201
|
Seime T, Akbulut AC, Liljeqvist ML, Siika A, Jin H, Winski G, van Gorp RH, Karlöf E, Lengquist M, Buckler AJ, Kronqvist M, Waring OJ, Lindeman JHN, Biessen EAL, Maegdefessel L, Razuvaev A, Schurgers LJ, Hedin U, Matic L. Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells 2021; 10:1276. [PMID: 34063989 PMCID: PMC8224064 DOI: 10.3390/cells10061276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.
Collapse
Affiliation(s)
- Till Seime
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Asim Cengiz Akbulut
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
| | - Moritz Lindquist Liljeqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Antti Siika
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Hong Jin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
| | - Rick H. van Gorp
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Andrew J. Buckler
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Malin Kronqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Olivia J. Waring
- Department of Pathology, CARIM, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (O.J.W.); (E.A.L.B.)
| | - Jan H. N. Lindeman
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Erik A. L. Biessen
- Department of Pathology, CARIM, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (O.J.W.); (E.A.L.B.)
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, 81679 Munich, Germany
| | - Anton Razuvaev
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Leon J. Schurgers
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52062 Aachen, Germany
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| |
Collapse
|
202
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
203
|
Sox9a, not sox9b is required for normal cartilage development in zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
204
|
Goodarzi N, Akbari Bazm M, Poladi S, Rashidi F, Mahmoudi B, Abumandour MMA. Histology of the small intestine in the common pheasant (Phasianus colchicus): A scanning electron microscopy, histochemical, immunohistochemical, and stereological study. Microsc Res Tech 2021; 84:2388-2398. [PMID: 33908129 DOI: 10.1002/jemt.23794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
The present investigation was conducted to investigate the histology, immunohistochemistry, stereology, and ultrastructure of the small intestine in the common pheasant (Phasianus colchicus) using light and scanning electron microscopy (SEM). Ten birds were included in the study. The obtained findings revealed that three parts in the small intestine namely duodenum, jejunum, and ilium constituted of four layers from innermost to outermost including tunica mucosa, tunica submucosa, tunica muscularis, and tunica serosa. All parts of the small intestine had simple columnar epithelium with goblet cells reacted with Periodic Acid-Schiff and Alcian Blue stains especially in the jejunum and ileum. The cells on the tip of the duodenal villi showed immuno-positive staining for Sox9 protein, while the jejunum and ileum were negative. The jejunum had longest villi; however the duodenum had deepest crypt (p < .05). The villus surface of jejunum was significantly higher than duodenum and ileum (p < .05). SEM images revealed that the duodenum had cauliflower and leaf-like villi with plicas and recess between them. Jejunum had finger-like villi with a velvety view. The shape of the ileal villi was like that observed in the jejunum with slight differences. In conclusion, the jejunum was the most prominent region in the small intestine in terms of morphologic and morphometric features, which could be attributed to the absorption of more nutrients in this area. These obtained findings would be useful to improve the knowledge in the field of histophysiology properties of the bird's digestive system.
Collapse
Affiliation(s)
- Nader Goodarzi
- Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohsen Akbari Bazm
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadra Poladi
- Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Fatemeh Rashidi
- Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Bahareh Mahmoudi
- Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
205
|
Venkatesan JK, Cai X, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. pNaSS-Grafted PCL Film-Guided rAAV TGF-β Gene Therapy Activates the Chondrogenic Activities in Human Bone Marrow Aspirates. Hum Gene Ther 2021; 32:895-906. [PMID: 33573471 DOI: 10.1089/hum.2020.329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Scaffold-guided viral gene therapy is a novel, powerful tool to enhance the processes of tissue repair in articular cartilage lesions by the delivery and overexpression of therapeutic genes in a noninvasive, controlled release manner based on a procedure that may protect the gene vehicles from undesirable host immune responses. In this study, we examined the potential of transferring a recombinant adeno-associated virus (rAAV) vector carrying a sequence for the highly chondroregenerative transforming growth factor beta (TGF-β), using poly(ɛ-caprolactone) (PCL) films functionalized by the grafting of poly(sodium styrene sulfonate) (pNaSS) in chondrogenically competent bone marrow aspirates as future targets for therapy in cartilage lesions. Effective overexpression of TGF-β in the aspirates by rAAV was achieved upon delivery using pNaSS-grafted and ungrafted PCL films for up to 21 days (the longest time point evaluated), with superior levels using the grafted films, compared with respective conditions without vector coating. The production of rAAV-mediated TGF-β by pNaSS-grafted and ungrafted PCL films significantly triggered the biological activities and chondrogenic processes in the samples (proteoglycan and type-II collagen deposition and cell proliferation), while containing premature mineralization and hypertrophy relative to the other conditions, with overall superior effects supported by the pNaSS-grafted films. These observations demonstrate the potential of PCL film-assisted rAAV TGF-β gene transfer as a convenient, off-the-shelf technique to enhance the reparative potential of the bone marrow in patients in future approaches for improved cartilage repair.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | | | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
206
|
Enhancing the chondrogenic potential of chondrogenic progenitor cells by deleting RAB5C. iScience 2021; 24:102464. [PMID: 34013174 PMCID: PMC8113995 DOI: 10.1016/j.isci.2021.102464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease that affects a large proportion of the elderly population. Chondrogenic progenitor cells (CPCs) reside in late-stage OA cartilage tissue, producing a fibrocartilaginous extracellular matrix; these cells can be manipulated in vitro to deposit proteins of healthy articular cartilage. CPCs are under the control of SOX9 and RUNX2. In our earlier studies, we showed that a knockdown of RUNX2 enhanced the chondrogenic potential of CPCs. Here we demonstrate that CPCs carrying a knockout of RAB5C, a protein involved in endosomal trafficking, exhibited elevated expression of multiple chondrogenic markers, including the SOX trio, and increased COL2 deposition, whereas no changes in COL1 deposition were observed. We report RAB5C as an attractive target for future therapeutic approaches designed to increase the COL2 content in the diseased joint.
Collapse
|
207
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
208
|
Hashimoto D, Kajimoto M, Ueda Y, Hyuga T, Fujimoto K, Inoue S, Suzuki K, Kataoka T, Kimura K, Yamada G. 3D reconstruction and histopathological analyses on murine corporal body. Reprod Med Biol 2021; 20:199-207. [PMID: 33850453 PMCID: PMC8022099 DOI: 10.1002/rmb2.12369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Erectile dysfunction (ED) is one of the increasing diseases with aging society. The basis of ED derived from local penile abnormality is poorly understood because of the complex three-dimensional (3D) distribution of sinusoids in corpus cavernosum (CC). Understanding the 3D histological structure of penis is thus necessary. Analyses on the status of regulatory signals for such abnormality are also performed. METHODS To analyze the 3D structure of sinusoid, 3D reconstruction from serial sections of murine CC were performed. Histological analyses between young (2 months old) and aged (14 months old) CC were performed. As for chondrogenic signaling status of aged CC, SOX9 and RBPJK staining was examined. RESULTS Sinusoids prominently developed in the outer regions of CC adjacent to tunica albuginea. Aged CC samples contained ectopic chondrocytes in such regions. Associating with the appearance of chondrocytes, the expression of SOX9, chondrogenic regulator, was upregulated. The expression of RBPJK, one of the Notch signal regulators, was downregulated in the aged CC. CONCLUSIONS Prominent sinusoids distribute in the outer region of CC which may possess important roles for erection. A possibility of ectopic chondrogenesis induced by alteration of SOX9/Notch signaling with aging is indicated.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Mizuki Kajimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Yuko Ueda
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Taiju Hyuga
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Saaya Inoue
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Tomoya Kataoka
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| | - Kazunori Kimura
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
- Department of Hospital PharmacyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Gen Yamada
- Department of Developmental GeneticsInstitute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
209
|
Maihöfer J, Madry H, Rey‐Rico A, Venkatesan JK, Goebel L, Schmitt G, Speicher‐Mentges S, Cai X, Meng W, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. Hydrogel-Guided, rAAV-Mediated IGF-I Overexpression Enables Long-Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Large-Animal Full-Thickness Chondral Defect Model at One Year In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008451. [PMID: 33734514 PMCID: PMC11468525 DOI: 10.1002/adma.202008451] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The regeneration of focal articular cartilage defects is complicated by the reduced quality of the repair tissue and the potential development of perifocal osteoarthritis (OA). Biomaterial-guided gene therapy may enhance cartilage repair by controlling the release of therapeutic sequences in a spatiotemporal manner. Here, the benefits of delivering a recombinant adeno-associated virus (rAAV) vector coding for the human insulin-like growth factor I (IGF-I) via an alginate hydrogel (IGF-I/AlgPH155) to enhance repair of full-thickness chondral defects following microfracture surgery after one year in minipigs versus control (lacZ/AlgPH155) treatment are reported. Sustained IGF-I overexpression is significantly achieved in the repair tissue of defects treated with IGF-I/AlgPH155 versus those receiving lacZ/AlgPH155 for one year and in the cartilage surrounding the defects. Administration of IGF-I/AlgPH155 significantly improves parameters of cartilage repair at one year relative to lacZ/AlgPH155 (semiquantitative total histological score, cell densities, matrix deposition) without deleterious or immune reactions. Remarkably, delivery of IGF-I/AlgPH155 also significantly reduces perifocal OA and inflammation after one year versus lacZ/AlgPH155 treatment. Biomaterial-guided rAAV gene transfer represents a valuable clinical approach to promote cartilage repair and to protect against OA.
Collapse
Affiliation(s)
- Johanna Maihöfer
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Ana Rey‐Rico
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Lars Goebel
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Gertrud Schmitt
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Susanne Speicher‐Mentges
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Xiaoyu Cai
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - Weikun Meng
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| | - David Zurakowski
- Departments of Anesthesia and SurgeryChildren's Hospital BostonHarvard Medical SchoolBostonMA02115USA
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland UniversityD‐66421Homburg/SaarGermany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland UniversityD‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterD‐66421Homburg/SaarGermany
| |
Collapse
|
210
|
Xu Y, Jang JH, Gye MC. 4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116560. [PMID: 33524650 DOI: 10.1016/j.envpol.2021.116560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Developmental toxicity of 4-octylphenol (OP), an estrogenic endocrine disruptor was verified using frog embryo teratogenesis assay Xenopus. LC50, EC50Malformtion and EC50Melanocyte-dysgenesis of OP were 9.9, 10.5, and 2.4 μM, respectively. In tadpoles, despite the low teratogenic index, 2 μM OP significantly inhibited head cartilage development and tail malformation. The total length of tadpole was significantly increased at 5 μM and decreased at 10 μM OP. In OP-treated tadpoles, head cartilages were frequently missed and col2a1 mRNA was decreased at 2 μM, indicating a chondrogenic defect in developing head. In the head skin of 1 μM OP-treated tadpoles, number of melanocytes and melanogenic pathway genes expression were significantly decreased. In the head-neck junction of stage 22 embryos, OP increased foxd3 and sox10 mRNA and SOX10(+) neural crest cells (NCCs) in somite mesoderm and endoderm, indicating the inhibition of chondrogenic differentiation, ectopic migration to endoderm, and undifferentiation of NCCs by OP. Together, OP-induced head dysplasia and inhibition of melanogenesis may be attributable to deregulation of neural crest cells in embryos. In tadpoles, OP at 1 μM significantly increased lipid hydroperoxide and induced spliced xbp1 mRNA, an IRE1 pathway endoplasmic reticulum stress (ERS) marker and p-eIF2α protein, a PERK pathway ERS marker. OP at 10 μM induced CHOP mRNA, pro-apoptotic genes expression, DNA fragmentation, and cleaved caspase-3, suggesting that OP differentially induced ERS and apoptosis according to the concentration in embryos. In 5-10 μM OP-treated stage 22 embryos and stage 45 tadpole heads, Ki67 was significantly increased, suggesting the apoptosis-induced proliferation of embryonic cells in the OP-treated embryos. Together, OP should be managed as a developmental toxicant altering the behavior of NCCs in vertebrates.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ji Hyun Jang
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
211
|
Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, Shipman SL, Appleton E, Kiaee K, Kohman RE, Vernet A, Dysart M, Leeper K, Saylor W, Huang JY, Graveline A, Taipale J, Hill DE, Vidal M, Melero-Martin JM, Busskamp V, Church GM. A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol 2021; 39:510-519. [PMID: 33257861 PMCID: PMC7610615 DOI: 10.1038/s41587-020-0742-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.
Collapse
Affiliation(s)
- Alex H M Ng
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Jesus Eduardo Rojo Arias
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Giovanni Pasquini
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Anka Swiersy
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Seth L Shipman
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Evan Appleton
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Kiavash Kiaee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Richie E Kohman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Matthew Dysart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kathleen Leeper
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Wren Saylor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jeremy Y Huang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David E Hill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Volker Busskamp
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany.
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- GC Therapeutics, Inc, Cambridge, MA, USA.
| |
Collapse
|
212
|
Vining B, Ming Z, Bagheri-Fam S, Harley V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes (Basel) 2021; 12:genes12040486. [PMID: 33810596 PMCID: PMC8066042 DOI: 10.3390/genes12040486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sex determination occurs early during embryogenesis among vertebrates. It involves the differentiation of the bipotential gonad to ovaries or testes by a fascinating diversity of molecular switches. In most mammals, the switch is SRY (sex determining region Y); in other vertebrates it could be one of a variety of genes including Dmrt1 or dmy. Downstream of the switch gene, SOX9 upregulation is a central event in testes development, controlled by gonad-specific enhancers across the 2 Mb SOX9 locus. SOX9 is a ‘hub’ gene of gonadal development, regulated positively in males and negatively in females. Despite this diversity, SOX9 protein sequence and function among vertebrates remains highly conserved. This article explores the cellular, morphological, and genetic mechanisms initiated by SOX9 for male gonad differentiation.
Collapse
Affiliation(s)
- Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-8572-2527
| |
Collapse
|
213
|
Xie A, Peng Y, Yao Z, Lu L, Ni T. Effect of a subset of adipose-derived stem cells isolated with liposome magnetic beads to promote cartilage repair. J Cell Mol Med 2021; 25:4204-4215. [PMID: 33768729 PMCID: PMC8093962 DOI: 10.1111/jcmm.16470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the ability of CD146+ subset of ADSCs to repair cartilage defects. In this study, we prepared CD146+ liposome magnetic beads (CD146+LMB) to isolate CD146+ADSCs. The cells were induced for chondrogenic differentiation and verified by cartilage‐specific mRNA and protein expression. Then a mouse model of cartilage defect was constructed and treated by filling the induced cartilage cells into the damaged joint, to evaluate the function of such cells in the cartilage microenvironment. Our results demonstrated that the CD146+LMBs we prepared were uniform, small and highly stable, and cell experiments showed that the CD146+LMB has low cytotoxicity to the ADSCs. ADSCs isolated with CD146+LMB were all CD146+, CD105+, CD166+ and CD73+. After chondrogenic induction, the cells showed significantly increased expression of cartilage markers Sox9, collagen Ⅱ and aggrecan at protein level and significantly increased Sox9, collagen Ⅱ and aggrecan at mRNA level, and the protein expression and mRNA expression of CD146+ADSCs group were higher than those of ADSCs group. The CD146+ADSCs group showed superior tissue repair ability than the ADSCs group and blank control group in the animal experiment, as judged by gross observation, histological observation and histological scoring. The above results proved that CD146+LMB can successfully isolate the CD146+ADSCs, and after chondrogenic induction, these cells successfully promoted repair of articular cartilage defects, which may be a new direction of tissue engineering.
Collapse
Affiliation(s)
- Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
214
|
Huang Y, Li D, Qiao L, Liu Y, Peng Q, Wu S, Zhang M, Yang Y, Tan J, Xu S, Jin L, Wang S, Tang K, Grünewald S. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese. J Genet Genomics 2021; 48:198-207. [PMID: 33593615 DOI: 10.1016/j.jgg.2020.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The human face is a heritable surface with many complex sensory organs. In recent years, many genetic loci associated with facial features have been reported in different populations, yet there is a lack of studies on the Han Chinese population. Here, we report a genome-wide association study of 3D normal human faces of 2,659 Han Chinese with autosegment phenotypes of facial morphology. We identify single-nucleotide polymorphisms (SNPs) encompassing four genomic regions showing significant associations with different facial regions, including SNPs in DENND1B associated with the chin, SNPs among PISRT1 associated with eyes, SNPs between DCHS2 and SFRP2 associated with the nose, and SNPs in VPS13B associated with the nose. We replicate 24 SNPs from previously reported genetic loci in different populations, whose candidate genes are DCHS2, SUPT3H, HOXD1, SOX9, PAX3, and EDAR. These results provide a more comprehensive understanding of the genetic basis of variation in human facial morphology.
Collapse
Affiliation(s)
- Yin Huang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Dan Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; DeepBlue Technology (Shanghai) Co., Ltd, Shanghai 200336, China
| | - Lu Qiao
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Yu Liu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Qianqian Peng
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Sijie Wu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Manfei Zhang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Fudan-Taizhou Institute of Health Sciences, Taizhou 225300, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Fudan-Taizhou Institute of Health Sciences, Taizhou 225300, China
| | - Shuhua Xu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Jin
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Fudan-Taizhou Institute of Health Sciences, Taizhou 225300, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| | - Sijia Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Kun Tang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China; DeepBlue Technology (Shanghai) Co., Ltd, Shanghai 200336, China.
| | - Stefan Grünewald
- Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai 200031, China.
| |
Collapse
|
215
|
Kitajima K, Kawahira N, Lee SW, Tamura K, Morishita Y, Ohtsuka D. Light-induced local gene expression in primary chick cell culture system. Dev Growth Differ 2021; 63:189-198. [PMID: 33733477 PMCID: PMC8252662 DOI: 10.1111/dgd.12721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/28/2022]
Abstract
The ability to manipulate gene expression at a specific region in a tissue or cell culture system is critical for analysis of target gene function. For chick embryos/cells, several gene introduction/induction methods have been established such as those involving retrovirus, electroporation, sonoporation, and lipofection. However, these methods have limitations in the accurate induction of localized gene expression. Here we demonstrate the effective application of a recently developed light‐dependent gene expression induction system (LightOn system) using the Neurospora crassa photoreceptor Vivid fused with a Gal4 DNA binding domain and p65 activation domain (GAVPO) that alters its activity in response to light stimulus in a primary chicken cell culture system. We show that the gene expression level and induction specificity in this system are strongly dependent on the light irradiation conditions. Especially, the irradiation interval is an important parameter for modulating gene expression; for shorter time intervals, higher induction specificity can be achieved. Further, by adjusting light irradiation conditions, the expression level in primary chicken cells can be regulated in a multiple step manner, in contrast to the binary expression seen for gene disruption or introduction (i.e., null or overexpression). This result indicates that the light‐dependent expression control method can be a useful technique in chick models to examine how gene function is affected by gradual changes in gene expression levels. We applied this light induction system to regulate Sox9 expression in cultures of chick limb mesenchyme cells and showed that induced SOX9 protein could modulate expression of downstream genes.
Collapse
Affiliation(s)
- Keiichi Kitajima
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Research Fellow (DC2) of Japan Society for the Promotion of Science, Tokyo, Japan.,Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Naofumi Kawahira
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Daisuke Ohtsuka
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
216
|
Been S, Choi J, Cho H, Jeon G, Song JE, Bucciarelli A, Khang G. Preparation and characterization of a soluble eggshell membrane/agarose composite scaffold with possible applications in cartilage regeneration. J Tissue Eng Regen Med 2021; 15:375-387. [PMID: 33533202 DOI: 10.1002/term.3178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
Articular hyaline cartilage is an extremely hydrated, not vascularized tissue with a low-cell density. The damage of this tissue can occur after injuries or gradual stress and tears (osteoarthritis), minor damages can be self-healed in several weeks, but major injuries may eventually require surgery. In fact, in this case, because of nature of the cartilage (the absence of cells and vascularization) it is difficult to expect its natural regeneration in a reasonable amount of time. In recent years, cell therapy, in which cells are directly transplanted, has attracted attention. In this study, a scaffold for implanting chondrocytes was prepared. The scaffold was made as a sponge using the eggshell membrane and agarose. The eggshell membrane is structurally similar to the extracellular matrix and nontoxic due to its many collagen components and has good biocompatibility and biodegradability. However, scaffolds made of collagen only has poor mechanical properties. For this reason, the disulfide bond of collagen extracted from the insoluble eggshell membrane was cut, converted into water-soluble, and then mixed with agarose to prepare a scaffold. Agarose is capable of controlling mechanical properties, has excellent biocompatibility, and is suitable for forming a hydrogel having a three-dimensional porosity. The scaffold was examined for Fourier-transform infrared, mechanical properties, biodegradability, and biocompatibility. In in vitro experiment, cytotoxicity, cell proliferation, and messenger RNA expression were investigated. The study demonstrated that the agarose/eggshell membrane scaffold can be used for chondrocyte transplantation.
Collapse
Affiliation(s)
- Suyoung Been
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeongmin Choi
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hunhwi Cho
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gayeong Jeon
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeong E Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Alessio Bucciarelli
- Microsystems Technology Group, Materials and Microsystems Center (CMM), Fondazione Bruno Kessler, Trento, Italy
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
217
|
Edelman HE, McClymont SA, Tucker TR, Pineda S, Beer RL, McCallion AS, Parsons MJ. SOX9 modulates cancer biomarker and cilia genes in pancreatic cancer. Hum Mol Genet 2021; 30:485-499. [PMID: 33693707 DOI: 10.1093/hmg/ddab064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with high mortality. The cellular origins of PDAC are largely unknown; however, ductal cells, especially centroacinar cells (CACs), have several characteristics in common with PDAC, such as expression of SOX9 and components of the Notch-signaling pathway. Mutations in KRAS and alterations to Notch signaling are common in PDAC, and both these pathways regulate the transcription factor SOX9. To identify genes regulated by SOX9, we performed siRNA knockdown of SOX9 followed by RNA-seq in PANC-1s, a human PDAC cell line. We report 93 differentially expressed (DE) genes, with convergence on alterations to Notch-signaling pathways and ciliogenesis. These results point to SOX9 and Notch activity being in a positive feedback loop and SOX9 regulating cilia production in PDAC. We additionally performed ChIP-seq in PANC-1s to identify direct targets of SOX9 binding and integrated these results with our DE gene list. Nine of the top 10 downregulated genes have evidence of direct SOX9 binding at their promoter regions. One of these targets was the cancer stem cell marker EpCAM. Using whole-mount in situ hybridization to detect epcam transcript in zebrafish larvae, we demonstrated that epcam is a CAC marker and that Sox9 regulation of epcam expression is conserved in zebrafish. Additionally, we generated an epcam null mutant and observed pronounced defects in ciliogenesis during development. Our results provide a link between SOX9, EpCAM and ciliary repression that can be exploited in improving our understanding of the cellular origins and mechanisms of PDAC.
Collapse
Affiliation(s)
- Hannah E Edelman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Sarah A McClymont
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Santiago Pineda
- Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| | - Rebecca L Beer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Michael J Parsons
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA.,Department of Developmental and Cell Biology, University of California, Irvine, Natural Sciences II, CA 92697, USA
| |
Collapse
|
218
|
Baddam P, Kung T, Adesida AB, Graf D. Histological and molecular characterization of the growing nasal septum in mice. J Anat 2021; 238:751-764. [PMID: 33043993 PMCID: PMC7855085 DOI: 10.1111/joa.13332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The nasal septum is a cartilaginous structure that serves as a pacemaker for the development of the midface. The septum is a hyaline cartilage which is surrounded by a perichondrium and epithelium. It remains cartilaginous anteriorly, but posteriorly it undergoes endochondral ossification to form the perpendicular plate of the ethmoid. Understanding of hyaline cartilage differentiation stems predominantly from investigations of growth plate cartilage. It is currently unclear if the morphological and molecular properties of the differentiating nasal septum align with what is known from the growth plate. In this study, we describe growth, molecular, and cellular characteristics of the nasal septum with reference to hyaline cartilage differentiation. The nasal septum grows asynchronous across its length with phases of rapid growth interrupted by more stagnant growth. Growth appears to be driven predominantly by acquisition of chondrocyte hypertrophy. Similarly, cellular differentiation is asynchronous, and differentiation observed in the anterior part precedes posterior differentiation. Overall, the nasal septum is structurally and molecularly heterogeneous. Early and extensive chondrocyte hypertrophy but no ossification is observed in the anterior septum. Onset of hypertrophic chondrocyte differentiation coincided with collagen fiber deposition along the perichondrium. Sox9, Col2, Col10, Mmp13, Sp7, and Runx2 expression was heterogeneous and did not always follow the expected pattern established from chondrocyte differentiation in the growth plate. The presence of hypertrophic chondrocytes expressing bone-related proteins early on in regions where the nasal septum does not ossify displays incongruities with current understanding of hyaline cartilage differentiation. Runx2, Collagen II, Collagen X, and Sp7 commonly used to mark distinct stages of chondrocyte maturation and early bone formation show wider expression than expected and do not align with expected cellular characteristics. Thus, the hyaline cartilage of the nasal septum is quite distinct from growth plate hyaline cartilage, and caution should be taken before assigning cartilage properties to less well-defined cartilage structures using these commonly used markers. Beyond the structural description of the nasal cartilage, this study also provides important information for cartilage tissue engineering when using nasal septal cartilage for tissue regeneration.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Tiffany Kung
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Adetola B. Adesida
- Department of SurgeryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Daniel Graf
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada,Department of Medical GeneticsFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
219
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
220
|
Sarkar A, Saha S, Paul A, Maji A, Roy P, Maity TK. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci 2021; 273:119270. [PMID: 33640402 DOI: 10.1016/j.lfs.2021.119270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) are clonogenic cells that develop into the specialized cells which later responsible for making up various types of tissue in the human body. SCs are not only the appropriate source of information for cell division, molecular and cellular processes, and tissue homeostasis but also one of the major putative biological aids to diagnose and cure various degenerative diseases. This study emphasises on various research outputs that occurred in the past two decades. This will give brief information on classification, differentiation, detection, and various isolation techniques of SCs. Here, the various signalling pathways which includes WNT, Sonic hedgehog, Notch, BMI1 and C-met pathways and how does it effect on the regeneration of various classes of SCs and factors that regulates the potency of the SCs are also been discussed. We also focused on the application of SCs in the area of regenerative medicine along with the cellular markers that are useful as salient diagnostic or curative tools or in both, by the process of reprogramming, which includes diabetes, cancer, cardiovascular disorders and neurological disorders. The biomarkers that are mentioned in various literatures and experiments include PDX1, FOXA2, HNF6, and NKX6-1 (for diabetes); CD33, CD24, CD133 (for cancer); c-Kit, SCA-1, Wilm's tumor 1 (for cardiovascular disorders); and OCT4, SOX2, c-MYC, EN1, DAT and VMAT2 (for neurological disorders). In this review, we come to know the advancements and scopes of potential SC-based therapies, its diverse applications in clinical fields that can be helpful in the near future.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Puspita Roy
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India.
| |
Collapse
|
221
|
Zheng J, Lin Y, Tang F, Guo H, Yan L, Hu S, Wu H. Promotive Role of CircATRNL1 on Chondrogenic Differentiation of BMSCs Mediated by miR-338-3p. Arch Med Res 2021; 52:514-522. [PMID: 33610389 DOI: 10.1016/j.arcmed.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 01/22/2023]
Abstract
AIM Bone marrow mesenchymal stem cells (BMSCs) are ideal seed cells for tissue engineering cartilage construction. However, the underlying mechanism of it has not been illuminate well. In this study, the effects of circATRNL1 (hsa_circ_0020093) on the differentiation of BMSCs into chondrocytes were investigated. METHODS The degrees of chondrogenic differentiation of BMSCs on day 0, 14 and 21 mediums were detected by Alcian blue staining. Expressions of cartilage differentiation related factors SOX9, COL2 and Aggrecan, and circATRNL1 in BMSCs under differentiation were determined by western blot and quantitative real-time polymerase chain reaction (qRT-PCR) as needed. circATRNL1 knockdown or overexpression was performed in BMSCs. Then the viability of BMSCs and cartilage differentiation related factors were separately investigated through MTT assay, qRT-PCR, and western blot. Target gene of circATRNL1 and binding site were predicted using starbase and validated it by dual luciferase reporter. The effect of circATRNL1 and its target gene on chondrogenic differentiation of BMSCs was assessed using Alcian blue staining further. RESULTS The degrees of chondrogenic differentiation of BMSCs were increased with time. Expressions of SOX9, COL2 and Aggrecan as well as circATRNL1 were enhanced during chondrogenic differentiation. Furthermore, overexpression of circATRNL1 enhanced BMSCs proliferation, SOX9, COL2 and Aggrecan expressions and the degree of chondrogenic differentiation of BMSCs. Further research showed that circATRNL1 targeted miR-338-3p. MiR-338-3p inhibited differentiation of BMSCs into cartilage but overexpression of circATRNL1 reversed it. CONCLUSION CircATRNL1 is beneficial to BMSCs differentiation into cartilage by regulating miR-338-3p, which may be a new mechanism of action in the treatment of cartilage repair.
Collapse
Affiliation(s)
- Jianzhang Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China
| | - Yunshuo Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China
| | - Faqiang Tang
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China
| | - Huiling Guo
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China
| | - Laipeng Yan
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China
| | - Shiping Hu
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China
| | - Hong Wu
- Shengli Clinical Medical College of Fujian Medical University, Department of Orthopaedics, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
222
|
Zhang X, Wu S, Zhu Y, Chu CQ. Exploiting Joint-Resident Stem Cells by Exogenous SOX9 for Cartilage Regeneration for Therapy of Osteoarthritis. Front Med (Lausanne) 2021; 8:622609. [PMID: 33681252 PMCID: PMC7928416 DOI: 10.3389/fmed.2021.622609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
The lack of effective treatment options for osteoarthritis (OA) is mostly due to the very limited regenerative capacity of articular cartilage. Mesenchymal stem cells (MSCs) have been most extensively explored for cell-based therapy to induce cartilage regeneration for OA. However, current in vitro expanded MSC-based approaches have significant drawbacks. On the other hand, osteoarthritic joints contain chondrocyte progenitors and MSCs in several niches which have the potential yet fail to differentiate into chondrocytes for cartilage regeneration. One of the underlying mechanisms of the failure is that these chondrocyte progenitors and MSCs in OA joints are deficient in the activity of chondrogenic transcription factor SOX9 (SRY-type high-mobility group box-9). Thereby, replenishing with exogenous SOX9 would reactivate the potential of these stem cells to differentiate into chondrocytes. Cell-permeable, super-positively charged SOX9 (scSOX9) protein is able to promote hyaline-like cartilage regeneration by inducing chondrogenic differentiation of bone marrow derived MSCs in vivo. This scSOX9 protein can be administered into osteoarthritic joints by intra-articular injection. This one-step, cell-free supplement of exogenous SOX9 may harness the regenerative potential of the intrinsic MSCs within the joint cavity to stimulate cartilage regeneration in OA.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States.,Section of Rheumatology, VA Portland Health Care System, Portland, OR, United States
| | - Shili Wu
- Vivoscript, Inc., Irvine, CA, United States
| | - Yong Zhu
- Vivoscript, Inc., Irvine, CA, United States
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, United States.,Section of Rheumatology, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
223
|
Xu P, Yu HV, Tseng KC, Flath M, Fabian P, Segil N, Crump JG. Foxc1 establishes enhancer accessibility for craniofacial cartilage differentiation. eLife 2021; 10:63595. [PMID: 33501917 PMCID: PMC7891931 DOI: 10.7554/elife.63595] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The specification of cartilage requires Sox9, a transcription factor with broad roles for organogenesis outside the skeletal system. How Sox9 and other factors gain access to cartilage-specific cis-regulatory regions during skeletal development was unknown. By analyzing chromatin accessibility during the differentiation of neural crest cells into chondrocytes of the zebrafish head, we find that cartilage-associated chromatin accessibility is dynamically established. Cartilage-associated regions that become accessible after neural crest migration are co-enriched for Sox9 and Fox transcription factor binding motifs. In zebrafish lacking Foxc1 paralogs, we find a global decrease in chromatin accessibility in chondrocytes, consistent with a later loss of dorsal facial cartilages. Zebrafish transgenesis assays confirm that many of these Foxc1-dependent elements function as enhancers with region- and stage-specific activity in facial cartilages. These results show that Foxc1 promotes chondrogenesis in the face by establishing chromatin accessibility at a number of cartilage-associated gene enhancers.
Collapse
Affiliation(s)
- Pengfei Xu
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Haoze V Yu
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Kuo-Chang Tseng
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Mackenzie Flath
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Peter Fabian
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Neil Segil
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
224
|
Smeeton J, Natarajan N, Naveen Kumar A, Miyashita T, Baddam P, Fabian P, Graf D, Crump JG. Zebrafish model for spondylo-megaepiphyseal-metaphyseal dysplasia reveals post-embryonic roles of Nkx3.2 in the skeleton. Development 2021; 148:dev193409. [PMID: 33462117 PMCID: PMC7860120 DOI: 10.1242/dev.193409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arati Naveen Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tetsuto Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
225
|
He J, Yan J, Wang J, Zhao L, Xin Q, Zeng Y, Sun Y, Zhang H, Bai Z, Li Z, Ni Y, Gong Y, Li Y, He H, Bian Z, Lan Y, Ma C, Bian L, Zhu H, Liu B, Yue R. Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res 2021; 31:742-757. [PMID: 33473154 PMCID: PMC8249634 DOI: 10.1038/s41422-021-00467-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 01/15/2023] Open
Abstract
Human skeletal stem cells (SSCs) have been discovered in fetal and adult long bones. However, the spatiotemporal ontogeny of human embryonic SSCs during early skeletogenesis remains elusive. Here we map the transcriptional landscape of human limb buds and embryonic long bones at single-cell resolution to address this fundamental question. We found remarkable heterogeneity within human limb bud mesenchyme and epithelium, and aligned them along the proximal–distal and anterior–posterior axes using known marker genes. Osteo-chondrogenic progenitors first appeared in the core limb bud mesenchyme, which give rise to multiple populations of stem/progenitor cells in embryonic long bones undergoing endochondral ossification. Importantly, a perichondrial embryonic skeletal stem/progenitor cell (eSSPC) subset was identified, which could self-renew and generate the osteochondral lineage cells, but not adipocytes or hematopoietic stroma. eSSPCs are marked by the adhesion molecule CADM1 and highly enriched with FOXP1/2 transcriptional network. Interestingly, neural crest-derived cells with similar phenotypic markers and transcriptional networks were also found in the sagittal suture of human embryonic calvaria. Taken together, this study revealed the cellular heterogeneity and lineage hierarchy during human embryonic skeletogenesis, and identified distinct skeletal stem/progenitor cells that orchestrate endochondral and intramembranous ossification.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liangyu Zhao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Qian Xin
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yuxi Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Han Zhang
- Department of Transfusion, Daping Hospital, Army Military Medical University, Chongqing, 400042, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yunqiao Li
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Han He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.,Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong, 510530, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China. .,State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
226
|
Abstract
Development of cartilage and bone, the core components of the mouse skeletal system, depends on coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | | |
Collapse
|
227
|
Chen A, Tong YW, Chiu CH, Lei KF. Osteogenic Effect of Rabbit Periosteum-Derived Precursor Cells Co-Induced by Electric Stimulation and Adipose-Derived Stem Cells in a 3D Co-Culture System. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2021; 2:153-160. [DOI: 10.1109/ojnano.2021.3131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
228
|
Abstract
The biological signals that coordinate the three-dimensional outgrowth and patterning of the vertebrate limb bud have been well delineated. These include a number of vital embryonic signaling pathways, including the fibroblast growth factor, WNT, transforming growth factor, and hedgehog. Collectively these signals converge on multiple progenitor populations to drive the formation of a variety of tissues that make up the limb musculoskeletal system, such as muscle, tendon, cartilage, stroma, and bone. The basic mechanisms regulating the commitment and differentiation of diverse limb progenitor populations has been successfully modeled in vitro using high density primary limb mesenchymal or micromass cultures. However, this approach is limited in its ability to more faithfully recapitulate the assembly of progenitors into organized tissues that span the entire musculoskeletal system. Other biological systems have benefitted from the development and availability of three-dimensional organoid cultures which have transformed our understanding of tissue development, homeostasis and regeneration. Such a system does not exist that effectively models the complexity of limb development. However, limb bud organ cultures while still necessitating the use of collected embryonic tissue have proved to be a powerful model system to elucidate the molecular underpinning of musculoskeletal development. In this methods article, the derivation and use of limb bud organ cultures from murine limb buds will be described, along with strategies to manipulate signaling pathways, examine gene expression and for longitudinal lineage tracking.
Collapse
Affiliation(s)
- Martin Arostegui
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada.
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
229
|
Promoting Effect of Basic Fibroblast Growth Factor in Synovial Mesenchymal Stem Cell-Based Cartilage Regeneration. Int J Mol Sci 2020; 22:ijms22010300. [PMID: 33396695 PMCID: PMC7796036 DOI: 10.3390/ijms22010300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 01/02/2023] Open
Abstract
Synovial mesenchymal stem cell (SMSC) is the promising cell source of cartilage regeneration but has several issues to overcome such as limited cell proliferation and heterogeneity of cartilage regeneration ability. Previous reports demonstrated that basic fibroblast growth factor (bFGF) can promote proliferation and cartilage differentiation potential of MSCs in vitro, although no reports show its beneficial effect in vivo. The purpose of this study is to investigate the promoting effect of bFGF on cartilage regeneration using human SMSC in vivo. SMSCs were cultured with or without bFGF in a growth medium, and 2 × 105 cells were aggregated to form a synovial pellet. Synovial pellets were implanted into osteochondral defects induced in the femoral trochlea of severe combined immunodeficient mice, and histological evaluation was performed after eight weeks. The presence of implanted SMSCs was confirmed by the observation of human vimentin immunostaining-positive cells. Interestingly, broad lacunae structures and cartilage substrate stained by Safranin-O were observed only in the bFGF (+) group. The bFGF (+) group had significantly higher O’Driscoll scores in the cartilage repair than the bFGF (−) group. The addition of bFGF to SMSC growth culture may be a useful treatment option to promote cartilage regeneration in vivo.
Collapse
|
230
|
Santos S, Richard K, Fisher MC, Dealy CN, Pierce DM. Chondrocytes respond both anabolically and catabolically to impact loading generally considered non-injurious. J Mech Behav Biomed Mater 2020; 115:104252. [PMID: 33385951 DOI: 10.1016/j.jmbbm.2020.104252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
We aimed to determine the longitudinal effects of low-energy (generally considered non-injurious) impact loading on (1) chondrocyte proliferation, (2) chondroprogenitor cell activity, and (3) EGFR signaling. In an in vitro study, we assessed 127 full-thickness, cylindrical osteochondral plugs of bovine cartilage undergoing either single, uniaxial unconfined impact loads with energy densities in the range of 1.5-3.2mJ/mm3 or no impact (controls). We quantified cell responses at two, 24, 48, and 72 h via immunohistochemical labeling of Ki67, Sox9, and pEGFR antibodies. We compared strain, stress, and impact energy density as predictors for mechanotransductive responses from cells, and fit significant correlations using linear regressions. Our study demonstrates that low-energy mechanical impacts (1.5-3.2mJ/mm3) generally stimulate time-dependent anabolic responses in the superficial zone of articular cartilage and catabolic responses in the middle and deep zones. We also found that impact energy density is the most consistent predictor of cell responses to low-energy impact loading. These spatial and temporal changes in chondrocyte behavior result directly from low-energy mechanical impacts, revealing a new level of mechanotransductive sensitivity in chondrocytes not previously appreciated.
Collapse
Affiliation(s)
- Stephany Santos
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Kelsey Richard
- Department of Global Health, University of Connecticut, Storrs, CT, United States of America
| | - Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Caroline N Dealy
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
231
|
Bagheri-Fam S, Combes AN, Ling CK, Wilhelm D. Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Hum Mol Genet 2020; 29:3781-3792. [PMID: 33305798 DOI: 10.1093/hmg/ddaa259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46, XY individuals is associated with male-to-female sex reversal. Although studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development than previously thought.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Cheuk K Ling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
232
|
Schock EN, LaBonne C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front Physiol 2020; 11:606889. [PMID: 33424631 PMCID: PMC7793875 DOI: 10.3389/fphys.2020.606889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Of the twenty vertebrate Sox factors, several play critical roles in the development the neural crest, a key vertebrate innovation, and the subsequent formation of neural crest-derived structures, including the craniofacial complex. Herein, we review the specific roles for individual Sox factors during neural crest cell formation and discuss how some factors may have been essential for the evolution of the neural crest. Additionally, we describe how Sox factors direct neural crest cell differentiation into diverse lineages such as melanocytes, glia, and cartilage and detail their involvement in the development of specific craniofacial structures. Finally, we highlight several SOXopathies associated with craniofacial phenotypes.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
233
|
Motch Perrine SM, Wu M, Holmes G, Bjork BC, Jabs EW, Richtsmeier JT. Phenotypes, Developmental Basis, and Genetics of Pierre Robin Complex. J Dev Biol 2020; 8:E30. [PMID: 33291480 PMCID: PMC7768358 DOI: 10.3390/jdb8040030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The phenotype currently accepted as Pierre Robin syndrome/sequence/anomalad/complex (PR) is characterized by mandibular dysmorphology, glossoptosis, respiratory obstruction, and in some cases, cleft palate. A causative sequence of developmental events is hypothesized for PR, but few clear causal relationships between discovered genetic variants, dysregulated gene expression, precise cellular processes, pathogenesis, and PR-associated anomalies are documented. This review presents the current understanding of PR phenotypes, the proposed pathogenetic processes underlying them, select genes associated with PR, and available animal models that could be used to better understand the genetic basis and phenotypic variation of PR.
Collapse
Affiliation(s)
- Susan M. Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Bryan C. Bjork
- Department of Biochemistry and Molecular Genetics, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Joan T. Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
234
|
Wood WM, Otis C, Etemad S, Goldhamer DJ. Development and patterning of rib primordia are dependent on associated musculature. Dev Biol 2020; 468:133-145. [PMID: 32768399 PMCID: PMC7669625 DOI: 10.1016/j.ydbio.2020.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023]
Abstract
The importance of skeletal muscle for rib development and patterning in the mouse embryo has not been resolved, largely because different experimental approaches have yielded disparate results. In this study, we utilize both gene knockouts and muscle cell ablation approaches to re-visit the extent to which rib growth and patterning are dependent on developing musculature. Consistent with previous studies, we show that rib formation is highly dependent on the MYOD family of myogenic regulatory factors (MRFs), and demonstrate that the extent of rib formation is gene-, allele-, and dosage-dependent. In the absence of Myf5 and MyoD, one allele of Mrf4 is sufficient for extensive rib growth, although patterning is abnormal. Under conditions of limiting MRF dosage, MyoD is identified as a positive regulator of rib patterning, presumably due to improved intercostal muscle development. In contrast to previous muscle ablation studies, we show that diphtheria toxin subunit A (DTA)-mediated ablation of muscle progenitors or differentiated muscle, using MyoDiCre or HSA-Cre drivers, respectively, profoundly disrupts rib development. Further, a comparison of three independently derived Rosa26-based DTA knockin alleles demonstrates that the degree of rib perturbations in MyoDiCre/+/DTA embryos is markedly dependent on the DTA allele used, and may in part explain discrepancies with previous findings. The results support the conclusion that the extent and quality of rib formation is largely dependent on the dosage of Myf5 and Mrf4, and that both early myotome-sclerotome interactions, as well as later muscle-rib interactions, are important for proper rib growth and patterning.
Collapse
Affiliation(s)
- William M Wood
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - Chelsea Otis
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - Shervin Etemad
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
235
|
Stewart MK, Mattiske DM, Pask AJ. Oestrogen regulates SOX9 bioavailability by rapidly activating ERK1/2 and stabilising microtubules in a human testis-derived cell line. Exp Cell Res 2020; 398:112405. [PMID: 33271127 DOI: 10.1016/j.yexcr.2020.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/31/2023]
Abstract
Nuclear SOX9 is essential for Sertoli cell differentiation and the development of a testis. Exposure of Sertoli cells to exogenous oestrogen causes cytoplasmic retention of SOX9, inhibiting testis development and promoting ovarian development. The cytoplasmic localisation of SOX9 requires a stabilised microtubule network and a key MAPK complex, ERK1/2, is responsive to oestrogen and known to affect the microtubule network. We hypothesised that oestrogen could stabilise microtubules through the activation of ERK1/2 to promote the cytoplasmic retention of SOX9. Treatment of human testis-derived NT2/D1 cells for 30 min with oestrogen rapidly activated ERK1/2, stabilised the microtubule network and increased cytoplasmic localisation of SOX9. The effects of oestrogen on SOX9 and tubulin were blocked by the ERK1/2 inhibitor U0126, demonstrating that ERK1/2 mediates the stabilisation of microtubules and cytoplasmic retention of SOX9 by oestrogen. Together, these data revealed a previously unknown mechanism for oestrogen in impacting MAPK signalling to block SOX9 bioavailability and the differentiation of Sertoli cells.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
236
|
Zinck NW, Jeradi S, Franz-Odendaal TA. Elucidating the early signaling cues involved in zebrafish chondrogenesis and cartilage morphology. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:18-31. [PMID: 33184938 DOI: 10.1002/jez.b.23012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Across the teleost skeleton, cartilages are diverse in their composition suggesting subtle differences in their developmental mechanisms. This study aims to elucidate the regulatory role of bone morphogenetic protein (BMPs) during the morphogenesis of two cartilage elements in zebrafish: the scleral cartilage in the eye and the caudal fin endoskeleton. Zebrafish larvae were exposed to a BMP inhibitor (LDN193189) at a series of timepoints preceding the initial appearance of the scleral cartilage and caudal fin endoskeleton. Morphological assessments of the cartilages in later stages, revealed that BMP-inhibited fish harbored striking disruptions in caudal fin endoskeletal morphology, regardless of the age at which the inhibitor treatment was performed. In contrast, scleral cartilage morphology was unaffected in all age groups. Morphometric and principal component analysis, performed on the caudal fin endoskeleton, revealed differential clustering of principal components one and two in BMP-inhibited and control fish. Additionally, the expression of sox9a and sox9b were reduced in BMP-inhibited fish when compared to controls, indicating that LDN193189 acts via a Sox9-dependent pathway. Further examination of notochord flexion also revealed a disruptive effect of BMP inhibition on this process. This study provides a detailed characterization of the effects of BMP inhibition via LDN193189 on zebrafish cartilage morphogenesis and development. It highlights the specific, localized role of the BMP-signaling pathways during the development of different cartilage elements and sheds some light on the morphological characteristics of fossil teleosts that together suggest an uncoupling of the developmental processes between the upper and lower lobes of the caudal fin.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Shirine Jeradi
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Tamara A Franz-Odendaal
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
237
|
Wang L, Moore DC, Huang J, Wang Y, Zhao H, D-H Yue J, Jackson CL, Quesenberry PJ, Cao W, Yang W. SHP2 regulates the development of intestinal epithelium by modifying OSTERIX + crypt stem cell self-renewal and proliferation. FASEB J 2020; 35:e21106. [PMID: 33165997 DOI: 10.1096/fj.202001091r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Douglas C Moore
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Jiahui Huang
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Yuhong Wang
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Jerry D-H Yue
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Cynthia L Jackson
- Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Peter J Quesenberry
- Department of Hematology and Oncology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Weibiao Cao
- Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - Wentian Yang
- Department of Orthopedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
238
|
Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. STEM CELLS (DAYTON, OHIO) 2020; 39:7-25. [PMID: 33017496 PMCID: PMC7821161 DOI: 10.1002/stem.3283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.
Collapse
Affiliation(s)
- Surangi N Perera
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
239
|
Schreiner AJ, Stoker AM, Bozynski CC, Kuroki K, Stannard JP, Cook JL. Clinical Application of the Basic Science of Articular Cartilage Pathology and Treatment. J Knee Surg 2020; 33:1056-1068. [PMID: 32583400 DOI: 10.1055/s-0040-1712944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The joint is an organ with each tissue playing critical roles in health and disease. Intact articular cartilage is an exquisite tissue that withstands incredible biologic and biomechanical demands in allowing movement and function, which is why hyaline cartilage must be maintained within a very narrow range of biochemical composition and morphologic architecture to meet demands while maintaining health and integrity. Unfortunately, insult, injury, and/or aging can initiate a cascade of events that result in erosion, degradation, and loss of articular cartilage such that joint pain and dysfunction ensue. Importantly, articular cartilage pathology affects the health of the entire joint and therefore should not be considered or addressed in isolation. Treating articular cartilage lesions is challenging because left alone, the tissue is incapable of regeneration or highly functional and durable repair. Nonoperative treatments can alleviate symptoms associated with cartilage pathology but are not curative or lasting. Current surgical treatments range from stimulation of intrinsic repair to whole-surface and whole-joint restoration. Unfortunately, there is a relative paucity of prospective, randomized controlled, or well-designed cohort-based clinical trials with respect to cartilage repair and restoration surgeries, such that there is a gap in knowledge that must be addressed to determine optimal treatment strategies for this ubiquitous problem in orthopedic health care. This review article discusses the basic science rationale and principles that influence pathology, symptoms, treatment algorithms, and outcomes associated with articular cartilage defects in the knee.
Collapse
Affiliation(s)
- Anna J Schreiner
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,BG Center for Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
240
|
Vermeulen S, Roumans N, Honig F, Carlier A, Hebels DG, Eren AD, Dijke PT, Vasilevich A, de Boer J. Mechanotransduction is a context-dependent activator of TGF-β signaling in mesenchymal stem cells. Biomaterials 2020; 259:120331. [DOI: 10.1016/j.biomaterials.2020.120331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
241
|
Elkhenany HA, Szojka ARA, Mulet-Sierra A, Liang Y, Kunze M, Lan X, Sommerfeldt M, Jomha NM, Adesida AB. Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Eng Part A 2020; 27:914-928. [PMID: 32940137 DOI: 10.1089/ten.tea.2020.0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to form the mechanically responsive matrices of joint tissues, including the menisci of the knee joint. The purpose of this study is to assess BMSC's potential to engineer meniscus-like tissue relative to meniscus fibrochondrocytes (MFCs). MFCs were isolated from castoffs of partial meniscectomy from nonosteoarthritic knees. BMSCs were developed from bone marrow aspirates of the iliac crest. All cells were of human origin. Cells were cultured in type I collagen scaffolds under normoxia (21% O2) for 2 weeks followed by hypoxia (3% O2) for 3 weeks. The structural and functional assessment of the generated meniscus constructs were based on glycosaminoglycan (GAG) content, histological appearance, gene expression, and mechanical properties. The tissues formed by both cell types were histologically positive for Safranin O stain and appeared more intense in the BMSC constructs. This observation was confirmed by a 2.7-fold higher GAG content. However, there was no significant difference in collagen I (COL1A2) expression in BMSC- and MFC-based constructs (p = 0.17). The expression of collagen II (COL2A1) and aggrecan (ACAN) were significantly higher in BMSCs than MFC (p ≤ 0.05). Also, the gene expression of the hypertrophic marker collagen X (COL10A1) was 199-fold higher in BMSCs than MFC (p < 0.001). Moreover, relaxation moduli were significantly higher in BMSC-based constructs at 10-20% strain step than MFC-based constructs. BMSC-based constructs expressed higher COL2A1, ACAN, COL10A1, contained higher GAG content, and exhibited higher relaxation moduli at 10-20% strain than MFC-based construct. Impact statement Cell-based tissue engineering (TE) has the potential to produce functional tissue replacements for irreparably damaged knee meniscus. But the source of cells for the fabrication of the tissue replacements is currently unknown and of research interest in orthopedic TE. In this study, we fabricated tissue-engineered constructs using type I collagen scaffolds and two candidate cell sources in meniscus TE. We compared the mechanical properties of the tissues formed from human meniscus fibrochondrocytes and bone marrow-derived mesenchymal stem cells (BMSCs). Our data show that the tissues engineered from the BMSC are mechanically superior in relaxation modulus.
Collapse
Affiliation(s)
- Hoda A Elkhenany
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Alexander R A Szojka
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melanie Kunze
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Xiaoyi Lan
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Mark Sommerfeldt
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Glen Sather Sports Medicine Clinic, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
242
|
Yoshida T, Matsuda M, Hirashima T. Incoherent Feedforward Regulation via Sox9 and ERK Underpins Mouse Tracheal Cartilage Development. Front Cell Dev Biol 2020; 8:585640. [PMID: 33195234 PMCID: PMC7642454 DOI: 10.3389/fcell.2020.585640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Tracheal cartilage provides architectural integrity to the respiratory airway, and defects in this structure during embryonic development cause severe congenital anomalies. Previous genetic studies have revealed genes that are critical for the development of tracheal cartilage. However, it is still unclear how crosstalk between these proteins regulates tracheal cartilage formation. Here we show a core regulatory network underlying murine tracheal chondrogenesis from embryonic day (E) 12.5 to E15.5, by combining volumetric imaging of fluorescence reporters, inhibitor assays, and mathematical modeling. We focused on SRY-box transcription factor 9 (Sox9) and extracellular signal-regulated kinase (ERK) in the tracheal mesenchyme, and observed a synchronous, inverted U-shaped temporal change in both Sox9 expression and ERK activity with a peak at E14.5, whereas the expression level of downstream cartilage matrix genes, such as collagen II alpha 1 (Col2a1) and aggrecan (Agc1), monotonically increased. Inhibitor assays revealed that the ERK signaling pathway functions as an inhibitory regulator of tracheal cartilage differentiation during this period. These results suggest that expression of the cartilage matrix genes is controlled by an incoherent feedforward loop via Sox9 and ERK, which is supported by a mathematical model. Furthermore, the modeling analysis suggests that a Sox9-ERK incoherent feedforward regulation augments the robustness against the variation of upstream factors. The present study provides a better understanding of the regulatory network underlying the tracheal development and will be helpful for efficient induction of tracheal organoids.
Collapse
Affiliation(s)
- Takuya Yoshida
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Science and Technology Agency, PRESTO, Tokyo, Japan
| |
Collapse
|
243
|
SOX9 Knockout Induces Polyploidy and Changes Sensitivity to Tumor Treatment Strategies in a Chondrosarcoma Cell Line. Int J Mol Sci 2020; 21:ijms21207627. [PMID: 33076370 PMCID: PMC7589851 DOI: 10.3390/ijms21207627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
As most chemotherapeutic drugs are ineffective in the treatment of chondrosarcoma, we studied the expression pattern and function of SOX9, the master transcription factor for chondrogenesis, in chondrosarcoma, to understand the basic molecular principles needed for engineering new targeted therapies. Our study shows an increase in SOX9 expression in chondrosarcoma compared to normal cartilage, but a decrease when the tumors are finally defined as dedifferentiated chondrosarcoma (DDCS). In DDCS, SOX9 is almost completely absent in the non-chondroid, dedifferentiated compartments. CRISPR/Cas9-mediated knockout of SOX9 in a human chondrosarcoma cell line (HTB94) results in reduced proliferation, clonogenicity and migration, accompanied by an inability to activate MMP13. In contrast, adhesion, apoptosis and polyploidy formation are favored after SOX9 deletion, probably involving BCL2 and survivin. The siRNA-mediated SOX9 knockdown partially confirmed these results, suggesting the need for a certain SOX9 threshold for particular cancer-related events. To increase the efficacy of chondrosarcoma therapies, potential therapeutic approaches were analyzed in SOX9 knockout cells. Here, we found an increased impact of doxorubicin, but a reduced sensitivity for oncolytic virus treatment. Our observations present novel insight into the role of SOX9 in chondrosarcoma biology and could thereby help to overcome the obstacle of drug resistance and limited therapy options.
Collapse
|
244
|
Tsingas M, Ottone OK, Haseeb A, Barve RA, Shapiro IM, Lefebvre V, Risbud MV. Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biol 2020; 94:110-133. [PMID: 33027692 DOI: 10.1016/j.matbio.2020.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
SOX9 plays an important role in chondrocyte differentiation and, in the developing axial skeleton, maintains the notochord and the demarcation of intervertebral disc compartments. Diminished expression is linked to campomelic dysplasia, resulting in severe scoliosis and progressive disc degeneration. However, the specific functions of SOX9 in the adult spinal column and disc are largely unknown. Accordingly, employing a strategy to conditionally delete Sox9 in Acan-expressing cells (AcanCreERT2Sox9fl/fl), we delineated these functions in the adult intervertebral disc. AcanCreERT2Sox9fl/fl mice (Sox9cKO) showed extensive and progressive remodeling of the extracellular matrix in nucleus pulposus (NP) and annulus fibrosus (AF), consistent with human disc degeneration. Progressive degeneration of the cartilaginous endplates (EP) was also evident in Sox9cKO mice, and it preceded morphological changes seen in the NP and AF compartments. Fate mapping using tdTomato reporter, EdU chase, and quantitative immunohistological studies demonstrated that SOX9 is crucial for disc cell survival and phenotype maintenance. Microarray analysis showed that Sox9 regulated distinct compartment-specific transcriptomic landscapes, with prominent contributions to the ECM, cytoskeleton-related, and metabolic pathways in the NP and ion transport, the cell cycle, and signaling pathways in the AF. In summary, our work provides new insights into disc degeneration in Sox9cKO mice at the cellular, molecular, and transcriptional levels, underscoring tissue-specific roles of this transcription factor. Our findings may direct future cell therapies targeting SOX9 to mitigate disc degeneration.
Collapse
Affiliation(s)
- Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdul Haseeb
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
245
|
Bartoletti G, Dong C, Umar M, He F. Pdgfra regulates multipotent cell differentiation towards chondrocytes via inhibiting Wnt9a/beta-catenin pathway during chondrocranial cartilage development. Dev Biol 2020; 466:36-46. [PMID: 32800757 DOI: 10.1016/j.ydbio.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
The mammalian skull is composed of the calvarial bones and cartilages. Malformation of craniofacial cartilage has been identified in multiple human syndromes. However, the mechanisms of their development remain largely unknown. In the present study, we identified Pdgfra as a novel player of chondrocranial cartilage development. Our data show that Pdgfra is required for normal chondrocranial cartilage development. Using tissue-specific genetic tools, we demonstrated that Pdgfra is essential for chondrocyte progenitors formation, but not in mature chondrocytes. Further analysis revealed that Pdgfra regulates chondrocytes progenitors development at two stages: in embryonic mesenchymal stem cells (eMSCs), Pdgfra directs their differentiation toward chondrocyte progenitors; in chondrocytes progenitors, Pdgfra activation promotes cell proliferation. We also found that excessive Pdgfra activity causes ectopic cartilage formation. Our data show that Pdgfra directs eMSCs differentiation via inhibiting Wnt9a transcription and its downstream signaling, and activating Wnt signaling rescues ectopic cartilage phenotype caused by excessive Pdgfra activity. In summary, our study dissected the role of Pdgfra signaling in chondrocranial cartilage formation, and illustrated the underlying mechanisms at multiple stages.
Collapse
Affiliation(s)
- Garrett Bartoletti
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Chunmin Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Meenakshi Umar
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
246
|
Zhang LY, Bi Q, Zhao C, Chen JY, Cai MH, Chen XY. Recent Advances in Biomaterials for the Treatment of Bone Defects. Organogenesis 2020; 16:113-125. [PMID: 32799735 DOI: 10.1080/15476278.2020.1808428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology , Hangzhou, Zhejiang Province, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| |
Collapse
|
247
|
Abstract
PURPOSE OF REVIEW Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal (MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development. RECENT FINDINGS This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methylation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate development of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic drift in MSC populations during ageing and disease. Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss during ageing or osteoporosis.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
248
|
Using FRAP to Quantify Changes in Transcription Factor Dynamics After Cell Stimulation: Cell Culture, FRAP, Data Analysis, and Visualization. Methods Mol Biol 2020. [PMID: 32979202 DOI: 10.1007/978-1-0716-0989-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Here we show how to measure the mobility of transcription factors using fluorescence recovery after photobleaching (FRAP). Transcription factors are DNA-binding proteins that, upon binding to specific DNA motifs, regulate transcription of their target genes. FRAP is a simple, fast, and cost-effective method, and is a widely used quantitative method to measure the dynamics of fluorescently labeled molecules in solution, membranes, and inside living cells. Dynamics, specified by the immobile fraction, recovery half-time, diffusion constant, and ratio of molecules contributing to different phases of FRAP recovery, can be quantified by FRAP. This can be useful to understand their function in gene regulation. This tutorial is intended to familiarize the reader with the FRAP procedure to quantify transcription factor dynamics using a standard confocal microscope and analysis using MATLAB (MathWorks®). This article will guide the reader through the preconditions of FRAP, and a detailed and step-by-step procedure of preparing cells, bleaching protocol, data analysis in MATLAB, and visualization of the FRAP data.
Collapse
|
249
|
Otahal A, Kramer K, Kuten-Pella O, Weiss R, Stotter C, Lacza Z, Weber V, Nehrer S, De Luna A. Characterization and Chondroprotective Effects of Extracellular Vesicles From Plasma- and Serum-Based Autologous Blood-Derived Products for Osteoarthritis Therapy. Front Bioeng Biotechnol 2020; 8:584050. [PMID: 33102466 PMCID: PMC7546339 DOI: 10.3389/fbioe.2020.584050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Autologous blood products gain increasing interest in the field of regenerative medicine as well as in orthopedics, aesthetic surgery, and cosmetics. Currently, citrate-anticoagulated platelet-rich plasma (CPRP) preparations are often applied in osteoarthritis (OA), but more physiological and cell-free alternatives such as hyperacute serum (hypACT) are under development. Besides growth factors, blood products also bring along extracellular vesicles (EVs) packed with signal molecules, which open up a new level of complexity at evaluating the functional spectrum of blood products. Large proportions of EVs originated from platelets in CPRP and hypACT, whereas very low erythrocyte and monocyte-derived EVs were detected via flow cytometry. EV treatment of chondrocytes enhanced the expression of anabolic markers type II collagen, SRY-box transcription factor 9 (SOX9), and aggrecan compared to full blood products, but also the catabolic marker and tissue remodeling factor matrix metalloproteinase 3, whereas hypACT EVs prevented type I collagen expression. CPRP blood product increased SOX9 protein expression, in contrast to hypACT blood product. However, hypACT EVs induced SOX9 protein expression while preventing interleukin-6 secretion. The results indicate that blood EVs are sufficient to induce chondrogenic gene expression changes in OA chondrocytes, while preventing proinflammatory cytokine release compared to full blood product. This highlights the potential of autologous blood-derived EVs as regulators of cartilage extracellular matrix metabolism and inflammation, as well as candidates for new cell-free therapeutic approaches for OA.
Collapse
Affiliation(s)
- Alexander Otahal
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Karina Kramer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Olga Kuten-Pella
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria.,OrthoSera GmbH, Krems an der Donau, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems an der Donau, Austria
| | - Christoph Stotter
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Zsombor Lacza
- Deptartment Sports Physiology, University of Physical Education, Budapest, Hungary
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems an der Donau, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Andrea De Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| |
Collapse
|
250
|
Chunlei H, Chang Z, Sheng L, Yanchun Z, Lulin L, Daozhang C. Down-regulation of MiR-138-5p Protects Chondrocytes ATDC5 and CHON-001 from IL-1 β-induced Inflammation Via Up-regulating SOX9. Curr Pharm Des 2020; 25:4613-4621. [PMID: 31486753 DOI: 10.2174/1381612825666190905163046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) pertains to a chronic disease of degenerative joints distinguished by articular cartilage destruction, subchondral bone remodeling, osteophyte formation, and inflammatory changes. Chondrocyte apoptosis is inextricably linked to cartilage degeneration. SRY-related high-mobility-group-box 9 (SOX9) is a well-acknowledged transcription factor in the chondrogenesis. Nevertheless, the detailed function of miR-138-5p/SOX9 in OA remains to be fully clarified. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of miR-138-5p and SOX9 mRNA in OA and normal cartilage tissues and cells. Human chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to simulate the inflammatory response environment of OA. miR-138-5p mimics, miR-138-5p inhibitors, and SOX9 small interfering RNA (siRNA) were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 was conducted to determine the cell viability and transwell assay was used to monitor the migration of cells. Western blot was carried out to detect the expressions of apoptosis- related factors. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. TargetScan predicted SOX9 was a target gene of miR-138-5p, which was then verified by luciferase assay. RESULTS miR-138-5p expression was down-regulated in OA and regulated SOX9 expression. The downregulation of miR-138-5p facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while impeded their apoptosis and inflammatory response. Besides, down-regulated SOX9 can counteract the promoting effect of down-regulated miR-138-5p on the proliferation and migration of chondrocytes. CONCLUSION miR-138-5p can arrest the proliferation and migration of CHON-001 and ATDC5 via restraining SOX9, and facilitate the apoptosis and inflammation. This study revealed the protective effect of down-regulated miR-138-5p on the inflammatory injury of chondrocytes caused by IL-1β.
Collapse
Affiliation(s)
- He Chunlei
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China.,Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Zhao Chang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Liu Sheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Zhong Yanchun
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Liu Lulin
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Cai Daozhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| |
Collapse
|