201
|
Bhattachariya A, Turczyńska KM, Grossi M, Nordström I, Buckbinder L, Albinsson S, Hellstrand P. PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle. Physiol Rep 2014; 2:2/7/e12080. [PMID: 25347863 PMCID: PMC4187569 DOI: 10.14814/phy2.12080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Stretch of vascular smooth muscle stimulates growth and proliferation as well as contraction and expression of contractile/cytoskeletal proteins, all of which are also regulated by calcium‐dependent signals. We studied the role of the calcium‐ and integrin‐activated proline‐rich tyrosine kinase 2 (PYK2) in stretch‐induced responses of the rat portal vein loaded by a hanging weight ex vivo. PYK2 phosphorylation at Tyr‐402 was increased both by a 10‐min stretch and by organ culture with load over several days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF‐4594755 (0.5–1 μmol/L), while still sensitive to stretch. In 3‐day organ culture, PF‐4594755 caused maintained myogenic spontaneous activity but did not affect contraction in response to high‐K+ (60 mmol/L) or to α1‐adrenergic stimulation by cirazoline. Basal and stretch‐induced PYK2 phosphorylation in culture were inhibited by PF‐4594755, closely mimicking inhibition of non‐voltage‐dependent calcium influx by 2‐APB (30 μmol/L). In contrast, the L‐type calcium channel blocker, nifedipine (1 μmol/L) eliminated stretch‐induced but not basal PYK2 phosphorylation. Stretch‐induced Akt and ERK1/2 phosphorylation was eliminated by PF‐4594755. PYK2 inhibition had no effect on mRNA expression of several smooth muscle markers, and stretch‐sensitive SM22α synthesis was preserved. Culture of portal vein with the Ang II inhibitor losartan (1 μmol/L) eliminated stretch sensitivity of PYK2 and Akt phosphorylation, but did not affect mRNA expression of smooth muscle markers. The results suggest that PYK2 signaling functionally distinguishes effects of voltage‐ and non‐voltage‐dependent calcium influx. A small‐molecule inhibitor of PYK2 reduces growth and DNA synthesis but does not affect contractile differentiation of vascular smooth muscle. We studied the role of the calcium‐ and integrin‐activated proline‐rich tyrosine kinase 2 (PYK2) in stretch‐induced responses of the rat portal ex vivo. PYK2 phosphorylation at Tyr‐402 was increased both by a 10‐min stretch and by organ culture under stretch for 3 days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF‐4594755 (0.5–1 μmol/L), but contractile differentiation was not affected. Basal and stretch‐induced PYK2 phosphorylation in culture were inhibited by PF‐4594755, closely mimicking inhibition of non‐voltage‐dependent calcium influx by 2‐APB (30 μmol/L). In contrast, the L‐type calcium channel blocker, nifedipine (1 μmol/L) eliminated stretch‐induced but not basal PYK2 phosphorylation. The results suggest that PYK2 signaling functionally distinguishes effects of voltage‐ and non‐voltage‐dependent calcium influx.
Collapse
Affiliation(s)
| | | | - Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | - Ina Nordström
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | | | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| |
Collapse
|
202
|
Lin CH, Lilly B. Endothelial cells direct mesenchymal stem cells toward a smooth muscle cell fate. Stem Cells Dev 2014; 23:2581-90. [PMID: 24914692 DOI: 10.1089/scd.2014.0163] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Under defined conditions, mesenchymal stem cells can differentiate into unique cell types, making them attractive candidates for cell-based disease therapies. Ischemic diseases would greatly benefit from treatments that include the formation of new blood vessels from mesenchymal stem cells. However, blood vessels are complex structures composed of endothelial cells and smooth muscle cells, and their assembly and function in a diseased environment is reliant upon joining with the pre-existing vasculature. Although endothelial cell/smooth muscle cell interactions are well known, how endothelial cells may influence mesenchymal stem cells and facilitate their differentiation has not been defined. Therefore, we sought to explore how endothelial cells might drive mesenchymal stem cells toward a smooth muscle fate. Our data show that cocultured endothelial cells induce smooth muscle cell differentiation in mesenchymal stem cells. Endothelial cells can promote a contractile phenotype, reduce proliferation, and enhance collagen synthesis and secretion. Our data show that Notch signaling is essential for endothelial cell-dependent differentiation, and this differentiation pathway is largely independent of growth factor signaling mechanisms.
Collapse
Affiliation(s)
- Cho-Hao Lin
- Department of Pediatrics, The Heart Center, Nationwide Children's Hospital, The Ohio State University , Columbus, Ohio
| | | |
Collapse
|
203
|
Hulanicka M, Garncarz M, Parzeniecka-Jaworska M, Jank M. The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure. BMC Genomics 2014; 15:509. [PMID: 24952741 PMCID: PMC4092214 DOI: 10.1186/1471-2164-15-509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 06/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background In recent years advances have been made in the investigative methods of molecular background of canine heart disease. Studies have been conducted to identify specific genes which, when pathologically expressed, could lead to the dysfunction of the canine heart or are correlated with heart failure. For this purpose genome wide microarray experiments on tissues from failing hearts have been performed. In the presented study a whole genome microarray analysis was used for the first time to describe the transcription profile of peripheral blood nuclear cells in dogs with heart failure. Dogs with recognized heart disease were classified according the ISACHC (International Small Animal Cardiac Health Council) classification scheme as class 1 (asymptomatic) - 13 dogs, class 2 (mild to moderate heart failure) - 13 dogs and class 3 (severe heart failure) - 12 dogs. The control group consisted of 14 healthy dogs. The clinical picture of the animals included: animal history, clinical examination, echocardiographic examination and where applicable electrocardiographic and radiographic examinations. Results In the present study we identified four sets of differentially expressed genes, namely heart-failure-specific genes and ISACHC1-specific genes, ISACHC2-sepcific genes and ISACHC-3 specific genes. The most important set consisted of genes differentially expressed in all dogs with heart failure, despite the ISACHC stage. We identified 71 heart-failure-specific genes which were involved in two statistically significant receptor signalling pathways, namely angiotensinR - > CREB/ELK-SRF/TP53 signalling and ephrinR - > actin signalling. The number of ISACHC1-specific genes was 83; ISACHC2-specific genes - 1247 and ISACHC3-specific - 200. Conclusions The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure seems to reflect the presence of clinical signs of the disease in patients based on the observation that the largest number of differentially expressed genes was identified in ISACHC 2 group of patients. This group consists of dogs just starting to show clinical signs of heart failure. A set of genes was also found to have changed expression in all dogs with heart failure, despite the stage of the disease. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-509) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Hulanicka
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska str, 159c, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
204
|
Abstract
OPINION STATEMENT Reconstitution of cardiac muscle as well as blood vessels to provide sufficient oxygenation and nutrients to the myocardium is an important component of any therapeutic approach for cardiac repair after injury. Recent reports of reprogramming somatic cells directly to cells of another lineage raised the possibility of using cell reprogramming for cardiac regenerative therapy. Here, we provide an overview of the current reprogramming strategies to generate cardiomyocytes (CMs), endothelial cells (ECs) and smooth muscle cells (SMCs), and the implications of these methods for cardiac regeneration. We also discuss the challenges and limitations that need to be addressed for the development of future therapies.
Collapse
|
205
|
Abstract
Esnault and colleagues (pp. 943-958) take a genomics approach to investigate the role of SRF (serum response factor) in the serum response of fibroblasts. The well-established dual role of SRF with alternative cofactors and responsiveness to two signaling pathways is illustrated at the genome-wide level, yet new insight comes from this global picture.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
206
|
Castellanos-Rivera RM, Pentz ES, Lin E, Gross KW, Medrano S, Yu J, Sequeira-Lopez MLS, Gomez RA. Recombination signal binding protein for Ig-κJ region regulates juxtaglomerular cell phenotype by activating the myo-endocrine program and suppressing ectopic gene expression. J Am Soc Nephrol 2014; 26:67-80. [PMID: 24904090 DOI: 10.1681/asn.2013101045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recombination signal binding protein for Ig-κJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7) and smooth muscle (Acta2, Myh11, Cnn1, and Smtn) genes and regulators of smooth muscle expression (miR-145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin-expressing cells in the juxtaglomerular apparatus. Microarray analysis of mutant arterioles revealed upregulation of genes usually expressed in hematopoietic cells. Thus, these results suggest that RBP-J maintains the identity of the renin cell by not only activating genes characteristic of the myo-endocrine phenotype but also, preventing ectopic gene expression and adoption of an aberrant phenotype, which could have severe consequences for the control of homeostasis.
Collapse
Affiliation(s)
- Ruth M Castellanos-Rivera
- Department of Pediatrics, School of Medicine, Department of Biology, Graduate School of Arts and Sciences, and
| | | | - Eugene Lin
- Department of Pediatrics, School of Medicine, Department of Biology, Graduate School of Arts and Sciences, and
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Jing Yu
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia; and
| | | | - R Ariel Gomez
- Department of Pediatrics, School of Medicine, Department of Biology, Graduate School of Arts and Sciences, and
| |
Collapse
|
207
|
Seidelmann SB, Lighthouse JK, Greif DM. Development and pathologies of the arterial wall. Cell Mol Life Sci 2014; 71:1977-99. [PMID: 24071897 PMCID: PMC11113178 DOI: 10.1007/s00018-013-1478-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/13/2023]
Abstract
Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Arteries/growth & development
- Arteries/metabolism
- Arteries/pathology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression Regulation, Developmental
- Humans
- Morphogenesis/genetics
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
Collapse
Affiliation(s)
- Sara B. Seidelmann
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Janet K. Lighthouse
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Daniel M. Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| |
Collapse
|
208
|
Madonna R, Geng YJ, Bolli R, Rokosh G, Ferdinandy P, Patterson C, De Caterina R. Co-activation of nuclear factor-κB and myocardin/serum response factor conveys the hypertrophy signal of high insulin levels in cardiac myoblasts. J Biol Chem 2014; 289:19585-98. [PMID: 24855642 DOI: 10.1074/jbc.m113.540559] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hyperinsulinemia contributes to cardiac hypertrophy and heart failure in patients with the metabolic syndrome and type 2 diabetes. Here, high circulating levels of tumor necrosis factor (TNF)-α may synergize with insulin in signaling inflammation and cardiac hypertrophy. We tested whether high insulin affects activation of TNF-α-induced NF-κB and myocardin/serum response factor (SRF) to convey hypertrophy signaling in cardiac myoblasts. In canine cardiac myoblasts, treatment with high insulin (10(-8) to 10(-7) m) for 0-24 h increased insulin receptor substrate (IRS)-1 phosphorylation at Ser-307, decreased protein levels of chaperone-associated ubiquitin (Ub) E3 ligase C terminus of heat shock protein 70-interacting protein (CHIP), increased SRF activity, as well as β-myosin heavy chain (MHC) and myocardin expressions. Here siRNAs to myocardin or NF-κB, as well as CHIP overexpression prevented (while siRNA-mediated CHIP disruption potentiated) high insulin-induced SR element (SRE) activation and β-MHC expression. Insulin markedly potentiated TNF-α-induced NF-κB activation. Compared with insulin alone, insulin+TNF-α increased SRF/SRE binding and β-MHC expression, which was reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and by NF-κB silencing. In the hearts of db/db diabetic mice, in which Akt phosphorylation was decreased, p38MAPK, Akt1, and IRS-1 phosphorylation at Ser-307 were increased, together with myocardin expression as well as SRE and NF-κB activities. In response to high insulin, cardiac myoblasts increase the expression or the promyogenic transcription factors myocardin/SRF in a CHIP-dependent manner. Insulin potentiates TNF-α in inducing NF-κB and SRF/SRE activities. In hyperinsulinemic states, myocardin may act as a nuclear effector of insulin, promoting cardiac hypertrophy.
Collapse
Affiliation(s)
- Rosalinda Madonna
- From the Texas Heart Institute and University of Texas Medical School in Houston, Houston, Texas 77030, the Institute of Cardiology, and Center of Excellence on Aging, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Yong-Jian Geng
- From the Texas Heart Institute and University of Texas Medical School in Houston, Houston, Texas 77030
| | - Roberto Bolli
- the Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202
| | - Gregg Rokosh
- the Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202
| | - Peter Ferdinandy
- the Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Hungary, and
| | - Cam Patterson
- the Center for Molecular Cardiology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Raffaele De Caterina
- the Institute of Cardiology, and Center of Excellence on Aging, "G. d'Annunzio" University, 66100 Chieti, Italy,
| |
Collapse
|
209
|
Taylor A, Tang W, Bruscia EM, Zhang PX, Lin A, Gaines P, Wu D, Halene S. SRF is required for neutrophil migration in response to inflammation. Blood 2014; 123:3027-36. [PMID: 24574460 PMCID: PMC4014845 DOI: 10.1182/blood-2013-06-507582] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/10/2014] [Indexed: 11/20/2022] Open
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor and master regulator of the actin cytoskeleton. We have previously shown that SRF is essential for megakaryocyte maturation and platelet formation and function. Here we elucidate the role of SRF in neutrophils, the primary defense against infections. To study the effect of SRF loss in neutrophils, we crossed Srf(fl/fl) mice with select Cre-expressing mice and studied neutrophil function in vitro and in vivo. Despite normal neutrophil numbers, neutrophil function is severely impaired in Srf knockout (KO) neutrophils. Srf KO neutrophils fail to polymerize globular actin to filamentous actin in response to N-formyl-methionine-leucine-phenylalanine, resulting in significantly disrupted cytoskeletal remodeling. Srf KO neutrophils fail to migrate to sites of inflammation in vivo and along chemokine gradients in vitro. Polarization in response to cytokine stimuli is absent and Srf KO neutrophils show markedly reduced adhesion. Integrins play an essential role in cellular adhesion, and although integrin expression levels are maintained with loss of SRF, integrin activation and trafficking are disrupted. Migration and cellular adhesion are essential for normal cell function, but also for malignant processes such as metastasis, underscoring an essential function for SRF and its pathway in health and disease.
Collapse
Affiliation(s)
- Ashley Taylor
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Huang Y, Lin L, Yu X, Wen G, Pu X, Zhao H, Fang C, Zhu J, Ye S, Zhang L, Xiao Q. Functional involvements of heterogeneous nuclear ribonucleoprotein A1 in smooth muscle differentiation from stem cells in vitro and in vivo. Stem Cells 2014; 31:906-17. [PMID: 23335105 DOI: 10.1002/stem.1324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023]
Abstract
To investigate the functional involvements of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) in smooth muscle cell (SMC) differentiation from stem cells, embryonic stem cells were cultivated on collagen IV-coated plates to allow for SMC differentiation. We found that hnRNPA1 gene and protein expression was upregulated significantly during differentiation and coexpressed with SMC differentiation markers in the stem cell-derived SMCs as well as embryonic SMCs of 12.5 days of mouse embryos. hnRNPA1 knockdown resulted in downregulation of smooth muscle markers and transcription factors, while enforced expression of hnRNPA1 enhanced the expression of these genes. Importantly, knockdown of hnRNPA1 also resulted in impairment of SMC differentiation in vivo. Moreover, we demonstrated that hnRNPA1 could transcriptionally regulate SMC gene expression through direct binding to promoters of Acta2 and Tagln genes using luciferase and chromatin immunoprecipitation assays. We further demonstrated that the binding sites for serum response factor (SRF), a well-investigated SMC transcription factor, within the promoter region of the Acta2 and Tagln genes were responsible for hnRNPA1-mediated Acta2 and Tagln gene expression using in vitro site-specific mutagenesis and luciferase activity analyses. Finally, we also demonstrated that hnRNPA1 upregulated the expression of SRF, myocyte-specific enhancer factor 2c (MEF2c), and myocardin through transcriptional activation and direct binding to promoters of the SRF, MEF2c, and Myocd genes. Our findings demonstrated that hnRNPA1 plays a functional role in SMC differentiation from stem cells in vitro and in vivo. This indicates that hnRNPA1 is a potential modulating target for deriving SMCs from stem cells and cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yuan Huang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 2014; 28:943-58. [PMID: 24732378 PMCID: PMC4018493 DOI: 10.1101/gad.239327.114] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/20/2014] [Indexed: 01/14/2023]
Abstract
The transcription factor SRF (serum response factor) recruits two families of coactivators, the MRTFs (myocardin-related transcription factors) and the TCFs (ternary complex factors), to couple gene transcription to growth factor signaling. Here we investigated the role of the SRF network in the immediate transcriptional response of fibroblasts to serum stimulation. SRF recruited its cofactors in a gene-specific manner, and virtually all MRTF binding was directed by SRF. Much of SRF DNA binding was serum-inducible, reflecting a requirement for MRTF-SRF complex formation in nucleosome displacement. We identified 960 serum-responsive SRF target genes, which were mostly MRTF-controlled, as assessed by MRTF chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) and/or sensitivity to MRTF-linked signals. MRTF activation facilitates RNA polymerase II (Pol II) recruitment or promoter escape according to gene context. MRTF targets encode regulators of the cytoskeleton, transcription, and cell growth, underpinning the role of SRF in cytoskeletal dynamics and mechanosensing. Finally, we show that specific activation of either MRTFs or TCFs can reset the circadian clock.
Collapse
Affiliation(s)
| | | | | | - Phil East
- Bioinformatics and Biostatistics Group
| | | | - Nik Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
212
|
Pfisterer L, Meyer R, Feldner A, Drews O, Hecker M, Korff T. Bortezomib protects from varicose-like venous remodeling. FASEB J 2014; 28:3518-27. [PMID: 24769668 DOI: 10.1096/fj.14-250464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the high prevalence of venous diseases that are associated with and based on the structural reorganization of the venous vessel wall, not much is known about their mechanistic causes. In this context, we demonstrated that the quantity of myocardin, a transcriptional regulator of the contractile and quiescent smooth muscle cell phenotype, was diminished in proliferating synthetic venous smooth muscle cells (VSMCs) of human and mouse varicose veins by 51 and 60%, respectively. On the basis of the relevance of proteasomal activity for such phenotypic changes, we hypothesized that the observed VSMC activation is attenuated by the proteasome inhibitor bortezomib. This drug fully abolished VSMC proliferation and loss of myocardin in perfused mouse veins and blocked VSMC invasion in collagen gels by almost 80%. In line with this, topical transdermal treatment with bortezomib diminished VSMC proliferation by 80%, rescued 90% of VSMC myocardin abundance, and inhibited varicose-like venous remodeling by 67 to 72% in a mouse model. Collectively, our data indicate that the proteasome plays a pivotal role in VSMC phenotype changes during venous remodeling processes. Its inhibition protects from varicose-like vein remodeling in mice and may thus serve as a putative therapeutic strategy to treat human varicose veins.
Collapse
Affiliation(s)
- Larissa Pfisterer
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
| | - Ralph Meyer
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
| | - Anja Feldner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
| | - Oliver Drews
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
213
|
Xie L. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages. BMC Genomics 2014; 15:301. [PMID: 24758171 PMCID: PMC4023608 DOI: 10.1186/1471-2164-15-301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serum response factor (SRF) is a widely expressed transcription factor involved in multiple regulatory programs. It is believed that SRF can toggle between disparate programs of gene expression through association with different cofactors. However, the direct evidence as to how these factors function on a genome-wide level is still lacking. RESULTS In the present study, I explored the functions of SRF and its representative cofactors, megakaryoblastic leukemia 1/2 (MKL1/2) and ETS-domain protein 4 (ELK4), during fungal infection challenge in macrophages. The knockdown study, combined with gene expression array analysis, revealed that MKL1/2 regulated SRF-dependent genes were related to actin cytoskeleton organization, while ELK4 regulated SRF-dependent genes were related to external stimulus responses. Subsequent chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) suggested that many of these regulations were mediated directly in cis. CONCLUSIONS I conclude that SRF utilizes MKL1/2 to fulfill steady state cellular functions, including cytoskeletal organization, and utilizes ELK4 to facilitate acute responses to external infection. Together, these findings indicate that SRF, along with its two cofactors, are important players in both cellular homeostasis and stress responses in macrophages.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
214
|
Shi F, Long X, Hendershot A, Miano JM, Sottile J. Fibronectin matrix polymerization regulates smooth muscle cell phenotype through a Rac1 dependent mechanism. PLoS One 2014; 9:e94988. [PMID: 24752318 PMCID: PMC3994013 DOI: 10.1371/journal.pone.0094988] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/21/2014] [Indexed: 01/14/2023] Open
Abstract
Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins.
Collapse
Affiliation(s)
- Feng Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Xiaochun Long
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Allison Hendershot
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Joseph M. Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jane Sottile
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
215
|
Shi X, DiRenzo D, Guo LW, Franco SR, Wang B, Seedial S, Kent KC. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One 2014; 9:e93995. [PMID: 24718260 PMCID: PMC3981734 DOI: 10.1371/journal.pone.0093995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Dedifferentiation/genetics
- Cell Division/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Hyperplasia
- Male
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Recombinant Fusion Proteins/metabolism
- Smad3 Protein
- Transcription, Genetic/genetics
- Transcriptome
- Transduction, Genetic
- Transforming Growth Factor beta1
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Xudong Shi
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Daniel DiRenzo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| | - Sarah R. Franco
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Bowen Wang
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Stephen Seedial
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - K. Craig Kent
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| |
Collapse
|
216
|
Yoshida T, Hayashi M. Role of Krüppel-like factor 4 and its binding proteins in vascular disease. J Atheroscler Thromb 2014; 21:402-13. [PMID: 24573018 DOI: 10.5551/jat.23044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Krüppel-like factor 4(KLF4) is a zinc-finger transcription factor that plays a key role in cellular differentiation and proliferation during normal development and in various diseases, such as cancer. The results of recent studies have revealed that KLF4 is expressed in multiple vascular cell types, including phenotypically modulated smooth muscle cells(SMCs), endothelial cells and monocytes/macrophages and contributes to the progression of vascular diseases by activating or repressing the transcription of multiple genes via its associations with a variety of partner proteins. For example, KLF4 decreases the expression of markers of SMC differentiation by interacting with serum response factor, ELK1 and histone deacetylases. KLF4 also suppresses SMC proliferation by associating with p53. In addition, KLF4 enhances arterial medial calcification in concert with RUNX2. Furthermore, endothelial KLF4 represses arterial inflammation by binding to nuclear factor-κB. This article summarizes the role of KLF4 in vascular disease with a particular focus on in vivo studies and reviews recent progress in our understanding of the regulatory mechanisms involved in KLF4- mediated gene transcription.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Apheresis and Dialysis Center, School of Medicine, Keio University
| | | |
Collapse
|
217
|
Kirchmer MN, Franco A, Albasanz-Puig A, Murray J, Yagi M, Gao L, Dong ZM, Wijelath ES. Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3. Atherosclerosis 2014; 234:169-75. [PMID: 24657387 DOI: 10.1016/j.atherosclerosis.2014.02.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Smooth muscle cell (SMC) de-differentiation is a key step that leads to pathological narrowing of blood vessels. De-differentiation involves a reduction in the expression of the SMC contractile genes that are the hallmark of quiescent SMCs. While there is considerable evidence linking inflammation to vascular diseases, very little is known about the mechanisms by which inflammatory signals lead to SMC de-differentiation. Given that the Signal Transducers and Activators of Transcription (STAT) transcriptional factors are the key signaling molecules activated by many inflammatory cytokines and growth factors, the aim of the present study was to determine if STAT transcriptional factors play a role SMC de-differentiation. METHODS AND RESULTS Using shRNA targeted to STAT-1 and STAT-3, we show by real time RT-PCR and Western immunoblots that STAT-1 significantly reduces SMC contractile gene expression. In contrast, STAT-3 promotes expression of SMC contractile genes. Over-expression studies of STAT-1 and STAT-3 confirmed our observation that STAT-1 down-regulates whereas STAT-3 promotes SMC contractile gene expression. Bioinformatics analysis shows that promoters of all SMC contractile genes contain STAT binding sites. Finally, using ChIP analysis, we show that both STAT-1 and STAT-3 associate with the calponin gene. CONCLUSION These data indicate that the balance of STAT-1 and STAT-3 influences the differentiation status of SMCs. Increased levels of STAT-1 promote SMC de-differentiation, whereas high levels of STAT-3 drive SMC into a more mature phenotype. Thus, inhibition of STAT-1 may represent a novel target for therapeutic intervention in the control of vascular diseases such as atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Mayumi Namekata Kirchmer
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Anais Franco
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Adaia Albasanz-Puig
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Jacqueline Murray
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Mayumi Yagi
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Lu Gao
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Zhao Ming Dong
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA
| | - Errol S Wijelath
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
218
|
Scherer C, Pfisterer L, Wagner AH, Hödebeck M, Cattaruzza M, Hecker M, Korff T. Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells. J Am Heart Assoc 2014; 3:e000626. [PMID: 24614757 PMCID: PMC4187483 DOI: 10.1161/jaha.113.000626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Nuclear factor of activated T‐cells 5 (NFAT5) has recently been described to control the phenotype of vascular smooth muscle cells (VSMCs). Although an increase in wall stress or stretch (eg, elicited by hypertension) is a prototypic determinant of VSMC activation, the impact of this biomechanical force on the activity of NFAT5 is unknown. This study intended to reveal the function of NFAT5 and to explore potential signal transduction pathways leading to its activation in stretch‐stimulated VSMCs. Methods and Results Human arterial VSMCs were exposed to biomechanical stretch and subjected to immunofluorescence and protein‐biochemical analyses. Stretch promoted the translocation of NFAT5 to the nucleus within 24 hours. While the protein abundance of NFAT5 was regulated through activation of c‐Jun N‐terminal kinase under these conditions, its translocation required prior activation of palmitoyltransferases. DNA microarray and ChiP analyses identified the matrix molecule tenascin‐C as a prominent transcriptional target of NFAT5 under these conditions that stimulates migration of VSMCs. Analyses of isolated mouse femoral arteries exposed to hypertensive perfusion conditions verified that NFAT5 translocation to the nucleus is followed by an increase in tenascin‐C abundance in the vessel wall. Conclusions Collectively, our data suggest that biomechanical stretch is sufficient to activate NFAT5 both in native and cultured VSMCs where it regulates the expression of tenascin‐C. This may contribute to an improved migratory activity of VSMCs and thus promote maladaptive vascular remodeling processes such as hypertension‐induced arterial stiffening.
Collapse
Affiliation(s)
- Clemens Scherer
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
219
|
Lamon S, Wallace MA, Russell AP. The STARS signaling pathway: a key regulator of skeletal muscle function. Pflugers Arch 2014; 466:1659-71. [DOI: 10.1007/s00424-014-1475-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/08/2023]
|
220
|
Affiliation(s)
- Thomas Korff
- From the Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
221
|
Xiao Y, Christou H, Liu L, Visner G, Mitsialis SA, Kourembanas S, Liu H. Endothelial indoleamine 2,3-dioxygenase protects against development of pulmonary hypertension. Am J Respir Crit Care Med 2014; 188:482-91. [PMID: 23822766 DOI: 10.1164/rccm.201304-0700oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE A proliferative and apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs) is key to pathologic vascular remodeling in pulmonary hypertension (PH). Expression of indoleamine-2,3-dioxygenase (IDO) by vascular endothelium is a newly identified vasomotor-regulatory mechanism also involved in molecular signaling cascades governing vascular smooth muscle cell (vSMC) plasticity. OBJECTIVES To investigate the therapeutic potential of enhanced endothelial IDO in development of PH and its associated vascular remodeling. METHODS We used loss and gain of function in vivo studies to establish the role and determine the therapeutic effect of endothelial IDO in hypoxia-induced PH in mice and monocrotaline-induced PH in rats. We also studied PASMC phenotype in an IDO-high in vivo and in vitro tissue microenvironment. MEASUREMENTS AND MAIN RESULTS The endothelium was the primary site for endogenous IDO production within mouse lung, and the mice lacking this gene had exaggerated hypoxia-induced PH. Conversely, augmented pulmonary endothelial IDO expression, through a human IDO-encoding Sleeping Beauty (SB)-based nonviral gene-integrating approach, halted and attenuated the development of PH, right ventricular hypertrophy, and vascular remodeling in both preclinical models of PH. IDO derived from endothelial cells promoted apoptosis in PH-PASMCs through depolarization of mitochondrial transmembrane potential and down-regulated PH-PASMC proliferative/synthetic capacity through enhanced binding of myocardin to CArG box DNA sequences present within the promoters of vSMC differentiation-specific genes. CONCLUSIONS Enhanced endothelial IDO ameliorates PH and its associated vascular structural remodeling through paracrine phenotypic modulation of PH-PASMCs toward a proapoptotic and less proliferative/synthetic state.
Collapse
Affiliation(s)
- Yongguang Xiao
- Department of Surgery, Boston Children’s Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics 2014; 11:149-65. [PMID: 24476357 DOI: 10.1586/14789450.2014.860358] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transgelin is an abundant protein of smooth muscle cells, where its role has been primarily studied. As a protein affecting dynamics of the actin cytoskeleton via stabilization of actin filaments, transgelin is both directly and indirectly involved in many cancer-related processes such as migration, proliferation, differentiation or apoptosis. Transgelin was previously reviewed as a tumor suppressor; however, recent data based on a number of proteomics studies indicate its pro-tumorigenic role, for example, in colorectal or hepatocellular cancer. We summarize these contradictory observations in both clinical and functional proteomics projects and analyze the role of transgelin in tumors in detail. Generally, the expression and biological role of transgelin seem to differ among various types of tumor cells and stroma, and possibly change during tumor progression. We also overview the recent data on transgelin-2, a sequence homolog of transgelin, whose role in the tumor development might be contradictory to the role of transgelin.
Collapse
Affiliation(s)
- Monika Dvorakova
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | | | | |
Collapse
|
223
|
Cai X. Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Rev Cardiovasc Ther 2014; 4:789-800. [PMID: 17173496 DOI: 10.1586/14779072.4.6.789] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) exhibit extensive phenotypic diversity and rapid growth during embryonic development, but maintain a quiescent, differentiated state in adult. The pathogenesis of vascular proliferative diseases involves the proliferation and migration of medial vascular SMCs into the vessel intima, possibly reinstating their embryonic gene expression programs. Multiple mitogenic stimuli induce vascular SMC proliferation through cell cycle progression. Therapeutic strategies targeting cell cycle progression and mitogenic stimuli have been developed and evaluated in animal models of atherosclerosis and vascular injury, and several clinical studies. Recent discoveries on the recruitment of vascular progenitor cells to the sites of vascular injury suggest new therapeutic potentials of progenitor cell-based therapies to accelerate re-endothelialization and prevent engraftment of SMC-lineage progenitor cells. Owing to the complex and multifactorial nature of SMC regulation, combinatorial antiproliferative approaches are likely to be used in the future in order to achieve maximal efficacy and reduce toxicity.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cellular Senescence
- Clinical Trials as Topic
- Disease Progression
- Drug Delivery Systems
- Gene Expression
- Genetic Therapy
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Stents
- Vascular Diseases/drug therapy
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Xinjiang Cai
- Duke University Medical Center, Departments of Medicine (Cardiology) & Cell Biology, Durham, North Carolina 27710, USA.
| |
Collapse
|
224
|
Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin. Mol Cell Biol 2013; 34:400-14. [PMID: 24248596 DOI: 10.1128/mcb.01070-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), a member of the IRF transcription factor family, was recently implicated in vascular diseases. In the present study, using the mouse left carotid artery wire injury model, we unexpectedly observed that the expression of IRF8 was greatly enhanced in smooth muscle cells (SMCs) by injury. Compared with the wild-type controls, IRF8 global knockout mice exhibited reduced neointimal lesions and maintained SMC marker gene expression. We further generated SMC-specific IRF8 transgenic mice using an SM22α-driven IRF8 plasmid construct. In contrast to the knockout mice, mice with SMC-overexpressing IRF8 exhibited a synthetic phenotype and enhanced neointima formation. Mechanistically, IRF8 inhibited SMC marker gene expression through regulating serum response factor (SRF) transactivation in a myocardin-dependent manner. Furthermore, a coimmunoprecipitation assay indicated a direct interaction of IRF8 with myocardin, in which a specific region of myocardin was essential for recruiting acetyltransferase p300. Altogether, IRF8 is crucial in modulating SMC phenotype switching and neointima formation in response to vascular injury via direct interaction with the SRF/myocardin complex.
Collapse
|
225
|
Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O-gallate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:827905. [PMID: 24307927 PMCID: PMC3836374 DOI: 10.1155/2013/827905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/19/2013] [Accepted: 09/09/2013] [Indexed: 01/04/2023]
Abstract
Epigallocatechin gallate (EGCG) is known to exhibit antioxidant, antiproliferative, and antithrombogenic effects and reduce the risk of cardiovascular diseases. Key events in the development of cardiovascular disease are hypertrophy and hyperplasia according to vascular smooth muscle cell proliferation. In this study, we investigated whether EGCG can interfere with PDGF-bb stimulated proliferation, cell cycle distribution, and the gelatinolytic activity of MMP and signal transduction pathways on RAOSMC when it was treated in two different ways-cotreatment with PDGF-bb and pretreatment of EGCG before addition of PDGF-bb. Both cotreated and pretreated EGCG significantly inhibited PDGF-bb induced proliferation, cell cycle progression of the G0/G1 phase, and the gelatinolytic activity of MMP-2/9 on RAOSMC. Also, EGCG blocked PDGF receptor-β (PDGFR-β) phosphorylation on PDGF-bb stimulated RAOSMC under pretreatment with cells as well as cotreatment with PDGF-bb. The downstream signal transduction pathways of PDGFR-β, including p42/44 MAPK, p38 MAPK, and Akt phosphorylation, were also inhibited by EGCG in a pattern similar to PDGFR-β phosphorylation. These findings suggest that EGCG can inhibit PDGF-bb stimulated mitogenesis by indirectly and directly interrupting PDGF-bb signals and blocking the signaling pathway via PDGFR-β phosphorylation. Furthermore, EGCG may be used for treatment and prevention of cardiovascular disease through blocking of PDGF-bb signaling.
Collapse
|
226
|
Wang L, Li X, Zhou Y, Shi H, Xu C, He H, Wang S, Xiong X, Zhang Y, Du Z, Zhang R, Lu Y, Yang B, Shan H. Downregulation of miR-133 via MAPK/ERK signaling pathway involved in nicotine-induced cardiomyocyte apoptosis. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:197-206. [PMID: 24190542 DOI: 10.1007/s00210-013-0929-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022]
Abstract
Tobacco smoking is a risk factor for many diseases, and nicotine is a major component of tobacco. Our previous work revealed that nicotine can induce myocardial fibrosis. This study aimed to investigate whether nicotine can induce cardiomyocyte apoptosis and to explore the mechanisms involved. Cardiomyocytes were exposed to different nicotine concentrations for 48 h. MTT assay showed that the viability of cardiomyocytes was significantly inhibited by nicotine in a dose- and time-dependent manner. Loss of mitochondrial membrane potential, nuclear and DNA defragmentation determined by TUNEL and ELISA assays, and morphological alterations all revealed the pro-apoptotic property of nicotine. Meanwhile, miR-133, a muscle-specific microRNA, was markedly downregulated by nicotine. Consistently, caspase-9, a target gene for miR-133, was significantly upregulated, leading to an increase in caspase-3, in nicotine-treated cardiomyocytes compared to non-treated cells. Furthermore, ERK1/2 protein levels were considerably downregulated, along with reduction of serum response factor (SRF), which is a downstream target protein of ERK1/2 and an upstream transactivator of miR-133 as well. Our findings therefore revealed that inhibition of the ERK1/2-SRF-miR-133 signaling pathway to increase caspases-9 and -3 is a novel mechanism for nicotine to induce cardiomyocyte apoptosis and these tobacco smokers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, No.157 Baojian Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc Natl Acad Sci U S A 2013; 110:16850-5. [PMID: 24082095 DOI: 10.1073/pnas.1316764110] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardin-related transcription factors (MRTFs) regulate cellular contractility and motility by associating with serum response factor (SRF) and activating genes involved in cytoskeletal dynamics. We reported previously that MRTF-A contributes to pathological cardiac remodeling by promoting differentiation of fibroblasts to myofibroblasts following myocardial infarction. Here, we show that forced expression of MRTF-A in dermal fibroblasts stimulates contraction of a collagen matrix, whereas contractility of MRTF-A null fibroblasts is impaired under basal conditions and in response to TGF-β1 stimulation. We also identify an isoxazole ring-containing small molecule, previously shown to induce smooth muscle α-actin gene expression in cardiac progenitor cells, as an agonist of myofibroblast differentiation. Isoxazole stimulates myofibroblast differentiation via induction of MRTF-A-dependent gene expression. The MRTF-SRF signaling axis is activated in response to skin injury, and treatment of dermal wounds with isoxazole accelerates wound closure and suppresses the inflammatory response. These results reveal an important role for MRTF-SRF signaling in dermal myofibroblast differentiation and wound healing and suggest that targeting MRTFs pharmacologically may prove useful in treating diseases associated with inappropriate myofibroblast activity.
Collapse
|
228
|
Turner EC, Huang CL, Govindarajan K, Caplice NM. Identification of a Klf4-dependent upstream repressor region mediating transcriptional regulation of the myocardin gene in human smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1191-201. [PMID: 24060351 DOI: 10.1016/j.bbagrm.2013.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 01/25/2023]
Abstract
Phenotypic switching of smooth muscle cells (SMCs) plays a central role in the development of vascular diseases such as atherosclerosis and restenosis. However, the factors regulating expression of the human myocardin (Myocd) gene, the master gene regulator of SMC differentiation, have yet to be identified. In this study, we sought to identify the critical factors regulating Myocd expression in human SMCs. Using deletion/genetic reporter analyses, an upstream repressor region (URR) was localised within the Myocd promoter, herein termed PrmM. Bioinformatic analysis revealed three evolutionary conserved Klf4 sites within the URR and disruption of those elements led to substantial increases in PrmM-directed gene expression. Furthermore, ectopic expression established that Klf4 significantly decreased Myocd mRNA levels and PrmM-directed gene expression while electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays confirmed specific binding of endogenous Klf4, and not Klf5 or Klf2, to the URR of PrmM. Platelet-derived growth factor BB (PDGF-BB), a potent inhibitor of SMC differentiation, reduced Myocd mRNA levels and PrmM-directed gene expression in SMCs. A PDGF-BB-responsive region (PRR) was also identified within PrmM, overlapping with the previously identified URR, where either siRNA knockdown of Klf4 or the combined disruption of the Klf4 elements completely abolished PDGF-BB-mediated repression of PrmM-directed gene expression in SMCs. Moreover, ChIP analysis established that PDGF-BB-induced repression of Myocd gene expression is most likely regulated by enhanced binding of Klf4 and Klf5 to a lesser extent, to the PRR of PrmM. Taken together, these data provide critical insights into the transcriptional regulation of the Myocd gene in vascular SMCs, including during SMC differentiation.
Collapse
Affiliation(s)
- Elizebeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
229
|
Wanjare M, Kusuma S, Gerecht S. Perivascular cells in blood vessel regeneration. Biotechnol J 2013; 8:434-47. [PMID: 23554249 DOI: 10.1002/biot.201200199] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022]
Abstract
Vascular engineering seeks to design and construct functional blood vessels comprising endothelial cells (ECs) and perivascular cells (PCs), with the ultimate goal of clinical translation. While EC behavior has been extensively investigated, PCs play an equally significant role in the development of novel regenerative strategies, providing functionality and stability to vessels. The two major classes of PCs are vascular smooth muscle cells (vSMCs) and pericytes; vSMCs can be further sub-classified as either contractile or synthetic. The inclusion of these cell types is crucial for successful regeneration of blood vessels. Furthermore, understanding distinctions between vSMCs and pericytes will enable improved therapeutics in a tissue-specific manner. Here we focus on the approaches and challenges facing the use of PCs in vascular regeneration, including their characteristics, stem cell sources, and interactions with ECs. Finally, we discuss biochemical and microRNA (miR) regulators of PC behavior and engineering approaches that mimic various cues affecting PC function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
230
|
Hoggatt AM, Kim JR, Ustiyan V, Ren X, Kalin TV, Kalinichenko VV, Herring BP. The transcription factor Foxf1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells. J Biol Chem 2013; 288:28477-87. [PMID: 23946491 DOI: 10.1074/jbc.m113.478974] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smooth muscle cells (SMCs) modulate their phenotype from a quiescent contractile state to a dedifferentiated, proliferative and migratory state during the pathogenesis of many diseases, including intestinal pseudoobstruction. Understanding how smooth muscle gene expression is regulated in these different phenotypic states is critical for unraveling the pathogenesis of these diseases. In the current study we examined the specific roles of Foxf1 in visceral SMC differentiation. Data show that Foxf1 is specifically required for expression of several contractile and regulatory proteins such as telokin, smooth muscle γ-actin, and Cav1.2b in visceral SMCs. Mechanistically, Foxf1 directly binds to and activates the telokin promoter. Foxf1 also directly binds to serum response factor (SRF) and myocardin-related transcription factors (MRTFs). Unlike Foxo4 and Foxq1, which bind to MRTFs and block their interaction with SRF, Foxf1 acts synergistically with these proteins to regulate telokin expression. Knock-out of Foxf1 specifically in SMCs results in neonatal lethality, with mice exhibiting GI tract abnormalities. Mice heterozygous for Foxf1 in SMC exhibited impaired colonic contractility and decreased expression of contractile proteins. These studies together with previous studies, suggest that different forkhead proteins can regulate gene expression in SMCs through modulating the activity of the SRF-myocardin axis to either promote or inhibit differentiation and proliferation thereby altering gastrointestinal contractility and development.
Collapse
Affiliation(s)
- April M Hoggatt
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | | | | | | | | | | | | |
Collapse
|
231
|
Talasila A, Yu H, Ackers-Johnson M, Bot M, van Berkel T, Bennett MR, Bot I, Sinha S. Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-β. Arterioscler Thromb Vasc Biol 2013; 33:2355-65. [PMID: 23825366 DOI: 10.1161/atvbaha.112.301000] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Myocardin, a potent transcriptional coactivator of serum response factor, is involved in vascular development and promotes a contractile smooth muscle phenotype. Myocardin levels are reduced during vascular injury, in association with phenotypic switching of smooth muscle cells (SMCs). However, the direct role of myocardin in vascular disease is unclear. APPROACH AND RESULTS We show that re-expression of myocardin prevents the vascular injury response in murine carotid arteries, with reduced neointima formation due to decreased SMC migration and proliferation. Myocardin reduced SMC migration by downregulating platelet-derived growth factor receptor-β (PDGFRB) expression. Pdgfrb was regulated by myocardin-induced miR-24 and miR-29a expression, and antagonizing these microRNAs restored SMC migration. Furthermore, using miR-24 and miR-29a mimics, we demonstrated that miR-29a directly regulates Pdgfrb expression at the 3' untranslated region while miR-24 has an indirect effect on Pdgfrb levels. Myocardin heterozygous-null mice showed an augmented neointima formation with increased SMC migration and proliferation, demonstrating that endogenous levels of myocardin are a critical regulator of vessel injury responses. CONCLUSIONS Our results extend the function of myocardin from a developmental role to a pivotal regulator of SMC phenotype in response to injury, and this transcriptional coactivator may be an attractive target for novel therapeutic strategies in vascular disease.
Collapse
Affiliation(s)
- Amarnath Talasila
- From the Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (A.T., H.Y., M.A.-J., M.R.B., S.S.); and Division of Biopharmaceutics, Leiden/Amsterdam Centre for Drug Research, Leiden University, Einsteinweg, Leiden, The Netherlands (M.R.B., T.v.B., I.B.)
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Iwayama T, Olson LE. Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep 2013; 15:304. [PMID: 23307576 DOI: 10.1007/s11926-012-0304-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibrosis is the principal characteristic of the autoimmune disease known as scleroderma or systemic sclerosis (SSc). Studies published within the last three years suggest central involvement of platelet-derived growth factors (PDGFs) in SSc-associated fibrosis. PDGFs may also be involved in SSc-associated autoimmunity and vasculopathy. The PDGF signaling pathway is well understood and PDGF receptors are expressed on collagen-secreting fibroblasts and on mesenchymal stem and/or progenitor cells that may affect SSc in profound and unexpected ways. Although much work remains before we fully understand how PDGFs are involved in SSc, there is much interest in using PDGF inhibitors as a therapeutic approach to SSc.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
233
|
Yoshida T, Yamashita M, Horimai C, Hayashi M. Smooth muscle-selective inhibition of nuclear factor-κB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury. J Am Heart Assoc 2013; 2:e000230. [PMID: 23702880 PMCID: PMC3698790 DOI: 10.1161/jaha.113.000230] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular proliferative diseases such as atherosclerosis are inflammatory disorders involving multiple cell types including macrophages, lymphocytes, endothelial cells, and smooth muscle cells (SMCs). Although activation of the nuclear factor-κB (NF-κB) pathway in vessels has been shown to be critical for the progression of vascular diseases, the cell-autonomous role of NF-κB within SMCs has not been fully understood. METHODS AND RESULTS We generated SMC-selective truncated IκB expressing (SM22α-Cre/IκBΔN) mice, in which NF-κB was inhibited selectively in SMCs, and analyzed their phenotype following carotid injury. Results showed that neointima formation was markedly reduced in SM22α-Cre/IκBΔN mice after injury. Although vascular injury induced downregulation of expression of SMC differentiation markers and myocardin, a potent activator of SMC differentiation markers, repression of these markers and myocardin was attenuated in SM22α-Cre/IκBΔN mice. Consistent with these findings, NF-κB activation by interleukin-1β (IL-1β) decreased expression of SMC differentiation markers as well as myocardin in cultured SMCs. Inhibition of NF-κB signaling by BAY 11-7082 attenuated repressive effects of IL-1β. Of interest, Krüppel-like factor 4 (Klf4), a transcription factor critical for regulating SMC differentiation and proliferation, was also involved in IL-1β-mediated myocardin repression. Promoter analyses and chromatin immunoprecipitation assays revealed that NF-κB repressed myocardin by binding to the myocardin promoter region in concert with Klf4. CONCLUSIONS These results provide novel evidence that activation of the NF-κB pathway cell-autonomously mediates SMC phenotypic switching and contributes to neointima formation following vascular injury.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | |
Collapse
|
234
|
Shaposhnikov D, Kuffer C, Storchova Z, Posern G. Myocardin related transcription factors are required for coordinated cell cycle progression. Cell Cycle 2013; 12:1762-72. [PMID: 23656782 DOI: 10.4161/cc.24839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Myocardin related transcription factors A and B (MRTFs) activate serum response factor-driven transcription in response to Rho signaling and changes in actin dynamics. Myocardin and MRTFs have been implicated in anti-proliferative effects on a range of cell types. The precise mechanisms, however, remained elusive. We employed double knockdown of MRTF-A and MRTF-B in NIH 3T3 fibroblasts to evaluate its effects on cell cycle progression and proliferation. We show that transient depletion of MRTFs conveys a modest anti-proliferative effect and impinges on normal cell cycle progression, resulting in significantly shortened G 1 phase and slightly extended S and G 2 phase under normal growth conditions. Under serum-starved conditions we observed aberrant entry into the S and G 2 phases without subsequent cell division. This was accompanied by downregulation of cyclin-CDK inhibitors p27Kip1, p18Ink4c and 19Ink4d as well as upregulation of p21Waf1 and cyclin D1. Extended knockdown led to increased formation of micronuclei, while cells stably depleted of MRTFs tend to become aneuploid and polyploid. Thus, MRTFs are required for accurate cell cycle progression and maintenance of genomic stability in fibroblast cells.
Collapse
Affiliation(s)
- Dmitry Shaposhnikov
- Gene Regulation Lab, Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg; Halle (Saale), Germany
| | | | | | | |
Collapse
|
235
|
TSHZ3 and SOX9 regulate the timing of smooth muscle cell differentiation in the ureter by reducing myocardin activity. PLoS One 2013; 8:e63721. [PMID: 23671695 PMCID: PMC3646048 DOI: 10.1371/journal.pone.0063721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/11/2013] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells are of key importance for the proper functioning of different visceral organs including those of the urogenital system. In the mouse ureter, the two transcriptional regulators TSHZ3 and SOX9 are independently required for initiation of smooth muscle differentiation from uncommitted mesenchymal precursor cells. However, it has remained unclear whether TSHZ3 and SOX9 act independently or as part of a larger regulatory network. Here, we set out to characterize the molecular function of TSHZ3 in the differentiation of the ureteric mesenchyme. Using a yeast-two-hybrid screen, we identified SOX9 as an interacting protein. We show that TSHZ3 also binds to the master regulator of the smooth muscle program, MYOCD, and displaces it from the coregulator SRF, thereby disrupting the activation of smooth muscle specific genes. We found that the initiation of the expression of smooth muscle specific genes in MYOCD-positive ureteric mesenchyme coincides with the down regulation of Sox9 expression, identifying SOX9 as a possible negative regulator of smooth muscle cell differentiation. To test this hypothesis, we prolonged the expression of Sox9 in the ureteric mesenchyme in vivo. We found that Sox9 does not affect Myocd expression but significantly reduces the expression of MYOCD/SRF-dependent smooth muscle genes, suggesting that down-regulation of Sox9 is a prerequisite for MYOCD activity. We propose that the dynamic expression of Sox9 and the interaction between TSHZ3, SOX9 and MYOCD provide a mechanism that regulates the pace of progression of the myogenic program in the ureter.
Collapse
|
236
|
Kohli S, Ahuja S, Rani V. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 2013; 7:262-71. [PMID: 22758628 PMCID: PMC3322445 DOI: 10.2174/157340311799960618] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/08/2012] [Accepted: 01/08/2011] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. This is initially a compensatory mechanism but sustained hypertrophy may lead to heart failure. The growing knowledge of transcriptional control mechanisms is helpful in the development of novel therapies. This review summarizes the role of cardiac transcription factors in cardiac hypertrophy, emphasizing their potential as attractive therapeutic targets to prevent the onset of heart failure and sudden death as they can be converging targets for current therapy.
Collapse
Affiliation(s)
- Shrey Kohli
- Department of Biotechnology, Jaypee Institute of Information Technology University, NOIDA 210307, India
| | | | | |
Collapse
|
237
|
Hayashi K, Morita T. Importance of dimer formation of myocardin family members in the regulation of their nuclear export. Cell Struct Funct 2013; 38:123-34. [PMID: 23594864 DOI: 10.1247/csf.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myocardin (Mycd) family members function as a transcriptional cofactor for serum response factor (SRF). Dimer formation is necessary to exhibit their function, and the coiled-coil domain (CC) plays a critical role in their dimerization. We have recently revealed a detailed molecular mechanism for their Crm1 (exportin1)-mediated nuclear export. Here, we found other unique significances of the dimerization of Mycd family members. Introduction of mutations in the CC of myocardin-related transcription factor A (MRTF-A) and truncated Mycd resulted in significant decreases in their cytoplasmic localization and increases in their nuclear localization. In accordance with such subcellular localization changes, their binding to Crm1 were reduced. These results indicate that the dimerization of Mycd family members is necessary for their Crm1-mediated nuclear export. We have recently found that the N-terminal region of Mycd consisting of 128 amino acids (Mycd N128) self-associates to Mycd via the central basic domain (CB), resulting in masking the Crm1-binding site. Such self-association of MRTF-A would be unlikely. In this study, we also revealed that the dimerization of Mycd was also necessary for this self-association. Wild-type Mycd activated SRF-mediated transcription more potently than Mycd lacking the Mycd N128 (Mycd ΔN128) did. These results suggest two possible functions of the Mycd N128: 1) stabilization of Mycd dimer to enhance SRF-mediated transcription and 2) positive regulation of the transactivation ability of Mycd. These findings provide a new insight into the functional regulation of Mycd family members.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Neuroscience, Osaka University Graduate School of Medicine, Japan.
| | | |
Collapse
|
238
|
Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, Liaw L, Friesel RE. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS One 2013; 8:e58746. [PMID: 23554919 PMCID: PMC3598808 DOI: 10.1371/journal.pone.0058746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Background Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established. Methodology/Principal Findings Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels. Conclusions Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- * E-mail: (XY); (RF)
| | - Yan Gong
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Yuefeng Tang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Qing He
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Lindsey Gower
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
- Graduate School for Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- * E-mail: (XY); (RF)
| |
Collapse
|
239
|
Schuliga M, Javeed A, Harris T, Xia Y, Qin C, Wang Z, Zhang X, Lee PVS, Camoretti-Mercado B, Stewart AG. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir Cell Mol Biol 2013; 48:346-53. [PMID: 23239497 PMCID: PMC3604085 DOI: 10.1165/rcmb.2012-0151oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022] Open
Abstract
In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-β (TGF-β)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-β-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β-receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.
Collapse
Affiliation(s)
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan; and
| | | | | | | | - Zhexing Wang
- Department of Chemical and Biomolecular Engineering, and
| | - Xuehua Zhang
- Department of Chemical and Biomolecular Engineering, and
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
240
|
Ghezzi CE, Risse PA, Marelli B, Muja N, Barralet JE, Martin JG, Nazhat SN. An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials 2013; 34:1954-66. [DOI: 10.1016/j.biomaterials.2012.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
|
241
|
Hayashi K, Morita T. Differences in the nuclear export mechanism between myocardin and myocardin-related transcription factor A. J Biol Chem 2013; 288:5743-55. [PMID: 23283978 PMCID: PMC3581383 DOI: 10.1074/jbc.m112.408120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/09/2012] [Indexed: 02/05/2023] Open
Abstract
Myocardin (Mycd), a key factor in smooth muscle cell differentiation, is constitutively located in the nucleus, whereas myocardin-related transcription factors A and B (MRTF-A/B) reside mostly in the cytoplasm and translocate to the nucleus in a Rho-dependent manner. Here, we investigated the nuclear export of Mycd family members. They possess two leucine-rich sequences: L1 in the N terminus and L2 in the Gln-rich domain. Although L2 (but not L1) served as a CRM1-binding site for Mycd, CRM1-mediated nuclear export did not affect its subcellular localization. Serum response factor (SRF) competitively inhibited Mycd/CRM1 interaction. Furthermore, such interaction was autonomously inhibited. The N terminus of Mycd bound intramolecularly to Mycd, resulting in masking L2. In contrast, the CRM1-binding affinity of MRTF-A was much higher than that of Mycd because both L1 and L2 of MRTF-A served as functional CRM1-binding sites, and the autoinhibition observed in the Mycd/CRM1 interaction was absent in the MRTF-A/CRM1 interaction. Additionally, because the SRF-binding affinity of MRTF-A was lower than that of Mycd, the inhibitory effect of SRF on the MRTF-A/CRM1 interaction was weak. Thus, MRTF-A is much more likely to be exported from the nucleus. These differences could be the reason for the distinct subcellular localization of Mycd and MRTF-A.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
242
|
Klein AM, Zaganjor E, Cobb MH. Chromatin-tethered MAPKs. Curr Opin Cell Biol 2013; 25:272-7. [PMID: 23434067 DOI: 10.1016/j.ceb.2013.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 01/15/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that are essential nodes in many cellular regulatory circuits including those that take place on DNA. Most members of the four MAPK subgroups that exist in canonical three kinase cascades-extracellular signal-regulated kinases 1 and 2 (ERK1/2), ERK5, c-Jun N-terminal kinases (JNK1-3), and p38 (α, β, γ, and δ) families-have been shown to perform regulatory functions on chromatin. This review offers a brief update on the variety of processes that involve MAPKs and available mechanisms garnered in the last two years.
Collapse
Affiliation(s)
- Aileen M Klein
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, United States
| | | | | |
Collapse
|
243
|
Wright DB, Trian T, Siddiqui S, Pascoe CD, Johnson JR, Dekkers BG, Dakshinamurti S, Bagchi R, Burgess JK, Kanabar V, Ojo OO. Phenotype modulation of airway smooth muscle in asthma. Pulm Pharmacol Ther 2013; 26:42-9. [DOI: 10.1016/j.pupt.2012.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/26/2023]
|
244
|
Tréguer K, Naye F, Thiébaud P, Fédou S, Soulet F, Thézé N, Faucheux C. Smooth muscle cell differentiation from human bone marrow: Variations in cell type specific markers and Id
gene expression in a new model of cell culture. Cell Biol Int 2013; 33:621-31. [DOI: 10.1016/j.cellbi.2009.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/07/2008] [Accepted: 02/17/2009] [Indexed: 01/12/2023]
|
245
|
|
246
|
Drawnel FM, Wachten D, Molkentin JD, Maillet M, Aronsen JM, Swift F, Sjaastad I, Liu N, Catalucci D, Mikoshiba K, Hisatsune C, Okkenhaug H, Andrews SR, Bootman MD, Roderick HL. Mutual antagonism between IP(3)RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. J Cell Biol 2012; 199:783-98. [PMID: 23166348 PMCID: PMC3514786 DOI: 10.1083/jcb.201111095] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 10/25/2012] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5'-triphosphate receptor II (IP(3)RII) calcium channel expression is increased in both hypertrophic failing human myocardium and experimentally induced models of the disease. The ectopic calcium released from these receptors induces pro-hypertrophic gene expression and may promote arrhythmias. Here, we show that IP(3)RII expression was constitutively restrained by the muscle-specific miRNA, miR-133a. During the hypertrophic response to pressure overload or neurohormonal stimuli, miR-133a down-regulation permitted IP(3)RII levels to increase, instigating pro-hypertrophic calcium signaling and concomitant pathological remodeling. Using a combination of in vivo and in vitro approaches, we demonstrated that IP(3)-induced calcium release (IICR) initiated the hypertrophy-associated decrease in miR-133a. In this manner, hypertrophic stimuli that engage IICR set a feed-forward mechanism in motion whereby IICR decreased miR-133a expression, further augmenting IP(3)RII levels and therefore pro-hypertrophic calcium release. Consequently, IICR can be considered as both an initiating event and a driving force for pathological remodeling.
Collapse
Affiliation(s)
- Faye M. Drawnel
- Babraham Institute, Babraham, Cambridge CB22 3AT, England, UK
| | - Dagmar Wachten
- Babraham Institute, Babraham, Cambridge CB22 3AT, England, UK
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Faculty of Medicine, Oslo University Hospital, 0407 Oslo, Norway
- Bjørknes College, 0456 Oslo, Norway
| | - Fredrik Swift
- Institute for Experimental Medical Research, Faculty of Medicine, Oslo University Hospital, 0407 Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Faculty of Medicine, Oslo University Hospital, 0407 Oslo, Norway
| | - Ning Liu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research, Milan Section, National Research Council, 20138 Milan, Italy
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 531-0198, Japan
| | - Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 531-0198, Japan
| | | | | | | | - H. Llewelyn Roderick
- Babraham Institute, Babraham, Cambridge CB22 3AT, England, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| |
Collapse
|
247
|
Althoff TF, Albarrán Juárez J, Troidl K, Tang C, Wang S, Wirth A, Takefuji M, Wettschureck N, Offermanns S. Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. ACTA ACUST UNITED AC 2012; 209:2277-90. [PMID: 23129751 PMCID: PMC3501360 DOI: 10.1084/jem.20120350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G(12)/G(13) and G(q)/G(11) antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking Gα(12)/Gα(13) or their effector, the RhoGEF protein LARG, RhoA-dependent SRF-regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Gα(q)/Gα(11) deficiency blocked activation of extracellular signal-regulated kinase 1/2 and the TCF Elk-1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein-mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies.
Collapse
Affiliation(s)
- Till F Althoff
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-645. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Anderson Medical Sciences, Reno, NV 89557, USA.
| | | | | | | |
Collapse
|
249
|
Munoz-Pinto DJ, Qu X, Bansal L, Hayenga HN, Hahn J, Hahn MS. Relative impact of form-induced stress vs. uniaxial alignment on multipotent stem cell myogenesis. Acta Biomater 2012; 8:3974-81. [PMID: 22796654 DOI: 10.1016/j.actbio.2012.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 04/07/2012] [Accepted: 06/21/2012] [Indexed: 01/22/2023]
Abstract
Tissue engineering strategies based on multipotent stem cells (MSCs) hold significant promise for the repair or replacement of damaged smooth muscle tissue. To design scaffolds which specifically induce MSC smooth muscle lineage progression requires a deeper understanding of the relative influence of various microenvironmental signals on myogenesis. For instance, MSC myogenic differentiation has been shown to be promoted by increases in active RhoA and FAK, both of which can be induced via increased cell-substrate stress. Separate studies have demonstrated MSC myogenesis to be enhanced by uniaxial cell alignment. The goal of the present study was to compare the impact of increased peak cell-substrate stresses vs. increased uniaxial cell alignment on MSC myogenic differentiation. To this end, MSC fate decisions were compared within two distinct multicellular "forms". A "stripe" multicellular pattern was designed to induce uniaxial cell alignment. In contrast, a second multicellular pattern was designed with "loops" or curves, which altered cell directionality while simultaneously generating regional peak stresses significantly above that intrinsic to the "stripe" form. As anticipated, the higher peak stress levels of the "loop" pattern were associated with increased fractions of active RhoA and active FAK. In contrast, two markers of early smooth muscle lineage progression, myocardin and SM-α-actin, were significantly elevated in the "stripe" pattern relative to the "loop" pattern. These results indicate that scaffolds which promote uniaxial MSC alignment may be more inductive of myogenic differentiation than those associated with increased peak, cell-substrate stress but in which cell directionality varies.
Collapse
|
250
|
Zhu L, Hao Y, Guan H, Cui C, Tian S, Yang D, Wang X, Zhang S, Wang L, Jiang H. Effect of sinomenine on vascular smooth muscle cell dedifferentiation and neointima formation after vascular injury in mice. Mol Cell Biochem 2012; 373:53-62. [PMID: 23065380 DOI: 10.1007/s11010-012-1474-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/26/2012] [Indexed: 12/29/2022]
|