201
|
Copurification of chicken liver soluble thiamine monophosphatase and low molecular weight acid phosphatase. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
202
|
Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance. Nat Commun 2017; 8:1820. [PMID: 29180649 PMCID: PMC5703876 DOI: 10.1038/s41467-017-02074-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-induced PTPR-γ expression. PTPR-γ loss-of-function lowers glycemia and insulinemia by enhancing insulin-stimulated suppression of endogenous glucose production. These phenotypes are rescued by re-expression of Ptprg only in liver of mice lacking Ptprg globally. Hepatic PTPR-γ overexpression that mimics levels found in obesity is sufficient to cause severe hepatic and systemic insulin resistance. We propose hepatic PTPR-γ as a link between obesity-induced inflammation and insulin resistance and as potential target for treatment of T2DM. During obesity, chronic inflammation leads to insulin resistance and diabetes. Here, Brenachot et al. show that Protein Tyrosine Phosphatase Receptor Gamma is upregulated in obesity by inflammatory signals and correlates with insulin resistance in humans. Its deletion in mouse models of obesity and inflammation ameliorates insulin resistance by suppressing glucose production.
Collapse
|
203
|
Jung HJ, Seong SH, Ali MY, Min BS, Jung HA, Choi JS. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Arch Pharm Res 2017; 40:1403-1413. [PMID: 29177868 DOI: 10.1007/s12272-017-0992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/19/2017] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, 38430, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
204
|
Pandey R, Kumar R, Gupta P, Mohmmed A, Tewari R, Malhotra P, Gupta D. High throughput in silico identification and characterization of Plasmodium falciparum PRL phosphatase inhibitors. J Biomol Struct Dyn 2017; 36:3531-3540. [PMID: 29039247 DOI: 10.1080/07391102.2017.1392365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Kinases and phosphatases are involved in many essential processes in Plasmodium lifecycle. Among the identified 67 Plasmodium falciparum phosphatases, Phosphatase of Regenerating Liver (PRL) family protein homolog, PfPRL, is an essential parasite tyrosine phosphatase. PfPRL is shown to be prenylated, secreted, and involved in the host invasion process. In the present study, a structure-based high throughput in silico screening of PfPRL binders, using ChEMBL-NTD compounds lead to the identification of nine compounds based on binding energy, Lipinski rule of five, and QED score. The most of the shortlisted compounds are known to inhibit parasite growth at a concentration (EC50) ≤2 μm in in vitro P. falciparum culture assays. MD simulations were carried out on the shortlisted nine potential enzyme-inhibitor complexes to analyze specificity, stability, and to calculate the free binding energies of the complexes. The study identifies PfPRL as one of the potential drug targets for selected ChEMBL-NTD compounds that may be exploited as a scaffold to develop novel antimalarials.
Collapse
Affiliation(s)
- Rajan Pandey
- a Translational Bioinformatics Group , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi - 110067 , India
| | - Rakesh Kumar
- a Translational Bioinformatics Group , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi - 110067 , India
| | - Priya Gupta
- b Malaria Biology Group , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi - 110067 , India
| | - Asif Mohmmed
- c Parasite Cell Biology Group , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi - 110067 , India
| | - Rita Tewari
- d Centre for Genetics and Genomics, School of Life Sciences , Queens Medical Centre, University of Nottingham , Nottingham NG2 7UH , UK
| | - Pawan Malhotra
- b Malaria Biology Group , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi - 110067 , India
| | - Dinesh Gupta
- a Translational Bioinformatics Group , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi - 110067 , India
| |
Collapse
|
205
|
PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation. Bioorg Med Chem Lett 2017; 27:5076-5081. [DOI: 10.1016/j.bmcl.2017.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023]
|
206
|
Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 2017; 8:660-672. [PMID: 28508547 PMCID: PMC5566650 DOI: 10.1002/jcsm.12196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.
Collapse
Affiliation(s)
- Susann Lehmann
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Joseph J Bass
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Thomas F Barratt
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Mohammed Z Ali
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| |
Collapse
|
207
|
Lazo JS, McQueeney KE, Sharlow ER. New Approaches to Difficult Drug Targets: The Phosphatase Story. SLAS DISCOVERY 2017; 22:1071-1083. [DOI: 10.1177/2472555217721142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The drug discovery landscape is littered with promising therapeutic targets that have been abandoned because of insufficient validation, historical screening failures, and inferior chemotypes. Molecular targets once labeled as “undruggable” or “intractable” are now being more carefully interrogated, and while they remain challenging, many target classes are appearing more approachable. Protein tyrosine phosphatases represent an excellent example of a category of molecular targets that have emerged as druggable, with several small molecules and antibodies recently becoming available for further development. In this review, we examine some of the diseases that are associated with protein tyrosine phosphatase dysfunction and use some prototype contemporary strategies to illustrate approaches that are being used to identify small molecules targeting this enzyme class.
Collapse
Affiliation(s)
- John S. Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Kelley E. McQueeney
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R. Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
208
|
Targeting PTPRZ inhibits stem cell-like properties and tumorigenicity in glioblastoma cells. Sci Rep 2017; 7:5609. [PMID: 28717188 PMCID: PMC5514153 DOI: 10.1038/s41598-017-05931-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
The R5 subfamily of receptor-type protein tyrosine phosphatases (RPTPs) comprises PTPRZ and PTPRG. A recent study on primary human glioblastomas suggested a close association between PTPRZ1 (human PTPRZ) expression and cancer stemness. However, the functional roles of PTPRZ activity in glioma stem cells have remained unclear. In the present study, we found that sphere-forming cells from the rat C6 and human U251 glioblastoma cell lines showed high expression levels of PTPRZ-B, the short receptor isoform of PTPRZ. Stable PTPRZ knockdown altered the expression levels of stem cell transcription factors such as SOX2, OLIG2, and POU3F2 and decreased the sphere-forming abilities of these cells. Suppressive effects on the cancer stem-like properties of the cells were also observed following the knockdown of PTPRG. Here, we identified NAZ2329, a cell-permeable small molecule that allosterically inhibits both PTPRZ and PTPRG. NAZ2329 reduced the expression of SOX2 in C6 and U251 cells and abrogated the sphere-forming abilities of these cells. Tumor growth in the C6 xenograft mouse model was significantly slower with the co-treatment of NAZ2329 with temozolomide, an alkylating agent, than with the individual treatments. These results indicate that pharmacological inhibition of R5 RPTPs is a promising strategy for the treatment of malignant gliomas.
Collapse
|
209
|
Zwergel C, Czepukojc B, Evain-Bana E, Xu Z, Stazi G, Mori M, Patsilinakos A, Mai A, Botta B, Ragno R, Bagrel D, Kirsch G, Meiser P, Jacob C, Montenarh M, Valente S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur J Med Chem 2017; 134:316-333. [DOI: 10.1016/j.ejmech.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023]
|
210
|
Laczmanska I, Karpinski P, Gil J, Laczmanski L, Makowska I, Bebenek M, Ramsey D, Sasiadek MM. The PTPN13 Y2081D (T>G) (rs989902) polymorphism is associated with an increased risk of sporadic colorectal cancer. Colorectal Dis 2017; 19:O272-O278. [PMID: 28504867 DOI: 10.1111/codi.13727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Abstract
AIM Colorectal cancer (CRC) is one of the most common cancers worldwide and, although the majority of cases are sporadic, its development and progression depends on a range of factors: environmental, genetic and epigenetic. A variety of genetic pathways have been described as being crucial in CRC, including protein tyrosine phosphatases (PTPs). PTPN13 (also called FAP-1) is a non-receptor PTP and interacts with a number of important components of growth and apoptosis pathways. It is also involved in the inhibition of Fas-induced apoptosis. METHOD The single nucleotide polymorphism genotype at Y2081D (T>G) (rs989902) of PTPN13 exon 39 was determined in DNA extracted from blood samples from 174 sporadic CRC patients and 176 healthy individuals. Also, a meta-analysis was performed based on three articles accessed via the PubMed and ResearchGate databases. RESULTS The risk of CRC was 2.087 times greater for patients with the GG genotype than for those with the TT genotype (P = 0.0475). In the meta-analysis, a significantly increased risk of cancer associated with the G allele was observed in the squamous cell carcinoma of the head and neck subgroup (TT vs GG+GT, OR 1.23, 95% CI [1.02, 1.47], P = 0.0258), and a significantly decreased risk in the breast cancer subgroup (TT vs GG+GT, OR 0.63, 95% CI [0.41, 0.96], P = 0.0334) and in the CRC subgroup (GT+TT vs GG, OR 0.51, 95% CI [0.41, 0.95], P = 0.0333). CONCLUSION PTPN13 rs989902 is significantly associated with the risk of CRC in the Polish population. Given that this report provides the first evidence of an association of PTPN13 rs989902 with the risk of CRC in a Caucasian population, further large scale studies are necessary to confirm this finding.
Collapse
Affiliation(s)
- I Laczmanska
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| | - P Karpinski
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| | - J Gil
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| | - L Laczmanski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Research and Development Center of Lower Silesian Regional Specialist Hospital, Wroclaw, Poland
| | - I Makowska
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| | - M Bebenek
- First Department of Surgical Oncology, Lower Silesian Oncology Center, Wroclaw, Poland
| | - D Ramsey
- Department of Operations Research, Wroclaw University of Technology, Wroclaw, Poland
| | - M M Sasiadek
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
211
|
Rotinsulu H, Yamazaki H, Miura T, Chiba S, Wewengkang DS, Sumilat DA, Namikoshi M. A 2,4'-linked tetrahydroxanthone dimer with protein tyrosine phosphatase 1B inhibitory activity from the Okinawan freshwater Aspergillus sp. J Antibiot (Tokyo) 2017; 70:967-969. [PMID: 28655930 DOI: 10.1038/ja.2017.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Henki Rotinsulu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomohito Miura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Satomi Chiba
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Defny S Wewengkang
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Deiske A Sumilat
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Michio Namikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
212
|
Abstract
Obesity, a major risk factor for the development of diabetes mellitus, cardiovascular diseases and certain types of cancer, arises from a chronic positive energy balance that is often due to unlimited access to food and an increasingly sedentary lifestyle on the background of a genetic and epigenetic vulnerability. Our understanding of the humoral and neuronal systems that mediate the control of energy homeostasis has improved dramatically in the past few decades. However, our ability to develop effective strategies to slow the current epidemic of obesity has been hampered, largely owing to the limited knowledge of the mechanisms underlying resistance to the action of metabolic hormones such as leptin and ghrelin. The development of resistance to leptin and ghrelin, hormones that are crucial for the neuroendocrine control of energy homeostasis, is a hallmark of obesity. Intensive research over the past several years has yielded tremendous progress in our understanding of the cellular pathways that disrupt the action of leptin and ghrelin. In this Review, we discuss the molecular mechanisms underpinning resistance to leptin and ghrelin and how they can be exploited as targets for pharmacological management of obesity.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
213
|
Sumilat DA, Yamazaki H, Endo K, Rotinsulu H, Wewengkang DS, Ukai K, Namikoshi M. A new biphenyl ether derivative produced by Indonesian ascidian-derived Penicillium albobiverticillium. J Nat Med 2017; 71:776-779. [PMID: 28550651 DOI: 10.1007/s11418-017-1094-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/12/2017] [Indexed: 01/06/2023]
Abstract
A new biphenyl ether derivative, 2-hydroxy-6-(2'-hydroxy-3'-hydroxymethyl-5-methylphenoxy)-benzoic acid (1), was isolated together with the known benzophenone derivative, monodictyphenone (2), from a culture broth of Indonesian ascidian-derived Penicillium albobiverticillium TPU1432 by solvent extraction, ODS column chromatography, and preparative HPLC (ODS). The structure of 1 was elucidated based on NMR experiments. Compound 2 exhibited moderate inhibitory activities against protein tyrosine phosphatase (PTP) 1B, T cell PTP (TCPTP), and CD45 tyrosine phosphatase (CD45), whereas compound 1 modestly inhibited CD45 activity.
Collapse
Affiliation(s)
- Deiske A Sumilat
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Kampus Bahu, Manado, 95115, Indonesia
| | - Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan.
| | - Kotaro Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Henki Rotinsulu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Kampus Bahu, Manado, 95115, Indonesia
| | - Defny S Wewengkang
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Kampus Bahu, Manado, 95115, Indonesia
| | - Kazuyo Ukai
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Michio Namikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| |
Collapse
|
214
|
Stanford SM, Bottini N. Targeting Tyrosine Phosphatases: Time to End the Stigma. Trends Pharmacol Sci 2017; 38:524-540. [PMID: 28412041 DOI: 10.1016/j.tips.2017.03.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, and several PTPs have been validated as therapeutic targets for human diseases. Historically, the development of drugs targeting PTPs has been highly challenging, leading to stigmatization of these enzymes as undruggable targets. Despite these difficulties, efforts to drug PTPs have persisted, and recent years have seen an influx of new probes providing opportunities for biological examination of old and new PTP targets. Here we discuss progress towards drugging PTPs with special emphasis on the development of selective probes with biological activity. We describe the development of new small-molecule orthosteric, allosteric, and oligomerization-inhibiting PTP inhibitors and discuss new studies targeting the receptor PTP (RPTP) subfamily with biologics.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
215
|
Gupta V, Yang J, Liebler DC, Carroll KS. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles. J Am Chem Soc 2017; 139:5588-5595. [PMID: 28355876 DOI: 10.1021/jacs.7b01791] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors have emerged as a powerful approach in the drug discovery pipeline. Key to this process is the identification of signaling pathways (or receptors) specific to (or overexpressed in) disease cells. In this context, fragment-based ligand discovery (FBLD) has significantly expanded our view of the ligandable proteome and affords tool compounds for biological inquiry. To date, such covalent ligand discovery has almost exclusively employed cysteine-reactive small-molecule fragments. However, functional cysteine residues in proteins are often redox-sensitive and can undergo oxidation in cells. Such reactions are particularly relevant in diseases, like cancer, which are linked to excessive production of reactive oxygen species. Once oxidized, the sulfur atom of cysteine is much less reactive toward electrophilic groups used in the traditional FBLD paradigm. To address this limitation, we recently developed a novel library of diverse carbon-based nucleophile fragments that react selectively with cysteine sulfenic acid formed in proteins via oxidation or hydrolysis reactions. Here, we report analysis of sulfenic acid-reactive C-nucleophile fragments screened against a colon cancer cell proteome. Covalent ligands were identified for >1280 S-sulfenylated cysteines present in "druggable" proteins and orphan targets, revealing disparate reactivity profiles and target preferences. Among the unique ligand-protein interactions identified was that of a pyrrolidinedione nucleophile that reacted preferentially with protein tyrosine phosphatases. Fragment-based covalent ligand discovery with C-nucleophiles affords an expansive snapshot of the ligandable "redoxome" with significant implications for covalent inhibitor pharmacology and also affords new chemical tools to investigate redox-regulation of protein function.
Collapse
Affiliation(s)
- Vinayak Gupta
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing 102206, China
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
216
|
Yamazaki H, Kanno SI, Abdjul DB, Namikoshi M. A bromopyrrole-containing diterpene alkaloid from the Okinawan marine sponge Agelas nakamurai activates the insulin pathway in Huh-7 human hepatoma cells by inhibiting protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 2017; 27:2207-2209. [PMID: 28389151 DOI: 10.1016/j.bmcl.2017.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
Agelasine G (1), a known bromine-containing diterpene alkaloid, was isolated as a new type of protein tyrosine phosphatase (PTP) 1B inhibitor together with ageline B (2), an inactive debromo-derivative of 1, from the marine sponge Agelas nakamurai collected at Iriomote Island in Okinawa, Japan. Further biological evaluations revealed that compound 1 exhibited selective inhibitory activity against PTP1B over T-cell PTP and CD45 phosphatase. Compound 1 also enhanced the insulin-stimulated phosphorylation levels of Akt in Huh-7 cells more strongly than compound 2. The results obtained in this study suggest that compound 1 activates the insulin signaling pathway by inhibiting PTP1B activity.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan.
| | - Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan.
| | - Delfly B Abdjul
- Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan; Faculty of Fisheries and Marine Science, Sam Ratulangi University, Kampus Bahu, Manado 95115, Indonesia
| | - Michio Namikoshi
- Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
217
|
Tan XF, Uddin Z, Park C, Song YH, Son M, Lee KW, Park KH. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism. Bioorg Med Chem 2017; 25:2498-2506. [PMID: 28318895 DOI: 10.1016/j.bmc.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC50s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC50=70.25µM) and methylbutenyl 8 (IC50>200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC50=0.47µM) showed 30-fold more potency than ursolic acid (IC50=15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with Km, Vmax and Kik/Kiv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k5=0.0751µM-1S-1, k6=0.0249µM-1S-1 and Kiapp=0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring.
Collapse
Affiliation(s)
- Xue Fei Tan
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zia Uddin
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chanin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeong Hun Song
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Minky Son
- Division of Applied Life Science (BK21 Plus), PMBBRC, RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), PMBBRC, RINS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
218
|
Abdjul DB, Yamazaki H, Kanno SI, Wewengkang DS, Rotinsulu H, Sumilat DA, Ukai K, Kapojos MM, Namikoshi M. Furanoterpenes, new types of protein tyrosine phosphatase 1B inhibitors, from two Indonesian marine sponges, Ircinia and Spongia spp. Bioorg Med Chem Lett 2017; 27:1159-1161. [DOI: 10.1016/j.bmcl.2017.01.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
219
|
Cruz-Rodriguez N, Combita AL, Enciso LJ, Raney LF, Pinzon PL, Lozano OC, Campos AM, Peñaloza N, Solano J, Herrera MV, Zabaleta J, Quijano S. Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:37. [PMID: 28245840 PMCID: PMC5331651 DOI: 10.1186/s13046-017-0506-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023]
Abstract
Background Survival of adults with B-Acute Lymphoblastic Leukemia requires accurate risk stratification of patients in order to provide the appropriate therapy. Contemporary techniques, using clinical and cytogenetic variables are incomplete for prognosis prediction. Methods To improve the classification of adult patients diagnosed with B-ALL into prognosis groups, two strategies were examined and combined: the expression of the ID1/ID3/IGJ gene signature by RT-PCR and the immunophenotypic profile of 19 markers proposed in the EuroFlow protocol by Flow Cytometry in bone marrow samples. Results Both techniques were correlated to stratify patients into prognostic groups. An inverse relationship between survival and expression of the three-genes signature was observed and an immunophenotypic profile associated with clinical outcome was identified. Markers CD10 and CD20 were correlated with simultaneous overexpression of ID1, ID3 and IGJ. Patients with simultaneous expression of the poor prognosis gene signature and overexpression of CD10 or CD20, had worse Event Free Survival and Overall Survival than patients who had either the poor prognosis gene expression signature or only CD20 or CD10 overexpressed. Conclusion By utilizing the combined evaluation of these two immunophenotypic markers along with the poor prognosis gene expression signature, the risk stratification can be significantly strengthened. Further studies including a large number of patients are needed to confirm these findings. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0506-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nataly Cruz-Rodriguez
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia.,Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alba L Combita
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia. .,Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia. .,Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Leonardo J Enciso
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Grupo de Hemato-Oncología, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Lauren F Raney
- Department of Pediatrics, Pediatric Hematology-Oncology Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Paula L Pinzon
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Olga C Lozano
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Alba M Campos
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Julio Solano
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sandra Quijano
- Hospital Universitario San Ignacio, Bogotá, Colombia. .,Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
220
|
Abstract
Targeted protein degradation using the PROTAC technology is emerging as a novel therapeutic method to address diseases driven by the aberrant expression of a disease-causing protein. PROTAC molecules are bifunctional small molecules that simultaneously bind a target protein and an E3-ubiquitin ligase, thus causing ubiquitination and degradation of the target protein by the proteasome. Like small molecules, PROTAC molecules possess good tissue distribution and the ability to target intracellular proteins. Herein, we highlight the advantages of protein degradation using PROTACs, and provide specific examples where degradation offers therapeutic benefit over classical enzyme inhibition. Foremost, PROTACs can degrade proteins regardless of their function. This includes the currently "undruggable" proteome, which comprises approximately 85% of all human proteins. Other beneficial aspects of protein degradation include the ability to target overexpressed and mutated proteins, as well as the potential to demonstrate prolonged pharmacodynamics effect beyond drug exposure. Lastly, due to their catalytic nature and the pre-requisite ubiquitination step, an exquisitely potent molecules with a high degree of degradation selectivity can be designed. Impressive preclinical in vitro and in vivo PROTAC data have been published, and these data have propelled the development of clinically viable PROTACs. With the molecular weight falling in the 700-1000Da range, the delivery and bioavailability of PROTACs remain the largest hurdles on the way to the clinic. Solving these issues and demonstrating proof of concept clinical data will be the focus of many labs over the next few years.
Collapse
|
221
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
222
|
Wang W, Xu L, Su J, Peppelenbosch MP, Pan Q. Transcriptional Regulation of Antiviral Interferon-Stimulated Genes. Trends Microbiol 2017; 25:573-584. [PMID: 28139375 PMCID: PMC7127685 DOI: 10.1016/j.tim.2017.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
Interferon-stimulated genes (ISGs) are a group of gene products that coordinately combat pathogen invasions, in particular viral infections. Transcription of ISGs occurs rapidly upon pathogen invasion, and this is classically provoked via activation of the Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway, mainly by interferons (IFNs). However, a plethora of recent studies have reported a variety of non-canonical mechanisms regulating ISG transcription. These new studies are extremely important for understanding the quantitative and temporal differences in ISG transcription under specific circumstances. Because these canonical and non-canonical regulatory mechanisms are essential for defining the nature of host defense and associated detrimental proinflammatory effects, we comprehensively review the state of this rapidly evolving field and the clinical implications of recently acquired knowledge in this respect. Transcriptional regulation of ISGs defines the state of host anti-pathogen defense. In light of the recently identified regulatory elements and mechanisms of the IFN–JAK–STAT pathway, new insights have been gained into this classical cascade in regulating ISG transcription. A variety of non-canonical mechanisms have been recently revealed that coordinately regulate ISG transcription. With regards to the adverse effects of IFNs in clinic, ISG-based antiviral strategy could be the next promising frontier in drug discovery.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.
| |
Collapse
|
223
|
Zhang ZY. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. Acc Chem Res 2017; 50:122-129. [PMID: 27977138 DOI: 10.1021/acs.accounts.6b00537] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are essential signaling enzymes that, together with protein tyrosine kinases, regulate tyrosine phosphorylation inside the cell. Proper level of tyrosine phosphorylation is important for a diverse array of cellular processes, such as proliferation, metabolism, motility, and survival. Aberrant tyrosine phosphorylation, resulting from alteration of PTP expression, misregulation, and mutation, has been linked to the etiology of many human ailments including cancer, diabetes/obesity, autoimmune disorders, and infectious diseases. However, despite the fact that PTPs have been garnering attention as compelling drug targets, they remain a largely underexploited resource for therapeutic intervention. Indeed, PTPs have been widely dismissed as "undruggable", due to concerns that (1) the highly conserved active site (i.e., pTyr-binding pocket) makes it difficult to achieve inhibitor selectivity among closely related family members, and (2) the positive-charged active site prefers negatively charged molecules, which usually lack cell permeability. To address the issue of selectivity, we advanced a novel paradigm for the acquisition of highly potent and selective PTP inhibitors through generation of bivalent ligands that interact with both PTP active site and adjacent unique peripheral pockets. To overcome the bioavailability issue, we have identified nonhydrolyzable pTyr mimetics that are sufficiently polar to bind the PTP active site, yet still capable of efficiently penetrating cell membranes. We show that these pTyr mimetics interact in the desired inhibitory fashion with the PTP active site and tethering them to appropriate molecular fragments to engage less conserved interactions outside of PTP active site can increase PTP inhibitor potency and selectivity. We demonstrate through three pTyr mimetics fragment-based approaches that it is completely feasible to obtain highly potent and selective PTP inhibitors with robust in vivo efficacy in animal models of oncology, diabetes/obesity, autoimmune disorders, and tuberculosis. We hope that these results will help dispel concerns about the druggability of PTPs and entice further effort in fostering a PTP-based drug discovery enterprise. Well-characterized, potent, selective and bioactive inhibitors are essential tools for functional interrogation of PTPs in disease biology and target validation. They will also play a critical role in illuminating the druggability of PTPs and provide the groundwork for new therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhong-Yin Zhang
- Department of Medicinal Chemistry
and Molecular Pharmacology, Department of Chemistry, Center for Cancer
Research, and Institute for Drug Discovery, Purdue University, 720
Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
224
|
Biphenyl ether derivatives with protein tyrosine phosphatase 1B inhibitory activity from the freshwater fungus Phoma sp. J Antibiot (Tokyo) 2017; 70:331-333. [PMID: 28074056 DOI: 10.1038/ja.2016.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
|
225
|
Chen C, Liang F, Chen B, Sun Z, Xue T, Yang R, Luo D. Identification of demethylincisterol A 3 as a selective inhibitor of protein tyrosine phosphatase Shp2. Eur J Pharmacol 2017; 795:124-133. [DOI: 10.1016/j.ejphar.2016.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
|
226
|
Biswas S, McCullough BS, Ma ES, LaJoie D, Russell CW, Garrett Brown D, Round JL, Ullman KS, Mulvey MA, Barrios AM. Dual colorimetric and fluorogenic probes for visualizing tyrosine phosphatase activity. Chem Commun (Camb) 2017; 53:2233-2236. [DOI: 10.1039/c6cc09204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two resorufin-based substrates were developed, providing sensitive fluorogenic readouts for PTP activityin vitroand in living cells.
Collapse
Affiliation(s)
- Suvendu Biswas
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Brandon S. McCullough
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Elena S. Ma
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Dollie LaJoie
- Department of Oncological Sciences
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Colin W. Russell
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - D. Garrett Brown
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - June L. Round
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Katharine S. Ullman
- Department of Oncological Sciences
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Matthew A. Mulvey
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| |
Collapse
|
227
|
Morishita K, Shoji Y, Tanaka S, Fukui M, Ito Y, Kitao T, Ozawa SI, Hirono S, Shirahase H. Novel Non-carboxylate Benzoylsulfonamide-Based Protein Tyrosine Phosphatase 1B Inhibitors with Non-competitive Actions. Chem Pharm Bull (Tokyo) 2017; 65:1144-1160. [DOI: 10.1248/cpb.c17-00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Morishita
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yoshimichi Shoji
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shunkichi Tanaka
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Masaki Fukui
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yuma Ito
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | | | | | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
228
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
229
|
Maarisit W, Yamazaki H, Kanno SI, Tomizawa A, Rotinsulu H, Wewengkang DS, Sumilat DA, Ukai K, Kapojos MM, Namikoshi M. A tetramic acid derivative with protein tyrosine phosphatase 1B inhibitory activity and a new nortriterpene glycoside from the Indonesian marine sponge Petrosia sp. Bioorg Med Chem Lett 2016; 27:999-1002. [PMID: 28109786 DOI: 10.1016/j.bmcl.2016.12.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/23/2023]
Abstract
During the search for protein tyrosine phosphatase 1B (PTP1B) inhibitors from marine organisms, the known tetramic acid derivative, melophlin C (1), was isolated as an active component together with the new nortriterpenoid saponin, sarasinoside S (2), and three homologues: sarasinosides A1 (3), I1 (4), and J (5), from the Indonesian marine sponge Petrosia sp. The structure of 2 was elucidated on the basis of its spectroscopic data. Compound 1 inhibited PTP1B activity with an IC50 value of 14.6μM, while compounds 2-5 were not active at 15.2-16.0μM. This is the first study to report the inhibitory effects of a tetramic acid derivative on PTP1B activity.
Collapse
Affiliation(s)
- Wilmar Maarisit
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; Faculty of Fisheries and Marine Science, Sam Ratulangi University, Kampus Bahu, Manado 95115, Indonesia
| | - Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
| | - Syu-Ichi Kanno
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ayako Tomizawa
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Henki Rotinsulu
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Kampus Bahu, Manado 95115, Indonesia
| | - Defny S Wewengkang
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Kampus Bahu, Manado 95115, Indonesia
| | - Deiske A Sumilat
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Kampus Bahu, Manado 95115, Indonesia
| | - Kazuyo Ukai
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Magie M Kapojos
- Faculty of Nursing, University of Pembangunan Indonesia, Bahu, Manado 95115, Indonesia
| | - Michio Namikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
230
|
Bishop AC. A missense methionine mutation augments catalytic activity but reduces thermal stability in two protein tyrosine phosphatases. Biochem Biophys Res Commun 2016; 481:153-158. [PMID: 27816449 PMCID: PMC5118098 DOI: 10.1016/j.bbrc.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022]
Abstract
Recent data sets that catalog the missense mutations in thousands of human genomes have revealed a vast and largely unexplored world of non-canonical protein sequences that are expressed in humans. The functional consequences of most human missense mutations, however, are unknown, and the accuracy with which their effects can be predicted by computational algorithms remains unclear. Among humans of European descent, the most common missense mutation in the catalytic domain of SH2-containing protein tyrosine phosphatase 1 (SHP-1) converts the enzyme's canonical valine 451 to methionine (V451M). The V451M mutation lies in a conserved motif adjacent to the protein tyrosine phosphatase (PTP) consensus sequence and is predicted to compromise catalytic function. In this study it is shown that, counter to prediction, V451M SHP-1 possesses increased catalytic activity as compared to the wild-type enzyme. Additionally, a PTP-wide search of missense-mutation data revealed a variant of one other PTP, Fas-associated PTP (FAP-1), that contains a methionine mutation at the position corresponding to 451 of SHP-1 (T2406M FAP-1). It is shown here that the T2406M mutation increases FAP-1's PTP activity, to a degree that is comparable to the activation deriving from the V451M mutation in SHP-1. Although the two non-canonical methionine residues confer increased activity at moderate temperatures, both V451M SHP-1 and T2406M FAP-1 are less thermally stable than their canonical counterparts, as demonstrated by the mutants' strongly reduced activities at high temperatures. These results highlight the challenges in predicting the functional consequences of missense mutations, which can differ under varying conditions, and suggest that, with regard to position 451/2406, canonical PTP domains have "chosen" stability over optimized activity during the course of evolution.
Collapse
Affiliation(s)
- Anthony C Bishop
- Amherst College, Department of Chemistry, Amherst, MA 01002, USA.
| |
Collapse
|
231
|
Maarisit W, Yamazaki H, Kanno SI, Tomizawa A, Lee JS, Namikoshi M. Protein tyrosine phosphatase 1B inhibitory properties of seco-cucurbitane triterpenes obtained from fruiting bodies of Russula lepida. J Nat Med 2016; 71:334-337. [DOI: 10.1007/s11418-016-1061-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023]
|
232
|
Hong Y, Liang H, Uzair-Ur-Rehman, Wang Y, Zhang W, Zhou Y, Chen S, Yu M, Cui S, Liu M, Wang N, Ye C, Zhao C, Liu Y, Fan Q, Zhang CY, Sang J, Zen K, Chen X. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep 2016; 6:37421. [PMID: 27857177 PMCID: PMC5114647 DOI: 10.1038/srep37421] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/31/2016] [Indexed: 01/04/2023] Open
Abstract
microRNAs (miRNAs) have emerged as major regulators of the initiation and progression of human cancers, including breast cancer. The aim of this study is to determine the expression pattern of miR-96 in breast cancer and to investigate its biological role during tumorigenesis. We showed that miR-96 was significantly upregulated in breast cancer. We then investigated its function and found that miR-96 significantly promoted cell proliferation, migration and invasion in vitro and enhanced tumor growth in vivo. Furthermore, we explored the molecular mechanisms by which miR-96 contributes to breast cancer progression and identified PTPN9 (protein tyrosine phosphatase, non-receptor type 9) as a direct target gene of miR-96. Finally, we showed that PTPN9 had opposite effects to those of miR-96 on breast cancer cells, suggesting that miR-96 may promote breast tumorigenesis by silencing PTPN9. Taken together, this study highlights an important role for miR-96 in the regulation of PTPN9 in breast cancer cells and may provide insight into the molecular mechanisms of breast carcinogenesis.
Collapse
Affiliation(s)
- Yeting Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Uzair-Ur-Rehman
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Weijie Zhang
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yong Zhou
- Department of Thoracic and Cardiovascular surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Song'an Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Sufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Nan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Chao Ye
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Chihao Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Qian Fan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Jianfeng Sang
- Department of Thyroid and Breast Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| |
Collapse
|
233
|
Mei W, Wang K, Huang J, Zheng X. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors. PLoS One 2016; 11:e0166538. [PMID: 27855221 PMCID: PMC5113951 DOI: 10.1371/journal.pone.0166538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022] Open
Abstract
Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.
Collapse
Affiliation(s)
- Wenhan Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kemin Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
- * E-mail: (JH); (XZ)
| | - Xinmin Zheng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail: (JH); (XZ)
| |
Collapse
|
234
|
Zhang RY, Yu ZH, Zeng L, Zhang S, Bai Y, Miao J, Chen L, Xie J, Zhang ZY. SHP2 phosphatase as a novel therapeutic target for melanoma treatment. Oncotarget 2016; 7:73817-73829. [PMID: 27650545 PMCID: PMC5342016 DOI: 10.18632/oncotarget.12074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Melanoma ranks among the most aggressive and deadly human cancers. Although a number of targeted therapies are available, they are effective only in a subset of patients and the emergence of drug resistance often reduces durable responses. Thus there is an urgent need to identify new therapeutic targets and develop more potent pharmacological agents for melanoma treatment. Herein we report that SHP2 levels are frequently elevated in melanoma, and high SHP2 expression is significantly associated with more metastatic phenotype and poorer prognosis. We show that SHP2 promotes melanoma cell viability, motility, and anchorage-independent growth, through activation of both ERK1/2 and AKT signaling pathways. We demonstrate that SHP2 inhibitor 11a-1 effectively blocks SHP2-mediated ERK1/2 and AKT activation and attenuates melanoma cell viability, migration and colony formation. Most importantly, SHP2 inhibitor 11a-1 suppresses xenografted melanoma tumor growth, as a result of reduced tumor cell proliferation and enhanced tumor cell apoptosis. Taken together, our data reveal SHP2 as a novel target for melanoma and suggest SHP2 inhibitors as potential novel therapeutic agents for melanoma treatment.
Collapse
Affiliation(s)
- Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Lan Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jingwu Xie
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
235
|
He R, Wang J, Yu ZH, Zhang RY, Liu S, Wu L, Zhang ZY. Inhibition of Low Molecular Weight Protein Tyrosine Phosphatase by an Induced-Fit Mechanism. J Med Chem 2016; 59:9094-9106. [PMID: 27676368 DOI: 10.1021/acs.jmedchem.6b00993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The low molecular weight protein tyrosine phosphatase (LMW-PTP) is a regulator of a number of signaling pathways and has been implicated as a potential target for oncology and diabetes/obesity. There is significant therapeutic interest in developing potent and selective inhibitors to control LMW-PTP activity. We report the discovery of a novel class of LMW-PTP inhibitors derived from sulfophenyl acetic amide (SPAA), some of which exhibit greater than 50-fold preference for LMW-PTP over a large panel of PTPs. X-ray crystallography reveals that binding of SPAA-based inhibitors induces a striking conformational change in the LMW-PTP active site, leading to the formation of a previously undisclosed hydrophobic pocket to accommodate the α-phenyl ring in the ligand. This induced-fit mechanism is likely a major contributor responsible for the exquisite inhibitor selectivity.
Collapse
Affiliation(s)
- Rongjun He
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Jifeng Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Sijiu Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
236
|
Ghattas MA, Raslan N, Sadeq A, Al Sorkhy M, Atatreh N. Druggability analysis and classification of protein tyrosine phosphatase active sites. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3197-3209. [PMID: 27757011 PMCID: PMC5053377 DOI: 10.2147/dddt.s111443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability.
Collapse
Affiliation(s)
- Mohammad A Ghattas
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| | - Noor Raslan
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| | - Asil Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| | - Mohammad Al Sorkhy
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| | - Noor Atatreh
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| |
Collapse
|
237
|
Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B. Arch Pharm Res 2016; 39:1454-1464. [PMID: 27544192 DOI: 10.1007/s12272-016-0819-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.
Collapse
|
238
|
Raees MA, Hussain H, Al-Rawahi A, Csuk R, Muhammad SA, Khan HY, Rehman NU, Abbas G, Al-Broumi MA, Green IR, Elyassi A, Mahmood T, Al-Harrasi A. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorg Chem 2016; 67:95-104. [DOI: 10.1016/j.bioorg.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
|
239
|
Abdjul DB, Yamazaki H, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M. Sesquiterpene Hydroquinones with Protein Tyrosine Phosphatase 1B Inhibitory Activities from a Dysidea sp. Marine Sponge Collected in Okinawa. JOURNAL OF NATURAL PRODUCTS 2016; 79:1842-1847. [PMID: 27336796 DOI: 10.1021/acs.jnatprod.6b00367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new sesquiterpene hydroquinones, avapyran (1), 17-O-acetylavarol (2), and 17-O-acetylneoavarol (3), were isolated from a Dysidea sp. marine sponge collected in Okinawa together with five known congeners: avarol (4), neoavarol (5), 20-O-acetylavarol (6), 20-O-acetylneoavarol (7), and 3'-aminoavarone (8). The structures of 1-3 were assigned on the basis of their spectroscopic data. Compounds 1-3 inhibited the activity of protein tyrosine phosphatase 1B with IC50 values of 11, 9.5, and 6.5 μM, respectively, while known compounds 4-8 gave IC50 values of 12, >32, 10, 8.6, and 18 μM, respectively. In a preliminary investigation on structure-activity relationships, six ester and methoxy derivatives (9-14) were prepared from 4 and 5.
Collapse
Affiliation(s)
- Delfly B Abdjul
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558, Japan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University , Kampus Bahu, Manado 95115, Indonesia
| | - Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558, Japan
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558, Japan
| | - Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558, Japan
| | - Kazuyo Ukai
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558, Japan
| | - Michio Namikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
240
|
Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration. Neurobiol Dis 2016; 91:262-73. [DOI: 10.1016/j.nbd.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
|
241
|
Reyes-Zárate E, Sánchez-Pérez Y, Gutiérrez-Ruiz MC, Chirino YI, Osornio-Vargas ÁR, Morales-Bárcenas R, Souza-Arroyo V, García-Cuellar CM. Atmospheric particulate matter (PM10) exposure-induced cell cycle arrest and apoptosis evasion through STAT3 activation via PKCζ and Src kinases in lung cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:646-656. [PMID: 27131825 DOI: 10.1016/j.envpol.2016.04.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Atmospheric particulate matter with aerodynamic diameter ≤10 μm (PM10) is a risk factor for the development of lung cancer, but cellular pathways are not completely understood. STAT3 is a p21(Waf1/Cip1) transcription factor and is associated with proliferation and cell survival and is upregulated in lung cancer. PM10 exposure induces p21(Waf1/Cip1) expression, which could be related to STAT3 activation. The aims of this work were to investigate whether STAT3 was activated on lung epithelial cells after PM10 exposure and to determine whether or not STAT3 could have an impact on cell cycle distribution and cell survival. Our results showed that PM10 induced STAT3 activation through Src and PKCζ kinases, and it is partially responsible for the p21(Waf1/Cip1) induction that was also observed. Moreover, PM10 induced G1-G0 cell cycle arrest. The inhibition of STAT3 phosphorylation prevented cell cycle arrest and triggered apoptosis. These results suggest that PM10 exposure might activate a survival pathway related to STAT3 activation, similar to what has been described as part of the immune system and apoptosis evasion during tumor promotion and development.
Collapse
Affiliation(s)
- Elizabeth Reyes-Zárate
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54059, Estado de México, Mexico
| | | | - Rocío Morales-Bárcenas
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico
| | - Verónica Souza-Arroyo
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico.
| | - Claudia María García-Cuellar
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico.
| |
Collapse
|
242
|
The design strategy of selective PTP1B inhibitors over TCPTP. Bioorg Med Chem 2016; 24:3343-52. [PMID: 27353889 DOI: 10.1016/j.bmc.2016.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/01/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors.
Collapse
|
243
|
Szabo A, Fekete T, Koncz G, Kumar BV, Pazmandi K, Foldvari Z, Hegedus B, Garay T, Bacsi A, Rajnavolgyi E, Lanyi A. RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1. Cell Signal 2016; 28:335-347. [PMID: 26829212 DOI: 10.1016/j.cellsig.2016.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND BRAF-mutant melanoma is characterized by aggressive metastatic potential and therapeutic resistance. The innate immune receptor RIG-I has emerged as a potential target in melanoma therapies but the contributing pathways involved in anti-cancer activity are poorly characterized. METHODS Baseline and ATRA-induced expression of RIG-I in nine (3 wild type and 6 BRAF-mutant) melanoma cell lines was measured with Q-PCR and Western blot. Ligand-specific stimulation of RIG-I was detected by Q-PCR and ELISA. Activation of the RIG-I-coupled IRF3, NF-κB and MAPK pathways was tested with protein array and Western blot. Cell proliferation and apoptosis was monitored by flow cytometry and cell counting. Down modulation of MKP-1 expression in melanoma cells was performed by specific siRNA. RESULTS Short-term ATRA pre-treatment increases the expression of RIG-I in BRAF-mutant melanoma cells. Specific activation of RIG-I by 5'ppp-dsRNA leads to increased activity of the IRF3-IFNβ pathway but does not influence NF-κB signaling. RIG-I mediates the targeted dephosphorylation of several MAPKs (p38, RSK1, GSK-3α/β, HSP27) via the endogenous regulator MKP-1 resulting in decreased melanoma cell proliferation. CONCLUSION RIG-I has the potential to exert anticancer activity in BRAF-mutant melanoma via controlling IFNβ production and MAPK signaling. This is the first study showing that RIG-I activation results in MKP-1-mediated inhibition of cell proliferation via controlling the p38-HSP27, c-Jun and rpS6 pathways thus identifying RIG-I and MKP-1 as novel and promising therapeutical targets.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania.
| | - Tunde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Brahma V Kumar
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsofia Foldvari
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Hegedus
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Garay
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| |
Collapse
|
244
|
Song GJ, Jung M, Kim JH, Park H, Rahman MH, Zhang S, Zhang ZY, Park DH, Kook H, Lee IK, Suk K. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation 2016; 13:86. [PMID: 27095436 PMCID: PMC4837589 DOI: 10.1186/s12974-016-0545-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) is a member of the non-transmembrane phosphotyrosine phosphatase family. Recently, PTP1B has been proposed to be a novel target of anti-cancer and anti-diabetic drugs. However, the role of PTP1B in the central nervous system is not clearly understood. Therefore, in this study, we sought to define PTP1B's role in brain inflammation. METHODS PTP1B messenger RNA (mRNA) and protein expression levels were examined in mouse brain and microglial cells after LPS treatment using RT-PCR and western blotting. Pharmacological inhibitors of PTP1B, NF-κB, and Src kinase were used to analyze these signal transduction pathways in microglia. A Griess reaction protocol was used to determine nitric oxide (NO) concentrations in primary microglia cultures and microglial cell lines. Proinflammatory cytokine production was measured by RT-PCR. Western blotting was used to assess Src phosphorylation levels. Immunostaining for Iba-1 was used to determine microglial activation in the mouse brain. RESULTS PTP1B expression levels were significantly increased in the brain 24 h after LPS injection, suggesting a functional role for PTP1B in brain inflammation. Microglial cells overexpressing PTP1B exhibited an enhanced production of NO and gene expression levels of TNF-α, iNOS, and IL-6 following LPS exposure, suggesting that PTP1B potentiates the microglial proinflammatory response. To confirm the role of PTP1B in neuroinflammation, we employed a highly potent and selective inhibitor of PTP1B (PTP1Bi). In LPS- or TNF-α-stimulated microglial cells, in vitro blockade of PTP1B activity using PTP1Bi markedly attenuated NO production. PTP1Bi also suppressed the expression levels of iNOS, COX-2, TNF-α, and IL-1β. PTP1B activated Src by dephosphorylating the Src protein at a negative regulatory site. PTP1B-mediated Src activation led to an enhanced proinflammatory response in the microglial cells. An intracerebroventricular injection of PTP1Bi significantly attenuated microglial activation in the hippocampus and cortex of LPS-injected mice compared to vehicle-injected mice. The gene expression levels of proinflammatory cytokines were also significantly suppressed in the brain by a PTP1Bi injection. Together, these data suggest that PTP1Bi has an anti-inflammatory effect in a mouse model of neuroinflammation. CONCLUSIONS This study demonstrates that PTP1B is an important positive regulator of neuroinflammation and is a promising therapeutic target for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gyun Jee Song
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Myungsu Jung
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jong-Heon Kim
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hana Park
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Md Habibur Rahman
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sheng Zhang
- />Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Zhong-Yin Zhang
- />Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Dong Ho Park
- />Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyun Kook
- />Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Lee
- />Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
245
|
Kobayashi Y, Ito K, Kanda A, Tomoda K, Miller-Larsson A, Barnes PJ, Mercado N. Protein tyrosine phosphatase PTP-RR regulates corticosteroid sensitivity. Respir Res 2016; 17:30. [PMID: 27013170 PMCID: PMC4806463 DOI: 10.1186/s12931-016-0349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
Background We have recently reported that protein phosphate 2A (PP2A) inactivation resulted in increased phosphorylation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase 1 (JNK1) and glucocorticoid receptors (GR) at Ser226, thereby reducing GR nuclear translocation and causing corticosteroid insensitivity in severe asthmatics. Protein tyrosine phosphatases (PTPs) are also known to be critically involved in the regulation of MAPKs, such as JNK and therefore potentially associated with GR function. The aim of study was to elucidate the involvement of MAPK-PTPs (PTP-RR, PTP-N5 and PTP-N7), which can dephosphorylate MAPKs, in the regulation of corticosteroid sensitivity. Methods Corticosteroid sensitivity, GR nuclear translocation, phosphorylation levels of GR-Ser226, JNK1 and PP2A catalytic subunit (PP2AC)-Tyr307 and protein expression levels and activities of PTP-RR and PP2AC were evaluated in U937 cells and/or peripheral blood mononuclear cells (PBMCs). Knock-down effects of MAPK-PTPs using siRNA were also evaluated. Results Knock-down of PTP-RR, but not of PTP-N5 or PTP-N7 impaired corticosteroid sensitivity, induced GR-Ser226 phosphorylation and reduced GR nuclear translocation. Under IL-2/IL-4-induced corticosteroid insensitivity, PTP-RR expression, activity and associations with JNK1 and GR were reduced but PTP-RR activity was restored by formoterol. Also in PBMCs from severe asthmatic patients, PTP-RR and JNK1 expression were reduced and GR-Ser226 phosphorylation increased. Furthermore, PTP-RR was associated with PP2A. PTP-RR reduction enhanced PP2AC-Tyr307 phosphorylation leading to impairment of PP2A expression and activity. Conclusions We demonstrated that with corticosteroid insensitivity PTP-RR fails to reduce phosphorylation of JNK1 and GR-Ser226, resulting in down-regulation of GR nuclear translocation. Reduced PTP-RR may represent a novel cause of corticosteroid insensitivity in severe asthmatics. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0349-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK. .,Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan.
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| | - Akira Kanda
- Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan
| | - Koich Tomoda
- Airway Medicine, Department of Otolaryngology, Kansai Medical University, Osaka, Japan
| | | | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Royal Brompton Campus, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
246
|
Dutta NK, He R, Pinn ML, He Y, Burrows F, Zhang ZY, Karakousis PC. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infect Dis 2016; 2:231-239. [PMID: 27478867 DOI: 10.1021/acsinfecdis.5b00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Collapse
Affiliation(s)
- Noton K. Dutta
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
| | - Rongjun He
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Michael L. Pinn
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
| | - Yantao He
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Francis Burrows
- Aarden Pharmaceuticals, Inc., 351 West 10th Street, Suite 248, Indianapolis, Indiana 46202, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Petros C. Karakousis
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
247
|
Radha V. Use of Dominant-Negative/Substrate Trapping PTP Mutations to Search for PTP Interactors/Substrates. Methods Mol Biol 2016; 1447:243-65. [PMID: 27514810 DOI: 10.1007/978-1-4939-3746-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation of proteins on tyrosine residues is the consequence of coordinated action of tyrosine kinases (TKs), and protein tyrosine phosphatases (PTPs). Together, they regulate intermolecular interactions, subcellular localization, and activity of a variety of proteins. The level of total protein-associated tyrosine phosphorylation in eukaryotic cells is only a small fraction of the total phosphorylation. PTPs, which have high specific activity compared to tyrosine kinases, play an important role in maintaining the tyrosine phosphorylation state of proteins and regulate signal transduction pathways and cellular responses. PTPs depend on specific invariant residues that enable binding to substrates phosphorylated at tyrosine and aid catalytic activity. Identification of PTP substrates has helped understand their role in distinct intracellular signaling pathways. Because of their high specific activity, the interaction between tyrosine phosphatases and their substrates is often very transient in the cellular context, and therefore identification of physiological substrates has been difficult. Single-site mutations in the enzymes stabilize interaction between the enzyme and its targets and have been used extensively to identify substrates. The mutations are either of the catalytic cysteine (Cys) residue or other invariant residues and have been classified as substrate-trapping mutants (STMs). These mutants often serve as dominant negatives that can inactivate effector functions of a specific PTP within cells. Considering their association with human disorders, inhibiting specific PTPs is important therapeutically. Since the catalytic domains are largely conserved, developing small-molecule inhibitors to a particular enzyme has proven difficult and therefore alternate strategies to block functions of individual enzymes are seriously being investigated. We provide a description of methods that will be useful to design strategies of using dominant-negative and substrate-trapping mutants for identifying novel interacting partners and substrates of PTPs.
Collapse
Affiliation(s)
- Vegesna Radha
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| |
Collapse
|
248
|
Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res 2015; 2015:395371. [PMID: 26539553 PMCID: PMC4619936 DOI: 10.1155/2015/395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Lck interacting protein Tip of Herpesvirus saimiri is responsible for T-cell transformation both in vitro and in vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human and Aotus sp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.
Collapse
|
249
|
Rainville N, Jachimowicz E, Wojchowski DM. Targeting EPO and EPO receptor pathways in anemia and dysregulated erythropoiesis. Expert Opin Ther Targets 2015; 20:287-301. [PMID: 26419263 DOI: 10.1517/14728222.2016.1090975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Recombinant human erythropoietin (rhEPO) is a first-line therapeutic for the anemia of chronic kidney disease, cancer chemotherapy, AIDS (Zidovudine therapy), and lower-risk myelodysplastic syndrome. However, rhEPO frequently elevates hypertension, is costly, and may affect cancer progression. Potentially high merit therefore exists for defining new targets for anti-anemia agents within erythropoietin (EPO) and EPO receptor (EPOR) regulatory circuits. AREAS COVERED EPO production by renal interstitial fibroblasts is subject to modulation by several regulators of hypoxia-inducible factor 2a (HIF2a) including Iron Response Protein-1, prolyl hydroxylases, and HIF2a acetylases, each of which holds potential as anti-anemia drug targets. The cell surface receptor for EPO (EPOR) preassembles as a homodimer, together with Janus Kinase 2 (JAK2), and therefore it remains attractive to develop novel agents that trigger EPOR complex activation (activating antibodies, mimetics, small-molecule agonists). Additionally, certain downstream transducers of EPOR/JAK2 signaling may be druggable, including Erythroferrone (a hepcidin regulator), a cytoprotective Spi2a serpin, and select EPOR-associated protein tyrosine phosphatases. EXPERT OPINION While rhEPO (and biosimilars) are presently important mainstay erythropoiesis-stimulating agents (ESAs), impetus exists for studies of novel ESAs that fortify HIF2a's effects, act as EPOR agonists, and/or bolster select downstream EPOR pathways to erythroid cell formation. Such agents could lessen rhEPO dosing, side effects, and/or costs.
Collapse
Affiliation(s)
- Nicole Rainville
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA
| | - Edward Jachimowicz
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA
| | - Don M Wojchowski
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA.,b 2 Tufts University School of Medicine , Boston, MA, USA.,c 3 Maine Medical Center Research Institute, Center of Excellence in Stem & Progenitor Cell Biology and Regenerative Medicine , Scarborough, ME 04074, USA ; .,d 4 Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
250
|
Baburajeev CP, Dhananjaya Mohan C, Ananda H, Rangappa S, Fuchs JE, Jagadish S, Sivaraman Siveen K, Chinnathambi A, Ali Alharbi S, Zayed ME, Zhang J, Li F, Sethi G, Girish KS, Bender A, Basappa, Rangappa KS. Development of Novel Triazolo-Thiadiazoles from Heterogeneous "Green" Catalysis as Protein Tyrosine Phosphatase 1B Inhibitors. Sci Rep 2015; 5:14195. [PMID: 26388336 PMCID: PMC4585680 DOI: 10.1038/srep14195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Condensed-bicyclic triazolo-thiadiazoles were synthesized via an efficient "green" catalyst strategy and identified as effective inhibitors of PTP1B in vitro. The lead compound, 6-(2-benzylphenyl)-3-phenyl-[1,2,4]triazolo[3][1,3,4]thiadiazole (BPTT) was most effective against human hepatoma cells, inhibits cell invasion, and decreases neovasculature in HUVEC and also tumor volume in EAT mouse models. This report describes an experimentally unidentified class of condensed-bicyclic triazolo-thiadiazoles targeting PTP1B and its analogs could be the therapeutic drug-seeds.
Collapse
Affiliation(s)
- C P Baburajeev
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Palace Road, Bangalore 560001, India
| | | | - Hanumappa Ananda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570006, India
| | - Shobith Rangappa
- Frontier Research Center for Post-genome Science and Technology, Hokkaido University, Sapporo 0600808, Japan
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Swamy Jagadish
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570006, India
| | - Kodappully Sivaraman Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh -11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore-117597, Singapore
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-570006, India
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Palace Road, Bangalore 560001, India
| | | |
Collapse
|