent in Car(-/-) mice, but was not affected by the loss of PXR. Among the many effects of diabetes on the liver, we identified bile acid elevation and activated adenosine monophosphate-activated protein kinase as potential CAR-activating stimuli. Expression of the CAR coactivator peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha was also increased in mouse models of type 1 diabetes. CONCLUSION The CAR-dependent induction of drug metabolism in newly diagnosed or poorly managed type 1 diabetes has the potential for significant impact on the efficacy or toxicity of therapeutic agents.
Collapse
Affiliation(s)
- Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Mohammed Qatanani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
222
|
Chu V, Einolf HJ, Evers R, Kumar G, Moore D, Ripp S, Silva J, Sinha V, Sinz M, Skerjanec A. In vitro and in vivo induction of cytochrome p450: a survey of the current practices and recommendations: a pharmaceutical research and manufacturers of america perspective. Drug Metab Dispos 2009; 37:1339-54. [PMID: 19389860 DOI: 10.1124/dmd.109.027029] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 (P450) induction is one of the factors that can affect the pharmacokinetics of a drug molecule upon multiple dosing, and it can result in pharmacokinetic drug-drug interactions with coadministered drugs causing potential therapeutic failures. In recent years, various in vitro assays have been developed and used routinely to assess the potential for drug-drug interactions due to P450 induction. There is a desire from the pharmaceutical industry and regulatory agencies to harmonize assay methodologies, data interpretation, and the design of clinical drug-drug interaction studies. In this article, a team of 10 scientists from nine Pharmaceutical Research and Manufacturers of America (PhRMA) member companies conducted an anonymous survey among PhRMA companies to query current practices with regards to the conduct of in vitro induction assays, data interpretation, and clinical induction study practices. The results of the survey are presented in this article, along with reviews of current methodologies of in vitro assays and in vivo studies, including modeling efforts in this area. A consensus recommendation regarding common practices for the conduct of P450 induction studies is included.
Collapse
Affiliation(s)
- Valeria Chu
- Sanofi-aventis United States, Bridgewater, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Hernandez J, Mota L, Baldwin W. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2009; 7:81-105. [PMID: 20871735 PMCID: PMC2944248 DOI: 10.2174/187569209788654005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I-III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors.
Collapse
Affiliation(s)
- J.P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - L.C. Mota
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| | - W.S. Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| |
Collapse
|
224
|
Zhou C, King N, Chen KY, Breslow JL. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. J Lipid Res 2009; 50:2004-13. [PMID: 19436068 DOI: 10.1194/jlr.m800608-jlr200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nuclear hormone receptor pregnane X receptor (PXR; also called SXR) functions as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. Although many clinically relevant PXR ligands have been shown to affect cholesterol levels, the role of PXR in cholesterol homeostasis and atherosclerosis has not been thoroughly investigated. Here, we report that activation of PXR by feeding the PXR agonist pregnenolone 16alpha-carbonitrile (0.02%) for 2 weeks to wild-type (WT) mice significantly increased total cholesterol levels and atherogenic lipoproteins VLDL and LDL levels, but had no effect in PXR knockout (PXR(-/-)) mice. Chronic PXR activation in atherosclerosis prone apolipoprotein E deficient (ApoE(-/-)) mice was found to decrease HDL levels and increase atherosclerotic cross-sectional lesion area at both the aortic root and in the brachiocephalic artery by 54% (P < 0.001) and 116% (P < 0.01), respectively. PXR activation significantly regulated genes in the liver involved in lipoprotein transportation and cholesterol metabolism, including CD36, ApoA-IV, and CYP39A1, in both WT and ApoE(-/-) mice. Furthermore, PXR activation can increase CD36 expression and lipid accumulation in peritoneal macrophages of ApoE(-/-) mice. In summary, PXR activation in WT mice increases levels of the atherogenic lipoproteins VLDL and LDL, whereas in ApoE(-/-) mice, PXR increases atherosclerosis, perhaps by diminishing levels of the antiatherogenic ApoA-IV and increasing lipid accumulation in macrophages.
Collapse
Affiliation(s)
- Changcheng Zhou
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
225
|
Powley MW, Frederick CB, Sistare FD, DeGeorge JJ. Safety assessment of drug metabolites: implications of regulatory guidance and potential application of genetically engineered mouse models that express human P450s. Chem Res Toxicol 2009; 22:257-62. [PMID: 19170595 DOI: 10.1021/tx8004373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Species differences in drug metabolism present two challenges that may confound the nonclinical safety assessment of candidate drugs. The first challenge is encountered when metabolites are formed uniquely or disproportionately in humans. Another challenge is understanding the human relevance of toxicities associated with metabolites formed uniquely or disproportionately in a nonclinical species. One potential approach to minimize the impact of metabolite related challenges is to consider genetically engineered mouse models that express human P450 enzymes. Human P450 expressing mouse models may have the ability to generate major human metabolites and eliminate or reduce the formation of mouse specific metabolites. Prior to determining the utility of any particular model, it is important to qualify by characterizing protein expression, establishing whether the model generates an in vivo metabolite profile more closely related to that of humans than the wild-type mouse, verifying genetic stability, and evaluating animal health. When compared to the current strategy for handling metabolite challenges (i.e., direct administration of metabolite), identifying an appropriate human P450 expressing model could provide a number of benefits. Such benefits include improved scientific relevance of the evaluation, decreased resource needs, and a possible reduction in the number of animals used. These benefits may ultimately improve the quality and speed by which promising new drug candidates are developed and delivered to patients.
Collapse
Affiliation(s)
- Mark W Powley
- Department of Safety Assessment, Merck Research Laboratories, West Point, Pennsylvania, USA
| | | | | | | |
Collapse
|
226
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
227
|
Li Y, Ross-Viola JS, Shay NF, Moore DD, Ricketts ML. Human CYP3A4 and murine Cyp3A11 are regulated by equol and genistein via the pregnane X receptor in a species-specific manner. J Nutr 2009; 139:898-904. [PMID: 19297428 PMCID: PMC2714390 DOI: 10.3945/jn.108.103572] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pregnane X receptor (PXR) is an important component of the body's adaptive defense system responsible for the elimination of various toxic xenobiotics. PXR activation by endogenous and exogenous chemicals, including steroids, antibiotics, bile acids, and herbal compounds, results in induction of drug metabolism. We investigated the ability of the isoflavones genistein, daidzein, and the daidzein metabolite equol to activate human and mouse PXR in vitro using cell-based transient transfection studies and primary hepatocytes and in vivo in a mouse model. In transient transfection assays, the isoflavones genistein and daidzein activate full-length, wild-type mouse PXR, but not a mutant form, with genistein being the most potent. In contrast, equol was a more potent activator of human PXR than genistein or daidzein. In a mammalian 2-hybrid assay, isoflavones induced recruitment of the coactivator steroid receptor coactivator 1 to PXR. When tested against the native human Cytochrome P450 3A4 (CYP3A4) promoter, equol was the more potent activator and treatment of human hepatocytes with equol increased CYP3A4 mRNA and immunoreactive protein expression. Treatment of wild-type, but not PXR(-/-), mouse hepatocytes showed that genistein and daidzein induced the expression of Cytochrome P450 3A11 (Cyp3A11) mRNA, whereas equol had no effect. Cyp3A11 mRNA was also induced in vivo in mice fed a soy protein-containing diet. The results presented herein demonstrate that there is a species-specific difference in the activation of PXR by isoflavones and equol.
Collapse
Affiliation(s)
- Yilan Li
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Jennifer S. Ross-Viola
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Neil F. Shay
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - David D. Moore
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Marie-Louise Ricketts
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
228
|
Lichti-Kaiser K, Xu C, Staudinger JL. Cyclic AMP-dependent protein kinase signaling modulates pregnane x receptor activity in a species-specific manner. J Biol Chem 2009; 284:6639-49. [PMID: 19141612 PMCID: PMC2652295 DOI: 10.1074/jbc.m807426200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/02/2009] [Indexed: 01/08/2023] Open
Abstract
Pregnane x receptor is a ligand-activated transcription factor that regulates drug-inducible expression of several key cytochrome P450 enzymes and drug transporter proteins in liver and intestine in a species-specific manner. Activation of this receptor modulates several key biochemical pathways, including gluconeogenesis, beta-oxidation of fatty acids, fatty acid uptake, cholesterol homeostasis, and lipogenesis. It is of current interest to determine whether the interaction between pregnane x receptor and these key biochemical pathways is evolutionarily conserved. We show here that activation of the cyclic AMP-dependent protein kinase signaling pathway synergizes with pregnane x receptor-mediated gene activation in mouse hepatocytes. Conversely, cyclic AMP-dependent protein kinase signaling has a repressive effect upon pregnane x receptor-mediated gene activation in rat and human hepatocytes. We show that the human pregnane x receptor protein can serve as an effective substrate for catalytically active cyclic AMP-dependent protein kinase in vitro. Metabolic labeling of the protein in vivo indicates that human pregnane x receptor exists as a phosphoprotein and that activation of cyclic AMP-dependent protein kinase signaling modulates the phosphorylation status of pregnane x receptor. Activation of cyclic AMP-dependent protein kinase signaling also modulates the interactions of pregnane x receptor with protein cofactors. Our results define the species-specific impact of cyclic AMP-dependent protein kinase signaling on pregnane x receptor and provide a molecular explanation of cyclic AMP-dependent protein kinase-mediated repression of human pregnane x receptor activity. Taken together, our results identify a novel mode of regulation of pregnane x receptor activity and highlight prominent functional differences in the process across species.
Collapse
Affiliation(s)
- Kristin Lichti-Kaiser
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|
229
|
Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C. Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid. Reprod Toxicol 2009; 27:278-288. [PMID: 19429403 DOI: 10.1016/j.reprotox.2009.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 02/02/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPAR alpha) and exhibit hepatocarcinogenic potential in rats. PFOS and PFOA are also developmental toxicants in rodents and PFOS has been shown to induce pulmonary deficits in rat offspring. Pregnant CD-1 mice were dosed with 0, 5, or 10mg/kg PFOS from gestation days 1-17. Transcript profiling was conducted on the fetal liver and lung. Results were contrasted to data derived from a previous PFOA study. PFOS-dependent changes were primarily related to activation of PPAR alpha. No remarkable differences were found between PFOS and PFOA. Given that PPAR alpha signaling is required for neonatal mortality in PFOA-treated mice but not those exposed to PFOS, the neonatal mortality observed for PFOS may reflect functional deficits related to the physical properties of the chemical rather than to transcript alterations.
Collapse
Affiliation(s)
- Mitchell B Rosen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA.
| | - Judith E Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Kaberi P Das
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Carmen R Wood
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Robert D Zehr
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Christopher Lau
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| |
Collapse
|
230
|
Mani S, Ghalib M, Chaudhary I, Goel S. Alterations of chemotherapeutic pharmacokinetic profiles by drug-drug interactions. Expert Opin Drug Metab Toxicol 2009; 5:109-30. [PMID: 19239394 PMCID: PMC3533254 DOI: 10.1517/17425250902753212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drug interactions in oncology are common place and largely ignored as we tolerate high thresholds of 'toxic' drug responses in these patients. However, in the era of 'targeted' or seemingly 'less toxic' therapy, these interactions are more commonly flagged and contribute significantly towards poor 'quality of life' and medical fatalities. OBJECTIVE This review and opinion article focuses on alteration of chemotherapeutic pharmacokinetic profiles by drug interactions in the setting of polypharmacy. The assumption is that the drugs, with changes in their pharmacokinetics, will contribute towards changes in their pharmacodynamics. METHODS The examples cited for such drug-drug interactions are culled from published literature with an emphasis on those interactions that have been well characterized at the molecular level. RESULTS Although very few drug interaction studies have been performed on approved oncology based drugs, it is clear that drugs whose pharmacokinetics profiles are closely related to their pharmacodynamics will indeed result in clinically important drug interactions. Some newer mechanisms are described that involve interactions at the level of gene transcription, whereby, drug metabolism is significantly altered. However, for any given drug interaction, there does not seem to be a comprehensive model describing interactions. CONCLUSIONS Mechanisms based drug interactions are plentiful in oncology; however, there is an absolute lack of a comprehensive model that would predict drug-drug interactions.
Collapse
Affiliation(s)
- Sridhar Mani
- Associate Professor: Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| | - Mohammed Ghalib
- Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| | - Imran Chaudhary
- Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| | - Sanjay Goel
- Associate Professor, Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| |
Collapse
|
231
|
Zhou C, Verma S, Blumberg B. The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e001. [PMID: 19240808 PMCID: PMC2646121 DOI: 10.1621/nrs.07001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 12/12/2008] [Indexed: 12/31/2022]
Abstract
The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a nuclear hormone receptor activated by a diverse array of endogenous hormones, dietary steroids, pharmaceutical agents, and xenobiotic compounds. SXR has an enlarged, flexible, hydrophobic ligand binding domain (LBD) which is remarkably divergent across mammalian species and SXR exhibits considerable differences in its pharmacology among mammals. The broad response profile of SXR has led to the development of "the steroid and xenobiotic sensor hypothesis". SXR has been established as a xenobiotic sensor that coordinately regulates xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for SXR in modulating inflammation, bone homeostasis, vitamin D metabolism, lipid homeostasis, energy homeostasis and cancer. The identification of SXR as a xenobiotic sensor has provided an important tool for studying new mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease. The discovery and pharmacological development of new PXR modulators might represent an interesting and innovative therapeutic approach to combat various diseases.
Collapse
Affiliation(s)
- Changcheng Zhou
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, New York, USA.
| | | | | |
Collapse
|
232
|
Cho JY, Kang DW, Ma X, Ahn SH, Krausz KW, Luecke H, Idle JR, Gonzalez FJ. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation. J Lipid Res 2009; 50:924-37. [PMID: 19141872 DOI: 10.1194/jlr.m800647-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Collapse
Affiliation(s)
- Joo-Youn Cho
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Xie Y, Ke S, Ouyang N, He J, Xie W, Bedford MT, Tian Y. Epigenetic regulation of transcriptional activity of pregnane X receptor by protein arginine methyltransferase 1. J Biol Chem 2009; 284:9199-205. [PMID: 19144646 DOI: 10.1074/jbc.m806193200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pregnane X receptor (PXR) is a ligand-dependent transcription factor, regulating gene expression of enzymes and transporters involved in xenobiotic/drug metabolism. Here, we report that protein arginine methyltransferase 1 (PRMT1) is required for the transcriptional activity of PXR. PRMT1 regulates expression of numerous genes, including nuclear receptor-regulated transcription, through methylating histone and non-histone proteins. Co-immunoprecipitation and histone methyltransferase assays revealed that PRMT1 is a major histone methyltransferase associated with PXR. The PXR ligand-binding domain is responsible for PXR-PRMT1 interaction as determined by mammalian two-hybrid and glutathione S-transferase (GST) pull-down assays. The chromatin immunoprecipitation (ChIP) assay showed that PRMT1 was recruited to the regulatory region of the PXR target gene cytochrome P450 3A4 (CYP3A4), with a concomitant methylation of arginine 3 of histone H4, in response to the PXR agonist rifampicin. In mammalian cells, small interfering RNA (siRNA) knockdown and gene deletion of PRMT1 greatly diminished the transcriptional activity of PXR, suggesting an indispensable role of PRMT1 in PXR-regulated gene expression. Interestingly, PXR appears to have a reciprocal effect on the PRMT1 functions by regulating its cellular compartmentalization as well as its substrate specificity. Taken together, these results demonstrated mutual interactions and functional interplays between PXR and PRMT1, and this interaction may be important for the epigenetics of PXR-regulated gene expression.
Collapse
Affiliation(s)
- Ying Xie
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Verma S, Tabb MM, Blumberg B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer 2009; 9:3. [PMID: 19123943 PMCID: PMC2631587 DOI: 10.1186/1471-2407-9-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/05/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The steroid and xenobiotic receptor, SXR, is an orphan nuclear receptor that regulates metabolism of diverse dietary, endobiotic, and xenobiotic compounds. SXR is expressed at high levels in the liver and intestine, and at lower levels in breast and other tissues where its function was unknown. Since many breast cancer preventive and therapeutic compounds are SXR activators, we hypothesized that some beneficial effects of these compounds are mediated through SXR. METHODS To test this hypothesis, we measured proliferation of breast cancer cells in response to SXR activators and evaluated consequent changes in the expression of genes critical for proliferation and cell-cycle control using quantitative RT-PCR and western blotting. Results were confirmed using siRNA-mediated gene knockdown. Statistical analysis was by t-test or ANOVA and a P value < or = 0.05 was considered to be significant. RESULTS Many structurally and functionally distinct SXR activators inhibited the proliferation of MCF-7 and ZR-75-1 breast cancer cells by inducing cell cycle arrest at the G1/S phase followed by apoptosis. Decreased growth in response to SXR activation was associated with stabilization of p53 and up-regulation of cell cycle regulatory and pro-apoptotic genes such as p21, PUMA and BAX. These gene expression changes were preceded by an increase in inducible nitric oxide synthase and nitric oxide in these cells. Inhibition of iNOS blocked the induction of p53. p53 knockdown inhibited up-regulation of p21 and BAX. We infer that NO is required for p53 induction and that p53 is required for up-regulation of cell cycle regulatory and apoptotic genes in this system. SXR activator-induced increases in iNOS levels were inhibited by siRNA-mediated knockdown of SXR, indicating that SXR activation is necessary for subsequent regulation of iNOS expression. CONCLUSION We conclude that activation of SXR is anti-proliferative in p53 wild type breast cancer cells and that this effect is mechanistically dependent upon the local production of NO and NO-dependent up-regulation of p53. These findings reveal a novel biological function for SXR and suggest that a subset of SXR activators may function as effective therapeutic and chemo-preventative agents for certain types of breast cancers.
Collapse
Affiliation(s)
- Suman Verma
- Department of Developmental and Cell Biology, 5205 McGaugh Hall, University of California, Irvine, CA 92697-2300, USA.
| | | | | |
Collapse
|
235
|
Tortorici MA, Mu Y, Kochanek PM, Xie W, Poloyac SM. Moderate hypothermia prevents cardiac arrest-mediated suppression of drug metabolism and induction of interleukin-6 in rats. Crit Care Med 2009; 37:263-9. [PMID: 19050605 PMCID: PMC2613167 DOI: 10.1097/ccm.0b013e3181931ed3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Therapeutic hypothermia is being clinically used to reduce neurologic deficits after cardiac arrest (CA). Patients receiving hypothermia after CA receive a wide-array of medications. During hypothermia, drug metabolism is markedly reduced. Little, however, is known about the impact of hypothermia on drug metabolism after rewarming. The objective of this study was to examine the effect of CA and hypothermia on the functional regulation of two major drug metabolizing cytochrome P450 (CYP) isoforms. DESIGN Laboratory investigation. SETTING University pharmacy school and animal research facility. SUBJECTS Thirty-six male Sprague-Dawley rats. INTERVENTIONS Hypothermia was induced via surface cooling in a rat CA model and maintained for 3 hrs. Animals were killed at 5 or 24 hrs and liver was analyzed for hepatic activity and mRNA expression of CYP3A2 and CYP2E1. Plasma interleukin-6 (IL-6) concentrations were determined. The effect of IL-6 on pregnane X receptor-mediated transcription of the rat CYP3A2 promoter was evaluated via luciferase reporter in HepG2 cells. MEASUREMENTS AND MAIN RESULTS At 24 hrs after CA a decrease in CYP3A2 and CYP2E1 activity was observed, 55.7% +/- 12.8% and 46.8% +/- 29.7% of control, respectively (p < 0.01). CA decreased CYP3A2 mRNA (p < 0.05), but not CYP2E1 mRNA. Expression of other pregnane X receptor target enzymes and transporter genes were similarly down-regulated. CA also produced an approximately ten-fold increase in plasma IL-6. CA-mediated inhibition of CYP3A2 and CYP2E1 was attenuated by hypothermia, as was the increase in IL-6. Furthermore, IL-6 attenuated pregnane X receptor-mediated transcription of the CYP3A2 promoter. CONCLUSIONS CA produces CYP3A2 down-regulation at 24 hrs, potentially via IL-6 effects on pregnane X receptor-mediated transcription. Also, hypothermia attenuates the CA-mediated down-regulation, thereby normalizing drug metabolism after rewarming.
Collapse
Affiliation(s)
- Michael A Tortorici
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
236
|
Azuma K, Urano T, Ouchi Y, Inoue S. Vitamin K2 suppresses proliferation and motility of hepatocellular carcinoma cells by activating steroid and xenobiotic receptor. Endocr J 2009; 56:843-9. [PMID: 19550077 DOI: 10.1507/endocrj.k09e-108] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vitamin K2, known as a cofactor for gamma-carboxylase, also serves as a ligand of a nuclear receptor, Steroid and Xenobiotic Receptor (SXR). Several clinical trials revealed that vitamin K2 reduced de novo formation and recurrence of hepatocellular carcinoma (HCC). To examine the role of SXR in HCC as a receptor activated by vitamin K2, the cells stably overexpressing SXR were established using a HCC cell line, HuH7. Overexpression of SXR resulted in reduced proliferation and motility of the cells. Further suppression of proliferation and motility was observed when SXR overexpressing clones were treated with vitamin K2. These results suggest that the activation of SXR could contribute to tumor suppressive effects of vitamin K2 on HCC cells.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
237
|
He J, Xie W. Chapter 3 Nuclear Xenobiotic Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:87-116. [DOI: 10.1016/s1877-1173(09)87003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
238
|
Sandanaraj E, Lal S, Selvarajan V, Ooi LL, Wong ZW, Wong NS, Ang PCS, Lee EJD, Chowbay B. PXR pharmacogenetics: association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res 2008; 14:7116-26. [PMID: 18981011 DOI: 10.1158/1078-0432.ccr-08-0411] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize pregnane X receptor (PXR) polymorphic variants in healthy Asian populations [Chinese, Malay and Indian (n=100 each)], and to investigate the association between PXR haplotypes and hepatic mRNA expression of PXR and its downstream target genes, CYP3A4 and ABCB1, as well as their influence on the clearance of doxorubicin in Asian breast cancer patients. EXPERIMENTAL DESIGN PXR genotyping was done by direct DNA sequencing, and PXR haplotypes and haplotype clusters were derived by expectation-maximization algorithm. Genotype-phenotype correlations were done using Mann-Whitney U test and Kruskal-Wallis test. RESULTS Significant interethnic variations were observed in PXR pharmacogenetics among the three Asian ethnic groups. The expression of PXR mRNA in liver tissues harboring the PXR*1B haplotype clusters was 4-fold lower compared with the non-PXR*1B (*1A + *1C) haplotype clusters [PXR*1B versus PXR*1A; P=0.015; PXR*1B versus PXR*1C; P=0.023]. PXR*1B-bearing liver tissues were associated with significantly lower expression of CYP3A4 (PXR*1B versus non-PXR*1B, P=0.030) and ABCB1 (PXR*1B versus non-PXR*1B, P=0.060) compared with non-PXR*1B-bearing liver tissues. Doxorubicin clearance in breast cancer patients harboring the PXR*1B haplotypes was significantly lower compared with patients carrying the non-PXR*1B haplotypes [PXR*1B versus non-PXR*1B, CL/BSA (L h(-1) m(-2)): 20.84 (range, 8.68-29.24) versus 24.85 (range, 13.80-55.66), P=0.022]. CONCLUSIONS This study showed that PXR*1B was associated with reduced hepatic mRNA expression of PXR and its downstream targets, CYP3A4 and ABCB1. Genotype-phenotype correlates in breast cancer patients showed PXR*1B to be significantly associated with lower doxorubicin clearance, suggesting that PXR haplotype constitution could be important in influencing interindividual and interethnic variations in disposition of its putative drug substrates.
Collapse
Affiliation(s)
- Edwin Sandanaraj
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Teotico DG, Bischof JJ, Peng L, Kliewer SA, Redinbo MR. Structural basis of human pregnane X receptor activation by the hops constituent colupulone. Mol Pharmacol 2008; 74:1512-20. [PMID: 18768384 PMCID: PMC2584763 DOI: 10.1124/mol.108.050732] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hops extracts are used to alleviate menopausal symptoms and as an alternative to hormone replacement therapy, but they can produce potentially harmful drug-drug interactions. The nuclear xenobiotic receptor pregnane X receptor (PXR) is promiscuously activated by a range of structurally distinct chemicals. It has a key role in the transcriptional regulation of genes that encode xenobiotic metabolism enzymes. In this study, hops extracts are shown to induce the expression of numerous drug metabolism and excretion proteins. The beta-bitter acid colupulone is demonstrated to be a bioactive component and direct activator of human PXR. The 2.8-A resolution crystal structure of the ligand binding domain of human PXR in complex with colupulone was elucidated, and colupulone was observed to bind in a single orientation stabilized by both van der Waals and hydrogen bonding contacts. The crystal structure also indicates that related alpha- and beta-bitter acids have the capacity to serve as PXR agonists as well. Taken together, these results reveal the structural basis for drug-drug interactions mediated by colupulone and related constituents of hops extracts.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Aryl Hydrocarbon Hydroxylases/biosynthesis
- Binding Sites
- Crystallography, X-Ray
- Cyclohexanones/chemistry
- Cyclohexanones/pharmacology
- Cytochrome P-450 CYP2B6
- Cytochrome P-450 CYP3A/biosynthesis
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Humulus
- In Vitro Techniques
- Oxidoreductases, N-Demethylating/biosynthesis
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Pregnane X Receptor
- RNA, Messenger/biosynthesis
- Receptors, Steroid/agonists
- Receptors, Steroid/chemistry
- Up-Regulation
Collapse
Affiliation(s)
- Denise G Teotico
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | | | | | | | | |
Collapse
|
240
|
Wang XD, Li JL, Su QB, Guan S, Chen J, Du J, He YW, Zeng J, Zhang JX, Chen X, Huang M, Zhou SF. Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John's wort-induced activity of cytochrome P450 3A4 enzyme. Br J Clin Pharmacol 2008; 67:255-61. [PMID: 19173680 DOI: 10.1111/j.1365-2125.2008.03344.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Human pregnane X receptor (PXR/NR1I2) is a key regulator of cytochrome P450 3A4. To date, there are 198 reported SNPs for the human PXR/NR1I2 gene. Some of these SNPs are found to affect the inducing ability of PXR to CYP3A4. WHAT THIS STUDY ADDS This study, for the first time, has investigated the effect of PXR haplotype on basal and St John's wort-induced CYP3A4 activity in humans. H1/H1 of the PXR gene had weaker basal transcriptional activity but greater inducible transcriptional activity to CYP3A4 than H1/H2 and H2/H2. AIMS Human pregnane X receptor (PXR/NR1I2) is the master regulator of CYP3A4, which metabolizes >50% of drugs on the market. This study investigated the relationship between the two most frequent haplotypes [H1 (TCAGGGGCCACC) and H2 (CCGAAAACTAAT)] of PXR and basal and St John's wort (SJW)-induced CYP3A4 activity. METHODS Ten healthy subjects carrying H1 and H2 haplotypes (three subjects with H1/H1, four with H1/H2 and three with H2/H2) entered this study. The 10 subjects did not carry CYP3A4*4, *5 and *6. All subjects were administrated a 300-mg SJW tablet three times daily for 14 days, and CYP3A4 activity was measured using nifedipine (NIF) as a probe. The plasma concentrations of NIF and dehydronifedipine (DNIF) were determined by a validated liquid chromatography/mass spectrometry/mass spectrometry method. RESULTS After administration of SJW, the AUC(0-infinity) of NIF decreased significantly, and the AUC(0-infinity) of DNIF increased significantly (P < 0.05). For H1/H2, the AUC(0-infinity) of NIF decreased by 42.4%, and the AUC(0-infinity) of DNIF increased by 20.2%; for H2/H2, the AUC(0-infinity) of NIF decreased by 47.9%, and the AUC(0-infinity) of DNIF increased by 33.0%; for H1/H1, the AUC(0-infinity) of NIF decreased by 29.0%, yet the AUC(0-infinity) of DNIF increased by 106.7%. The increase of the AUC(0-infinity) of DNIF in H1/H1 was significantly different from the other two haplotype pairs (P < 0.05). Meanwhile, before administration of SJW, the ratio of AUC(0-infinity(DNIF))/AUC(0-infinity(NIF)) was the lowest for H1/H1 (22.1%), compared with H1/H2 (58.7%) and H2/H2 (30.0%). CONCLUSIONS H1/H1 of the human PXR gene had weaker basal transcriptional activity but greater inducible transcriptional activity to CYP3A4 than H1/H2 and H2/H2.
Collapse
Affiliation(s)
- Xue-Ding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Road, section 2, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Ma X, Cheung C, Krausz KW, Shah YM, Wang T, Idle JR, Gonzalez FJ. A double transgenic mouse model expressing human pregnane X receptor and cytochrome P450 3A4. Drug Metab Dispos 2008; 36:2506-12. [PMID: 18799805 PMCID: PMC2678901 DOI: 10.1124/dmd.108.022723] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), the most abundant human cytochrome P450 in liver, participates in the metabolism of approximately 50% of clinically used drugs. The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, is the major activator of CYP3A4 transcription. However, because of species differences in response to PXR ligands, it is problematic to use rodents to assess CYP3A4 regulation and function. The generation of double transgenic mice expressing human PXR and CYP3A4 (TgCYP3A4/hPXR) would provide a solution to this problem. In the current study, a TgCYP3A4/hPXR mouse model was generated by bacterial artificial chromosome transgenesis in Pxr-null mice. In TgCYP3A4/hPXR mice, CYP3A4 was strongly induced by rifampicin, a human-specific PXR ligand, but not by pregnenolone 16alpha-carbonitrile, a rodent-specific PXR ligand. Consistent with CYP3A expression, hepatic CYP3A activity increased approximately 5-fold in TgCYP3A4/hPXR mice pretreated with rifampicin. Most antihuman immunodeficiency virus protease inhibitors are CYP3A substrates and their interactions with rifamycins are a source of major concern in patients coinfected with human immunodeficiency virus and Mycobacterium tuberculosis. By using TgCYP3A4/hPXR mice, human PXR-CYP3A4-mediated rifampicin-protease inhibitor interactions were recapitulated, as the metabolic stability of amprenavir, nelfinavir, and saquinavir decreased 52, 53, and 99%, respectively, in the liver microsomes of TgCYP3A4/hPXR mice pretreated with rifampicin. In vivo, rifampicin pretreatment resulted in an approximately 80% decrease in the area under the serum amprenavir concentration-time curve in TgCYP3A4/hPXR mice. These results suggest that the TgCYP3A4/hPXR mouse model could serve as a useful tool for studies on CYP3A4 transcription and function in vivo.
Collapse
Affiliation(s)
- Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Cheung C, Gonzalez FJ. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther 2008; 327:288-99. [PMID: 18682571 PMCID: PMC2597361 DOI: 10.1124/jpet.108.141242] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus, obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating "humanized" transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, pregnane X receptor, and peroxisome proliferator-activated receptor alpha were generated and characterized. These humanized mouse models offer a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs.
Collapse
Affiliation(s)
- Connie Cheung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
243
|
Abstract
The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolic enzymes and transporters involved in the responses of mammals to their chemical environment. The same enzyme and transporter systems are also involved in the homeostasis of numerous endogenous chemicals. The regulatory function of PXR is implicated in normal physiology and diseases, such as drug-drug interactions, hepatic steatosis, vitamin D homeostasis, bile acids homeostasis, steroid hormones homeostasis and inflammatory bowel diseases. As such, any genetic variations of this receptor could potentially have widespread effects on the disposition of xenobiotics and endobiotics. Knowledge concerning the genetic polymorphisms of PXR may help to understand the variations in human drug response and ensure safe drug use. The correlation of PXR genetic polymorphisms with several disease conditions also suggests that this receptor may represent a valid therapeutic for hepato-intestinal disorders such as inflammatory bowel disease and primary sclerosing cholangitis.
Collapse
Affiliation(s)
| | - Wen Xie
- Author for correspondence: Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA, 15261 USA Tel.: +1 412 648 9941 Fax: +1 412 648 1664
| | | |
Collapse
|
244
|
Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PRS, Birnbaum LS. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci 2008; 107:27-39. [PMID: 18978342 DOI: 10.1093/toxsci/kfn230] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies demonstrated that perinatal exposure to polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of the commercial penta mixture, DE-71, on genes related to TH metabolism at different developmental time points in male rats. DE-71 is predominately composed of PBDE congeners 47, 99, 100, 153, 154 with low levels of brominated dioxin and dibenzofuran contaminants. Pregnant Long-Evans rats were orally administered 1.7 (low), 10.2 (mid), or 30.6 (high) mg/kg/day of DE-71 in corn oil from gestational day (GD) 6 to postnatal day (PND) 21. Serum and liver were collected from male pups at PND 4, 21, and 60. Total serum thyroxine (T(4)) decreased to 57% (mid) and 51% (high) on PND 4, and 46% (mid) dose and 25% (high) on PND 21. Cyp1a1, Cyp2b1/2, and Cyp3a1 enzyme and mRNA expression, regulated by aryl hydrocarbon receptor, constitutive androstane receptor, and pregnane xenobiotic receptor, respectively, increased in a dose-dependent manner. UGT-T(4) enzymatic activity significantly increased, whereas age and dose-dependent effects were observed for Ugt1a6, 1a7, and 2b mRNA. Sult1b1 mRNA expression increased, whereas that of transthyretin (Ttr) decreased as did both the deiodinase I (D1) enzyme activity and mRNA expression. Hepatic efflux transporters Mdr1 (multidrug resistance), Mrp2 (multidrug resistance-associated protein), and Mrp3 and influx transporter Oatp1a4 mRNA expression increased. In this study the most sensitive responses to PBDEs following DE-71 exposure were CYP2B and D1 activities and Cyb2b1/2, d1, Mdr1, Mrp2, and Mrp3 gene expression. All responses were reversible by PND 60. In conclusion, deiodination, active transport, and sulfation, in addition to glucuronidation, may be involved in disruption of TH homeostasis due to perinatal exposure to DE-71 in male rat offspring.
Collapse
Affiliation(s)
- David T Szabo
- University of North Carolina Curriculum in Toxicology, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
245
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
246
|
Scheer N, Ross J, Rode A, Zevnik B, Niehaves S, Faust N, Wolf CR. A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J Clin Invest 2008; 118:3228-39. [PMID: 18677425 DOI: 10.1172/jci35483] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022] Open
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are closely related orphan nuclear hormone receptors that play a critical role as xenobiotic sensors in mammals. Both receptors regulate the expression of genes involved in the biotransformation of chemicals in a ligand-dependent manner. As the ligand specificity of PXR and CAR have diverged between species, the prediction of in vivo PXR and CAR interactions with a drug are difficult to extrapolate from animals to humans. We report the development of what we believe are novel PXR- and CAR-humanized mice, generated using a knockin strategy, and Pxr- and Car-KO mice as well as a panel of mice including all possible combinations of these genetic alterations. The expression of human CAR and PXR was in the predicted tissues at physiological levels, and splice variants of both human receptors were expressed. The panel of mice will allow the dissection of the crosstalk between PXR and CAR in the response to different drugs. To demonstrate the utility of this panel of mice, we used the mice to show that the in vivo induction of Cyp3a11 and Cyp2b10 by phenobarbital was only mediated by CAR, although this compound is described as a PXR and CAR activator in vitro. This panel of mouse models is a useful tool to evaluate the roles of CAR and PXR in drug bioavailability, toxicity, and efficacy in humans.
Collapse
|
247
|
Wada T, Kang HS, Jetten AM, Xie W. The emerging role of nuclear receptor RORalpha and its crosstalk with LXR in xeno- and endobiotic gene regulation. Exp Biol Med (Maywood) 2008; 233:1191-201. [PMID: 18535165 PMCID: PMC2658633 DOI: 10.3181/0802-mr-50] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Retinoid-related orphan receptors (RORs), including the alpha, beta and gamma isoforms (NR1F1-3), are orphan nuclear receptors that have been implicated in tissue development, immune responses, and circadian rhythm. Although RORalpha and RORgamma have been shown to be expressed in the liver, the hepatic function of these two RORs remains unknown. We have recently shown that loss of RORalpha and/or RORgamma can positively or negatively influence the expression of multiple Phase I and Phase II drug metabolizing enzymes and transporters in the liver. Among ROR responsive genes, we identified oxysterol 7alpha-hydroxylase (Cyp7b1), which plays a critical role in the homeostasis of cholesterol, as a RORalpha target gene. We showed that RORalpha is both necessary and sufficient for Cyp7b1 activation. Studies of mice deficient of RORalpha or liver X receptors (LXRs) revealed an interesting and potentially important functional crosstalk between RORalpha and LXR. The respective activation of LXR target genes and ROR target genes in RORalpha null mice and LXR null mice led to our hypothesis that these two receptors are mutually suppressive in vivo. LXRs have been shown to regulate a battery of metabolic genes. We conclude that RORs participate in the xeno- and endobiotic regulatory network by regulating gene expression directly or through crosstalk with LXR, which may have broad implications in metabolic homeostasis.
Collapse
Affiliation(s)
- Taira Wada
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hong Soon Kang
- Cell Biology Section, Division of Intramural Research, The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
248
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
249
|
Gao YD, Olson SH, Balkovec JM, Zhu Y, Royo I, Yabut J, Evers R, Tan EY, Tang W, Hartley DP, Mosley RT. Attenuating pregnane X receptor (PXR) activation: A molecular modelling approach. Xenobiotica 2008; 37:124-38. [PMID: 17484516 DOI: 10.1080/00498250601050412] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies have demonstrated that the pregnane X receptor (PXR) is a key regulator of cytochromes P450 3A (e.g. CYP3A4 in human) gene expression. As a result, activation of PXR may lead to CYP3A4 protein over-expression. Because induction of CYP3A4 could result in clinically important drug drug interactions, there has been a great interest in reducing the possibility of PXR activation by drug candidates in drug-discovery programmes. In order to provide structural insight for attenuating drug candidate-mediated PXR activation, we used a docking approach to study the structure activity relationship for PXR activators. Based on our docking models, it is proposed that introducing polar groups to the end of an activator should reduce its human PXR (hPXR) activity via destabilizing interactions in the hydrophobic areas of the PXR ligand-binding pocket. A number of analogues that incorporate these structural features then were designed and synthesized, and they exhibited significantly lower hPXR activation in a transactivation assay and decreased CYP3A4 induction in a human hepatocytes-based assay. In addition, an example in which attenuating hPXR activation was achieved by sterically destabilizing the helices 11 and 12 of the receptor is presented.
Collapse
Affiliation(s)
- Y D Gao
- Department of Molecular Systems, Merck Research Laboratories, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
van Waterschoot RAB, Rooswinkel RW, Wagenaar E, van der Kruijssen CMM, van Herwaarden AE, Schinkel AH. Intestinal cytochrome P450 3A plays an important role in the regulation of detoxifying systems in the liver. FASEB J 2008; 23:224-31. [PMID: 18794335 DOI: 10.1096/fj.08-114876] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CYP3A4 is an important xenobiotic metabolizing enzyme. We previously found that CYP2C55 is highly up-regulated in Cyp3a(-/-) mice. Here, we have further investigated the mechanism of regulation of CYP2C55 and other detoxifying systems in Cyp3a(-/-) mice. Induction studies with prototypical inducers demonstrated an important role for the nuclear receptors PXR and CAR in the up-regulation of CYP2C55. Subsequent diet-switch experiments revealed that food-derived xenobiotics are primarily responsible for the increased induction of CYP2C55, as well as of several other primary detoxifying systems in Cyp3a(-/-) mice. Our data suggest that CYP3A normally metabolizes food-derived activators of PXR and/or CAR, explaining the increased levels of such activators in Cyp3a(-/-) mice and subsequent up-regulation of a range of detoxifying systems. Interestingly, our studies with tissue-specific CYP3A4 transgenic Cyp3a(-/-) mice revealed that not only hepatic but also intestinal expression of CYP3A4 could reduce the hepatic expression of detoxifying systems to near wild-type levels. Apparently, intestinal CYP3A4 can limit the hepatic exposure to food-derived activators of nuclear receptors, thereby regulating the expression of a range of detoxifying systems in the liver. This broad biological effect further emphasizes the importance of intestinal CYP3A activity and could have profound implications for the prediction of drug exposure.
Collapse
Affiliation(s)
- Robert A B van Waterschoot
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|